Compare commits

..

4 Commits

Author SHA1 Message Date
YiYi Xu
4bebe00a8e Apply suggestion from @yiyixuxu 2026-02-06 00:28:10 -10:00
yiyi@huggingface.co
92311b3384 simplify components manager doc 2026-02-06 10:21:47 +00:00
dxqb
ca79f8ccc4 GGUF fix for unquantized types when using unquantize kernels (#12498)
Even if the `qweight_type` is one of the `UNQUANTIZED_TYPES`, qweight still has to be "dequantized" because it is stored as an 8-bit tensor. Without doing so, it is therefore a shape mismatch in the following matmul.

Side notes:
 - why isn't DIFFUSERS_GGUF_CUDA_KERNELS on by default? It's significantly faster and only used when installed
 - https://huggingface.co/Isotr0py/ggml/tree/main/build has no build for torch 2.8 (or the upcoming 2.9). Who can we contact to make such a build?

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2026-02-06 08:56:19 +05:30
CalamitousFelicitousness
99e2cfff27 Feature/zimage inpaint pipeline (#13006)
* Add ZImageInpaintPipeline

Updated the pipeline structure to include ZImageInpaintPipeline
    alongside ZImagePipeline and ZImageImg2ImgPipeline.
Implemented the ZImageInpaintPipeline class for inpainting
    tasks, including necessary methods for encoding prompts,
    preparing masked latents, and denoising.
Enhanced the auto_pipeline to map the new ZImageInpaintPipeline
    for inpainting generation tasks.
Added unit tests for ZImageInpaintPipeline to ensure
    functionality and performance.
Updated dummy objects to include ZImageInpaintPipeline for
    testing purposes.

* Add documentation and improve test stability for ZImageInpaintPipeline

- Add torch.empty fix for x_pad_token and cap_pad_token in test
- Add # Copied from annotations for encode_prompt methods
- Add documentation with usage example and autodoc directive

* Address PR review feedback for ZImageInpaintPipeline

Add batch size validation and callback handling fixes per review,
using diffusers conventions rather than suggested code verbatim.

* Update src/diffusers/pipelines/z_image/pipeline_z_image_inpaint.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Update src/diffusers/pipelines/z_image/pipeline_z_image_inpaint.py

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Add input validation and fix XLA support for ZImageInpaintPipeline

- Add missing is_torch_xla_available import for TPU support
- Add xm.mark_step() in denoising loop for proper XLA execution
- Add check_inputs() method for comprehensive input validation
- Call check_inputs() at the start of __call__

Addresses PR review feedback from @asomoza.

* Cleanup

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2026-02-05 11:48:25 -03:00
11 changed files with 1451 additions and 186 deletions

View File

@@ -53,6 +53,41 @@ image = pipe(
image.save("zimage_img2img.png")
```
## Inpainting
Use [`ZImageInpaintPipeline`] to inpaint specific regions of an image based on a text prompt and mask.
```python
import torch
import numpy as np
from PIL import Image
from diffusers import ZImageInpaintPipeline
from diffusers.utils import load_image
pipe = ZImageInpaintPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
pipe.to("cuda")
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
init_image = load_image(url).resize((1024, 1024))
# Create a mask (white = inpaint, black = preserve)
mask = np.zeros((1024, 1024), dtype=np.uint8)
mask[256:768, 256:768] = 255 # Inpaint center region
mask_image = Image.fromarray(mask)
prompt = "A beautiful lake with mountains in the background"
image = pipe(
prompt,
image=init_image,
mask_image=mask_image,
strength=1.0,
num_inference_steps=9,
guidance_scale=0.0,
generator=torch.Generator("cuda").manual_seed(42),
).images[0]
image.save("zimage_inpaint.png")
```
## ZImagePipeline
[[autodoc]] ZImagePipeline
@@ -64,3 +99,9 @@ image.save("zimage_img2img.png")
[[autodoc]] ZImageImg2ImgPipeline
- all
- __call__
## ZImageInpaintPipeline
[[autodoc]] ZImageInpaintPipeline
- all
- __call__

View File

@@ -12,179 +12,85 @@ specific language governing permissions and limitations under the License.
# ComponentsManager
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), prevents duplicate model instances, and supports offloading.
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), and supports offloading.
This guide will show you how to use [`ComponentsManager`] to manage components and device memory.
## Add a component
## Connect to a pipeline
The [`ComponentsManager`] should be created alongside a [`ModularPipeline`] in either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
Create a [`ComponentsManager`] and pass it to a [`ModularPipeline`] with either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
> [!TIP]
> The `collection` parameter is optional but makes it easier to organize and manage components.
<hfoptions id="create">
<hfoption id="from_pretrained">
```py
from diffusers import ModularPipeline, ComponentsManager
import torch
comp = ComponentsManager()
pipe = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test1")
manager = ComponentsManager()
pipe = ModularPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", components_manager=manager)
pipe.load_components(torch_dtype=torch.bfloat16)
```
</hfoption>
<hfoption id="init_pipeline">
```py
from diffusers import ComponentsManager
from diffusers.modular_pipelines import SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS
t2i_blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
components = ComponentsManager()
t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=components)
from diffusers import ModularPipelineBlocks, ComponentsManager
import torch
manager = ComponentsManager()
blocks = ModularPipelineBlocks.from_pretrained("diffusers/Florence2-image-Annotator", trust_remote_code=True)
pipe= blocks.init_pipeline(components_manager=manager)
pipe.load_components(torch_dtype=torch.bfloat16)
```
</hfoption>
</hfoptions>
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_components`]. The example below uses [`~ModularPipeline.load_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
Components loaded by the pipeline are automatically registered in the manager. You can inspect them right away.
## Inspect components
Print the [`ComponentsManager`] to see all registered components, including their class, device placement, dtype, memory size, and load ID.
The output below corresponds to the `from_pretrained` example above
```py
pipe.load_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
Components:
=============================================================================================================================
Models:
-----------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID
-----------------------------------------------------------------------------------------------------------------------------
text_encoder_140458257514752 | Qwen3Model | cpu | torch.bfloat16 | 7.49 | Tongyi-MAI/Z-Image-Turbo|text_encoder|null|null
vae_140458257515376 | AutoencoderKL | cpu | torch.bfloat16 | 0.16 | Tongyi-MAI/Z-Image-Turbo|vae|null|null
transformer_140458257515616 | ZImageTransformer2DModel | cpu | torch.bfloat16 | 11.46 | Tongyi-MAI/Z-Image-Turbo|transformer|null|null
-----------------------------------------------------------------------------------------------------------------------------
Other Components:
-----------------------------------------------------------------------------------------------------------------------------
ID | Class | Collection
-----------------------------------------------------------------------------------------------------------------------------
scheduler_140461023555264 | FlowMatchEulerDiscreteScheduler | N/A
tokenizer_140458256346432 | Qwen2Tokenizer | N/A
-----------------------------------------------------------------------------------------------------------------------------
```
Use the [`~ModularPipeline.null_component_names`] property to identify any components that need to be loaded, retrieve them with [`~ComponentsManager.get_components_by_names`], and then call [`~ModularPipeline.update_components`] to add the missing components.
```py
pipe2.null_component_names
['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'image_encoder', 'unet', 'vae', 'scheduler', 'controlnet']
comp_dict = comp.get_components_by_names(names=pipe2.null_component_names)
pipe2.update_components(**comp_dict)
```
To add individual components, use the [`~ComponentsManager.add`] method. This registers a component with a unique id.
```py
from diffusers import AutoModel
text_encoder = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
component_id = comp.add("text_encoder", text_encoder)
comp
```
Use [`~ComponentsManager.remove`] to remove a component using their id.
```py
comp.remove("text_encoder_139917733042864")
```
## Retrieve a component
The [`ComponentsManager`] provides several methods to retrieve registered components.
### get_one
The [`~ComponentsManager.get_one`] method returns a single component and supports pattern matching for the `name` parameter. If multiple components match, [`~ComponentsManager.get_one`] returns an error.
| Pattern | Example | Description |
|-------------|----------------------------------|-------------------------------------------|
| exact | `comp.get_one(name="unet")` | exact name match |
| wildcard | `comp.get_one(name="unet*")` | names starting with "unet" |
| exclusion | `comp.get_one(name="!unet")` | exclude components named "unet" |
| or | `comp.get_one(name="unet&#124;vae")` | name is "unet" or "vae" |
[`~ComponentsManager.get_one`] also filters components by the `collection` argument or `load_id` argument.
```py
comp.get_one(name="unet", collection="sdxl")
```
### get_components_by_names
The [`~ComponentsManager.get_components_by_names`] method accepts a list of names and returns a dictionary mapping names to components. This is especially useful with [`ModularPipeline`] since they provide lists of required component names and the returned dictionary can be passed directly to [`~ModularPipeline.update_components`].
```py
component_dict = comp.get_components_by_names(names=["text_encoder", "unet", "vae"])
{"text_encoder": component1, "unet": component2, "vae": component3}
```
## Duplicate detection
It is recommended to load model components with [`ComponentSpec`] to assign components with a unique id that encodes their loading parameters. This allows [`ComponentsManager`] to automatically detect and prevent duplicate model instances even when different objects represent the same underlying checkpoint.
```py
from diffusers import ComponentSpec, ComponentsManager
from transformers import CLIPTextModel
comp = ComponentsManager()
# Create ComponentSpec for the first text encoder
spec = ComponentSpec(name="text_encoder", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=AutoModel)
# Create ComponentSpec for a duplicate text encoder (it is same checkpoint, from the same repo/subfolder)
spec_duplicated = ComponentSpec(name="text_encoder_duplicated", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=CLIPTextModel)
# Load and add both components - the manager will detect they're the same model
comp.add("text_encoder", spec.load())
comp.add("text_encoder_duplicated", spec_duplicated.load())
```
This returns a warning with instructions for removing the duplicate.
```py
ComponentsManager: adding component 'text_encoder_duplicated_139917580682672', but it has duplicate load_id 'stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null' with existing components: text_encoder_139918506246832. To remove a duplicate, call `components_manager.remove('<component_id>')`.
'text_encoder_duplicated_139917580682672'
```
You could also add a component without using [`ComponentSpec`] and duplicate detection still works in most cases even if you're adding the same component under a different name.
However, [`ComponentManager`] can't detect duplicates when you load the same component into different objects. In this case, you should load a model with [`ComponentSpec`].
```py
text_encoder_2 = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
comp.add("text_encoder", text_encoder_2)
'text_encoder_139917732983664'
```
## Collections
Collections are labels assigned to components for better organization and management. Add a component to a collection with the `collection` argument in [`~ComponentsManager.add`].
Only one component per name is allowed in each collection. Adding a second component with the same name automatically removes the first component.
```py
from diffusers import ComponentSpec, ComponentsManager
comp = ComponentsManager()
# Create ComponentSpec for the first UNet
spec = ComponentSpec(name="unet", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", type_hint=AutoModel)
# Create ComponentSpec for a different UNet
spec2 = ComponentSpec(name="unet", repo="RunDiffusion/Juggernaut-XL-v9", subfolder="unet", type_hint=AutoModel, variant="fp16")
# Add both UNets to the same collection - the second one will replace the first
comp.add("unet", spec.load(), collection="sdxl")
comp.add("unet", spec2.load(), collection="sdxl")
```
This makes it convenient to work with node-based systems because you can:
- Mark all models as loaded from one node with the `collection` label.
- Automatically replace models when new checkpoints are loaded under the same name.
- Batch delete all models in a collection when a node is removed.
The table shows models (with device, dtype, and memory info) separately from other components like schedulers and tokenizers. If any models have LoRA adapters, IP-Adapters, or quantization applied, that information is displayed in an additional section at the bottom.
## Offloading
The [`~ComponentsManager.enable_auto_cpu_offload`] method is a global offloading strategy that works across all models regardless of which pipeline is using them. Once enabled, you don't need to worry about device placement if you add or remove components.
```py
comp.enable_auto_cpu_offload(device="cuda")
manager.enable_auto_cpu_offload(device="cuda")
```
All models begin on the CPU and [`ComponentsManager`] moves them to the appropriate device right before they're needed, and moves other models back to the CPU when GPU memory is low.
You can set your own rules for which models to offload first.
To disable offloading, call [~ComponentsManager.disable_auto_cpu_offload].
```py
manager.disable_auto_cpu_offload()
```

View File

@@ -696,6 +696,7 @@ else:
"ZImageControlNetInpaintPipeline",
"ZImageControlNetPipeline",
"ZImageImg2ImgPipeline",
"ZImageInpaintPipeline",
"ZImageOmniPipeline",
"ZImagePipeline",
]
@@ -1428,6 +1429,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageInpaintPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)

View File

@@ -410,11 +410,12 @@ else:
"Kandinsky5I2IPipeline",
]
_import_structure["z_image"] = [
"ZImageImg2ImgPipeline",
"ZImagePipeline",
"ZImageControlNetPipeline",
"ZImageControlNetInpaintPipeline",
"ZImageControlNetPipeline",
"ZImageImg2ImgPipeline",
"ZImageInpaintPipeline",
"ZImageOmniPipeline",
"ZImagePipeline",
]
_import_structure["skyreels_v2"] = [
"SkyReelsV2DiffusionForcingPipeline",
@@ -870,6 +871,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageInpaintPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)

View File

@@ -127,6 +127,7 @@ from .z_image import (
ZImageControlNetInpaintPipeline,
ZImageControlNetPipeline,
ZImageImg2ImgPipeline,
ZImageInpaintPipeline,
ZImageOmniPipeline,
ZImagePipeline,
)
@@ -235,6 +236,7 @@ AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict(
("stable-diffusion-pag", StableDiffusionPAGInpaintPipeline),
("qwenimage", QwenImageInpaintPipeline),
("qwenimage-edit", QwenImageEditInpaintPipeline),
("z-image", ZImageInpaintPipeline),
]
)

View File

@@ -26,6 +26,7 @@ else:
_import_structure["pipeline_z_image_controlnet"] = ["ZImageControlNetPipeline"]
_import_structure["pipeline_z_image_controlnet_inpaint"] = ["ZImageControlNetInpaintPipeline"]
_import_structure["pipeline_z_image_img2img"] = ["ZImageImg2ImgPipeline"]
_import_structure["pipeline_z_image_inpaint"] = ["ZImageInpaintPipeline"]
_import_structure["pipeline_z_image_omni"] = ["ZImageOmniPipeline"]
@@ -42,6 +43,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_z_image_controlnet import ZImageControlNetPipeline
from .pipeline_z_image_controlnet_inpaint import ZImageControlNetInpaintPipeline
from .pipeline_z_image_img2img import ZImageImg2ImgPipeline
from .pipeline_z_image_inpaint import ZImageInpaintPipeline
from .pipeline_z_image_omni import ZImageOmniPipeline
else:
import sys

View File

@@ -0,0 +1,932 @@
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import AutoTokenizer, PreTrainedModel
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
from ...models.autoencoders import AutoencoderKL
from ...models.transformers import ZImageTransformer2DModel
from ...pipelines.pipeline_utils import DiffusionPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from .pipeline_output import ZImagePipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import ZImageInpaintPipeline
>>> from diffusers.utils import load_image
>>> pipe = ZImageInpaintPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> init_image = load_image(url).resize((1024, 1024))
>>> # Create a mask (white = inpaint, black = preserve)
>>> import numpy as np
>>> from PIL import Image
>>> mask = np.zeros((1024, 1024), dtype=np.uint8)
>>> mask[256:768, 256:768] = 255 # Inpaint center region
>>> mask_image = Image.fromarray(mask)
>>> prompt = "A beautiful lake with mountains in the background"
>>> image = pipe(
... prompt,
... image=init_image,
... mask_image=mask_image,
... strength=1.0,
... num_inference_steps=9,
... guidance_scale=0.0,
... generator=torch.Generator("cuda").manual_seed(42),
... ).images[0]
>>> image.save("zimage_inpaint.png")
```
"""
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class ZImageInpaintPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
r"""
The ZImage pipeline for inpainting.
Args:
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`PreTrainedModel`]):
A text encoder model to encode text prompts.
tokenizer ([`AutoTokenizer`]):
A tokenizer to tokenize text prompts.
transformer ([`ZImageTransformer2DModel`]):
A ZImage transformer model to denoise the encoded image latents.
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents", "prompt_embeds", "mask", "masked_image_latents"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
text_encoder: PreTrainedModel,
tokenizer: AutoTokenizer,
transformer: ZImageTransformer2DModel,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor * 2,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True,
)
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt_embeds = self._encode_prompt(
prompt=prompt,
device=device,
prompt_embeds=prompt_embeds,
max_sequence_length=max_sequence_length,
)
if do_classifier_free_guidance:
if negative_prompt is None:
negative_prompt = ["" for _ in prompt]
else:
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
assert len(prompt) == len(negative_prompt)
negative_prompt_embeds = self._encode_prompt(
prompt=negative_prompt,
device=device,
prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
)
else:
negative_prompt_embeds = []
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.z_image.pipeline_z_image.ZImagePipeline._encode_prompt
def _encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
max_sequence_length: int = 512,
) -> List[torch.FloatTensor]:
device = device or self._execution_device
if prompt_embeds is not None:
return prompt_embeds
if isinstance(prompt, str):
prompt = [prompt]
for i, prompt_item in enumerate(prompt):
messages = [
{"role": "user", "content": prompt_item},
]
prompt_item = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True,
)
prompt[i] = prompt_item
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(device)
prompt_masks = text_inputs.attention_mask.to(device).bool()
prompt_embeds = self.text_encoder(
input_ids=text_input_ids,
attention_mask=prompt_masks,
output_hidden_states=True,
).hidden_states[-2]
embeddings_list = []
for i in range(len(prompt_embeds)):
embeddings_list.append(prompt_embeds[i][prompt_masks[i]])
return embeddings_list
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps)
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
height,
width,
dtype,
device,
generator,
):
"""Prepare mask and masked image latents for inpainting.
Args:
mask: Binary mask tensor where 1 = inpaint region, 0 = preserve region.
masked_image: Original image with masked regions zeroed out.
batch_size: Number of images to generate.
height: Output image height.
width: Output image width.
dtype: Data type for the tensors.
device: Device to place tensors on.
generator: Random generator for reproducibility.
Returns:
Tuple of (mask, masked_image_latents) prepared for the denoising loop.
"""
# Calculate latent dimensions
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
# Resize mask to latent dimensions
mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width), mode="nearest")
mask = mask.to(device=device, dtype=dtype)
# Encode masked image to latents
masked_image = masked_image.to(device=device, dtype=dtype)
if isinstance(generator, list):
masked_image_latents = [
retrieve_latents(self.vae.encode(masked_image[i : i + 1]), generator=generator[i])
for i in range(masked_image.shape[0])
]
masked_image_latents = torch.cat(masked_image_latents, dim=0)
else:
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
# Apply VAE scaling
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# Expand for batch size
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
return mask, masked_image_latents
def prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
"""Prepare latents for inpainting, returning noise and image_latents for blending.
Returns:
Tuple of (latents, noise, image_latents) where:
- latents: Noised image latents for denoising
- noise: The noise tensor used for blending
- image_latents: Clean image latents for blending
"""
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
# Generate noise for blending even if latents are provided
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# Encode image for blending
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
image_latents = torch.cat([image_latents] * (batch_size // image_latents.shape[0]), dim=0)
return latents.to(device=device, dtype=dtype), noise, image_latents
# Encode the input image
image = image.to(device=device, dtype=dtype)
if image.shape[1] != num_channels_latents:
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
# Apply scaling (inverse of decoding: decode does latents/scaling_factor + shift_factor)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
else:
image_latents = image
# Handle batch size expansion
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
# Generate noise for both initial noising and later blending
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# Add noise using flow matching scale_noise
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
return latents, noise, image_latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
def check_inputs(
self,
prompt,
image,
mask_image,
strength,
height,
width,
output_type,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should be in [0.0, 1.0] but is {strength}")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if image is None:
raise ValueError("`image` input cannot be undefined for inpainting.")
if mask_image is None:
raise ValueError("`mask_image` input cannot be undefined for inpainting.")
if output_type not in ["latent", "pil", "np", "pt"]:
raise ValueError(f"`output_type` must be one of 'latent', 'pil', 'np', or 'pt', but got {output_type}")
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: Optional[torch.FloatTensor] = None,
strength: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 5.0,
cfg_normalization: bool = False,
cfg_truncation: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
Function invoked when calling the pipeline for inpainting.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
list of tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or
a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`.
mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing a mask image for inpainting. White pixels (value 1) in the
mask will be inpainted, black pixels (value 0) will be preserved from the original image.
masked_image_latents (`torch.FloatTensor`, *optional*):
Pre-encoded masked image latents. If provided, the masked image encoding step will be skipped.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image` in the masked region.
height (`int`, *optional*, defaults to 1024):
The height in pixels of the generated image. If not provided, uses the input image height.
width (`int`, *optional*, defaults to 1024):
The width in pixels of the generated image. If not provided, uses the input image width.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
cfg_normalization (`bool`, *optional*, defaults to False):
Whether to apply configuration normalization.
cfg_truncation (`float`, *optional*, defaults to 1.0):
The truncation value for configuration.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int`, *optional*, defaults to 512):
Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
generated images.
"""
# 1. Check inputs
self.check_inputs(
prompt=prompt,
image=image,
mask_image=mask_image,
strength=strength,
height=height,
width=width,
output_type=output_type,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
# 2. Preprocess image and mask
init_image = self.image_processor.preprocess(image)
init_image = init_image.to(dtype=torch.float32)
# Get dimensions from the preprocessed image if not specified
if height is None:
height = init_image.shape[-2]
if width is None:
width = init_image.shape[-1]
vae_scale = self.vae_scale_factor * 2
if height % vae_scale != 0:
raise ValueError(
f"Height must be divisible by {vae_scale} (got {height}). "
f"Please adjust the height to a multiple of {vae_scale}."
)
if width % vae_scale != 0:
raise ValueError(
f"Width must be divisible by {vae_scale} (got {width}). "
f"Please adjust the width to a multiple of {vae_scale}."
)
# Preprocess mask
mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
device = self._execution_device
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
self._cfg_normalization = cfg_normalization
self._cfg_truncation = cfg_truncation
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = len(prompt_embeds)
# If prompt_embeds is provided and prompt is None, skip encoding
if prompt_embeds is not None and prompt is None:
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
raise ValueError(
"When `prompt_embeds` is provided without `prompt`, "
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
)
else:
(
prompt_embeds,
negative_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
device=device,
max_sequence_length=max_sequence_length,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.in_channels
# Repeat prompt_embeds for num_images_per_prompt
if num_images_per_prompt > 1:
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
if self.do_classifier_free_guidance and negative_prompt_embeds:
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
actual_batch_size = batch_size * num_images_per_prompt
# Calculate latent dimensions for image_seq_len
latent_height = 2 * (int(height) // (self.vae_scale_factor * 2))
latent_width = 2 * (int(width) // (self.vae_scale_factor * 2))
image_seq_len = (latent_height // 2) * (latent_width // 2)
# 5. Prepare timesteps
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
self.scheduler.sigma_min = 0.0
scheduler_kwargs = {"mu": mu}
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
**scheduler_kwargs,
)
# 6. Adjust timesteps based on strength
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline "
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(actual_batch_size)
# 7. Prepare latents from image (returns noise and image_latents for blending)
latents, noise, image_latents = self.prepare_latents(
init_image,
latent_timestep,
actual_batch_size,
num_channels_latents,
height,
width,
prompt_embeds[0].dtype,
device,
generator,
latents,
)
# 8. Prepare mask and masked image latents
# Create masked image: preserve only unmasked regions (mask=0)
if masked_image_latents is None:
masked_image = init_image * (mask < 0.5)
else:
masked_image = None # Will use provided masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask,
masked_image if masked_image is not None else init_image,
actual_batch_size,
height,
width,
prompt_embeds[0].dtype,
device,
generator,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 9. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0])
timestep = (1000 - timestep) / 1000
# Normalized time for time-aware config (0 at start, 1 at end)
t_norm = timestep[0].item()
# Handle cfg truncation
current_guidance_scale = self.guidance_scale
if (
self.do_classifier_free_guidance
and self._cfg_truncation is not None
and float(self._cfg_truncation) <= 1
):
if t_norm > self._cfg_truncation:
current_guidance_scale = 0.0
# Run CFG only if configured AND scale is non-zero
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
if apply_cfg:
latents_typed = latents.to(self.transformer.dtype)
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
timestep_model_input = timestep.repeat(2)
else:
latent_model_input = latents.to(self.transformer.dtype)
prompt_embeds_model_input = prompt_embeds
timestep_model_input = timestep
latent_model_input = latent_model_input.unsqueeze(2)
latent_model_input_list = list(latent_model_input.unbind(dim=0))
model_out_list = self.transformer(
latent_model_input_list,
timestep_model_input,
prompt_embeds_model_input,
)[0]
if apply_cfg:
# Perform CFG
pos_out = model_out_list[:actual_batch_size]
neg_out = model_out_list[actual_batch_size:]
noise_pred = []
for j in range(actual_batch_size):
pos = pos_out[j].float()
neg = neg_out[j].float()
pred = pos + current_guidance_scale * (pos - neg)
# Renormalization
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
ori_pos_norm = torch.linalg.vector_norm(pos)
new_pos_norm = torch.linalg.vector_norm(pred)
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
if new_pos_norm > max_new_norm:
pred = pred * (max_new_norm / new_pos_norm)
noise_pred.append(pred)
noise_pred = torch.stack(noise_pred, dim=0)
else:
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
noise_pred = noise_pred.squeeze(2)
noise_pred = -noise_pred
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
assert latents.dtype == torch.float32
# Inpainting blend: combine denoised latents with original image latents
init_latents_proper = image_latents
# Re-scale original latents to current noise level for proper blending
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.scale_noise(
init_latents_proper, torch.tensor([noise_timestep]), noise
)
# Blend: mask=1 for inpaint region (use denoised), mask=0 for preserve region (use original)
latents = (1 - mask) * init_latents_proper + mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
mask = callback_outputs.pop("mask", mask)
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = latents.to(self.vae.dtype)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ZImagePipelineOutput(images=image)

View File

@@ -79,7 +79,8 @@ MMQ_QUANT_TYPES = STANDARD_QUANT_TYPES | KQUANT_TYPES
def _fused_mul_mat_gguf(x: torch.Tensor, qweight: torch.Tensor, qweight_type: int) -> torch.Tensor:
# there is no need to call any kernel for fp16/bf16
if qweight_type in UNQUANTIZED_TYPES:
return x @ qweight.T
weight = dequantize_gguf_tensor(qweight)
return x @ weight.T
# TODO(Isotr0py): GGUF's MMQ and MMVQ implementation are designed for
# contiguous batching and inefficient with diffusers' batching,

View File

@@ -4112,6 +4112,21 @@ class ZImageImg2ImgPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class ZImageInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class ZImageOmniPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -16,7 +16,7 @@ import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import PIL
import torch
import torch.nn.functional as F
@@ -26,11 +26,9 @@ from .image_processor import VaeImageProcessor, is_valid_image, is_valid_image_i
class VideoProcessor(VaeImageProcessor):
r"""Simple video processor."""
def preprocess_video(
self, video, height: Optional[int] = None, width: Optional[int] = None, **kwargs
) -> torch.Tensor:
def preprocess_video(self, video, height: Optional[int] = None, width: Optional[int] = None) -> torch.Tensor:
r"""
Preprocesses input video(s). Keyword arguments will be forwarded to `VaeImageProcessor.preprocess`.
Preprocesses input video(s).
Args:
video (`List[PIL.Image]`, `List[List[PIL.Image]]`, `torch.Tensor`, `np.array`, `List[torch.Tensor]`, `List[np.array]`):
@@ -52,10 +50,6 @@ class VideoProcessor(VaeImageProcessor):
width (`int`, *optional*`, defaults to `None`):
The width in preprocessed frames of the video. If `None`, will use get_default_height_width()` to get
the default width.
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`:
A 5D tensor holding the batched channels-first video(s).
"""
if isinstance(video, list) and isinstance(video[0], np.ndarray) and video[0].ndim == 5:
warnings.warn(
@@ -73,47 +67,20 @@ class VideoProcessor(VaeImageProcessor):
video = torch.cat(video, axis=0)
# ensure the input is a list of videos:
# - if it is a batched array of videos (5d torch.Tensor or np.ndarray), it is converted to a list of video
# arrays (a list of 4d torch.Tensor or np.ndarray). `VaeImageProcessor.preprocess` will then treat the first
# (frame) dim as a batch dim.
# - if it is a single video, it is converted to a list of one video. (A single video is a list of images or a
# single imagelist.)
# - if it is a list of imagelists, it will be kept as is (already a list of videos).
# - if it is a single image, it is expanded to a single frame video and then to a list of one video. The
# expansion will depend on the image type:
# - PIL.Image.Image --> one element list of PIL.Image.Image
# - 3D np.ndarray --> interpret as (H, W, C), expand to (F=1, H, W, C)
# - 3D torch.Tensor --> interpret as (C, H, W), expand to (F=1, C, H, W)
# - if it is a batch of videos (5d torch.Tensor or np.ndarray), it is converted to a list of videos (a list of 4d torch.Tensor or np.ndarray)
# - if it is a single video, it is converted to a list of one video.
if isinstance(video, (np.ndarray, torch.Tensor)) and video.ndim == 5:
video = list(video)
elif isinstance(video, list) and is_valid_image(video[0]) or is_valid_image_imagelist(video):
video = [video]
elif isinstance(video, list) and is_valid_image_imagelist(video[0]):
video = video
elif is_valid_image(video):
if isinstance(video, PIL.Image.Image):
video = [video]
elif isinstance(video, np.ndarray):
if video.ndim == 2:
video = np.expand_dims(video, axis=-1) # Unsqueeze channel dim in last axis
if video.ndim == 3:
video = np.expand_dims(video, axis=0)
else:
raise ValueError(f"Input numpy.ndarray is expected to have 2 or 3 dims but got {video.ndim} dims")
elif isinstance(video, torch.Tensor):
if video.ndim == 2:
video = torch.unsqueeze(video, dim=0) # Unsqueeze channel dim in first dim
if video.ndim == 3:
video = torch.unsqueeze(video, dim=0)
else:
raise ValueError(f"Input torch.Tensor is expected to have 2 or 3 dims but got {video.ndim} dims")
video = [video]
else:
raise ValueError(
"Input is in incorrect format. Currently, we only support numpy.ndarray, torch.Tensor, PIL.Image.Image"
)
video = torch.stack([self.preprocess(img, height=height, width=width, **kwargs) for img in video], dim=0)
video = torch.stack([self.preprocess(img, height=height, width=width) for img in video], dim=0)
# move the number of channels before the number of frames.
video = video.permute(0, 2, 1, 3, 4)
@@ -121,11 +88,10 @@ class VideoProcessor(VaeImageProcessor):
return video
def postprocess_video(
self, video: torch.Tensor, output_type: str = "np", **kwargs
self, video: torch.Tensor, output_type: str = "np"
) -> Union[np.ndarray, torch.Tensor, List[PIL.Image.Image]]:
r"""
Converts a video tensor to a list of frames for export. Keyword arguments will be forwarded to
`VaeImageProcessor.postprocess`.
Converts a video tensor to a list of frames for export.
Args:
video (`torch.Tensor`): The video as a tensor.
@@ -135,7 +101,7 @@ class VideoProcessor(VaeImageProcessor):
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = self.postprocess(batch_vid, output_type, **kwargs)
batch_output = self.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":

View File

@@ -0,0 +1,396 @@
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import os
import unittest
import numpy as np
import torch
from transformers import Qwen2Tokenizer, Qwen3Config, Qwen3Model
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
ZImageInpaintPipeline,
ZImageTransformer2DModel,
)
from diffusers.utils.testing_utils import floats_tensor
from ...testing_utils import torch_device
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin, to_np
# Z-Image requires torch.use_deterministic_algorithms(False) due to complex64 RoPE operations
# Cannot use enable_full_determinism() which sets it to True
# Note: Z-Image does not support FP16 inference due to complex64 RoPE embeddings
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if hasattr(torch.backends, "cuda"):
torch.backends.cuda.matmul.allow_tf32 = False
class ZImageInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ZImageInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset(["image", "mask_image"])
image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"strength",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
supports_dduf = False
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
def setUp(self):
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
def tearDown(self):
super().tearDown()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
def get_dummy_components(self):
torch.manual_seed(0)
transformer = ZImageTransformer2DModel(
all_patch_size=(2,),
all_f_patch_size=(1,),
in_channels=16,
dim=32,
n_layers=2,
n_refiner_layers=1,
n_heads=2,
n_kv_heads=2,
norm_eps=1e-5,
qk_norm=True,
cap_feat_dim=16,
rope_theta=256.0,
t_scale=1000.0,
axes_dims=[8, 4, 4],
axes_lens=[256, 32, 32],
)
# `x_pad_token` and `cap_pad_token` are initialized with `torch.empty` which contains
# uninitialized memory. Set them to known values for deterministic test behavior.
with torch.no_grad():
transformer.x_pad_token.copy_(torch.ones_like(transformer.x_pad_token.data))
transformer.cap_pad_token.copy_(torch.ones_like(transformer.cap_pad_token.data))
torch.manual_seed(0)
vae = AutoencoderKL(
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
block_out_channels=[32, 64],
layers_per_block=1,
latent_channels=16,
norm_num_groups=32,
sample_size=32,
scaling_factor=0.3611,
shift_factor=0.1159,
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler()
torch.manual_seed(0)
config = Qwen3Config(
hidden_size=16,
intermediate_size=16,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
vocab_size=151936,
max_position_embeddings=512,
)
text_encoder = Qwen3Model(config)
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
import random
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
# Create mask: 1 = inpaint region, 0 = preserve region
mask_image = torch.zeros((1, 1, 32, 32), device=device)
mask_image[:, :, 8:24, 8:24] = 1.0 # Inpaint center region
inputs = {
"prompt": "dance monkey",
"negative_prompt": "bad quality",
"image": image,
"mask_image": mask_image,
"strength": 1.0,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 3.0,
"cfg_normalization": False,
"cfg_truncation": 1.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "np",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
generated_image = image[0]
self.assertEqual(generated_image.shape, (32, 32, 3))
def test_inference_batch_single_identical(self):
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-1)
def test_num_images_per_prompt(self):
import inspect
sig = inspect.signature(self.pipeline_class.__call__)
if "num_images_per_prompt" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_sizes = [1, 2]
num_images_per_prompts = [1, 2]
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
del pipe
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
def test_vae_tiling(self, expected_diff_max: float = 0.7):
import random
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
# Generate a larger image for the input
inputs["image"] = floats_tensor((1, 3, 128, 128), rng=random.Random(0)).to("cpu")
# Generate a larger mask for the input
mask = torch.zeros((1, 1, 128, 128), device="cpu")
mask[:, :, 32:96, 32:96] = 1.0
inputs["mask_image"] = mask
output_without_tiling = pipe(**inputs)[0]
# With tiling (standard AutoencoderKL doesn't accept parameters)
pipe.vae.enable_tiling()
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
inputs["image"] = floats_tensor((1, 3, 128, 128), rng=random.Random(0)).to("cpu")
inputs["mask_image"] = mask
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
def test_pipeline_with_accelerator_device_map(self, expected_max_difference=1e-3):
# Z-Image RoPE embeddings (complex64) have slightly higher numerical tolerance
# Inpainting mask blending adds additional numerical variance
super().test_pipeline_with_accelerator_device_map(expected_max_difference=expected_max_difference)
def test_group_offloading_inference(self):
# Block-level offloading conflicts with RoPE cache. Pipeline-level offloading (tested separately) works fine.
self.skipTest("Using test_pipeline_level_group_offloading_inference instead")
def test_save_load_float16(self, expected_max_diff=1e-2):
# Z-Image does not support FP16 due to complex64 RoPE embeddings
self.skipTest("Z-Image does not support FP16 inference")
def test_float16_inference(self, expected_max_diff=5e-2):
# Z-Image does not support FP16 due to complex64 RoPE embeddings
self.skipTest("Z-Image does not support FP16 inference")
def test_strength_parameter(self):
"""Test that strength parameter affects the output correctly."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
# Test with different strength values
inputs_low_strength = self.get_dummy_inputs(device)
inputs_low_strength["strength"] = 0.2
inputs_high_strength = self.get_dummy_inputs(device)
inputs_high_strength["strength"] = 0.8
# Both should complete without errors
output_low = pipe(**inputs_low_strength).images[0]
output_high = pipe(**inputs_high_strength).images[0]
# Outputs should be different (different amount of transformation)
self.assertFalse(np.allclose(output_low, output_high, atol=1e-3))
def test_invalid_strength(self):
"""Test that invalid strength values raise appropriate errors."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
inputs = self.get_dummy_inputs(device)
# Test strength < 0
inputs["strength"] = -0.1
with self.assertRaises(ValueError):
pipe(**inputs)
# Test strength > 1
inputs["strength"] = 1.5
with self.assertRaises(ValueError):
pipe(**inputs)
def test_mask_inpainting(self):
"""Test that the mask properly controls which regions are inpainted."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
# Generate with full mask (inpaint everything)
inputs_full = self.get_dummy_inputs(device)
inputs_full["mask_image"] = torch.ones((1, 1, 32, 32), device=device)
# Generate with no mask (preserve everything)
inputs_none = self.get_dummy_inputs(device)
inputs_none["mask_image"] = torch.zeros((1, 1, 32, 32), device=device)
# Both should complete without errors
output_full = pipe(**inputs_full).images[0]
output_none = pipe(**inputs_none).images[0]
# Outputs should be different (full inpaint vs preserve)
self.assertFalse(np.allclose(output_full, output_none, atol=1e-3))