mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 21:44:27 +08:00
Compare commits
11 Commits
version-ch
...
chroma
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6a94ef7388 | ||
|
|
f20e4afbaa | ||
|
|
7787ec11c8 | ||
|
|
c5c7588648 | ||
|
|
6ccaed77ed | ||
|
|
f6ece89c6d | ||
|
|
542a6034d3 | ||
|
|
e95ac9d82f | ||
|
|
104e1636b2 | ||
|
|
373106cedb | ||
|
|
8ceed7d3ae |
@@ -159,6 +159,7 @@ else:
|
||||
"AutoencoderTiny",
|
||||
"AutoModel",
|
||||
"CacheMixin",
|
||||
"ChromaTransformer2DModel",
|
||||
"CogVideoXTransformer3DModel",
|
||||
"CogView3PlusTransformer2DModel",
|
||||
"CogView4Transformer2DModel",
|
||||
|
||||
@@ -29,6 +29,7 @@ from .single_file_utils import (
|
||||
convert_animatediff_checkpoint_to_diffusers,
|
||||
convert_auraflow_transformer_checkpoint_to_diffusers,
|
||||
convert_autoencoder_dc_checkpoint_to_diffusers,
|
||||
convert_chroma_transformer_to_diffusers,
|
||||
convert_controlnet_checkpoint,
|
||||
convert_flux_transformer_checkpoint_to_diffusers,
|
||||
convert_hidream_transformer_to_diffusers,
|
||||
@@ -138,6 +139,10 @@ SINGLE_FILE_LOADABLE_CLASSES = {
|
||||
"checkpoint_mapping_fn": convert_hidream_transformer_to_diffusers,
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
"ChromaTransformer2DModel": {
|
||||
"checkpoint_mapping_fn": convert_chroma_transformer_to_diffusers,
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -2199,7 +2199,6 @@ def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
|
||||
for i in range(num_layers):
|
||||
block_prefix = f"transformer_blocks.{i}."
|
||||
# norms.
|
||||
## norm1
|
||||
converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_mod.lin.weight"
|
||||
)
|
||||
@@ -2285,6 +2284,7 @@ def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
|
||||
# single transformer blocks
|
||||
for i in range(num_single_layers):
|
||||
block_prefix = f"single_transformer_blocks.{i}."
|
||||
|
||||
# norm.linear <- single_blocks.0.modulation.lin
|
||||
converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop(
|
||||
f"single_blocks.{i}.modulation.lin.weight"
|
||||
@@ -2320,6 +2320,7 @@ def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
|
||||
|
||||
converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
|
||||
converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
|
||||
|
||||
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
|
||||
checkpoint.pop("final_layer.adaLN_modulation.1.weight")
|
||||
)
|
||||
@@ -3306,3 +3307,151 @@ def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs):
|
||||
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def convert_chroma_transformer_to_diffusers(checkpoint, **kwargs):
|
||||
converted_state_dict = {}
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
for k in keys:
|
||||
if "model.diffusion_model." in k:
|
||||
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
|
||||
|
||||
for k in keys:
|
||||
if k.startswith("distilled_guidance_layer.norms"):
|
||||
converted_state_dict[k.replace(".scale", ".weight")] = checkpoint.pop(k)
|
||||
elif k.startswith("distilled_guidance_layer.layer"):
|
||||
converted_state_dict[k.replace("in_layer", "linear_1").replace("out_layer", "linear_2")] = checkpoint.pop(
|
||||
k
|
||||
)
|
||||
elif k.startswith("distilled_guidance_layer"):
|
||||
converted_state_dict[k] = checkpoint.pop(k)
|
||||
|
||||
num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1 # noqa: C401
|
||||
num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1 # noqa: C401
|
||||
mlp_ratio = 4.0
|
||||
inner_dim = 3072
|
||||
|
||||
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
|
||||
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
|
||||
def swap_scale_shift(weight):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
return new_weight
|
||||
|
||||
# context_embedder
|
||||
converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
|
||||
converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")
|
||||
|
||||
# x_embedder
|
||||
converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
|
||||
converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")
|
||||
|
||||
# double transformer blocks
|
||||
for i in range(num_layers):
|
||||
block_prefix = f"transformer_blocks.{i}."
|
||||
# norms.
|
||||
|
||||
# Q, K, V
|
||||
sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
|
||||
context_q, context_k, context_v = torch.chunk(
|
||||
checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
|
||||
)
|
||||
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
|
||||
checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
|
||||
)
|
||||
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
|
||||
checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
|
||||
converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
|
||||
converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
|
||||
converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
|
||||
# qk_norm
|
||||
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
|
||||
)
|
||||
# ff img_mlp
|
||||
converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_mlp.0.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
|
||||
converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
|
||||
converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.0.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.0.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.2.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.2.bias"
|
||||
)
|
||||
# output projections.
|
||||
converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.proj.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.proj.bias"
|
||||
)
|
||||
|
||||
# single transformer blocks
|
||||
for i in range(num_single_layers):
|
||||
block_prefix = f"single_transformer_blocks.{i}."
|
||||
|
||||
# Q, K, V, mlp
|
||||
mlp_hidden_dim = int(inner_dim * mlp_ratio)
|
||||
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
|
||||
q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
|
||||
q_bias, k_bias, v_bias, mlp_bias = torch.split(
|
||||
checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
|
||||
converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
|
||||
converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
|
||||
# qk norm
|
||||
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
|
||||
f"single_blocks.{i}.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
|
||||
f"single_blocks.{i}.norm.key_norm.scale"
|
||||
)
|
||||
# output projections.
|
||||
converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
|
||||
converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")
|
||||
|
||||
converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
|
||||
converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
@@ -74,6 +74,7 @@ if is_torch_available():
|
||||
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_allegro"] = ["AllegroTransformer3DModel"]
|
||||
_import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"]
|
||||
@@ -150,6 +151,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .transformers import (
|
||||
AllegroTransformer3DModel,
|
||||
AuraFlowTransformer2DModel,
|
||||
ChromaTransformer2DModel,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
CogView4Transformer2DModel,
|
||||
|
||||
@@ -31,7 +31,7 @@ def get_timestep_embedding(
|
||||
downscale_freq_shift: float = 1,
|
||||
scale: float = 1,
|
||||
max_period: int = 10000,
|
||||
):
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
||||
|
||||
@@ -1327,7 +1327,7 @@ class Timesteps(nn.Module):
|
||||
self.downscale_freq_shift = downscale_freq_shift
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, timesteps):
|
||||
def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
|
||||
t_emb = get_timestep_embedding(
|
||||
timesteps,
|
||||
self.num_channels,
|
||||
|
||||
@@ -171,6 +171,46 @@ class AdaLayerNormZero(nn.Module):
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class AdaLayerNormZeroPruned(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
if num_embeddings is not None:
|
||||
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
||||
else:
|
||||
self.emb = None
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
elif norm_type == "fp32_layer_norm":
|
||||
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timestep: Optional[torch.Tensor] = None,
|
||||
class_labels: Optional[torch.LongTensor] = None,
|
||||
hidden_dtype: Optional[torch.dtype] = None,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
if self.emb is not None:
|
||||
emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.squeeze(0).chunk(6, dim=0)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class AdaLayerNormZeroSingle(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
@@ -17,6 +17,7 @@ if is_torch_available():
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
from .transformer_2d import Transformer2DModel
|
||||
from .transformer_allegro import AllegroTransformer3DModel
|
||||
from .transformer_chroma import ChromaTransformer2DModel
|
||||
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
|
||||
from .transformer_cogview4 import CogView4Transformer2DModel
|
||||
from .transformer_cosmos import CosmosTransformer3DModel
|
||||
|
||||
753
src/diffusers/models/transformers/transformer_chroma.py
Normal file
753
src/diffusers/models/transformers/transformer_chroma.py
Normal file
@@ -0,0 +1,753 @@
|
||||
# Copyright 2025 Black Forest Labs, The HuggingFace Team and lodestone-rock. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ...utils.import_utils import is_torch_npu_available
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention import FeedForward
|
||||
from ..attention_processor import (
|
||||
Attention,
|
||||
AttentionProcessor,
|
||||
FluxAttnProcessor2_0,
|
||||
FluxAttnProcessor2_0_NPU,
|
||||
FusedFluxAttnProcessor2_0,
|
||||
)
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import (
|
||||
CombinedTimestepLabelEmbeddings,
|
||||
FluxPosEmbed,
|
||||
PixArtAlphaTextProjection,
|
||||
Timesteps,
|
||||
get_timestep_embedding,
|
||||
)
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import FP32LayerNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class ChromaApproximator(nn.Module):
|
||||
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers: int = 5):
|
||||
super().__init__()
|
||||
self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
|
||||
self.layers = nn.ModuleList(
|
||||
[PixArtAlphaTextProjection(hidden_dim, hidden_dim, act_fn="silu") for _ in range(n_layers)]
|
||||
)
|
||||
self.norms = nn.ModuleList([nn.RMSNorm(hidden_dim) for _ in range(n_layers)])
|
||||
self.out_proj = nn.Linear(hidden_dim, out_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.in_proj(x)
|
||||
|
||||
for layer, norms in zip(self.layers, self.norms):
|
||||
x = x + layer(norms(x))
|
||||
|
||||
return self.out_proj(x)
|
||||
|
||||
|
||||
class ChromaTimestepEmbeddings(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_channels: int,
|
||||
out_dim: int,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.time_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.guidance_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
|
||||
self.register_buffer(
|
||||
"mod_proj",
|
||||
get_timestep_embedding(
|
||||
torch.arange(out_dim) * 1000,
|
||||
2 * num_channels,
|
||||
flip_sin_to_cos=True,
|
||||
downscale_freq_shift=0,
|
||||
),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def forward(self, timestep: torch.Tensor) -> torch.Tensor:
|
||||
mod_index_length = self.mod_proj.shape[0]
|
||||
|
||||
timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
|
||||
guidance_proj = self.guidance_proj(torch.tensor([0])).to(dtype=timestep.dtype, device=timestep.device)
|
||||
|
||||
mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device)
|
||||
timestep_guidance = (
|
||||
torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
|
||||
)
|
||||
input_vec = torch.cat([timestep_guidance, mod_proj.unsqueeze(0)], dim=-1)
|
||||
|
||||
return input_vec
|
||||
|
||||
|
||||
class ChromaAdaLayerNormZeroSinglePruned(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
shift_msa, scale_msa, gate_msa = emb.squeeze(0).chunk(3, dim=0)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa
|
||||
|
||||
|
||||
class ChromaAdaLayerNormZeroPruned(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
if num_embeddings is not None:
|
||||
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
||||
else:
|
||||
self.emb = None
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
elif norm_type == "fp32_layer_norm":
|
||||
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timestep: Optional[torch.Tensor] = None,
|
||||
class_labels: Optional[torch.LongTensor] = None,
|
||||
hidden_dtype: Optional[torch.dtype] = None,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
if self.emb is not None:
|
||||
emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.squeeze(0).chunk(6, dim=0)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class ChromaSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.norm = ChromaAdaLayerNormZeroSinglePruned(dim)
|
||||
|
||||
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
||||
self.act_mlp = nn.GELU(approximate="tanh")
|
||||
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
||||
|
||||
if is_torch_npu_available():
|
||||
deprecation_message = (
|
||||
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
|
||||
"should be set explicitly using the `set_attn_processor` method."
|
||||
)
|
||||
deprecate("npu_processor", "0.34.0", deprecation_message)
|
||||
processor = FluxAttnProcessor2_0_NPU()
|
||||
else:
|
||||
processor = FluxAttnProcessor2_0()
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
processor=processor,
|
||||
qk_norm="rms_norm",
|
||||
eps=1e-6,
|
||||
pre_only=True,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> torch.Tensor:
|
||||
residual = hidden_states
|
||||
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
||||
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
**joint_attention_kwargs,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
||||
gate = gate.unsqueeze(1)
|
||||
hidden_states = gate * self.proj_out(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
if hidden_states.dtype == torch.float16:
|
||||
hidden_states = hidden_states.clip(-65504, 65504)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class ChromaTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
qk_norm: str = "rms_norm",
|
||||
eps: float = 1e-6,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = ChromaAdaLayerNormZeroPruned(dim)
|
||||
self.norm1_context = ChromaAdaLayerNormZeroPruned(dim)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
context_pre_only=False,
|
||||
bias=True,
|
||||
processor=FluxAttnProcessor2_0(),
|
||||
qk_norm=qk_norm,
|
||||
eps=eps,
|
||||
)
|
||||
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
temb_img, temb_txt = temb[:, :6], temb[:, 6:]
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img)
|
||||
|
||||
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
||||
encoder_hidden_states, emb=temb_txt
|
||||
)
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
# Attention.
|
||||
attention_outputs = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
**joint_attention_kwargs,
|
||||
)
|
||||
|
||||
if len(attention_outputs) == 2:
|
||||
attn_output, context_attn_output = attention_outputs
|
||||
elif len(attention_outputs) == 3:
|
||||
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
||||
|
||||
# Process attention outputs for the `hidden_states`.
|
||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
||||
|
||||
hidden_states = hidden_states + ff_output
|
||||
if len(attention_outputs) == 3:
|
||||
hidden_states = hidden_states + ip_attn_output
|
||||
|
||||
# Process attention outputs for the `encoder_hidden_states`.
|
||||
|
||||
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
||||
|
||||
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
||||
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
|
||||
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
||||
if encoder_hidden_states.dtype == torch.float16:
|
||||
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class ChromaAdaLayerNormContinuous(nn.Module):
|
||||
r"""
|
||||
Adaptive normalization layer with a norm layer (layer_norm or rms_norm).
|
||||
|
||||
Args:
|
||||
embedding_dim (`int`): Embedding dimension to use during projection.
|
||||
conditioning_embedding_dim (`int`): Dimension of the input condition.
|
||||
elementwise_affine (`bool`, defaults to `True`):
|
||||
Boolean flag to denote if affine transformation should be applied.
|
||||
eps (`float`, defaults to 1e-5): Epsilon factor.
|
||||
bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use.
|
||||
norm_type (`str`, defaults to `"layer_norm"`):
|
||||
Normalization layer to use. Values supported: "layer_norm", "rms_norm".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
conditioning_embedding_dim: int,
|
||||
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
|
||||
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
|
||||
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
|
||||
# However, this is how it was implemented in the original code, and it's rather likely you should
|
||||
# set `elementwise_affine` to False.
|
||||
elementwise_affine=True,
|
||||
eps=1e-5,
|
||||
bias=True,
|
||||
norm_type="layer_norm",
|
||||
):
|
||||
super().__init__()
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
||||
elif norm_type == "rms_norm":
|
||||
self.norm = nn.RMSNorm(embedding_dim, eps, elementwise_affine)
|
||||
else:
|
||||
raise ValueError(f"unknown norm_type {norm_type}")
|
||||
|
||||
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
||||
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
||||
shift, scale = torch.chunk(emb.squeeze(0).to(x.dtype), 2, dim=0)
|
||||
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||
return x
|
||||
|
||||
|
||||
class ChromaTransformer2DModel(
|
||||
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin
|
||||
):
|
||||
"""
|
||||
The Transformer model based on Flux SCHNELL architecture.
|
||||
|
||||
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
||||
|
||||
Args:
|
||||
patch_size (`int`, defaults to `1`):
|
||||
Patch size to turn the input data into small patches.
|
||||
in_channels (`int`, defaults to `64`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, *optional*, defaults to `None`):
|
||||
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
||||
num_layers (`int`, defaults to `19`):
|
||||
The number of layers of dual stream DiT blocks to use.
|
||||
num_single_layers (`int`, defaults to `38`):
|
||||
The number of layers of single stream DiT blocks to use.
|
||||
attention_head_dim (`int`, defaults to `128`):
|
||||
The number of dimensions to use for each attention head.
|
||||
num_attention_heads (`int`, defaults to `24`):
|
||||
The number of attention heads to use.
|
||||
joint_attention_dim (`int`, defaults to `4096`):
|
||||
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
||||
`encoder_hidden_states`).
|
||||
pooled_projection_dim (`int`, defaults to `768`):
|
||||
The number of dimensions to use for the pooled projection.
|
||||
guidance_embeds (`bool`, defaults to `False`):
|
||||
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
||||
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
||||
The dimensions to use for the rotary positional embeddings.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
|
||||
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 1,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 19,
|
||||
num_single_layers: int = 38,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 4096,
|
||||
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
|
||||
approximator_in_factor: int = 16,
|
||||
approximator_hidden_dim: int = 5120,
|
||||
approximator_layers: int = 5,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
||||
|
||||
self.time_text_embed = ChromaTimestepEmbeddings(
|
||||
num_channels=approximator_in_factor, out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2
|
||||
)
|
||||
self.distilled_guidance_layer = ChromaApproximator(
|
||||
in_dim=in_channels,
|
||||
out_dim=self.inner_dim,
|
||||
hidden_dim=approximator_hidden_dim,
|
||||
n_layers=approximator_layers,
|
||||
)
|
||||
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
||||
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
ChromaTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
ChromaSingleTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
)
|
||||
for _ in range(num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = ChromaAdaLayerNormContinuous(
|
||||
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
||||
)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
pooled_projections: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_ids: torch.Tensor = None,
|
||||
txt_ids: torch.Tensor = None,
|
||||
guidance: torch.Tensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
controlnet_block_samples=None,
|
||||
controlnet_single_block_samples=None,
|
||||
return_dict: bool = True,
|
||||
controlnet_blocks_repeat: bool = False,
|
||||
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`FluxTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
||||
Input `hidden_states`.
|
||||
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
||||
from the embeddings of input conditions.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
timestep = timestep.to(hidden_states.dtype) * 1000
|
||||
if guidance is not None:
|
||||
guidance = guidance.to(hidden_states.dtype) * 1000
|
||||
|
||||
input_vec = self.time_text_embed(timestep)
|
||||
pooled_temb = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
if txt_ids.ndim == 3:
|
||||
logger.warning(
|
||||
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
||||
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
||||
)
|
||||
txt_ids = txt_ids[0]
|
||||
if img_ids.ndim == 3:
|
||||
logger.warning(
|
||||
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
||||
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
||||
)
|
||||
img_ids = img_ids[0]
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=0)
|
||||
image_rotary_emb = self.pos_embed(ids)
|
||||
|
||||
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
||||
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
||||
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
||||
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
||||
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
img_offset = 3 * len(self.single_transformer_blocks)
|
||||
txt_offset = img_offset + 6 * len(self.transformer_blocks)
|
||||
img_modulation = img_offset + 6 * index_block
|
||||
text_modulation = txt_offset + 6 * index_block
|
||||
temb = torch.cat(
|
||||
(
|
||||
pooled_temb[:, img_modulation : img_modulation + 6],
|
||||
pooled_temb[:, text_modulation : text_modulation + 6],
|
||||
),
|
||||
dim=1,
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_block_samples is not None:
|
||||
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
# For Xlabs ControlNet.
|
||||
if controlnet_blocks_repeat:
|
||||
hidden_states = (
|
||||
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
||||
)
|
||||
else:
|
||||
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
start_idx = 3 * index_block
|
||||
temb = pooled_temb[:, start_idx : start_idx + 3]
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_single_block_samples is not None:
|
||||
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
+ controlnet_single_block_samples[index_block // interval_control]
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
|
||||
temb = pooled_temb[:, -2:]
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
output = self.proj_out(hidden_states)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -241,7 +241,7 @@ class FluxTransformer2DModel(
|
||||
joint_attention_dim: int = 4096,
|
||||
pooled_projection_dim: int = 768,
|
||||
guidance_embeds: bool = False,
|
||||
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
||||
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels or in_channels
|
||||
@@ -447,8 +447,6 @@ class FluxTransformer2DModel(
|
||||
timestep = timestep.to(hidden_states.dtype) * 1000
|
||||
if guidance is not None:
|
||||
guidance = guidance.to(hidden_states.dtype) * 1000
|
||||
else:
|
||||
guidance = None
|
||||
|
||||
temb = (
|
||||
self.time_text_embed(timestep, pooled_projections)
|
||||
|
||||
@@ -687,11 +687,11 @@ class FluxPipeline(
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 3.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
Guidance scale as defined in [Classifier-Free Diffusion
|
||||
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
||||
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
||||
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
||||
the text `prompt`, usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
@@ -700,7 +700,7 @@ class FluxPipeline(
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
|
||||
Reference in New Issue
Block a user