Compare commits

...

14 Commits

Author SHA1 Message Date
DN6
eb6d907b14 update 2025-10-24 18:11:07 +05:30
DN6
e86248029d update 2025-10-24 17:32:16 +05:30
DN6
0cee3621b6 update 2025-10-24 11:18:08 +05:30
DN6
1673ece773 update 2025-10-24 10:50:13 +05:30
DN6
208b955b9c update 2025-10-24 10:27:53 +05:30
DN6
1d9dfd2c19 update 2025-10-24 10:07:23 +05:30
DN6
1f217a5440 update 2025-10-24 10:04:34 +05:30
DN6
7f0942abb4 Merge branch 'main' into pr-test-speed-up 2025-10-24 10:03:19 +05:30
DN6
d87907da30 update 2025-07-15 15:37:46 +05:30
DN6
62e2cce917 Revert "update"
This reverts commit 29d8763e68.
2025-07-15 14:57:30 +05:30
DN6
29d8763e68 update 2025-07-15 14:51:19 +05:30
DN6
5337132c69 update 2025-07-15 13:57:20 +05:30
DN6
f22c75a3a6 update 2025-07-15 11:41:59 +05:30
DN6
bebfd619b0 update 2025-07-15 11:06:22 +05:30
3 changed files with 31 additions and 99 deletions

View File

@@ -79,7 +79,7 @@ jobs:
config:
- name: Fast PyTorch Pipeline CPU tests
framework: pytorch_pipelines
runner: aws-highmemory-32-plus
runner: aws-highmemory-64-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_pipelines
- name: Fast PyTorch Models & Schedulers CPU tests
@@ -125,8 +125,8 @@ jobs:
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
pytest -n 24 --max-worker-restart=0 --dist=loadfile \
-k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/pipelines
@@ -134,7 +134,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_models' }}
run: |
pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not Dependency" \
-s -k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others

View File

@@ -1,19 +1,19 @@
name: Fast GPU Tests on PR
on:
pull_request:
branches: main
paths:
- "src/diffusers/models/modeling_utils.py"
- "src/diffusers/models/model_loading_utils.py"
- "src/diffusers/pipelines/pipeline_utils.py"
- "src/diffusers/pipeline_loading_utils.py"
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
- "examples/**/*.py"
# pull_request:
# branches: main
# paths:
# - "src/diffusers/models/modeling_utils.py"
# - "src/diffusers/models/model_loading_utils.py"
# - "src/diffusers/pipelines/pipeline_utils.py"
# - "src/diffusers/pipeline_loading_utils.py"
# - "src/diffusers/loaders/lora_base.py"
# - "src/diffusers/loaders/lora_pipeline.py"
# - "src/diffusers/loaders/peft.py"
# - "tests/pipelines/test_pipelines_common.py"
# - "tests/models/test_modeling_common.py"
# - "examples/**/*.py"
workflow_dispatch:
concurrency:

View File

@@ -18,10 +18,8 @@ from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AsymmetricAutoencoderKL,
AutoencoderKL,
AutoencoderTiny,
ConsistencyDecoderVAE,
DDIMScheduler,
DiffusionPipeline,
FasterCacheConfig,
@@ -50,12 +48,6 @@ from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.source_code_parsing_utils import ReturnNameVisitor
from ..models.autoencoders.vae import (
get_asym_autoencoder_kl_config,
get_autoencoder_kl_config,
get_autoencoder_tiny_config,
get_consistency_vae_config,
)
from ..models.transformers.test_models_transformer_flux import create_flux_ip_adapter_state_dict
from ..models.unets.test_models_unet_2d_condition import (
create_ip_adapter_faceid_state_dict,
@@ -72,7 +64,6 @@ from ..testing_utils import (
require_torch,
require_torch_accelerator,
require_transformers_version_greater,
skip_mps,
torch_device,
)
@@ -176,46 +167,6 @@ class SDFunctionTesterMixin:
zeros = torch.zeros(shape).to(torch_device)
pipe.vae.decode(zeros)
# MPS currently doesn't support ComplexFloats, which are required for FreeU - see https://github.com/huggingface/diffusers/issues/7569.
@skip_mps
def test_freeu(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# Normal inference
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
inputs["output_type"] = "np"
output = pipe(**inputs)[0]
# FreeU-enabled inference
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
inputs["output_type"] = "np"
output_freeu = pipe(**inputs)[0]
# FreeU-disabled inference
pipe.disable_freeu()
freeu_keys = {"s1", "s2", "b1", "b2"}
for upsample_block in pipe.unet.up_blocks:
for key in freeu_keys:
assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
inputs["output_type"] = "np"
output_no_freeu = pipe(**inputs)[0]
assert not np.allclose(output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]), (
"Enabling of FreeU should lead to different results."
)
assert np.allclose(output, output_no_freeu, atol=1e-2), (
f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}."
)
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
@@ -775,34 +726,6 @@ class PipelineLatentTesterMixin:
max_diff = np.abs(out - out_latents_inputs).max()
self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")
def test_multi_vae(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
block_out_channels = pipe.vae.config.block_out_channels
norm_num_groups = pipe.vae.config.norm_num_groups
vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
configs = [
get_autoencoder_kl_config(block_out_channels, norm_num_groups),
get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
get_consistency_vae_config(block_out_channels, norm_num_groups),
get_autoencoder_tiny_config(block_out_channels),
]
out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
for vae_cls, config in zip(vae_classes, configs):
vae = vae_cls(**config)
vae = vae.to(torch_device)
components["vae"] = vae
vae_pipe = self.pipeline_class(**components)
out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
assert out_vae_np.shape == out_np.shape
@require_torch
class PipelineFromPipeTesterMixin:
@@ -1153,6 +1076,15 @@ class PipelineTesterMixin:
gc.collect()
backend_empty_cache(torch_device)
def get_base_pipeline_output(self, pipe):
if not hasattr(self, "_base_pipeline_output"):
inputs = self.get_dummy_inputs(torch_device)
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs)[0]
self._base_pipeline_output = output
return self._base_pipeline_output
def test_save_load_local(self, expected_max_difference=5e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
@@ -1164,7 +1096,7 @@ class PipelineTesterMixin:
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
output = self.get_base_pipeline_output(pipe)
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel(diffusers.logging.INFO)
@@ -1283,7 +1215,7 @@ class PipelineTesterMixin:
output = pipe(**batched_input)
assert len(output[0]) == batch_size
def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=1e-4):
self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
def _test_inference_batch_single_identical(
@@ -1402,7 +1334,7 @@ class PipelineTesterMixin:
# Reset generator in case it is used inside dummy inputs
if "generator" in inputs:
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs)[0]
output = self.get_base_pipeline_output(pipe)
fp16_inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is used inside dummy inputs
@@ -1433,7 +1365,7 @@ class PipelineTesterMixin:
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
output = self.get_base_pipeline_output(pipe)
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
@@ -1476,7 +1408,7 @@ class PipelineTesterMixin:
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output = pipe(**inputs)[0]
output = self.get_base_pipeline_output(pipe)
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)