mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 12:34:13 +08:00
CogView4 Control Block (#10809)
* cogview4 control training --------- Co-authored-by: OleehyO <leehy0357@gmail.com> Co-authored-by: yiyixuxu <yixu310@gmail.com>
This commit is contained in:
201
examples/cogview4-control/README.md
Normal file
201
examples/cogview4-control/README.md
Normal file
@@ -0,0 +1,201 @@
|
||||
# Training CogView4 Control
|
||||
|
||||
This (experimental) example shows how to train Control LoRAs with [CogView4](https://huggingface.co/THUDM/CogView4-6B) by conditioning it with additional structural controls (like depth maps, poses, etc.). We provide a script for full fine-tuning, too, refer to [this section](#full-fine-tuning). To know more about CogView4 Control family, refer to the following resources:
|
||||
|
||||
To incorporate additional condition latents, we expand the input features of CogView-4 from 64 to 128. The first 64 channels correspond to the original input latents to be denoised, while the latter 64 channels correspond to control latents. This expansion happens on the `patch_embed` layer, where the combined latents are projected to the expected feature dimension of rest of the network. Inference is performed using the `CogView4ControlPipeline`.
|
||||
|
||||
> [!NOTE]
|
||||
> **Gated model**
|
||||
>
|
||||
> As the model is gated, before using it with diffusers you first need to go to the [CogView4 Hugging Face page](https://huggingface.co/THUDM/CogView4-6B), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in:
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
The example command below shows how to launch fine-tuning for pose conditions. The dataset ([`raulc0399/open_pose_controlnet`](https://huggingface.co/datasets/raulc0399/open_pose_controlnet)) being used here already has the pose conditions of the original images, so we don't have to compute them.
|
||||
|
||||
```bash
|
||||
accelerate launch train_control_lora_cogview4.py \
|
||||
--pretrained_model_name_or_path="THUDM/CogView4-6B" \
|
||||
--dataset_name="raulc0399/open_pose_controlnet" \
|
||||
--output_dir="pose-control-lora" \
|
||||
--mixed_precision="bf16" \
|
||||
--train_batch_size=1 \
|
||||
--rank=64 \
|
||||
--gradient_accumulation_steps=4 \
|
||||
--gradient_checkpointing \
|
||||
--use_8bit_adam \
|
||||
--learning_rate=1e-4 \
|
||||
--report_to="wandb" \
|
||||
--lr_scheduler="constant" \
|
||||
--lr_warmup_steps=0 \
|
||||
--max_train_steps=5000 \
|
||||
--validation_image="openpose.png" \
|
||||
--validation_prompt="A couple, 4k photo, highly detailed" \
|
||||
--offload \
|
||||
--seed="0" \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
`openpose.png` comes from [here](https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png).
|
||||
|
||||
You need to install `diffusers` from the branch of [this PR](https://github.com/huggingface/diffusers/pull/9999). When it's merged, you should install `diffusers` from the `main`.
|
||||
|
||||
The training script exposes additional CLI args that might be useful to experiment with:
|
||||
|
||||
* `use_lora_bias`: When set, additionally trains the biases of the `lora_B` layer.
|
||||
* `train_norm_layers`: When set, additionally trains the normalization scales. Takes care of saving and loading.
|
||||
* `lora_layers`: Specify the layers you want to apply LoRA to. If you specify "all-linear", all the linear layers will be LoRA-attached.
|
||||
|
||||
### Training with DeepSpeed
|
||||
|
||||
It's possible to train with [DeepSpeed](https://github.com/microsoft/DeepSpeed), specifically leveraging the Zero2 system optimization. To use it, save the following config to an YAML file (feel free to modify as needed):
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: false
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_clipping: 1.0
|
||||
offload_optimizer_device: cpu
|
||||
offload_param_device: cpu
|
||||
zero3_init_flag: false
|
||||
zero_stage: 2
|
||||
distributed_type: DEEPSPEED
|
||||
downcast_bf16: 'no'
|
||||
enable_cpu_affinity: false
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 1
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
And then while launching training, pass the config file:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file=CONFIG_FILE.yaml ...
|
||||
```
|
||||
|
||||
### Inference
|
||||
|
||||
The pose images in our dataset were computed using the [`controlnet_aux`](https://github.com/huggingface/controlnet_aux) library. Let's install it first:
|
||||
|
||||
```bash
|
||||
pip install controlnet_aux
|
||||
```
|
||||
|
||||
And then we are ready:
|
||||
|
||||
```py
|
||||
from controlnet_aux import OpenposeDetector
|
||||
from diffusers import CogView4ControlPipeline
|
||||
from diffusers.utils import load_image
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
pipe = CogView4ControlPipeline.from_pretrained("THUDM/CogView4-6B", torch_dtype=torch.bfloat16).to("cuda")
|
||||
pipe.load_lora_weights("...") # change this.
|
||||
|
||||
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
|
||||
# prepare pose condition.
|
||||
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg"
|
||||
image = load_image(url)
|
||||
image = open_pose(image, detect_resolution=512, image_resolution=1024)
|
||||
image = np.array(image)[:, :, ::-1]
|
||||
image = Image.fromarray(np.uint8(image))
|
||||
|
||||
prompt = "A couple, 4k photo, highly detailed"
|
||||
|
||||
gen_images = pipe(
|
||||
prompt=prompt,
|
||||
control_image=image,
|
||||
num_inference_steps=50,
|
||||
joint_attention_kwargs={"scale": 0.9},
|
||||
guidance_scale=25.,
|
||||
).images[0]
|
||||
gen_images.save("output.png")
|
||||
```
|
||||
|
||||
## Full fine-tuning
|
||||
|
||||
We provide a non-LoRA version of the training script `train_control_cogview4.py`. Here is an example command:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file=accelerate_ds2.yaml train_control_cogview4.py \
|
||||
--pretrained_model_name_or_path="THUDM/CogView4-6B" \
|
||||
--dataset_name="raulc0399/open_pose_controlnet" \
|
||||
--output_dir="pose-control" \
|
||||
--mixed_precision="bf16" \
|
||||
--train_batch_size=2 \
|
||||
--dataloader_num_workers=4 \
|
||||
--gradient_accumulation_steps=4 \
|
||||
--gradient_checkpointing \
|
||||
--use_8bit_adam \
|
||||
--proportion_empty_prompts=0.2 \
|
||||
--learning_rate=5e-5 \
|
||||
--adam_weight_decay=1e-4 \
|
||||
--report_to="wandb" \
|
||||
--lr_scheduler="cosine" \
|
||||
--lr_warmup_steps=1000 \
|
||||
--checkpointing_steps=1000 \
|
||||
--max_train_steps=10000 \
|
||||
--validation_steps=200 \
|
||||
--validation_image "2_pose_1024.jpg" "3_pose_1024.jpg" \
|
||||
--validation_prompt "two friends sitting by each other enjoying a day at the park, full hd, cinematic" "person enjoying a day at the park, full hd, cinematic" \
|
||||
--offload \
|
||||
--seed="0" \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
Change the `validation_image` and `validation_prompt` as needed.
|
||||
|
||||
For inference, this time, we will run:
|
||||
|
||||
```py
|
||||
from controlnet_aux import OpenposeDetector
|
||||
from diffusers import CogView4ControlPipeline, CogView4Transformer2DModel
|
||||
from diffusers.utils import load_image
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
transformer = CogView4Transformer2DModel.from_pretrained("...") # change this.
|
||||
pipe = CogView4ControlPipeline.from_pretrained(
|
||||
"THUDM/CogView4-6B", transformer=transformer, torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
|
||||
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
||||
|
||||
# prepare pose condition.
|
||||
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg"
|
||||
image = load_image(url)
|
||||
image = open_pose(image, detect_resolution=512, image_resolution=1024)
|
||||
image = np.array(image)[:, :, ::-1]
|
||||
image = Image.fromarray(np.uint8(image))
|
||||
|
||||
prompt = "A couple, 4k photo, highly detailed"
|
||||
|
||||
gen_images = pipe(
|
||||
prompt=prompt,
|
||||
control_image=image,
|
||||
num_inference_steps=50,
|
||||
guidance_scale=25.,
|
||||
).images[0]
|
||||
gen_images.save("output.png")
|
||||
```
|
||||
|
||||
## Things to note
|
||||
|
||||
* The scripts provided in this directory are experimental and educational. This means we may have to tweak things around to get good results on a given condition. We believe this is best done with the community 🤗
|
||||
* The scripts are not memory-optimized but we offload the VAE and the text encoders to CPU when they are not used if `--offload` is specified.
|
||||
* We can extract LoRAs from the fully fine-tuned model. While we currently don't provide any utilities for that, users are welcome to refer to [this script](https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/master/control_lora_create.py) that provides a similar functionality.
|
||||
6
examples/cogview4-control/requirements.txt
Normal file
6
examples/cogview4-control/requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
transformers==4.47.0
|
||||
wandb
|
||||
torch
|
||||
torchvision
|
||||
accelerate==1.2.0
|
||||
peft>=0.14.0
|
||||
1242
examples/cogview4-control/train_control_cogview4.py
Normal file
1242
examples/cogview4-control/train_control_cogview4.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -53,8 +53,18 @@ args = parser.parse_args()
|
||||
# this is specific to `AdaLayerNormContinuous`:
|
||||
# diffusers implementation split the linear projection into the scale, shift while CogView4 split it tino shift, scale
|
||||
def swap_scale_shift(weight, dim):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
"""
|
||||
Swap the scale and shift components in the weight tensor.
|
||||
|
||||
Args:
|
||||
weight (torch.Tensor): The original weight tensor.
|
||||
dim (int): The dimension along which to split.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: The modified weight tensor with scale and shift swapped.
|
||||
"""
|
||||
shift, scale = weight.chunk(2, dim=dim)
|
||||
new_weight = torch.cat([scale, shift], dim=dim)
|
||||
return new_weight
|
||||
|
||||
|
||||
@@ -200,6 +210,7 @@ def main(args):
|
||||
"norm_num_groups": 32,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 1.0,
|
||||
"shift_factor": 0.0,
|
||||
"force_upcast": True,
|
||||
"use_quant_conv": False,
|
||||
"use_post_quant_conv": False,
|
||||
|
||||
@@ -25,9 +25,15 @@ import argparse
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import GlmForCausalLM, PreTrainedTokenizerFast
|
||||
from transformers import GlmModel, PreTrainedTokenizerFast
|
||||
|
||||
from diffusers import AutoencoderKL, CogView4Pipeline, CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
CogView4ControlPipeline,
|
||||
CogView4Pipeline,
|
||||
CogView4Transformer2DModel,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
)
|
||||
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
|
||||
|
||||
|
||||
@@ -112,6 +118,12 @@ parser.add_argument(
|
||||
default=128,
|
||||
help="Maximum size for positional embeddings.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--control",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to use control model.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -150,13 +162,15 @@ def convert_megatron_transformer_checkpoint_to_diffusers(
|
||||
Returns:
|
||||
dict: The converted state dictionary compatible with Diffusers.
|
||||
"""
|
||||
ckpt = torch.load(ckpt_path, map_location="cpu")
|
||||
ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=False)
|
||||
mega = ckpt["model"]
|
||||
|
||||
new_state_dict = {}
|
||||
|
||||
# Patch Embedding
|
||||
new_state_dict["patch_embed.proj.weight"] = mega["encoder_expand_linear.weight"].reshape(hidden_size, 64)
|
||||
new_state_dict["patch_embed.proj.weight"] = mega["encoder_expand_linear.weight"].reshape(
|
||||
hidden_size, 128 if args.control else 64
|
||||
)
|
||||
new_state_dict["patch_embed.proj.bias"] = mega["encoder_expand_linear.bias"]
|
||||
new_state_dict["patch_embed.text_proj.weight"] = mega["text_projector.weight"]
|
||||
new_state_dict["patch_embed.text_proj.bias"] = mega["text_projector.bias"]
|
||||
@@ -189,14 +203,8 @@ def convert_megatron_transformer_checkpoint_to_diffusers(
|
||||
block_prefix = f"transformer_blocks.{i}."
|
||||
|
||||
# AdaLayerNorm
|
||||
new_state_dict[block_prefix + "norm1.linear.weight"] = swap_scale_shift(
|
||||
mega[f"decoder.layers.{i}.adaln.weight"], dim=0
|
||||
)
|
||||
new_state_dict[block_prefix + "norm1.linear.bias"] = swap_scale_shift(
|
||||
mega[f"decoder.layers.{i}.adaln.bias"], dim=0
|
||||
)
|
||||
|
||||
# QKV
|
||||
new_state_dict[block_prefix + "norm1.linear.weight"] = mega[f"decoder.layers.{i}.adaln.weight"]
|
||||
new_state_dict[block_prefix + "norm1.linear.bias"] = mega[f"decoder.layers.{i}.adaln.bias"]
|
||||
qkv_weight = mega[f"decoder.layers.{i}.self_attention.linear_qkv.weight"]
|
||||
qkv_bias = mega[f"decoder.layers.{i}.self_attention.linear_qkv.bias"]
|
||||
|
||||
@@ -221,7 +229,7 @@ def convert_megatron_transformer_checkpoint_to_diffusers(
|
||||
# Attention Output
|
||||
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = mega[
|
||||
f"decoder.layers.{i}.self_attention.linear_proj.weight"
|
||||
].T
|
||||
]
|
||||
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = mega[
|
||||
f"decoder.layers.{i}.self_attention.linear_proj.bias"
|
||||
]
|
||||
@@ -252,7 +260,7 @@ def convert_cogview4_vae_checkpoint_to_diffusers(ckpt_path, vae_config):
|
||||
Returns:
|
||||
dict: The converted VAE state dictionary compatible with Diffusers.
|
||||
"""
|
||||
original_state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
||||
original_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)["state_dict"]
|
||||
return convert_ldm_vae_checkpoint(original_state_dict, vae_config)
|
||||
|
||||
|
||||
@@ -286,7 +294,7 @@ def main(args):
|
||||
)
|
||||
transformer = CogView4Transformer2DModel(
|
||||
patch_size=2,
|
||||
in_channels=16,
|
||||
in_channels=32 if args.control else 16,
|
||||
num_layers=args.num_layers,
|
||||
attention_head_dim=args.attention_head_dim,
|
||||
num_attention_heads=args.num_heads,
|
||||
@@ -317,6 +325,7 @@ def main(args):
|
||||
"norm_num_groups": 32,
|
||||
"sample_size": 1024,
|
||||
"scaling_factor": 1.0,
|
||||
"shift_factor": 0.0,
|
||||
"force_upcast": True,
|
||||
"use_quant_conv": False,
|
||||
"use_post_quant_conv": False,
|
||||
@@ -331,7 +340,7 @@ def main(args):
|
||||
# Load the text encoder and tokenizer
|
||||
text_encoder_id = "THUDM/glm-4-9b-hf"
|
||||
tokenizer = PreTrainedTokenizerFast.from_pretrained(text_encoder_id)
|
||||
text_encoder = GlmForCausalLM.from_pretrained(
|
||||
text_encoder = GlmModel.from_pretrained(
|
||||
text_encoder_id,
|
||||
cache_dir=args.text_encoder_cache_dir,
|
||||
torch_dtype=torch.bfloat16 if args.dtype == "bf16" else torch.float32,
|
||||
@@ -345,13 +354,22 @@ def main(args):
|
||||
)
|
||||
|
||||
# Create the pipeline
|
||||
pipe = CogView4Pipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
if args.control:
|
||||
pipe = CogView4ControlPipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
else:
|
||||
pipe = CogView4Pipeline(
|
||||
tokenizer=tokenizer,
|
||||
text_encoder=text_encoder,
|
||||
vae=vae,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
# Save the converted pipeline
|
||||
pipe.save_pretrained(
|
||||
|
||||
@@ -345,6 +345,7 @@ else:
|
||||
"CogVideoXPipeline",
|
||||
"CogVideoXVideoToVideoPipeline",
|
||||
"CogView3PlusPipeline",
|
||||
"CogView4ControlPipeline",
|
||||
"CogView4Pipeline",
|
||||
"ConsisIDPipeline",
|
||||
"CycleDiffusionPipeline",
|
||||
@@ -889,6 +890,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
CogVideoXPipeline,
|
||||
CogVideoXVideoToVideoPipeline,
|
||||
CogView3PlusPipeline,
|
||||
CogView4ControlPipeline,
|
||||
CogView4Pipeline,
|
||||
ConsisIDPipeline,
|
||||
CycleDiffusionPipeline,
|
||||
|
||||
@@ -23,6 +23,7 @@ from ...loaders import PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ..attention import FeedForward
|
||||
from ..attention_processor import Attention
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import CogView3CombinedTimestepSizeEmbeddings
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
@@ -126,7 +127,8 @@ class CogView4AttnProcessor:
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
text_seq_length = encoder_hidden_states.size(1)
|
||||
batch_size, text_seq_length, embed_dim = encoder_hidden_states.shape
|
||||
batch_size, image_seq_length, embed_dim = hidden_states.shape
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
# 1. QKV projections
|
||||
@@ -156,6 +158,15 @@ class CogView4AttnProcessor:
|
||||
)
|
||||
|
||||
# 4. Attention
|
||||
if attention_mask is not None:
|
||||
text_attention_mask = attention_mask.float().to(query.device)
|
||||
actual_text_seq_length = text_attention_mask.size(1)
|
||||
new_attention_mask = torch.zeros((batch_size, text_seq_length + image_seq_length), device=query.device)
|
||||
new_attention_mask[:, :actual_text_seq_length] = text_attention_mask
|
||||
new_attention_mask = new_attention_mask.unsqueeze(2)
|
||||
attention_mask_matrix = new_attention_mask @ new_attention_mask.transpose(1, 2)
|
||||
attention_mask = (attention_mask_matrix > 0).unsqueeze(1).to(query.dtype)
|
||||
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
@@ -203,6 +214,8 @@ class CogView4TransformerBlock(nn.Module):
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
# 1. Timestep conditioning
|
||||
(
|
||||
@@ -223,6 +236,8 @@ class CogView4TransformerBlock(nn.Module):
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
attention_mask=attention_mask,
|
||||
**kwargs,
|
||||
)
|
||||
hidden_states = hidden_states + attn_hidden_states * gate_msa.unsqueeze(1)
|
||||
encoder_hidden_states = encoder_hidden_states + attn_encoder_hidden_states * c_gate_msa.unsqueeze(1)
|
||||
@@ -289,7 +304,7 @@ class CogView4RotaryPosEmbed(nn.Module):
|
||||
return (freqs.cos(), freqs.sin())
|
||||
|
||||
|
||||
class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, CacheMixin):
|
||||
r"""
|
||||
Args:
|
||||
patch_size (`int`, defaults to `2`):
|
||||
@@ -386,6 +401,8 @@ class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
crop_coords: torch.Tensor,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
||||
if attention_kwargs is not None:
|
||||
attention_kwargs = attention_kwargs.copy()
|
||||
@@ -421,11 +438,11 @@ class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
||||
for block in self.transformer_blocks:
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
|
||||
block, hidden_states, encoder_hidden_states, temb, image_rotary_emb
|
||||
block, hidden_states, encoder_hidden_states, temb, image_rotary_emb, attention_mask, **kwargs
|
||||
)
|
||||
else:
|
||||
hidden_states, encoder_hidden_states = block(
|
||||
hidden_states, encoder_hidden_states, temb, image_rotary_emb
|
||||
hidden_states, encoder_hidden_states, temb, image_rotary_emb, attention_mask, **kwargs
|
||||
)
|
||||
|
||||
# 4. Output norm & projection
|
||||
|
||||
@@ -154,7 +154,7 @@ else:
|
||||
"CogVideoXFunControlPipeline",
|
||||
]
|
||||
_import_structure["cogview3"] = ["CogView3PlusPipeline"]
|
||||
_import_structure["cogview4"] = ["CogView4Pipeline"]
|
||||
_import_structure["cogview4"] = ["CogView4Pipeline", "CogView4ControlPipeline"]
|
||||
_import_structure["consisid"] = ["ConsisIDPipeline"]
|
||||
_import_structure["controlnet"].extend(
|
||||
[
|
||||
@@ -511,7 +511,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
CogVideoXVideoToVideoPipeline,
|
||||
)
|
||||
from .cogview3 import CogView3PlusPipeline
|
||||
from .cogview4 import CogView4Pipeline
|
||||
from .cogview4 import CogView4ControlPipeline, CogView4Pipeline
|
||||
from .consisid import ConsisIDPipeline
|
||||
from .controlnet import (
|
||||
BlipDiffusionControlNetPipeline,
|
||||
|
||||
@@ -22,7 +22,7 @@ from ..models.controlnets import ControlNetUnionModel
|
||||
from ..utils import is_sentencepiece_available
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .cogview3 import CogView3PlusPipeline
|
||||
from .cogview4 import CogView4Pipeline
|
||||
from .cogview4 import CogView4ControlPipeline, CogView4Pipeline
|
||||
from .controlnet import (
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
StableDiffusionControlNetInpaintPipeline,
|
||||
@@ -145,6 +145,7 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("lumina2", Lumina2Pipeline),
|
||||
("cogview3", CogView3PlusPipeline),
|
||||
("cogview4", CogView4Pipeline),
|
||||
("cogview4-control", CogView4ControlPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -23,6 +23,7 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_cogview4"] = ["CogView4Pipeline"]
|
||||
_import_structure["pipeline_cogview4_control"] = ["CogView4ControlPipeline"]
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
@@ -31,6 +32,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .pipeline_cogview4 import CogView4Pipeline
|
||||
from .pipeline_cogview4_control import CogView4ControlPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -389,14 +389,18 @@ class CogView4Pipeline(DiffusionPipeline, CogView4LoraLoaderMixin):
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def current_timestep(self):
|
||||
return self._current_timestep
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
@@ -533,6 +537,7 @@ class CogView4Pipeline(DiffusionPipeline, CogView4LoraLoaderMixin):
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
|
||||
# Default call parameters
|
||||
@@ -610,6 +615,7 @@ class CogView4Pipeline(DiffusionPipeline, CogView4LoraLoaderMixin):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
latent_model_input = latents.to(transformer_dtype)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
@@ -661,6 +667,8 @@ class CogView4Pipeline(DiffusionPipeline, CogView4LoraLoaderMixin):
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
self._current_timestep = None
|
||||
|
||||
if not output_type == "latent":
|
||||
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
|
||||
image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
|
||||
|
||||
727
src/diffusers/pipelines/cogview4/pipeline_cogview4_control.py
Normal file
727
src/diffusers/pipelines/cogview4/pipeline_cogview4_control.py
Normal file
@@ -0,0 +1,727 @@
|
||||
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, GlmModel
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...models import AutoencoderKL, CogView4Transformer2DModel
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from .pipeline_output import CogView4PipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from diffusers import CogView4ControlPipeline
|
||||
|
||||
>>> pipe = CogView4ControlPipeline.from_pretrained("THUDM/CogView4-6B-Control", torch_dtype=torch.bfloat16)
|
||||
>>> control_image = load_image(
|
||||
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
||||
... )
|
||||
>>> prompt = "A bird in space"
|
||||
>>> image = pipe(prompt, control_image=control_image, height=1024, width=1024, guidance_scale=3.5).images[0]
|
||||
>>> image.save("cogview4-control.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.cogview4.pipeline_cogview4.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
base_shift: float = 0.25,
|
||||
max_shift: float = 0.75,
|
||||
) -> float:
|
||||
m = (image_seq_len / base_seq_len) ** 0.5
|
||||
mu = m * max_shift + base_shift
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class CogView4ControlPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for text-to-image generation using CogView4.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`GLMModel`]):
|
||||
Frozen text-encoder. CogView4 uses [glm-4-9b-hf](https://huggingface.co/THUDM/glm-4-9b-hf).
|
||||
tokenizer (`PreTrainedTokenizer`):
|
||||
Tokenizer of class
|
||||
[PreTrainedTokenizer](https://huggingface.co/docs/transformers/main/en/main_classes/tokenizer#transformers.PreTrainedTokenizer).
|
||||
transformer ([`CogView4Transformer2DModel`]):
|
||||
A text conditioned `CogView4Transformer2DModel` to denoise the encoded image latents.
|
||||
scheduler ([`SchedulerMixin`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
"""
|
||||
|
||||
_optional_components = []
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: AutoTokenizer,
|
||||
text_encoder: GlmModel,
|
||||
vae: AutoencoderKL,
|
||||
transformer: CogView4Transformer2DModel,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
# Copied from diffusers.pipelines.cogview4.pipeline_cogview4.CogView4Pipeline._get_glm_embeds
|
||||
def _get_glm_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
max_sequence_length: int = 1024,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="longest", # not use max length
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because `max_sequence_length` is set to "
|
||||
f" {max_sequence_length} tokens: {removed_text}"
|
||||
)
|
||||
current_length = text_input_ids.shape[1]
|
||||
pad_length = (16 - (current_length % 16)) % 16
|
||||
if pad_length > 0:
|
||||
pad_ids = torch.full(
|
||||
(text_input_ids.shape[0], pad_length),
|
||||
fill_value=self.tokenizer.pad_token_id,
|
||||
dtype=text_input_ids.dtype,
|
||||
device=text_input_ids.device,
|
||||
)
|
||||
text_input_ids = torch.cat([pad_ids, text_input_ids], dim=1)
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids.to(self.text_encoder.device), output_hidden_states=True
|
||||
).hidden_states[-2]
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
return prompt_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.cogview4.pipeline_cogview4.CogView4Pipeline.encode_prompt
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
max_sequence_length: int = 1024,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use classifier free guidance or not.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
Number of images that should be generated per prompt. torch device to place the resulting embeddings on
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
device: (`torch.device`, *optional*):
|
||||
torch device
|
||||
dtype: (`torch.dtype`, *optional*):
|
||||
torch dtype
|
||||
max_sequence_length (`int`, defaults to `1024`):
|
||||
Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = self._get_glm_embeds(prompt, max_sequence_length, device, dtype)
|
||||
|
||||
seq_len = prompt_embeds.size(1)
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
|
||||
if prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
negative_prompt_embeds = self._get_glm_embeds(negative_prompt, max_sequence_length, device, dtype)
|
||||
|
||||
seq_len = negative_prompt_embeds.size(1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
if latents is not None:
|
||||
return latents.to(device)
|
||||
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
return latents
|
||||
|
||||
def prepare_image(
|
||||
self,
|
||||
image,
|
||||
width,
|
||||
height,
|
||||
batch_size,
|
||||
num_images_per_prompt,
|
||||
device,
|
||||
dtype,
|
||||
do_classifier_free_guidance=False,
|
||||
guess_mode=False,
|
||||
):
|
||||
if isinstance(image, torch.Tensor):
|
||||
pass
|
||||
else:
|
||||
image = self.image_processor.preprocess(image, height=height, width=width)
|
||||
|
||||
image_batch_size = image.shape[0]
|
||||
|
||||
if image_batch_size == 1:
|
||||
repeat_by = batch_size
|
||||
else:
|
||||
# image batch size is the same as prompt batch size
|
||||
repeat_by = num_images_per_prompt
|
||||
|
||||
image = image.repeat_interleave(repeat_by, dim=0, output_size=image.shape[0] * repeat_by)
|
||||
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
|
||||
if do_classifier_free_guidance and not guess_mode:
|
||||
image = torch.cat([image] * 2)
|
||||
|
||||
return image
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
):
|
||||
if height % 16 != 0 or width % 16 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def attention_kwargs(self):
|
||||
return self._attention_kwargs
|
||||
|
||||
@property
|
||||
def current_timestep(self):
|
||||
return self._current_timestep
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
control_image: PipelineImageInput = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
num_images_per_prompt: int = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
original_size: Optional[Tuple[int, int]] = None,
|
||||
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
||||
output_type: str = "pil",
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 1024,
|
||||
) -> Union[CogView4PipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. If not provided, it is set to 1024.
|
||||
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. If not provided it is set to 1024.
|
||||
num_inference_steps (`int`, *optional*, defaults to `50`):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to `5.0`):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to `1`):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
||||
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
||||
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
||||
explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
||||
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
||||
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
||||
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
||||
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
||||
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, defaults to `224`):
|
||||
Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogview4.pipeline_CogView4.CogView4PipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogview4.pipeline_CogView4.CogView4PipelineOutput`] if `return_dict` is True, otherwise a
|
||||
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
||||
|
||||
original_size = original_size or (height, width)
|
||||
target_size = (height, width)
|
||||
|
||||
# Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
|
||||
# Default call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
self.do_classifier_free_guidance,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
# Prepare latents
|
||||
latent_channels = self.transformer.config.in_channels // 2
|
||||
|
||||
control_image = self.prepare_image(
|
||||
image=control_image,
|
||||
width=width,
|
||||
height=height,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=self.vae.dtype,
|
||||
)
|
||||
height, width = control_image.shape[-2:]
|
||||
|
||||
vae_shift_factor = 0
|
||||
|
||||
control_image = self.vae.encode(control_image).latent_dist.sample()
|
||||
control_image = (control_image - vae_shift_factor) * self.vae.config.scaling_factor
|
||||
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
latent_channels,
|
||||
height,
|
||||
width,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# Prepare additional timestep conditions
|
||||
original_size = torch.tensor([original_size], dtype=prompt_embeds.dtype, device=device)
|
||||
target_size = torch.tensor([target_size], dtype=prompt_embeds.dtype, device=device)
|
||||
crops_coords_top_left = torch.tensor([crops_coords_top_left], dtype=prompt_embeds.dtype, device=device)
|
||||
|
||||
original_size = original_size.repeat(batch_size * num_images_per_prompt, 1)
|
||||
target_size = target_size.repeat(batch_size * num_images_per_prompt, 1)
|
||||
crops_coords_top_left = crops_coords_top_left.repeat(batch_size * num_images_per_prompt, 1)
|
||||
|
||||
# Prepare timesteps
|
||||
image_seq_len = ((height // self.vae_scale_factor) * (width // self.vae_scale_factor)) // (
|
||||
self.transformer.config.patch_size**2
|
||||
)
|
||||
|
||||
timesteps = (
|
||||
np.linspace(self.scheduler.config.num_train_timesteps, 1.0, num_inference_steps)
|
||||
if timesteps is None
|
||||
else np.array(timesteps)
|
||||
)
|
||||
timesteps = timesteps.astype(np.int64).astype(np.float32)
|
||||
sigmas = timesteps / self.scheduler.config.num_train_timesteps if sigmas is None else sigmas
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("base_shift", 0.25),
|
||||
self.scheduler.config.get("max_shift", 0.75),
|
||||
)
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu
|
||||
)
|
||||
self._num_timesteps = len(timesteps)
|
||||
# Denoising loop
|
||||
transformer_dtype = self.transformer.dtype
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
latent_model_input = torch.cat([latents, control_image], dim=1).to(transformer_dtype)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0])
|
||||
|
||||
noise_pred_cond = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
timestep=timestep,
|
||||
original_size=original_size,
|
||||
target_size=target_size,
|
||||
crop_coords=crops_coords_top_left,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_pred_uncond = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
timestep=timestep,
|
||||
original_size=original_size,
|
||||
target_size=target_size,
|
||||
crop_coords=crops_coords_top_left,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
||||
else:
|
||||
noise_pred = noise_pred_cond
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
# call the callback, if provided
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, self.scheduler.sigmas[i], callback_kwargs)
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
self._current_timestep = None
|
||||
|
||||
if not output_type == "latent":
|
||||
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
|
||||
image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
|
||||
else:
|
||||
image = latents
|
||||
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return CogView4PipelineOutput(images=image)
|
||||
@@ -362,6 +362,21 @@ class CogView3PlusPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CogView4ControlPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CogView4Pipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user