Compare commits

..

12 Commits

Author SHA1 Message Date
Hugging Face Bot (RC Testing)
317a53fa61 Test hfh v1.0.0.rc6 2025-10-13 09:12:34 +00:00
Steven Liu
8abc7aeb71 [docs] Fix syntax (#12464)
* fix syntax

* fix

* style

* fix
2025-10-11 08:13:30 +05:30
Sayak Paul
693d8a3a52 [modular] i2i and t2i support for kontext modular (#12454)
* up

* get ready

* fix import

* up

* up
2025-10-10 18:10:17 +05:30
Sayak Paul
a9df12ab45 Update Dockerfile to include zip wget for doc-builder (#12451) 2025-10-09 15:25:03 +05:30
Sayak Paul
a519272d97 [ci] revisit the installations in CI. (#12450)
* revisit the installations in CI.

* up

* up

* up

* empty

* up

* up

* up
2025-10-08 19:21:24 +05:30
Sayak Paul
345864eb85 fix more torch.distributed imports (#12425)
* up

* unguard.
2025-10-08 10:45:39 +05:30
Sayak Paul
35e538d46a fix dockerfile definitions. (#12424)
* fix dockerfile definitions.

* python 3.10 slim.

* up

* up

* up

* up

* up

* revert pr_tests.yml changes

* up

* up

* reduce python version for torch 2.1.0
2025-10-08 09:46:18 +05:30
Sayak Paul
2dc31677e1 Align Flux modular more and more with Qwen modular (#12445)
* start

* fix

* up
2025-10-08 09:22:34 +05:30
Linoy Tsaban
1066de8c69 [Qwen LoRA training] fix bug when offloading (#12440)
* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled

* fix bug when offload and cache_latents both enabled
2025-10-07 18:27:15 +03:00
Sayak Paul
2d69bacb00 handle offload_state_dict when initing transformers models (#12438) 2025-10-07 13:51:20 +05:30
Changseop Yeom
0974b4c606 [i18n-KO] Fix typo and update translation in ethical_guidelines.md (#12435) 2025-10-06 14:24:05 -07:00
Charles
cf4b97b233 [perf] Cache version checks (#12399) 2025-10-06 17:45:34 +02:00
41 changed files with 1532 additions and 857 deletions

View File

@@ -38,9 +38,8 @@ jobs:
run: |
apt update
apt install -y libpq-dev postgresql-client
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -r benchmarks/requirements.txt
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow -r benchmarks/requirements.txt
- name: Environment
run: |
python utils/print_env.py

View File

@@ -72,7 +72,6 @@ jobs:
image-name:
- diffusers-pytorch-cpu
- diffusers-pytorch-cuda
- diffusers-pytorch-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-doc-builder

View File

@@ -74,7 +74,7 @@ jobs:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install --upgrade huggingface_hub
# Check secret is set

View File

@@ -71,10 +71,9 @@ jobs:
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
uv pip install --prerelease=allow -e ".[quality]"
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
@@ -84,7 +83,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
--report-log=tests_pipeline_${{ matrix.module }}_cuda.log \
@@ -124,11 +123,10 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: python utils/print_env.py
@@ -139,7 +137,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
--report-log=tests_torch_${{ matrix.module }}_cuda.log \
@@ -152,7 +150,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v --make-reports=examples_torch_cuda \
--report-log=examples_torch_cuda.log \
examples/
@@ -191,8 +189,7 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python utils/print_env.py
@@ -201,7 +198,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
@@ -232,11 +229,10 @@ jobs:
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
@@ -247,7 +243,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-m "big_accelerator" \
--make-reports=tests_big_gpu_torch_cuda \
--report-log=tests_big_gpu_torch_cuda.log \
@@ -282,10 +278,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -297,7 +292,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_version_cuda \
tests/models/test_modeling_common.py \
@@ -357,13 +352,12 @@ jobs:
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U ${{ matrix.config.backend }}
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow -U ${{ matrix.config.backend }}
if [ "${{ join(matrix.config.additional_deps, ' ') }}" != "" ]; then
python -m uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
uv pip install --prerelease=allow ${{ join(matrix.config.additional_deps, ' ') }}
fi
python -m uv pip install pytest-reportlog
uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
@@ -374,7 +368,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
tests/quantization/${{ matrix.config.test_location }}
@@ -409,10 +403,9 @@ jobs:
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U bitsandbytes optimum_quanto
python -m uv pip install pytest-reportlog
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow -U bitsandbytes optimum_quanto
uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
@@ -423,7 +416,7 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_pipeline_level_quant_torch_cuda \
--report-log=tests_pipeline_level_quant_torch_cuda.log \
tests/quantization/test_pipeline_level_quantization.py
@@ -523,11 +516,11 @@ jobs:
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# ${CONDA_RUN} pip install --upgrade pip uv
# ${CONDA_RUN} uv pip install --prerelease=allow -e ".[quality]"
# ${CONDA_RUN} uv pip install --prerelease=allow torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} uv pip install --prerelease=allow accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} uv pip install --prerelease=allow pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
@@ -538,7 +531,7 @@ jobs:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# ${CONDA_RUN} pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports
@@ -579,11 +572,11 @@ jobs:
# - name: Install dependencies
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# ${CONDA_RUN} pip install --upgrade pip uv
# ${CONDA_RUN} uv pip install --prerelease=allow -e ".[quality]"
# ${CONDA_RUN} uv pip install --prerelease=allow torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} uv pip install --prerelease=allow accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} uv pip install --prerelease=allow pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
@@ -594,7 +587,7 @@ jobs:
# HF_HOME: /System/Volumes/Data/mnt/cache
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# run: |
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
# ${CONDA_RUN} pytest -n 1 -s -v --make-reports=tests_torch_mps \
# --report-log=tests_torch_mps.log \
# tests/
# - name: Failure short reports

View File

@@ -25,11 +25,8 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install pytest
pip install -e .
pip install pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pytest tests/others/test_dependencies.py
pytest tests/others/test_dependencies.py

View File

@@ -42,7 +42,7 @@ jobs:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
@@ -62,7 +62,7 @@ jobs:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
@@ -108,21 +108,18 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall transformers -y && pip uninstall huggingface_hub -y && python -m uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
uv pip install --prerelease=allow -e ".[quality]"
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease=allow --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/modular_pipelines

View File

@@ -33,8 +33,7 @@ jobs:
fetch-depth: 0
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
- name: Environment
run: |
python utils/print_env.py
@@ -90,19 +89,16 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install -e [quality,test]
python -m pip install accelerate
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow accelerate
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run all selected tests on CPU
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.modules }}_tests_cpu ${{ fromJson(needs.setup_pr_tests.outputs.test_map)[matrix.modules] }}
- name: Failure short reports
if: ${{ failure() }}
@@ -148,19 +144,16 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install -e [quality,test]
pip install -e [quality]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
HUGGINGFACE_CO_STAGING=true python -m pytest \
HUGGINGFACE_CO_STAGING=true pytest \
-m "is_staging_test" \
--make-reports=tests_${{ matrix.config.report }} \
tests

View File

@@ -38,7 +38,7 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
@@ -58,7 +58,7 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
@@ -114,21 +114,18 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall transformers -y && pip uninstall huggingface_hub -y && python -m uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
uv pip install --prerelease=allow -e ".[quality]"
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease=allow --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/pipelines
@@ -136,8 +133,7 @@ jobs:
- name: Run fast PyTorch Model Scheduler CPU tests
if: ${{ matrix.config.framework == 'pytorch_models' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others
@@ -145,9 +141,8 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install peft timm
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
uv pip install --prerelease=allow ".[training]"
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples
@@ -195,19 +190,16 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
HUGGINGFACE_CO_STAGING=true python -m pytest \
HUGGINGFACE_CO_STAGING=true pytest \
-m "is_staging_test" \
--make-reports=tests_${{ matrix.config.report }} \
tests
@@ -249,27 +241,24 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
# TODO (sayakpaul, DN6): revisit `--no-deps`
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
python -m uv pip install -U tokenizers
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
pip uninstall transformers -y && pip uninstall huggingface_hub -y && python -m uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip install --prerelease=allow -U peft@git+https://github.com/huggingface/peft.git --no-deps
uv pip install --prerelease=allow -U tokenizers
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease=allow --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch LoRA tests with PEFT
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_peft_main \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_peft_main \
tests/models/ -k "lora"

View File

@@ -39,7 +39,7 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
@@ -59,7 +59,7 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
@@ -88,8 +88,7 @@ jobs:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
- name: Environment
run: |
python utils/print_env.py
@@ -130,10 +129,9 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && pip uninstall huggingface_hub -y && python -m uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease=allow --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
@@ -152,13 +150,13 @@ jobs:
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
else
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and $pattern" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
@@ -200,11 +198,10 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && pip uninstall huggingface_hub -y && python -m uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease=allow --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
- name: Environment
run: |
@@ -225,10 +222,10 @@ jobs:
run: |
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
if [ -z "$pattern" ]; then
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
else
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
fi
@@ -265,22 +262,19 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pip uninstall transformers -y && pip uninstall huggingface_hub -y && python -m uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
python -m uv pip install -e [quality,test,training]
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease=allow --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
uv pip install --prerelease=allow ".[training]"
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -25,12 +25,8 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install torch torchvision torchaudio
python -m uv pip install pytest
pip install -e .
pip install torch torchvision torchaudio pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pytest tests/others/test_dependencies.py
pytest tests/others/test_dependencies.py

View File

@@ -34,8 +34,7 @@ jobs:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
- name: Environment
run: |
python utils/print_env.py
@@ -75,9 +74,8 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
@@ -87,7 +85,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
@@ -126,10 +124,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -141,7 +138,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_cuda_${{ matrix.module }} \
tests/${{ matrix.module }}
@@ -180,8 +177,7 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python utils/print_env.py
@@ -190,7 +186,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
@@ -223,8 +219,7 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python utils/print_env.py
@@ -232,7 +227,7 @@ jobs:
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
@@ -264,21 +259,18 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
uv pip install --prerelease=allow ".[training]"
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -60,19 +60,16 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
@@ -80,9 +77,8 @@ jobs:
- name: Run example PyTorch CPU tests
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install peft timm
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
uv pip install --prerelease=allow ".[training]"
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples

View File

@@ -41,10 +41,10 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade
${CONDA_RUN} python -m uv pip install --prerelease=allow -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install --prerelease=allow torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install --prerelease=allow accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install --prerelease=allow transformers --upgrade
- name: Environment
shell: arch -arch arm64 bash {0}

View File

@@ -32,8 +32,7 @@ jobs:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
uv pip install --prerelease=allow -e ".[quality]"
- name: Environment
run: |
python utils/print_env.py
@@ -73,9 +72,8 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
@@ -85,7 +83,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
@@ -124,10 +122,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -139,7 +136,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_${{ matrix.module }}_cuda \
tests/${{ matrix.module }}
@@ -175,10 +172,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
uv pip uninstall accelerate && uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -190,7 +186,7 @@ jobs:
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_cuda \
tests/models/test_modeling_common.py \
@@ -235,8 +231,7 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python utils/print_env.py
@@ -245,7 +240,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
@@ -278,8 +273,7 @@ jobs:
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python utils/print_env.py
@@ -287,7 +281,7 @@ jobs:
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
@@ -321,21 +315,18 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
uv pip install --prerelease=allow -e ".[quality,training]"
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
uv pip install --prerelease=allow ".[training]"
pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -63,9 +63,8 @@ jobs:
- name: Install pytest
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft
uv pip install --prerelease=allow -e ".[quality]"
uv pip install --prerelease=allow peft
- name: Run tests
env:

View File

@@ -1,56 +1,45 @@
FROM ubuntu:20.04
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt-get -y update && apt-get install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libglib2.0-0 \
libsndfile1-dev \
libgl1 \
zip \
wget
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
python3.10 \
python3-pip \
libgl1 \
zip \
wget \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
ENV UV_PYTHON=/usr/local/bin/python
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3.10 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
matplotlib \
setuptools==69.5.1 \
bitsandbytes \
torchao \
gguf \
optimum-quanto
RUN pip install uv
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
hf_transfer \
setuptools==69.5.1 \
bitsandbytes \
torchao \
gguf \
optimum-quanto
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
CMD ["/bin/bash"]

View File

@@ -1,50 +1,38 @@
FROM ubuntu:20.04
FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt-get -y update && apt-get install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libglib2.0-0 \
libsndfile1-dev \
libgl1
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
python3.10 \
python3.10-dev \
python3-pip \
libgl1 \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
ENV UV_PYTHON=/usr/local/bin/python
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3.10 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers matplotlib \
hf_transfer
RUN pip install uv
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
hf_transfer
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
CMD ["/bin/bash"]

View File

@@ -2,11 +2,13 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
&& add-apt-repository ppa:deadsnakes/ppa && \
apt-get update
RUN apt install -y bash \
build-essential \
@@ -14,38 +16,34 @@ RUN apt install -y bash \
git-lfs \
curl \
ca-certificates \
libglib2.0-0 \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3 \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
torchaudio
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
pytorch-lightning \
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -2,6 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.10
ENV DEBIAN_FRONTEND=noninteractive
ENV MINIMUM_SUPPORTED_TORCH_VERSION="2.1.0"
ENV MINIMUM_SUPPORTED_TORCHVISION_VERSION="0.16.0"
@@ -9,7 +10,8 @@ ENV MINIMUM_SUPPORTED_TORCHAUDIO_VERSION="2.1.0"
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
&& add-apt-repository ppa:deadsnakes/ppa && \
apt-get update
RUN apt install -y bash \
build-essential \
@@ -17,37 +19,34 @@ RUN apt install -y bash \
git-lfs \
curl \
ca-certificates \
libglib2.0-0 \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3 \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
RUN uv pip install --no-cache-dir \
torch==$MINIMUM_SUPPORTED_TORCH_VERSION \
torchvision==$MINIMUM_SUPPORTED_TORCHVISION_VERSION \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -2,50 +2,49 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
&& add-apt-repository ppa:deadsnakes/ppa && \
apt-get update
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libglib2.0-0 \
libsndfile1-dev \
libgl1 \
python3 \
python3-pip \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
RUN curl -LsSf https://astral.sh/uv/install.sh | sh
ENV PATH="/root/.local/bin:$PATH"
ENV VIRTUAL_ENV="/opt/venv"
ENV UV_PYTHON_INSTALL_DIR=/opt/uv/python
RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.10 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
xformers \
hf_transfer
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"
# Extra dependencies
RUN uv pip install --no-cache-dir \
accelerate \
numpy==1.26.4 \
pytorch-lightning \
hf_transfer \
xformers
CMD ["/bin/bash"]

View File

@@ -75,7 +75,7 @@ The following is a summary of the recommended checkpoints, all of which produce
| [prs-eth/marigold-depth-v1-1](https://huggingface.co/prs-eth/marigold-depth-v1-1) | Depth | Affine-invariant depth prediction assigns each pixel a value between 0 (near plane) and 1 (far plane), with both planes determined by the model during inference. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | The surface normals predictions are unit-length 3D vectors in the screen space camera, with values in the range from -1 to 1. |
| [prs-eth/marigold-iid-appearance-v1-1](https://huggingface.co/prs-eth/marigold-iid-appearance-v1-1) | Intrinsics | InteriorVerse decomposition is comprised of Albedo and two BRDF material properties: Roughness and Metallicity. |
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image &nbsp\\(I\\)&nbsp is comprised of Albedo &nbsp\\(A\\), Diffuse shading &nbsp\\(S\\), and Non-diffuse residual &nbsp\\(R\\): &nbsp\\(I = A*S+R\\). |
| [prs-eth/marigold-iid-lighting-v1-1](https://huggingface.co/prs-eth/marigold-iid-lighting-v1-1) | Intrinsics | HyperSim decomposition of an image $I$ is comprised of Albedo $A$, Diffuse shading $S$, and Non-diffuse residual $R$: $I = A*S+R$. |
> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff

View File

@@ -14,51 +14,47 @@ specific language governing permissions and limitations under the License.
## 서문 [[preamble]]
[Diffusers](https://huggingface.co/docs/diffusers/index)는 사전 훈련된 diffusion 모델을 제공하며 추론 훈련을 위한 모듈 툴박스로 용됩니다.
[Diffusers](https://huggingface.co/docs/diffusers/index)는 사전 훈련된 diffusion 모델을 제공하며, 추론 훈련을 위한 모듈 툴박스로 용됩니다.
이 기술의 실제 적용 사회에 미칠 수 있는 부정적 영향을 고려하여 Diffusers 라이브러리의 개발, 사용자 기여 사용에 윤리 지침을 제공하는 것이 중요하다고 생각합니다.
이이 기술을 사용함에 따른 위험은 여전히 검토 중이지만, 몇 가지 예를 들면: 예술가들에 대한 저작권 문제; 딥 페이크의 악용; 부적절한 맥락에서의 성적 콘텐츠 생성; 동의 없는 사칭; 소수자 집단의 억압을 영속화하는 유해한 사회적 편견 등이 있습니다.
우리는 위험을 지속적으로 추적하고 커뮤니티의 응답과 소중한 피드백에 따라 다음 지침을 조정할 것입니다.
이 기술의 실제 적용 사례와 사회에 미칠 수 있는 잠재적 부정적 영향을 고려할 때, Diffusers 라이브러리의 개발, 사용자 기여, 사용에 윤리 지침을 제공하는 것이 중요하다고 생각합니다.
이 기술 사용과 관련된 위험은 여전히 검토 중이지만, 예를 들면: 예술가의 저작권 문제, 딥페이크 악용, 부적절한 맥락에서의 성적 콘텐츠 생성, 비동의 사칭, 소수자 집단 억압을 영속화하는 유해한 사회적 편견 등이 있습니다.
우리는 이러한 위험을 지속적으로 추적하고, 커뮤니티의 반응과 소중한 피드백에 따라 아래 지침을 조정할 것입니다.
## 범위 [[scope]]
Diffusers 커뮤니티는 프로젝트 개발에 다음과 같은 윤리 지침을 적용하며, 특히 윤리적 문제와 관련된 민감한 주제에 대 커뮤니티의 기여를 조정하는 데 도움을 줄 것입니다.
Diffusers 커뮤니티는 프로젝트 개발에 다음 윤리 지침을 적용하며, 특히 윤리적 문제와 관련된 민감한 주제에 대 커뮤니티의 기여를 조정하는 데 도움을 줄 것입니다.
## 윤리 지침 [[ethical-guidelines]]
다음 윤리 지침은 일반적으로 적용되지만, 민감한 윤리적 문제와 관련하여 기술적 선택을 할 때 이를 우선적으로 적용할 것입니다. 나아가, 해당 기술의 최신 동향과 관련된 새로운 위험이 발생함에 따라 이러한 윤리 원칙을 조정할 것을 약속드립니다.
다음 윤리 지침은 일반적으로 적용되지만, 윤리적으로 민감한 문제와 관련 기술적 선택을 할 때 우선적으로 적용니다. 또한, 해당 기술의 최신 동향과 관련된 새로운 위험이 발생함에 따라 이러한 윤리 원칙을 지속적으로 조정할 것을 약속니다.
- **투명성**: 우리는 PR 관리하고, 사용자에게 우리의 선택을 설명하며, 기술적 의사결정을 내릴 때 투명성을 유지할 것을 약속합니다.
- **투명성**: 우리는 PR 관리, 사용자에게 선택의 이유 설명, 기술적 의사결정 과정에서 투명성을 유지할 것을 약속합니다.
- **일관성**: 우리는 프로젝트 관리에서 사용자에게 동일한 수준의 관심을 보장하고 기술적으로 안정고 일관된 상태를 유지할 것을 약속합니다.
- **일관성**: 프로젝트 관리에서 모든 사용자에게 동일한 수준의 관심을 보장하고, 기술적으로 안정적이고 일관된 상태를 유지할 것을 약속합니다.
- **간결성**: Diffusers 라이브러리를 사용하고 활용하기 쉽게 만들기 위해, 프로젝트의 목표를 간결하고 일관성 있게 유지할 것을 약속합니다.
- **간결성**: Diffusers 라이브러리를 쉽게 사용하고 활용할 수 있도록, 프로젝트의 목표를 간결하고 일관성 있게 유지할 것을 약속합니다.
- **접근성**: Diffusers 프로젝트는 기술적 전문 지식 없어도 프로젝트 운영에 참여할 수 있는 기여자의 진입장벽을 낮춥니다. 이를 통해 연구 결과물이 커뮤니티에 더 잘 접근 수 있게 됩니다.
- **접근성**: Diffusers 프로젝트는 기술적 전문지식 없어도 기여할 수 있도록 진입장벽을 낮춥니다. 이를 통해 연구 결과물이 커뮤니티에 더 잘 접근 수 있니다.
- **재현성**: 우리는 Diffusers 라이브러리를 통해 제공되는 업스트림(upstream) 코드, 모델 데이터셋의 재현성에 대해 투명하게 공개 것을 목표로 합니다.
- **책임**: 우리는 커뮤니티와 팀워크를 통해, 이 기술의 잠재적인 위험과 위험을 예측하고 완화하는 데 대한 공동 책임을 가지고 있습니다.
- **재현성**: 우리는 Diffusers 라이브러리를 통해 제공되는 업스트림 코드, 모델, 데이터셋의 재현성에 대해 투명하게 공개하는 것을 목표로 합니다.
- **책임**: 커뮤니티와 팀워크를 통해, 이 기술의 잠재적 위험을 예측하고 완화하는 데 공동 책임을 집니다.
## 구현 사례: 안전 기능과 메커니즘 [[examples-of-implementations-safety-features-and-mechanisms]]
팀은 diffusion 기술과 관련된 잠재적 윤리 및 사회적 위험에 대하기 위 기술적비기술적 도구를 제공하고자 하고 있습니다. 또한, 커뮤니티의 참여는 이러한 기능 구현하고 우리와 함께 인식을 높이는 데 매우 중요합니다.
팀은 diffusion 기술과 관련된 잠재적 윤리 및 사회적 위험에 대하기 위 기술적·비기술적 도구를 제공하고자 노력하고 있습니다. 또한, 커뮤니티의 참여는 이러한 기능 구현과 인식 제고에 매우 중요합니다.
- [**커뮤니티 탭**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions): 이를 통해 커뮤니티 프로젝트에 대해 토론하고 더 나은 협을 할 수 있니다.
- [**커뮤니티 탭**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions): 커뮤니티 프로젝트에 대해 토론하고 더 나은 협을 할 수 있도록 지원합니다.
- **편향 탐색 및 평가**: Hugging Face 팀은 Stable Diffusion 모델의 편향성을 대화형으로 보여주는 [space](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer) 제공합니다. 이런 의미에서, 우리는 편향 탐색 평가를 지원하고 장려합니다.
- **편향 탐색 및 평가**: Hugging Face 팀은 Stable Diffusion 모델의 편향성을 대화형으로 보여주는 [space](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer) 제공합니다. 우리는 이러한 편향 탐색 평가를 지원하고 장려합니다.
- **배포에서의 안전 유도**
- [**안전한 Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_safe): 이는 필터되지 않은 웹 크롤링 데이터셋으로 훈련된 Stable Diffusion과 같은 모델이 부적절 변질에 취약한 문제를 완화합니다. 관련 논문: [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://huggingface.co/papers/2211.05105).
- [**안전한 Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_safe): 필터되지 않은 웹 크롤링 데이터셋으로 훈련된 Stable Diffusion과 같은 모델이 부적절하게 변질되는 문제를 완화합니다. 관련 논문: [Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models](https://huggingface.co/papers/2211.05105).
- [**안전 검사기**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py): 이미지가 생성된 후에 이미가 임베딩 공간에서 일련의 하드코딩된 유해 개념 클래스 확률을 확인하고 비교합니다. 유해 개념은 역공학을 방지하기 위해 의도적으로 숨겨져 있습니다.
- [**안전 검사기**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py): 생성된 이미가 임베딩 공간에서 하드코딩된 유해 개념 클래스와 일치할 확률을 확인하고 비교합니다. 유해 개념은 역공학을 방지하기 위해 의도적으로 숨겨져 있습니다.
- **Hub에서의 단계적 배포**: 특히 민감한 상황에서는 일부 리포지토리에 대한 접근을 제한해야 합니다. 단계적 배포는 중간 단계로, 리포지토리 작성자가 사용에 대 더 많은 통제을 갖게 합니다.
- **Hub에서의 단계적 배포**: 특히 민감한 상황에서는 일부 리포지토리에 대한 접근을 제한할 수 있습니다. 단계적 배포는 리포지토리 작성자가 사용에 대 더 많은 통제을 갖도록 하는 중간 단계입니다.
- **라이선싱**: [OpenRAILs](https://huggingface.co/blog/open_rail)와 같은 새로운 유형의 라이선싱을 통해 자유로운 접근을 보장하면서도 책임 있는 사용을 위한 일련의 제한을 둘 수 있습니다.
- **라이선싱**: [OpenRAILs](https://huggingface.co/blog/open_rail)와 같은 새로운 유형의 라이선스를 통해 자유로운 접근을 보장하면서도 보다 책임 있는 사용을 위한 일련의 제한을 둘 수 있습니다.

View File

@@ -1338,7 +1338,7 @@ def main(args):
batch["pixel_values"] = batch["pixel_values"].to(
accelerator.device, non_blocking=True, dtype=vae.dtype
)
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
if train_dataset.custom_instance_prompts:
with offload_models(text_encoding_pipeline, device=accelerator.device, offload=args.offload):
prompt_embeds, prompt_embeds_mask = compute_text_embeddings(

View File

@@ -103,7 +103,7 @@ _deps = [
"flax>=0.4.1",
"hf-doc-builder>=0.3.0",
"httpx<1.0.0",
"huggingface-hub>=0.34.0,<2.0",
"huggingface-hub==v1.0.0.rc6",
"requests-mock==1.10.0",
"importlib_metadata",
"invisible-watermark>=0.2.0",
@@ -145,6 +145,7 @@ _deps = [
"black",
"phonemizer",
"opencv-python",
"timm",
]
# this is a lookup table with items like:
@@ -218,7 +219,7 @@ class DepsTableUpdateCommand(Command):
extras = {}
extras["quality"] = deps_list("urllib3", "isort", "ruff", "hf-doc-builder")
extras["docs"] = deps_list("hf-doc-builder")
extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2", "peft")
extras["training"] = deps_list("accelerate", "datasets", "protobuf", "tensorboard", "Jinja2", "peft", "timm")
extras["test"] = deps_list(
"compel",
"GitPython",

View File

@@ -386,6 +386,8 @@ else:
_import_structure["modular_pipelines"].extend(
[
"FluxAutoBlocks",
"FluxKontextAutoBlocks",
"FluxKontextModularPipeline",
"FluxModularPipeline",
"QwenImageAutoBlocks",
"QwenImageEditAutoBlocks",
@@ -1050,6 +1052,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else:
from .modular_pipelines import (
FluxAutoBlocks,
FluxKontextAutoBlocks,
FluxKontextModularPipeline,
FluxModularPipeline,
QwenImageAutoBlocks,
QwenImageEditAutoBlocks,

View File

@@ -10,7 +10,7 @@ deps = {
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"httpx": "httpx<1.0.0",
"huggingface-hub": "huggingface-hub>=0.34.0,<2.0",
"huggingface-hub": "huggingface-hub==v1.0.0.rc6",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark>=0.2.0",
@@ -52,4 +52,5 @@ deps = {
"black": "black",
"phonemizer": "phonemizer",
"opencv-python": "opencv-python",
"timm": "timm",
}

View File

@@ -17,7 +17,10 @@ from dataclasses import dataclass
from typing import Dict, List, Type, Union
import torch
import torch.distributed._functional_collectives as funcol
if torch.distributed.is_available():
import torch.distributed._functional_collectives as funcol
from ..models._modeling_parallel import (
ContextParallelConfig,

View File

@@ -46,7 +46,12 @@ else:
]
_import_structure["stable_diffusion_xl"] = ["StableDiffusionXLAutoBlocks", "StableDiffusionXLModularPipeline"]
_import_structure["wan"] = ["WanAutoBlocks", "WanModularPipeline"]
_import_structure["flux"] = ["FluxAutoBlocks", "FluxModularPipeline"]
_import_structure["flux"] = [
"FluxAutoBlocks",
"FluxModularPipeline",
"FluxKontextAutoBlocks",
"FluxKontextModularPipeline",
]
_import_structure["qwenimage"] = [
"QwenImageAutoBlocks",
"QwenImageModularPipeline",
@@ -65,7 +70,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .components_manager import ComponentsManager
from .flux import FluxAutoBlocks, FluxModularPipeline
from .flux import FluxAutoBlocks, FluxKontextAutoBlocks, FluxKontextModularPipeline, FluxModularPipeline
from .modular_pipeline import (
AutoPipelineBlocks,
BlockState,

View File

@@ -25,14 +25,18 @@ else:
_import_structure["modular_blocks"] = [
"ALL_BLOCKS",
"AUTO_BLOCKS",
"AUTO_BLOCKS_KONTEXT",
"FLUX_KONTEXT_BLOCKS",
"TEXT2IMAGE_BLOCKS",
"FluxAutoBeforeDenoiseStep",
"FluxAutoBlocks",
"FluxAutoBlocks",
"FluxAutoDecodeStep",
"FluxAutoDenoiseStep",
"FluxKontextAutoBlocks",
"FluxKontextAutoDenoiseStep",
"FluxKontextBeforeDenoiseStep",
]
_import_structure["modular_pipeline"] = ["FluxModularPipeline"]
_import_structure["modular_pipeline"] = ["FluxKontextModularPipeline", "FluxModularPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -45,13 +49,18 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .modular_blocks import (
ALL_BLOCKS,
AUTO_BLOCKS,
AUTO_BLOCKS_KONTEXT,
FLUX_KONTEXT_BLOCKS,
TEXT2IMAGE_BLOCKS,
FluxAutoBeforeDenoiseStep,
FluxAutoBlocks,
FluxAutoDecodeStep,
FluxAutoDenoiseStep,
FluxKontextAutoBlocks,
FluxKontextAutoDenoiseStep,
FluxKontextBeforeDenoiseStep,
)
from .modular_pipeline import FluxModularPipeline
from .modular_pipeline import FluxKontextModularPipeline, FluxModularPipeline
else:
import sys

View File

@@ -13,12 +13,12 @@
# limitations under the License.
import inspect
from typing import Any, List, Optional, Tuple, Union
from typing import List, Optional, Union
import numpy as np
import torch
from ...models import AutoencoderKL
from ...pipelines import FluxPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor
@@ -104,48 +104,6 @@ def calculate_shift(
return mu
# Adapted from the original implementation.
def prepare_latents_img2img(
vae, scheduler, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
latent_channels = vae.config.latent_channels
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
image = image.to(device=device, dtype=dtype)
if image.shape[1] != latent_channels:
image_latents = _encode_vae_image(image=image, generator=generator)
else:
image_latents = image
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = scheduler.scale_noise(image_latents, timestep, noise)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents, latent_image_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
@@ -160,43 +118,6 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
# Cannot use "# Copied from" because it introduces weird indentation errors.
def _encode_vae_image(vae, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
def _get_initial_timesteps_and_optionals(
transformer,
scheduler,
@@ -231,96 +152,6 @@ def _get_initial_timesteps_and_optionals(
return timesteps, num_inference_steps, sigmas, guidance
class FluxInputStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return (
"Input processing step that:\n"
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
" 2. Adjusts input tensor shapes based on `batch_size` (number of prompts) and `num_images_per_prompt`\n\n"
"All input tensors are expected to have either batch_size=1 or match the batch_size\n"
"of prompt_embeds. The tensors will be duplicated across the batch dimension to\n"
"have a final batch_size of batch_size * num_images_per_prompt."
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
InputParam(
"prompt_embeds",
required=True,
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
InputParam(
"pooled_prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated pooled text embeddings. Can be generated from text_encoder step.",
),
# TODO: support negative embeddings?
]
@property
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"batch_size",
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
),
OutputParam(
"dtype",
type_hint=torch.dtype,
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
),
OutputParam(
"prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="text embeddings used to guide the image generation",
),
OutputParam(
"pooled_prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="pooled text embeddings used to guide the image generation",
),
# TODO: support negative embeddings?
]
def check_inputs(self, components, block_state):
if block_state.prompt_embeds is not None and block_state.pooled_prompt_embeds is not None:
if block_state.prompt_embeds.shape[0] != block_state.pooled_prompt_embeds.shape[0]:
raise ValueError(
"`prompt_embeds` and `pooled_prompt_embeds` must have the same batch size when passed directly, but"
f" got: `prompt_embeds` {block_state.prompt_embeds.shape} != `pooled_prompt_embeds`"
f" {block_state.pooled_prompt_embeds.shape}."
)
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
# TODO: consider adding negative embeddings?
block_state = self.get_block_state(state)
self.check_inputs(components, block_state)
block_state.batch_size = block_state.prompt_embeds.shape[0]
block_state.dtype = block_state.prompt_embeds.dtype
_, seq_len, _ = block_state.prompt_embeds.shape
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
block_state.prompt_embeds = block_state.prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
self.set_block_state(state, block_state)
return components, state
class FluxSetTimestepsStep(ModularPipelineBlocks):
model_name = "flux"
@@ -389,6 +220,10 @@ class FluxSetTimestepsStep(ModularPipelineBlocks):
block_state.sigmas = sigmas
block_state.guidance = guidance
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
components.scheduler.set_begin_index(0)
self.set_block_state(state, block_state)
return components, state
@@ -432,11 +267,6 @@ class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
type_hint=int,
description="The number of denoising steps to perform at inference time",
),
OutputParam(
"latent_timestep",
type_hint=torch.Tensor,
description="The timestep that represents the initial noise level for image-to-image generation",
),
OutputParam("guidance", type_hint=torch.Tensor, description="Optional guidance to be used."),
]
@@ -484,8 +314,6 @@ class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
block_state.sigmas = sigmas
block_state.guidance = guidance
block_state.latent_timestep = timesteps[:1].repeat(batch_size)
self.set_block_state(state, block_state)
return components, state
@@ -524,11 +352,6 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
OutputParam(
"latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
),
OutputParam(
"latent_image_ids",
type_hint=torch.Tensor,
description="IDs computed from the image sequence needed for RoPE",
),
]
@staticmethod
@@ -552,20 +375,13 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
generator,
latents=None,
):
# Couldn't use the `prepare_latents` method directly from Flux because I decided to copy over
# the packing methods here. So, for example, `comp._pack_latents()` won't work if we were
# to go with the "# Copied from ..." approach. Or maybe there's a way?
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (comp.vae_scale_factor * 2))
width = 2 * (int(width) // (comp.vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
return latents.to(device=device, dtype=dtype)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
@@ -573,26 +389,23 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# TODO: move packing latents code to a patchifier similar to Qwen
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
latents = FluxPipeline._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
return latents, latent_image_ids
return latents
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.height = block_state.height or components.default_height
block_state.width = block_state.width or components.default_width
block_state.device = components._execution_device
block_state.dtype = torch.bfloat16 # TODO: okay to hardcode this?
block_state.num_channels_latents = components.num_channels_latents
self.check_inputs(components, block_state)
batch_size = block_state.batch_size * block_state.num_images_per_prompt
block_state.latents, block_state.latent_image_ids = self.prepare_latents(
block_state.latents = self.prepare_latents(
components,
batch_size,
block_state.num_channels_latents,
@@ -612,82 +425,194 @@ class FluxPrepareLatentsStep(ModularPipelineBlocks):
class FluxImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
model_name = "flux"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("vae", AutoencoderKL), ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
@property
def description(self) -> str:
return "Step that prepares the latents for the image-to-image generation process"
return "Step that adds noise to image latents for image-to-image. Should be run after `set_timesteps`,"
" `prepare_latents`. Both noise and image latents should already be patchified."
@property
def inputs(self) -> List[Tuple[str, Any]]:
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("height", type_hint=int),
InputParam("width", type_hint=int),
InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("num_images_per_prompt", type_hint=int, default=1),
InputParam("generator"),
InputParam(
"image_latents",
name="latents",
required=True,
type_hint=torch.Tensor,
description="The latents representing the reference image for image-to-image/inpainting generation. Can be generated in vae_encode step.",
description="The initial random noised, can be generated in prepare latent step.",
),
InputParam(
"latent_timestep",
name="image_latents",
required=True,
type_hint=torch.Tensor,
description="The timestep that represents the initial noise level for image-to-image/inpainting generation. Can be generated in set_timesteps step.",
description="The image latents to use for the denoising process. Can be generated in vae encoder and packed in input step.",
),
InputParam(
"batch_size",
name="timesteps",
required=True,
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step.",
type_hint=torch.Tensor,
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
),
InputParam("dtype", required=True, type_hint=torch.dtype, description="The dtype of the model inputs"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
),
OutputParam(
"latent_image_ids",
name="initial_noise",
type_hint=torch.Tensor,
description="IDs computed from the image sequence needed for RoPE",
description="The initial random noised used for inpainting denoising.",
),
]
@staticmethod
def check_inputs(image_latents, latents):
if image_latents.shape[0] != latents.shape[0]:
raise ValueError(
f"`image_latents` must have have same batch size as `latents`, but got {image_latents.shape[0]} and {latents.shape[0]}"
)
if image_latents.ndim != 3:
raise ValueError(f"`image_latents` must have 3 dimensions (patchified), but got {image_latents.ndim}")
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.device = components._execution_device
block_state.dtype = torch.bfloat16 # TODO: okay to hardcode this?
block_state.num_channels_latents = components.num_channels_latents
block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
block_state.device = components._execution_device
self.check_inputs(image_latents=block_state.image_latents, latents=block_state.latents)
# TODO: implement `check_inputs`
batch_size = block_state.batch_size * block_state.num_images_per_prompt
if block_state.latents is None:
block_state.latents, block_state.latent_image_ids = prepare_latents_img2img(
components.vae,
components.scheduler,
block_state.image_latents,
block_state.latent_timestep,
batch_size,
block_state.num_channels_latents,
block_state.height,
block_state.width,
block_state.dtype,
block_state.device,
block_state.generator,
)
# prepare latent timestep
latent_timestep = block_state.timesteps[:1].repeat(block_state.latents.shape[0])
# make copy of initial_noise
block_state.initial_noise = block_state.latents
# scale noise
block_state.latents = components.scheduler.scale_noise(
block_state.image_latents, latent_timestep, block_state.latents
)
self.set_block_state(state, block_state)
return components, state
class FluxRoPEInputsStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return "Step that prepares the RoPE inputs for the denoising process. Should be placed after text encoder and latent preparation steps."
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(name="height", required=True),
InputParam(name="width", required=True),
InputParam(name="prompt_embeds"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
name="txt_ids",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the prompt embeds, used for RoPE calculation.",
),
OutputParam(
name="img_ids",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the image latents, used for RoPE calculation.",
),
]
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
prompt_embeds = block_state.prompt_embeds
device, dtype = prompt_embeds.device, prompt_embeds.dtype
block_state.txt_ids = torch.zeros(prompt_embeds.shape[1], 3).to(
device=prompt_embeds.device, dtype=prompt_embeds.dtype
)
height = 2 * (int(block_state.height) // (components.vae_scale_factor * 2))
width = 2 * (int(block_state.width) // (components.vae_scale_factor * 2))
block_state.img_ids = FluxPipeline._prepare_latent_image_ids(None, height // 2, width // 2, device, dtype)
self.set_block_state(state, block_state)
return components, state
class FluxKontextRoPEInputsStep(ModularPipelineBlocks):
model_name = "flux-kontext"
@property
def description(self) -> str:
return "Step that prepares the RoPE inputs for the denoising process of Flux Kontext. Should be placed after text encoder and latent preparation steps."
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(name="image_height"),
InputParam(name="image_width"),
InputParam(name="height"),
InputParam(name="width"),
InputParam(name="prompt_embeds"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
name="txt_ids",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the prompt embeds, used for RoPE calculation.",
),
OutputParam(
name="img_ids",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the image latents, used for RoPE calculation.",
),
]
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
prompt_embeds = block_state.prompt_embeds
device, dtype = prompt_embeds.device, prompt_embeds.dtype
block_state.txt_ids = torch.zeros(prompt_embeds.shape[1], 3).to(
device=prompt_embeds.device, dtype=prompt_embeds.dtype
)
img_ids = None
if (
getattr(block_state, "image_height", None) is not None
and getattr(block_state, "image_width", None) is not None
):
image_latent_height = 2 * (int(block_state.image_height) // (components.vae_scale_factor * 2))
image_latent_width = 2 * (int(block_state.width) // (components.vae_scale_factor * 2))
img_ids = FluxPipeline._prepare_latent_image_ids(
None, image_latent_height // 2, image_latent_width // 2, device, dtype
)
# image ids are the same as latent ids with the first dimension set to 1 instead of 0
img_ids[..., 0] = 1
height = 2 * (int(block_state.height) // (components.vae_scale_factor * 2))
width = 2 * (int(block_state.width) // (components.vae_scale_factor * 2))
latent_ids = FluxPipeline._prepare_latent_image_ids(None, height // 2, width // 2, device, dtype)
if img_ids is not None:
latent_ids = torch.cat([latent_ids, img_ids], dim=0)
block_state.img_ids = latent_ids
self.set_block_state(state, block_state)

View File

@@ -76,18 +76,17 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
description="Pooled prompt embeddings",
),
InputParam(
"text_ids",
"txt_ids",
required=True,
type_hint=torch.Tensor,
description="IDs computed from text sequence needed for RoPE",
),
InputParam(
"latent_image_ids",
"img_ids",
required=True,
type_hint=torch.Tensor,
description="IDs computed from image sequence needed for RoPE",
),
# TODO: guidance
]
@torch.no_grad()
@@ -101,8 +100,8 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
encoder_hidden_states=block_state.prompt_embeds,
pooled_projections=block_state.pooled_prompt_embeds,
joint_attention_kwargs=block_state.joint_attention_kwargs,
txt_ids=block_state.text_ids,
img_ids=block_state.latent_image_ids,
txt_ids=block_state.txt_ids,
img_ids=block_state.img_ids,
return_dict=False,
)[0]
block_state.noise_pred = noise_pred
@@ -110,6 +109,96 @@ class FluxLoopDenoiser(ModularPipelineBlocks):
return components, block_state
class FluxKontextLoopDenoiser(ModularPipelineBlocks):
model_name = "flux-kontext"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("transformer", FluxTransformer2DModel)]
@property
def description(self) -> str:
return (
"Step within the denoising loop that denoise the latents for Flux Kontext. "
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
"object (e.g. `FluxDenoiseLoopWrapper`)"
)
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("joint_attention_kwargs"),
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
),
InputParam(
"image_latents",
type_hint=torch.Tensor,
description="Image latents to use for the denoising process. Can be generated in prepare_latent step.",
),
InputParam(
"guidance",
required=True,
type_hint=torch.Tensor,
description="Guidance scale as a tensor",
),
InputParam(
"prompt_embeds",
required=True,
type_hint=torch.Tensor,
description="Prompt embeddings",
),
InputParam(
"pooled_prompt_embeds",
required=True,
type_hint=torch.Tensor,
description="Pooled prompt embeddings",
),
InputParam(
"txt_ids",
required=True,
type_hint=torch.Tensor,
description="IDs computed from text sequence needed for RoPE",
),
InputParam(
"img_ids",
required=True,
type_hint=torch.Tensor,
description="IDs computed from latent sequence needed for RoPE",
),
]
@torch.no_grad()
def __call__(
self, components: FluxModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
) -> PipelineState:
latents = block_state.latents
latent_model_input = latents
image_latents = block_state.image_latents
if image_latents is not None:
latent_model_input = torch.cat([latent_model_input, image_latents], dim=1)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = components.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=block_state.guidance,
encoder_hidden_states=block_state.prompt_embeds,
pooled_projections=block_state.pooled_prompt_embeds,
joint_attention_kwargs=block_state.joint_attention_kwargs,
txt_ids=block_state.txt_ids,
img_ids=block_state.img_ids,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1)]
block_state.noise_pred = noise_pred
return components, block_state
class FluxLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "flux"
@@ -195,9 +284,6 @@ class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
block_state.num_warmup_steps = max(
len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
)
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
components.scheduler.set_begin_index(0)
with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
for i, t in enumerate(block_state.timesteps):
components, block_state = self.loop_step(components, block_state, i=i, t=t)
@@ -225,3 +311,20 @@ class FluxDenoiseStep(FluxDenoiseLoopWrapper):
" - `FluxLoopAfterDenoiser`\n"
"This block supports both text2image and img2img tasks."
)
class FluxKontextDenoiseStep(FluxDenoiseLoopWrapper):
model_name = "flux-kontext"
block_classes = [FluxKontextLoopDenoiser, FluxLoopAfterDenoiser]
block_names = ["denoiser", "after_denoiser"]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoise the latents. \n"
"Its loop logic is defined in `FluxDenoiseLoopWrapper.__call__` method \n"
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
" - `FluxKontextLoopDenoiser`\n"
" - `FluxLoopAfterDenoiser`\n"
"This block supports both text2image and img2img tasks."
)

View File

@@ -20,12 +20,12 @@ import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from ...configuration_utils import FrozenDict
from ...image_processor import VaeImageProcessor
from ...image_processor import VaeImageProcessor, is_valid_image, is_valid_image_imagelist
from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL
from ...utils import USE_PEFT_BACKEND, is_ftfy_available, logging, scale_lora_layers, unscale_lora_layers
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline
@@ -67,89 +67,219 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
class FluxVaeEncoderStep(ModularPipelineBlocks):
def encode_vae_image(vae: AutoencoderKL, image: torch.Tensor, generator: torch.Generator, sample_mode="sample"):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i], sample_mode=sample_mode)
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator, sample_mode=sample_mode)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
class FluxProcessImagesInputStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return "Vae Encoder step that encode the input image into a latent representation"
return "Image Preprocess step."
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKL),
ComponentSpec(
"image_processor",
VaeImageProcessor,
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 16}),
config=FrozenDict({"vae_scale_factor": 16}),
default_creation_method="from_config",
),
]
@property
def inputs(self) -> List[InputParam]:
return [InputParam("resized_image"), InputParam("image"), InputParam("height"), InputParam("width")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [OutputParam(name="processed_image")]
@staticmethod
def check_inputs(height, width, vae_scale_factor):
if height is not None and height % (vae_scale_factor * 2) != 0:
raise ValueError(f"Height must be divisible by {vae_scale_factor * 2} but is {height}")
if width is not None and width % (vae_scale_factor * 2) != 0:
raise ValueError(f"Width must be divisible by {vae_scale_factor * 2} but is {width}")
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
if block_state.resized_image is None and block_state.image is None:
raise ValueError("`resized_image` and `image` cannot be None at the same time")
if block_state.resized_image is None:
image = block_state.image
self.check_inputs(
height=block_state.height, width=block_state.width, vae_scale_factor=components.vae_scale_factor
)
height = block_state.height or components.default_height
width = block_state.width or components.default_width
else:
width, height = block_state.resized_image[0].size
image = block_state.resized_image
block_state.processed_image = components.image_processor.preprocess(image=image, height=height, width=width)
self.set_block_state(state, block_state)
return components, state
class FluxKontextProcessImagesInputStep(ModularPipelineBlocks):
model_name = "flux-kontext"
def __init__(self, _auto_resize=True):
self._auto_resize = _auto_resize
super().__init__()
@property
def description(self) -> str:
return (
"Image preprocess step for Flux Kontext. The preprocessed image goes to the VAE.\n"
"Kontext works as a T2I model, too, in case no input image is provided."
)
@property
def expected_components(self) -> List[ComponentSpec]:
return [
InputParam("image", required=True),
InputParam("height"),
InputParam("width"),
InputParam("generator"),
InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"),
InputParam(
"preprocess_kwargs",
type_hint=Optional[dict],
description="A kwargs dictionary that if specified is passed along to the `ImageProcessor` as defined under `self.image_processor` in [diffusers.image_processor.VaeImageProcessor]",
ComponentSpec(
"image_processor",
VaeImageProcessor,
config=FrozenDict({"vae_scale_factor": 16}),
default_creation_method="from_config",
),
]
@property
def inputs(self) -> List[InputParam]:
return [InputParam("image")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [OutputParam(name="processed_image")]
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState):
from ...pipelines.flux.pipeline_flux_kontext import PREFERRED_KONTEXT_RESOLUTIONS
block_state = self.get_block_state(state)
images = block_state.image
if images is None:
block_state.processed_image = None
else:
multiple_of = components.image_processor.config.vae_scale_factor
if not is_valid_image_imagelist(images):
raise ValueError(f"Images must be image or list of images but are {type(images)}")
if is_valid_image(images):
images = [images]
img = images[0]
image_height, image_width = components.image_processor.get_default_height_width(img)
aspect_ratio = image_width / image_height
if self._auto_resize:
# Kontext is trained on specific resolutions, using one of them is recommended
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
)
image_width = image_width // multiple_of * multiple_of
image_height = image_height // multiple_of * multiple_of
images = components.image_processor.resize(images, image_height, image_width)
block_state.processed_image = components.image_processor.preprocess(images, image_height, image_width)
self.set_block_state(state, block_state)
return components, state
class FluxVaeEncoderDynamicStep(ModularPipelineBlocks):
model_name = "flux"
def __init__(
self, input_name: str = "processed_image", output_name: str = "image_latents", sample_mode: str = "sample"
):
"""Initialize a VAE encoder step for converting images to latent representations.
Both the input and output names are configurable so this block can be configured to process to different image
inputs (e.g., "processed_image" -> "image_latents", "processed_control_image" -> "control_image_latents").
Args:
input_name (str, optional): Name of the input image tensor. Defaults to "processed_image".
Examples: "processed_image" or "processed_control_image"
output_name (str, optional): Name of the output latent tensor. Defaults to "image_latents".
Examples: "image_latents" or "control_image_latents"
sample_mode (str, optional): Sampling mode to be used.
Examples:
# Basic usage with default settings (includes image processor): # FluxImageVaeEncoderDynamicStep()
# Custom input/output names for control image: # FluxImageVaeEncoderDynamicStep(
input_name="processed_control_image", output_name="control_image_latents"
)
"""
self._image_input_name = input_name
self._image_latents_output_name = output_name
self.sample_mode = sample_mode
super().__init__()
@property
def description(self) -> str:
return f"Dynamic VAE Encoder step that converts {self._image_input_name} into latent representations {self._image_latents_output_name}.\n"
@property
def expected_components(self) -> List[ComponentSpec]:
components = [ComponentSpec("vae", AutoencoderKL)]
return components
@property
def inputs(self) -> List[InputParam]:
inputs = [InputParam(self._image_input_name), InputParam("generator")]
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"image_latents",
self._image_latents_output_name,
type_hint=torch.Tensor,
description="The latents representing the reference image for image-to-image/inpainting generation",
description="The latents representing the reference image",
)
]
@staticmethod
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image with self.vae->vae
def _encode_vae_image(vae, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.preprocess_kwargs = block_state.preprocess_kwargs or {}
block_state.device = components._execution_device
block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
image = getattr(block_state, self._image_input_name)
block_state.image = components.image_processor.preprocess(
block_state.image, height=block_state.height, width=block_state.width, **block_state.preprocess_kwargs
)
block_state.image = block_state.image.to(device=block_state.device, dtype=block_state.dtype)
if image is None:
setattr(block_state, self._image_latents_output_name, None)
else:
device = components._execution_device
dtype = components.vae.dtype
image = image.to(device=device, dtype=dtype)
block_state.batch_size = block_state.image.shape[0]
# if generator is a list, make sure the length of it matches the length of images (both should be batch_size)
if isinstance(block_state.generator, list) and len(block_state.generator) != block_state.batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(block_state.generator)}, but requested an effective batch"
f" size of {block_state.batch_size}. Make sure the batch size matches the length of the generators."
# Encode image into latents
image_latents = encode_vae_image(
image=image, vae=components.vae, generator=block_state.generator, sample_mode=self.sample_mode
)
block_state.image_latents = self._encode_vae_image(
components.vae, image=block_state.image, generator=block_state.generator
)
setattr(block_state, self._image_latents_output_name, image_latents)
self.set_block_state(state, block_state)
@@ -161,7 +291,7 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
@property
def description(self) -> str:
return "Text Encoder step that generate text_embeddings to guide the video generation"
return "Text Encoder step that generate text_embeddings to guide the image generation"
@property
def expected_components(self) -> List[ComponentSpec]:
@@ -172,10 +302,6 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
ComponentSpec("tokenizer_2", T5TokenizerFast),
]
@property
def expected_configs(self) -> List[ConfigSpec]:
return []
@property
def inputs(self) -> List[InputParam]:
return [
@@ -200,12 +326,6 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
type_hint=torch.Tensor,
description="pooled text embeddings used to guide the image generation",
),
OutputParam(
"text_ids",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="ids from the text sequence for RoPE",
),
]
@staticmethod
@@ -216,16 +336,10 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
@staticmethod
def _get_t5_prompt_embeds(
components,
prompt: Union[str, List[str]],
num_images_per_prompt: int,
max_sequence_length: int,
device: torch.device,
components, prompt: Union[str, List[str]], max_sequence_length: int, device: torch.device
):
dtype = components.text_encoder_2.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(components, TextualInversionLoaderMixin):
prompt = components.maybe_convert_prompt(prompt, components.tokenizer_2)
@@ -251,23 +365,11 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
prompt_embeds = components.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
@staticmethod
def _get_clip_prompt_embeds(
components,
prompt: Union[str, List[str]],
num_images_per_prompt: int,
device: torch.device,
):
def _get_clip_prompt_embeds(components, prompt: Union[str, List[str]], device: torch.device):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(components, TextualInversionLoaderMixin):
prompt = components.maybe_convert_prompt(prompt, components.tokenizer)
@@ -297,10 +399,6 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=components.text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
@staticmethod
@@ -309,34 +407,11 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in all text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or components._execution_device
# set lora scale so that monkey patched LoRA
@@ -361,12 +436,10 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
components,
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
)
prompt_embeds = FluxTextEncoderStep._get_t5_prompt_embeds(
components,
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
@@ -381,10 +454,7 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(components.text_encoder_2, lora_scale)
dtype = components.text_encoder.dtype if components.text_encoder is not None else torch.bfloat16
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
return prompt_embeds, pooled_prompt_embeds, text_ids
return prompt_embeds, pooled_prompt_embeds
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
@@ -400,14 +470,13 @@ class FluxTextEncoderStep(ModularPipelineBlocks):
if block_state.joint_attention_kwargs is not None
else None
)
(block_state.prompt_embeds, block_state.pooled_prompt_embeds, block_state.text_ids) = self.encode_prompt(
block_state.prompt_embeds, block_state.pooled_prompt_embeds = self.encode_prompt(
components,
prompt=block_state.prompt,
prompt_2=None,
prompt_embeds=None,
pooled_prompt_embeds=None,
device=block_state.device,
num_images_per_prompt=1, # TODO: hardcoded for now.
max_sequence_length=block_state.max_sequence_length,
lora_scale=block_state.text_encoder_lora_scale,
)

View File

@@ -0,0 +1,359 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import torch
from ...pipelines import FluxPipeline
from ...utils import logging
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import InputParam, OutputParam
# TODO: consider making these common utilities for modular if they are not pipeline-specific.
from ..qwenimage.inputs import calculate_dimension_from_latents, repeat_tensor_to_batch_size
from .modular_pipeline import FluxModularPipeline
logger = logging.get_logger(__name__)
class FluxTextInputStep(ModularPipelineBlocks):
model_name = "flux"
@property
def description(self) -> str:
return (
"Text input processing step that standardizes text embeddings for the pipeline.\n"
"This step:\n"
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
" 2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)"
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
InputParam(
"prompt_embeds",
required=True,
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
InputParam(
"pooled_prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated pooled text embeddings. Can be generated from text_encoder step.",
),
# TODO: support negative embeddings?
]
@property
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"batch_size",
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
),
OutputParam(
"dtype",
type_hint=torch.dtype,
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
),
OutputParam(
"prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="text embeddings used to guide the image generation",
),
OutputParam(
"pooled_prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="pooled text embeddings used to guide the image generation",
),
# TODO: support negative embeddings?
]
def check_inputs(self, components, block_state):
if block_state.prompt_embeds is not None and block_state.pooled_prompt_embeds is not None:
if block_state.prompt_embeds.shape[0] != block_state.pooled_prompt_embeds.shape[0]:
raise ValueError(
"`prompt_embeds` and `pooled_prompt_embeds` must have the same batch size when passed directly, but"
f" got: `prompt_embeds` {block_state.prompt_embeds.shape} != `pooled_prompt_embeds`"
f" {block_state.pooled_prompt_embeds.shape}."
)
@torch.no_grad()
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
# TODO: consider adding negative embeddings?
block_state = self.get_block_state(state)
self.check_inputs(components, block_state)
block_state.batch_size = block_state.prompt_embeds.shape[0]
block_state.dtype = block_state.prompt_embeds.dtype
_, seq_len, _ = block_state.prompt_embeds.shape
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
block_state.prompt_embeds = block_state.prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
self.set_block_state(state, block_state)
return components, state
# Adapted from `QwenImageInputsDynamicStep`
class FluxInputsDynamicStep(ModularPipelineBlocks):
model_name = "flux"
def __init__(
self,
image_latent_inputs: List[str] = ["image_latents"],
additional_batch_inputs: List[str] = [],
):
if not isinstance(image_latent_inputs, list):
image_latent_inputs = [image_latent_inputs]
if not isinstance(additional_batch_inputs, list):
additional_batch_inputs = [additional_batch_inputs]
self._image_latent_inputs = image_latent_inputs
self._additional_batch_inputs = additional_batch_inputs
super().__init__()
@property
def description(self) -> str:
# Functionality section
summary_section = (
"Input processing step that:\n"
" 1. For image latent inputs: Updates height/width if None, patchifies latents, and expands batch size\n"
" 2. For additional batch inputs: Expands batch dimensions to match final batch size"
)
# Inputs info
inputs_info = ""
if self._image_latent_inputs or self._additional_batch_inputs:
inputs_info = "\n\nConfigured inputs:"
if self._image_latent_inputs:
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
if self._additional_batch_inputs:
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
# Placement guidance
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
return summary_section + inputs_info + placement_section
@property
def inputs(self) -> List[InputParam]:
inputs = [
InputParam(name="num_images_per_prompt", default=1),
InputParam(name="batch_size", required=True),
InputParam(name="height"),
InputParam(name="width"),
]
# Add image latent inputs
for image_latent_input_name in self._image_latent_inputs:
inputs.append(InputParam(name=image_latent_input_name))
# Add additional batch inputs
for input_name in self._additional_batch_inputs:
inputs.append(InputParam(name=input_name))
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(name="image_height", type_hint=int, description="The height of the image latents"),
OutputParam(name="image_width", type_hint=int, description="The width of the image latents"),
]
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
# Process image latent inputs (height/width calculation, patchify, and batch expansion)
for image_latent_input_name in self._image_latent_inputs:
image_latent_tensor = getattr(block_state, image_latent_input_name)
if image_latent_tensor is None:
continue
# 1. Calculate height/width from latents
height, width = calculate_dimension_from_latents(image_latent_tensor, components.vae_scale_factor)
block_state.height = block_state.height or height
block_state.width = block_state.width or width
if not hasattr(block_state, "image_height"):
block_state.image_height = height
if not hasattr(block_state, "image_width"):
block_state.image_width = width
# 2. Patchify the image latent tensor
# TODO: Implement patchifier for Flux.
latent_height, latent_width = image_latent_tensor.shape[2:]
image_latent_tensor = FluxPipeline._pack_latents(
image_latent_tensor, block_state.batch_size, image_latent_tensor.shape[1], latent_height, latent_width
)
# 3. Expand batch size
image_latent_tensor = repeat_tensor_to_batch_size(
input_name=image_latent_input_name,
input_tensor=image_latent_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
setattr(block_state, image_latent_input_name, image_latent_tensor)
# Process additional batch inputs (only batch expansion)
for input_name in self._additional_batch_inputs:
input_tensor = getattr(block_state, input_name)
if input_tensor is None:
continue
# Only expand batch size
input_tensor = repeat_tensor_to_batch_size(
input_name=input_name,
input_tensor=input_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
setattr(block_state, input_name, input_tensor)
self.set_block_state(state, block_state)
return components, state
class FluxKontextInputsDynamicStep(FluxInputsDynamicStep):
model_name = "flux-kontext"
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
# Process image latent inputs (height/width calculation, patchify, and batch expansion)
for image_latent_input_name in self._image_latent_inputs:
image_latent_tensor = getattr(block_state, image_latent_input_name)
if image_latent_tensor is None:
continue
# 1. Calculate height/width from latents
# Unlike the `FluxInputsDynamicStep`, we don't overwrite the `block.height` and `block.width`
height, width = calculate_dimension_from_latents(image_latent_tensor, components.vae_scale_factor)
if not hasattr(block_state, "image_height"):
block_state.image_height = height
if not hasattr(block_state, "image_width"):
block_state.image_width = width
# 2. Patchify the image latent tensor
# TODO: Implement patchifier for Flux.
latent_height, latent_width = image_latent_tensor.shape[2:]
image_latent_tensor = FluxPipeline._pack_latents(
image_latent_tensor, block_state.batch_size, image_latent_tensor.shape[1], latent_height, latent_width
)
# 3. Expand batch size
image_latent_tensor = repeat_tensor_to_batch_size(
input_name=image_latent_input_name,
input_tensor=image_latent_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
setattr(block_state, image_latent_input_name, image_latent_tensor)
# Process additional batch inputs (only batch expansion)
for input_name in self._additional_batch_inputs:
input_tensor = getattr(block_state, input_name)
if input_tensor is None:
continue
# Only expand batch size
input_tensor = repeat_tensor_to_batch_size(
input_name=input_name,
input_tensor=input_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
setattr(block_state, input_name, input_tensor)
self.set_block_state(state, block_state)
return components, state
class FluxKontextSetResolutionStep(ModularPipelineBlocks):
model_name = "flux-kontext"
def description(self):
return (
"Determines the height and width to be used during the subsequent computations.\n"
"It should always be placed _before_ the latent preparation step."
)
@property
def inputs(self) -> List[InputParam]:
inputs = [
InputParam(name="height"),
InputParam(name="width"),
InputParam(name="max_area", type_hint=int, default=1024**2),
]
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(name="height", type_hint=int, description="The height of the initial noisy latents"),
OutputParam(name="width", type_hint=int, description="The width of the initial noisy latents"),
]
@staticmethod
def check_inputs(height, width, vae_scale_factor):
if height is not None and height % (vae_scale_factor * 2) != 0:
raise ValueError(f"Height must be divisible by {vae_scale_factor * 2} but is {height}")
if width is not None and width % (vae_scale_factor * 2) != 0:
raise ValueError(f"Width must be divisible by {vae_scale_factor * 2} but is {width}")
def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
height = block_state.height or components.default_height
width = block_state.width or components.default_width
self.check_inputs(height, width, components.vae_scale_factor)
original_height, original_width = height, width
max_area = block_state.max_area
aspect_ratio = width / height
width = round((max_area * aspect_ratio) ** 0.5)
height = round((max_area / aspect_ratio) ** 0.5)
multiple_of = components.vae_scale_factor * 2
width = width // multiple_of * multiple_of
height = height // multiple_of * multiple_of
if height != original_height or width != original_width:
logger.warning(
f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
)
block_state.height = height
block_state.width = width
self.set_block_state(state, block_state)
return components, state

View File

@@ -18,21 +18,49 @@ from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
FluxImg2ImgPrepareLatentsStep,
FluxImg2ImgSetTimestepsStep,
FluxInputStep,
FluxKontextRoPEInputsStep,
FluxPrepareLatentsStep,
FluxRoPEInputsStep,
FluxSetTimestepsStep,
)
from .decoders import FluxDecodeStep
from .denoise import FluxDenoiseStep
from .encoders import FluxTextEncoderStep, FluxVaeEncoderStep
from .denoise import FluxDenoiseStep, FluxKontextDenoiseStep
from .encoders import (
FluxKontextProcessImagesInputStep,
FluxProcessImagesInputStep,
FluxTextEncoderStep,
FluxVaeEncoderDynamicStep,
)
from .inputs import (
FluxInputsDynamicStep,
FluxKontextInputsDynamicStep,
FluxKontextSetResolutionStep,
FluxTextInputStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# vae encoder (run before before_denoise)
FluxImg2ImgVaeEncoderBlocks = InsertableDict(
[("preprocess", FluxProcessImagesInputStep()), ("encode", FluxVaeEncoderDynamicStep())]
)
class FluxImg2ImgVaeEncoderStep(SequentialPipelineBlocks):
model_name = "flux"
block_classes = FluxImg2ImgVaeEncoderBlocks.values()
block_names = FluxImg2ImgVaeEncoderBlocks.keys()
@property
def description(self) -> str:
return "Vae encoder step that preprocess andencode the image inputs into their latent representations."
class FluxAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [FluxVaeEncoderStep]
block_classes = [FluxImg2ImgVaeEncoderStep]
block_names = ["img2img"]
block_trigger_inputs = ["image"]
@@ -41,49 +69,86 @@ class FluxAutoVaeEncoderStep(AutoPipelineBlocks):
return (
"Vae encoder step that encode the image inputs into their latent representations.\n"
+ "This is an auto pipeline block that works for img2img tasks.\n"
+ " - `FluxVaeEncoderStep` (img2img) is used when only `image` is provided."
+ " - if `image` is provided, step will be skipped."
+ " - `FluxImg2ImgVaeEncoderStep` (img2img) is used when only `image` is provided."
+ " - if `image` is not provided, step will be skipped."
)
# before_denoise: text2img, img2img
class FluxBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = [
FluxInputStep,
FluxPrepareLatentsStep,
FluxSetTimestepsStep,
]
block_names = ["input", "prepare_latents", "set_timesteps"]
# Flux Kontext vae encoder (run before before_denoise)
FluxKontextVaeEncoderBlocks = InsertableDict(
[("preprocess", FluxKontextProcessImagesInputStep()), ("encode", FluxVaeEncoderDynamicStep(sample_mode="argmax"))]
)
class FluxKontextVaeEncoderStep(SequentialPipelineBlocks):
model_name = "flux-kontext"
block_classes = FluxKontextVaeEncoderBlocks.values()
block_names = FluxKontextVaeEncoderBlocks.keys()
@property
def description(self) -> str:
return "Vae encoder step that preprocess andencode the image inputs into their latent representations."
class FluxKontextAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [FluxKontextVaeEncoderStep]
block_names = ["img2img"]
block_trigger_inputs = ["image"]
@property
def description(self):
return (
"Before denoise step that prepare the inputs for the denoise step.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `FluxInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `FluxPrepareLatentsStep` is used to prepare the latents\n"
+ " - `FluxSetTimestepsStep` is used to set the timesteps\n"
"Vae encoder step that encode the image inputs into their latent representations.\n"
+ "This is an auto pipeline block that works for img2img tasks.\n"
+ " - `FluxKontextVaeEncoderStep` (img2img) is used when only `image` is provided."
+ " - if `image` is not provided, step will be skipped."
)
# before_denoise: text2img
FluxBeforeDenoiseBlocks = InsertableDict(
[
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxSetTimestepsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
]
)
class FluxBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = FluxBeforeDenoiseBlocks.values()
block_names = FluxBeforeDenoiseBlocks.keys()
@property
def description(self):
return "Before denoise step that prepares the inputs for the denoise step in text-to-image generation."
# before_denoise: img2img
FluxImg2ImgBeforeDenoiseBlocks = InsertableDict(
[
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxImg2ImgSetTimestepsStep()),
("prepare_img2img_latents", FluxImg2ImgPrepareLatentsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
]
)
class FluxImg2ImgBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = [FluxInputStep, FluxImg2ImgSetTimestepsStep, FluxImg2ImgPrepareLatentsStep]
block_names = ["input", "set_timesteps", "prepare_latents"]
block_classes = FluxImg2ImgBeforeDenoiseBlocks.values()
block_names = FluxImg2ImgBeforeDenoiseBlocks.keys()
@property
def description(self):
return (
"Before denoise step that prepare the inputs for the denoise step for img2img task.\n"
+ "This is a sequential pipeline blocks:\n"
+ " - `FluxInputStep` is used to adjust the batch size of the model inputs\n"
+ " - `FluxImg2ImgSetTimestepsStep` is used to set the timesteps\n"
+ " - `FluxImg2ImgPrepareLatentsStep` is used to prepare the latents\n"
)
return "Before denoise step that prepare the inputs for the denoise step for img2img task."
# before_denoise: all task (text2img, img2img)
class FluxAutoBeforeDenoiseStep(AutoPipelineBlocks):
model_name = "flux-kontext"
block_classes = [FluxImg2ImgBeforeDenoiseStep, FluxBeforeDenoiseStep]
block_names = ["img2img", "text2image"]
block_trigger_inputs = ["image_latents", None]
@@ -98,6 +163,44 @@ class FluxAutoBeforeDenoiseStep(AutoPipelineBlocks):
)
# before_denoise: FluxKontext
FluxKontextBeforeDenoiseBlocks = InsertableDict(
[
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxSetTimestepsStep()),
("prepare_rope_inputs", FluxKontextRoPEInputsStep()),
]
)
class FluxKontextBeforeDenoiseStep(SequentialPipelineBlocks):
block_classes = FluxKontextBeforeDenoiseBlocks.values()
block_names = FluxKontextBeforeDenoiseBlocks.keys()
@property
def description(self):
return (
"Before denoise step that prepare the inputs for the denoise step\n"
"for img2img/text2img task for Flux Kontext."
)
class FluxKontextAutoBeforeDenoiseStep(AutoPipelineBlocks):
block_classes = [FluxKontextBeforeDenoiseStep, FluxBeforeDenoiseStep]
block_names = ["img2img", "text2image"]
block_trigger_inputs = ["image_latents", None]
@property
def description(self):
return (
"Before denoise step that prepare the inputs for the denoise step.\n"
+ "This is an auto pipeline block that works for text2image.\n"
+ " - `FluxBeforeDenoiseStep` (text2image) is used.\n"
+ " - `FluxKontextBeforeDenoiseStep` (img2img) is used when only `image_latents` is provided.\n"
)
# denoise: text2image
class FluxAutoDenoiseStep(AutoPipelineBlocks):
block_classes = [FluxDenoiseStep]
@@ -113,7 +216,24 @@ class FluxAutoDenoiseStep(AutoPipelineBlocks):
)
# decode: all task (text2img, img2img, inpainting)
# denoise: Flux Kontext
class FluxKontextAutoDenoiseStep(AutoPipelineBlocks):
block_classes = [FluxKontextDenoiseStep]
block_names = ["denoise"]
block_trigger_inputs = [None]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoise the latents for Flux Kontext. "
"This is a auto pipeline block that works for text2image and img2img tasks."
" - `FluxDenoiseStep` (denoise) for text2image and img2img tasks."
)
# decode: all task (text2img, img2img)
class FluxAutoDecodeStep(AutoPipelineBlocks):
block_classes = [FluxDecodeStep]
block_names = ["non-inpaint"]
@@ -124,32 +244,143 @@ class FluxAutoDecodeStep(AutoPipelineBlocks):
return "Decode step that decode the denoised latents into image outputs.\n - `FluxDecodeStep`"
# inputs: text2image/img2img
FluxImg2ImgBlocks = InsertableDict(
[("text_inputs", FluxTextInputStep()), ("additional_inputs", FluxInputsDynamicStep())]
)
class FluxImg2ImgInputStep(SequentialPipelineBlocks):
model_name = "flux"
block_classes = FluxImg2ImgBlocks.values()
block_names = FluxImg2ImgBlocks.keys()
@property
def description(self):
return "Input step that prepares the inputs for the img2img denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents`).\n"
" - update height/width based `image_latents`, patchify `image_latents`."
class FluxAutoInputStep(AutoPipelineBlocks):
block_classes = [FluxImg2ImgInputStep, FluxTextInputStep]
block_names = ["img2img", "text2image"]
block_trigger_inputs = ["image_latents", None]
@property
def description(self):
return (
"Input step that standardize the inputs for the denoising step, e.g. make sure inputs have consistent batch size, and patchified. \n"
" This is an auto pipeline block that works for text2image/img2img tasks.\n"
+ " - `FluxImg2ImgInputStep` (img2img) is used when `image_latents` is provided.\n"
+ " - `FluxTextInputStep` (text2image) is used when `image_latents` are not provided.\n"
)
# inputs: Flux Kontext
FluxKontextBlocks = InsertableDict(
[
("set_resolution", FluxKontextSetResolutionStep()),
("text_inputs", FluxTextInputStep()),
("additional_inputs", FluxKontextInputsDynamicStep()),
]
)
class FluxKontextInputStep(SequentialPipelineBlocks):
model_name = "flux-kontext"
block_classes = FluxKontextBlocks.values()
block_names = FluxKontextBlocks.keys()
@property
def description(self):
return (
"Input step that prepares the inputs for the both text2img and img2img denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents`).\n"
" - update height/width based `image_latents`, patchify `image_latents`."
)
class FluxKontextAutoInputStep(AutoPipelineBlocks):
block_classes = [FluxKontextInputStep, FluxTextInputStep]
# block_classes = [FluxKontextInputStep]
block_names = ["img2img", "text2img"]
# block_names = ["img2img"]
block_trigger_inputs = ["image_latents", None]
# block_trigger_inputs = ["image_latents"]
@property
def description(self):
return (
"Input step that standardize the inputs for the denoising step, e.g. make sure inputs have consistent batch size, and patchified. \n"
" This is an auto pipeline block that works for text2image/img2img tasks.\n"
+ " - `FluxKontextInputStep` (img2img) is used when `image_latents` is provided.\n"
+ " - `FluxKontextInputStep` is also capable of handling text2image task when `image_latent` isn't present."
)
class FluxCoreDenoiseStep(SequentialPipelineBlocks):
block_classes = [FluxInputStep, FluxAutoBeforeDenoiseStep, FluxAutoDenoiseStep]
model_name = "flux"
block_classes = [FluxAutoInputStep, FluxAutoBeforeDenoiseStep, FluxAutoDenoiseStep]
block_names = ["input", "before_denoise", "denoise"]
@property
def description(self):
return (
"Core step that performs the denoising process. \n"
+ " - `FluxInputStep` (input) standardizes the inputs for the denoising step.\n"
+ " - `FluxAutoInputStep` (input) standardizes the inputs for the denoising step.\n"
+ " - `FluxAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n"
+ " - `FluxAutoDenoiseStep` (denoise) iteratively denoises the latents.\n"
+ "This step support text-to-image and image-to-image tasks for Flux:\n"
+ "This step supports text-to-image and image-to-image tasks for Flux:\n"
+ " - for image-to-image generation, you need to provide `image_latents`\n"
+ " - for text-to-image generation, all you need to provide is prompt embeddings"
+ " - for text-to-image generation, all you need to provide is prompt embeddings."
)
# text2image
class FluxAutoBlocks(SequentialPipelineBlocks):
block_classes = [
FluxTextEncoderStep,
FluxAutoVaeEncoderStep,
FluxCoreDenoiseStep,
FluxAutoDecodeStep,
class FluxKontextCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "flux-kontext"
block_classes = [FluxKontextAutoInputStep, FluxKontextAutoBeforeDenoiseStep, FluxKontextAutoDenoiseStep]
block_names = ["input", "before_denoise", "denoise"]
@property
def description(self):
return (
"Core step that performs the denoising process. \n"
+ " - `FluxKontextAutoInputStep` (input) standardizes the inputs for the denoising step.\n"
+ " - `FluxKontextAutoBeforeDenoiseStep` (before_denoise) prepares the inputs for the denoising step.\n"
+ " - `FluxKontextAutoDenoiseStep` (denoise) iteratively denoises the latents.\n"
+ "This step supports text-to-image and image-to-image tasks for Flux:\n"
+ " - for image-to-image generation, you need to provide `image_latents`\n"
+ " - for text-to-image generation, all you need to provide is prompt embeddings."
)
# Auto blocks (text2image and img2img)
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep()),
("image_encoder", FluxAutoVaeEncoderStep()),
("denoise", FluxCoreDenoiseStep()),
("decode", FluxDecodeStep()),
]
block_names = ["text_encoder", "image_encoder", "denoise", "decode"]
)
AUTO_BLOCKS_KONTEXT = InsertableDict(
[
("text_encoder", FluxTextEncoderStep()),
("image_encoder", FluxKontextAutoVaeEncoderStep()),
("denoise", FluxKontextCoreDenoiseStep()),
("decode", FluxDecodeStep()),
]
)
class FluxAutoBlocks(SequentialPipelineBlocks):
model_name = "flux"
block_classes = AUTO_BLOCKS.values()
block_names = AUTO_BLOCKS.keys()
@property
def description(self):
@@ -160,37 +391,56 @@ class FluxAutoBlocks(SequentialPipelineBlocks):
)
class FluxKontextAutoBlocks(FluxAutoBlocks):
model_name = "flux-kontext"
block_classes = AUTO_BLOCKS_KONTEXT.values()
block_names = AUTO_BLOCKS_KONTEXT.keys()
TEXT2IMAGE_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep),
("input", FluxInputStep),
("prepare_latents", FluxPrepareLatentsStep),
("set_timesteps", FluxSetTimestepsStep),
("denoise", FluxDenoiseStep),
("decode", FluxDecodeStep),
("text_encoder", FluxTextEncoderStep()),
("input", FluxTextInputStep()),
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxSetTimestepsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
("denoise", FluxDenoiseStep()),
("decode", FluxDecodeStep()),
]
)
IMAGE2IMAGE_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep),
("image_encoder", FluxVaeEncoderStep),
("input", FluxInputStep),
("set_timesteps", FluxImg2ImgSetTimestepsStep),
("prepare_latents", FluxImg2ImgPrepareLatentsStep),
("denoise", FluxDenoiseStep),
("decode", FluxDecodeStep),
("text_encoder", FluxTextEncoderStep()),
("vae_encoder", FluxVaeEncoderDynamicStep()),
("input", FluxImg2ImgInputStep()),
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxImg2ImgSetTimestepsStep()),
("prepare_img2img_latents", FluxImg2ImgPrepareLatentsStep()),
("prepare_rope_inputs", FluxRoPEInputsStep()),
("denoise", FluxDenoiseStep()),
("decode", FluxDecodeStep()),
]
)
AUTO_BLOCKS = InsertableDict(
FLUX_KONTEXT_BLOCKS = InsertableDict(
[
("text_encoder", FluxTextEncoderStep),
("image_encoder", FluxAutoVaeEncoderStep),
("denoise", FluxCoreDenoiseStep),
("decode", FluxAutoDecodeStep),
("text_encoder", FluxTextEncoderStep()),
("vae_encoder", FluxVaeEncoderDynamicStep(sample_mode="argmax")),
("input", FluxKontextInputStep()),
("prepare_latents", FluxPrepareLatentsStep()),
("set_timesteps", FluxSetTimestepsStep()),
("prepare_rope_inputs", FluxKontextRoPEInputsStep()),
("denoise", FluxKontextDenoiseStep()),
("decode", FluxDecodeStep()),
]
)
ALL_BLOCKS = {"text2image": TEXT2IMAGE_BLOCKS, "img2img": IMAGE2IMAGE_BLOCKS, "auto": AUTO_BLOCKS}
ALL_BLOCKS = {
"text2image": TEXT2IMAGE_BLOCKS,
"img2img": IMAGE2IMAGE_BLOCKS,
"auto": AUTO_BLOCKS,
"auto_kontext": AUTO_BLOCKS_KONTEXT,
"kontext": FLUX_KONTEXT_BLOCKS,
}

View File

@@ -55,3 +55,13 @@ class FluxModularPipeline(ModularPipeline, FluxLoraLoaderMixin, TextualInversion
if getattr(self, "transformer", None):
num_channels_latents = self.transformer.config.in_channels // 4
return num_channels_latents
class FluxKontextModularPipeline(FluxModularPipeline):
"""
A ModularPipeline for Flux Kontext.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "FluxKontextAutoBlocks"

View File

@@ -57,6 +57,7 @@ MODULAR_PIPELINE_MAPPING = OrderedDict(
("stable-diffusion-xl", "StableDiffusionXLModularPipeline"),
("wan", "WanModularPipeline"),
("flux", "FluxModularPipeline"),
("flux-kontext", "FluxKontextModularPipeline"),
("qwenimage", "QwenImageModularPipeline"),
("qwenimage-edit", "QwenImageEditModularPipeline"),
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),

View File

@@ -86,15 +86,14 @@ class MarigoldDepthOutput(BaseOutput):
Args:
prediction (`np.ndarray`, `torch.Tensor`):
Predicted depth maps with values in the range [0, 1]. The shape is $numimages \times 1 \times height \times
width$ for `torch.Tensor` or $numimages \times height \times width \times 1$ for `np.ndarray`.
Predicted depth maps with values in the range [0, 1]. The shape is `numimages × 1 × height × width` for
`torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
\times 1 \times height \times width$ for `torch.Tensor` or $numimages \times height \times width \times 1$
for `np.ndarray`.
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `numimages × 1 ×
height × width` for `torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
latent (`None`, `torch.Tensor`):
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
The shape is `numimages * numensemble × 4 × latentheight × latentwidth`.
"""
prediction: Union[np.ndarray, torch.Tensor]

View File

@@ -99,17 +99,17 @@ class MarigoldIntrinsicsOutput(BaseOutput):
Args:
prediction (`np.ndarray`, `torch.Tensor`):
Predicted image intrinsics with values in the range [0, 1]. The shape is $(numimages * numtargets) \times 3
\times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times height \times width
\times 3$ for `np.ndarray`, where `numtargets` corresponds to the number of predicted target modalities of
the intrinsic image decomposition.
Predicted image intrinsics with values in the range [0, 1]. The shape is `(numimages * numtargets) × 3 ×
height × width` for `torch.Tensor` or `(numimages * numtargets) × height × width × 3` for `np.ndarray`,
where `numtargets` corresponds to the number of predicted target modalities of the intrinsic image
decomposition.
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $(numimages *
numtargets) \times 3 \times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times
height \times width \times 3$ for `np.ndarray`.
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `(numimages *
numtargets) × 3 × height × width` for `torch.Tensor` or `(numimages * numtargets) × height × width × 3` for
`np.ndarray`.
latent (`None`, `torch.Tensor`):
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
The shape is $(numimages * numensemble) \times (numtargets * 4) \times latentheight \times latentwidth$.
The shape is `(numimages * numensemble) × (numtargets * 4) × latentheight × latentwidth`.
"""
prediction: Union[np.ndarray, torch.Tensor]

View File

@@ -81,15 +81,14 @@ class MarigoldNormalsOutput(BaseOutput):
Args:
prediction (`np.ndarray`, `torch.Tensor`):
Predicted normals with values in the range [-1, 1]. The shape is $numimages \times 3 \times height \times
width$ for `torch.Tensor` or $numimages \times height \times width \times 3$ for `np.ndarray`.
Predicted normals with values in the range [-1, 1]. The shape is `numimages × 3 × height × width` for
`torch.Tensor` or `numimages × height × width × 3` for `np.ndarray`.
uncertainty (`None`, `np.ndarray`, `torch.Tensor`):
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $numimages
\times 1 \times height \times width$ for `torch.Tensor` or $numimages \times height \times width \times 1$
for `np.ndarray`.
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is `numimages × 1 ×
height × width` for `torch.Tensor` or `numimages × height × width × 1` for `np.ndarray`.
latent (`None`, `torch.Tensor`):
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
The shape is `numimages * numensemble × 4 × latentheight × latentwidth`.
"""
prediction: Union[np.ndarray, torch.Tensor]

View File

@@ -838,6 +838,9 @@ def load_sub_model(
else:
loading_kwargs["low_cpu_mem_usage"] = False
if is_transformers_model and is_transformers_version(">=", "4.57.0"):
loading_kwargs.pop("offload_state_dict")
if (
quantization_config is not None
and isinstance(quantization_config, PipelineQuantizationConfig)

View File

@@ -17,6 +17,36 @@ class FluxAutoBlocks(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class FluxKontextAutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class FluxKontextModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class FluxModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]