Compare commits

...

18 Commits

Author SHA1 Message Date
Tsing
577d2f00fc Update modeling_utils.py (#9035) 2024-11-17 06:46:56 +09:00
sayakpaul
c586aadef6 Release: v0.29.2 2024-06-27 09:19:56 +05:30
Sayak Paul
1479729dde [LoRA] fix vanilla fine-tuned lora loading. (#8691)
fix vanilla fine-tuned lora loading.
2024-06-27 09:17:44 +05:30
Sayak Paul
64b20500dc [Chore] remove deprecation from transformer2d regarding the output class. (#8698)
* remove deprecation from transformer2d regarding the output class.

* up

* deprecate more
2024-06-27 09:17:32 +05:30
Sayak Paul
aa2b3a3bb6 [LoRA] fix conversion utility so that lora dora loads correctly (#8688)
fix conversion utility so that lora dora loads correctly
2024-06-27 09:17:11 +05:30
Sayak Paul
edc1c8928b [LoRA] refactor lora conversion utility. (#8295)
* refactor lora conversion utility.

* remove error raises.

* add onetrainer support too.
2024-06-27 09:16:37 +05:30
Nan
a0a5427028 [SD3] Fix mis-matched shape when num_images_per_prompt > 1 using without T5 (text_encoder_3=None) (#8558)
* fix shape mismatch when num_images_per_prompt > 1 and text_encoder_3=None

* style

* fix copies

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
2024-06-20 11:10:11 -10:00
YiYi Xu
dc74c7ec4f fix from_single_file for checkpoints with t5 (#8631)
fix single file
2024-06-20 11:06:47 -10:00
王奇勋
2eafde786a Support SD3 ControlNet and Multi-ControlNet. (#8566)
* sd3 controlnet



---------

Co-authored-by: haofanwang <haofanwang.ai@gmail.com>
2024-06-20 11:06:31 -10:00
Carolinabanana
7ec060d449 Fix gradient checkpointing issue for Stable Diffusion 3 (#8542)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-06-20 11:06:18 -10:00
Álvaro Somoza
828e364fbe [SD3 Inference] T5 Token limit (#8506)
* max_sequence_length for the T5

* updated img2img

* apply suggestions

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-06-20 11:05:50 -10:00
Marc Sun
6ea08a90b0 Fix sharding when no device_map is passed (#8531)
* Fix sharding when no device_map is passed

* style

* add tests

* align

* add docstring

* format

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-06-20 11:05:27 -10:00
Dhruv Nair
10ada4dae6 [Single File Loading] Handle unexpected keys in CLIP models when accelerate isn't installed. (#8462)
* update

* update

* update

* update

* update

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-06-20 11:05:12 -10:00
Dhruv Nair
7fada49e29 Expand Single File support in SD3 Pipeline (#8517)
* update

* update
2024-06-20 11:04:02 -10:00
Beinsezii
46418bd752 Add Hunyuan AutoPipe mapping (#8505) 2024-06-20 11:03:44 -10:00
Beinsezii
80460d98e1 Add SD3 AutoPipeline mappings (#8489) 2024-06-20 11:03:19 -10:00
Sayak Paul
93b4b105a3 fix warning log for Transformer SD3 (#8496)
fix warning log
2024-06-20 11:02:39 -10:00
YiYi Xu
21ccde8209 prepare for patch release 2024-06-20 11:00:42 -10:00
30 changed files with 2406 additions and 183 deletions

View File

@@ -253,6 +253,8 @@
title: PriorTransformer
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
title: Models
- isExpanded: false
sections:
@@ -276,6 +278,8 @@
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_sd3
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnetxs

View File

@@ -35,6 +35,7 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`StableDiffusionXLInstructPix2PixPipeline`]
- [`StableDiffusionXLControlNetPipeline`]
- [`StableDiffusionXLKDiffusionPipeline`]
- [`StableDiffusion3Pipeline`]
- [`LatentConsistencyModelPipeline`]
- [`LatentConsistencyModelImg2ImgPipeline`]
- [`StableDiffusionControlNetXSPipeline`]
@@ -49,6 +50,7 @@ The [`~loaders.FromSingleFileMixin.from_single_file`] method allows you to load:
- [`StableCascadeUNet`]
- [`AutoencoderKL`]
- [`ControlNetModel`]
- [`SD3Transformer2DModel`]
## FromSingleFileMixin

View File

@@ -0,0 +1,42 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SD3ControlNetModel
SD3ControlNetModel is an implementation of ControlNet for Stable Diffusion 3.
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
## Loading from the original format
By default the [`SD3ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`].
```py
from diffusers import StableDiffusion3ControlNetPipeline
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)
```
## SD3ControlNetModel
[[autodoc]] SD3ControlNetModel
## SD3ControlNetOutput
[[autodoc]] models.controlnet_sd3.SD3ControlNetOutput

View File

@@ -38,4 +38,4 @@ It is assumed one of the input classes is the masked latent pixel. The predicted
## Transformer2DModelOutput
[[autodoc]] models.transformers.transformer_2d.Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,39 @@
<!--Copyright 2023 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Stable Diffusion 3
StableDiffusion3ControlNetPipeline is an implementation of ControlNet for Stable Diffusion 3.
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This code is implemented by [The InstantX Team](https://huggingface.co/InstantX). You can find pre-trained checkpoints for SD3-ControlNet on [The InstantX Team](https://huggingface.co/InstantX) Hub profile.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusion3ControlNetPipeline
[[autodoc]] StableDiffusion3ControlNetPipeline
- all
- __call__
## StableDiffusion3PipelineOutput
[[autodoc]] pipelines.stable_diffusion_3.pipeline_output.StableDiffusion3PipelineOutput

View File

@@ -21,9 +21,9 @@ The abstract from the paper is:
## Usage Example
_As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
_As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
Use the command below to log in:
```bash
huggingface-cli login
@@ -211,17 +211,38 @@ model = SD3Transformer2DModel.from_single_file("https://huggingface.co/stability
## Loading the single checkpoint for the `StableDiffusion3Pipeline`
```python
from diffusers import StableDiffusion3Pipeline
from transformers import T5EncoderModel
### Loading the single file checkpoint without T5
text_encoder_3 = T5EncoderModel.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", subfolder="text_encoder_3", torch_dtype=torch.float16)
pipe = StableDiffusion3Pipeline.from_single_file("https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors", torch_dtype=torch.float16, text_encoder_3=text_encoder_3)
```python
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips.safetensors",
torch_dtype=torch.float16,
text_encoder_3=None
)
pipe.enable_model_cpu_offload()
image = pipe("a picture of a cat holding a sign that says hello world").images[0]
image.save('sd3-single-file.png')
```
<Tip>
`from_single_file` support for the `fp8` version of the checkpoints is coming soon. Watch this space.
</Tip>
### Loading the single file checkpoint without T5
```python
import torch
from diffusers import StableDiffusion3Pipeline
pipe = StableDiffusion3Pipeline.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/sd3_medium_incl_clips_t5xxlfp8.safetensors",
torch_dtype=torch.float16,
)
pipe.enable_model_cpu_offload()
image = pipe("a picture of a cat holding a sign that says hello world").images[0]
image.save('sd3-single-file-t5-fp8.png')
```
## StableDiffusion3Pipeline

View File

@@ -254,7 +254,7 @@ version_range_max = max(sys.version_info[1], 10) + 1
setup(
name="diffusers",
version="0.29.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="0.29.2", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="State-of-the-art diffusion in PyTorch and JAX.",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",

View File

@@ -1,4 +1,4 @@
__version__ = "0.29.0"
__version__ = "0.29.2"
from typing import TYPE_CHECKING
@@ -91,6 +91,8 @@ else:
"MultiAdapter",
"PixArtTransformer2DModel",
"PriorTransformer",
"SD3ControlNetModel",
"SD3MultiControlNetModel",
"SD3Transformer2DModel",
"StableCascadeUNet",
"T2IAdapter",
@@ -278,6 +280,7 @@ else:
"StableCascadeCombinedPipeline",
"StableCascadeDecoderPipeline",
"StableCascadePriorPipeline",
"StableDiffusion3ControlNetPipeline",
"StableDiffusion3Img2ImgPipeline",
"StableDiffusion3Pipeline",
"StableDiffusionAdapterPipeline",
@@ -501,6 +504,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
MultiAdapter,
PixArtTransformer2DModel,
PriorTransformer,
SD3ControlNetModel,
SD3MultiControlNetModel,
SD3Transformer2DModel,
T2IAdapter,
T5FilmDecoder,
@@ -666,6 +671,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
StableCascadeCombinedPipeline,
StableCascadeDecoderPipeline,
StableCascadePriorPipeline,
StableDiffusion3ControlNetPipeline,
StableDiffusion3Img2ImgPipeline,
StableDiffusion3Pipeline,
StableDiffusionAdapterPipeline,

View File

@@ -42,7 +42,7 @@ from ..utils import (
set_adapter_layers,
set_weights_and_activate_adapters,
)
from .lora_conversion_utils import _convert_kohya_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
from .lora_conversion_utils import _convert_non_diffusers_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
if is_transformers_available():
@@ -287,7 +287,7 @@ class LoraLoaderMixin:
if unet_config is not None:
# use unet config to remap block numbers
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
return state_dict, network_alphas
@@ -395,8 +395,7 @@ class LoraLoaderMixin:
# their prefixes.
keys = list(state_dict.keys())
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys)
if any(key.startswith(cls.unet_name) for key in keys) and not only_text_encoder:
if not only_text_encoder:
# Load the layers corresponding to UNet.
logger.info(f"Loading {cls.unet_name}.")
unet.load_attn_procs(

View File

@@ -123,134 +123,76 @@ def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", b
return new_state_dict
def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
"""
Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict.
Args:
state_dict (`dict`): The state dict to convert.
unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet".
text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to
"text_encoder".
Returns:
`tuple`: A tuple containing the converted state dict and a dictionary of alphas.
"""
unet_state_dict = {}
te_state_dict = {}
te2_state_dict = {}
network_alphas = {}
is_unet_dora_lora = any("dora_scale" in k and "lora_unet_" in k for k in state_dict)
is_te_dora_lora = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict)
is_te2_dora_lora = any("dora_scale" in k and "lora_te2_" in k for k in state_dict)
if is_unet_dora_lora or is_te_dora_lora or is_te2_dora_lora:
# Check for DoRA-enabled LoRAs.
dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict)
dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict)
dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict)
if dora_present_in_unet or dora_present_in_te or dora_present_in_te2:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
# every down weight has a corresponding up weight and potentially an alpha weight
lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
for key in lora_keys:
# Iterate over all LoRA weights.
all_lora_keys = list(state_dict.keys())
for key in all_lora_keys:
if not key.endswith("lora_down.weight"):
continue
# Extract LoRA name.
lora_name = key.split(".")[0]
# Find corresponding up weight and alpha.
lora_name_up = lora_name + ".lora_up.weight"
lora_name_alpha = lora_name + ".alpha"
# Handle U-Net LoRAs.
if lora_name.startswith("lora_unet_"):
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
diffusers_name = _convert_unet_lora_key(key)
if "input.blocks" in diffusers_name:
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
else:
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
# Store down and up weights.
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
if "middle.block" in diffusers_name:
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
else:
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
if "output.blocks" in diffusers_name:
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
else:
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
# SDXL specificity.
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
pattern = r"\.\d+(?=\D*$)"
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
if ".in." in diffusers_name:
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
if ".out." in diffusers_name:
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
diffusers_name = diffusers_name.replace("op", "conv")
if "skip" in diffusers_name:
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
# LyCORIS specificity.
if "time.emb.proj" in diffusers_name:
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
if "conv.shortcut" in diffusers_name:
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
# General coverage.
if "transformer_blocks" in diffusers_name:
if "attn1" in diffusers_name or "attn2" in diffusers_name:
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif "ff" in diffusers_name:
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
else:
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
if is_unet_dora_lora:
# Store DoRA scale if present.
if dora_present_in_unet:
dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down."
unet_state_dict[
diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
# Handle text encoder LoRAs.
elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
# Store down and up weights for te or te2.
if lora_name.startswith(("lora_te_", "lora_te1_")):
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
else:
key_to_replace = "lora_te2_"
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
if "self_attn" in diffusers_name:
if lora_name.startswith(("lora_te_", "lora_te1_")):
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
else:
te2_state_dict[diffusers_name] = state_dict.pop(key)
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
if lora_name.startswith(("lora_te_", "lora_te1_")):
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
else:
te2_state_dict[diffusers_name] = state_dict.pop(key)
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
# OneTrainer specificity
elif "text_projection" in diffusers_name and lora_name.startswith("lora_te2_"):
te2_state_dict[diffusers_name] = state_dict.pop(key)
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
if (is_te_dora_lora or is_te2_dora_lora) and lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
# Store DoRA scale if present.
if dora_present_in_te or dora_present_in_te2:
dora_scale_key_to_replace_te = (
"_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer."
)
@@ -263,22 +205,18 @@ def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_
diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
# Rename the alphas so that they can be mapped appropriately.
# Store alpha if present.
if lora_name_alpha in state_dict:
alpha = state_dict.pop(lora_name_alpha).item()
if lora_name_alpha.startswith("lora_unet_"):
prefix = "unet."
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
prefix = "text_encoder."
else:
prefix = "text_encoder_2."
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
network_alphas.update({new_name: alpha})
network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha))
# Check if any keys remain.
if len(state_dict) > 0:
raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}")
logger.info("Kohya-style checkpoint detected.")
logger.info("Non-diffusers checkpoint detected.")
# Construct final state dict.
unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
te2_state_dict = (
@@ -291,3 +229,100 @@ def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_
new_state_dict = {**unet_state_dict, **te_state_dict}
return new_state_dict, network_alphas
def _convert_unet_lora_key(key):
"""
Converts a U-Net LoRA key to a Diffusers compatible key.
"""
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
# Replace common U-Net naming patterns.
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
# SDXL specific conversions.
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
pattern = r"\.\d+(?=\D*$)"
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
if ".in." in diffusers_name:
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
if ".out." in diffusers_name:
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
diffusers_name = diffusers_name.replace("op", "conv")
if "skip" in diffusers_name:
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
# LyCORIS specific conversions.
if "time.emb.proj" in diffusers_name:
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
if "conv.shortcut" in diffusers_name:
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
# General conversions.
if "transformer_blocks" in diffusers_name:
if "attn1" in diffusers_name or "attn2" in diffusers_name:
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
elif "ff" in diffusers_name:
pass
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
pass
else:
pass
return diffusers_name
def _convert_text_encoder_lora_key(key, lora_name):
"""
Converts a text encoder LoRA key to a Diffusers compatible key.
"""
if lora_name.startswith(("lora_te_", "lora_te1_")):
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
else:
key_to_replace = "lora_te2_"
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
pass
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
return diffusers_name
def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
"""
Gets the correct alpha name for the Diffusers model.
"""
if lora_name_alpha.startswith("lora_unet_"):
prefix = "unet."
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
prefix = "text_encoder."
else:
prefix = "text_encoder_2."
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
return {new_name: alpha}

View File

@@ -28,9 +28,11 @@ from .single_file_utils import (
_legacy_load_safety_checker,
_legacy_load_scheduler,
create_diffusers_clip_model_from_ldm,
create_diffusers_t5_model_from_checkpoint,
fetch_diffusers_config,
fetch_original_config,
is_clip_model_in_single_file,
is_t5_in_single_file,
load_single_file_checkpoint,
)
@@ -118,6 +120,16 @@ def load_single_file_sub_model(
is_legacy_loading=is_legacy_loading,
)
elif is_transformers_model and is_t5_in_single_file(checkpoint):
loaded_sub_model = create_diffusers_t5_model_from_checkpoint(
class_obj,
checkpoint=checkpoint,
config=cached_model_config_path,
subfolder=name,
torch_dtype=torch_dtype,
local_files_only=local_files_only,
)
elif is_tokenizer and is_legacy_loading:
loaded_sub_model = _legacy_load_clip_tokenizer(
class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only

View File

@@ -276,16 +276,18 @@ class FromOriginalModelMixin:
if is_accelerate_available():
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
if model._keys_to_ignore_on_load_unexpected is not None:
for pat in model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
else:
model.load_state_dict(diffusers_format_checkpoint)
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
if model._keys_to_ignore_on_load_unexpected is not None:
for pat in model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
if torch_dtype is not None:
model.to(torch_dtype)

View File

@@ -252,7 +252,6 @@ LDM_CONTROLNET_KEY = "control_model."
LDM_CLIP_PREFIX_TO_REMOVE = [
"cond_stage_model.transformer.",
"conditioner.embedders.0.transformer.",
"text_encoders.clip_l.transformer.",
]
OPEN_CLIP_PREFIX = "conditioner.embedders.0.model."
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024
@@ -399,11 +398,14 @@ def is_open_clip_sdxl_model(checkpoint):
def is_open_clip_sd3_model(checkpoint):
is_open_clip_sdxl_refiner_model(checkpoint)
if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint:
return True
return False
def is_open_clip_sdxl_refiner_model(checkpoint):
if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint:
if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint:
return True
return False
@@ -1233,11 +1235,14 @@ def convert_ldm_vae_checkpoint(checkpoint, config):
return new_checkpoint
def convert_ldm_clip_checkpoint(checkpoint):
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None):
keys = list(checkpoint.keys())
text_model_dict = {}
remove_prefixes = LDM_CLIP_PREFIX_TO_REMOVE
remove_prefixes = []
remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE)
if remove_prefix:
remove_prefixes.append(remove_prefix)
for key in keys:
for prefix in remove_prefixes:
@@ -1263,8 +1268,6 @@ def convert_open_clip_checkpoint(
else:
text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
keys = list(checkpoint.keys())
keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE
@@ -1313,9 +1316,6 @@ def convert_open_clip_checkpoint(
else:
text_model_dict[diffusers_key] = checkpoint.get(key)
if not (hasattr(text_model, "embeddings") and hasattr(text_model.embeddings.position_ids)):
text_model_dict.pop("text_model.embeddings.position_ids", None)
return text_model_dict
@@ -1376,6 +1376,13 @@ def create_diffusers_clip_model_from_ldm(
):
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
elif (
is_clip_sd3_model(checkpoint)
and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim
):
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.")
diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim)
elif is_open_clip_model(checkpoint):
prefix = "cond_stage_model.model."
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
@@ -1391,26 +1398,28 @@ def create_diffusers_clip_model_from_ldm(
prefix = "conditioner.embedders.0.model."
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
elif is_open_clip_sd3_model(checkpoint):
prefix = "text_encoders.clip_g.transformer."
diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
elif (
is_open_clip_sd3_model(checkpoint)
and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim
):
diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.")
else:
raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.")
if is_accelerate_available():
unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
if model._keys_to_ignore_on_load_unexpected is not None:
for pat in model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
else:
model.load_state_dict(diffusers_format_checkpoint)
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
if model._keys_to_ignore_on_load_unexpected is not None:
for pat in model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
if torch_dtype is not None:
model.to(torch_dtype)
@@ -1755,7 +1764,7 @@ def convert_sd3_t5_checkpoint_to_diffusers(checkpoint):
keys = list(checkpoint.keys())
text_model_dict = {}
remove_prefixes = ["text_encoders.t5xxl.transformer.encoder."]
remove_prefixes = ["text_encoders.t5xxl.transformer."]
for key in keys:
for prefix in remove_prefixes:
@@ -1799,3 +1808,4 @@ def create_diffusers_t5_model_from_checkpoint(
else:
model.load_state_dict(diffusers_format_checkpoint)
return model

View File

@@ -33,6 +33,7 @@ if is_torch_available():
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
_import_structure["autoencoders.vq_model"] = ["VQModel"]
_import_structure["controlnet"] = ["ControlNetModel"]
_import_structure["controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
_import_structure["controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
@@ -74,6 +75,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
VQModel,
)
from .controlnet import ControlNetModel
from .controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
from .controlnet_xs import ControlNetXSAdapter, UNetControlNetXSModel
from .embeddings import ImageProjection
from .modeling_utils import ModelMixin

View File

@@ -0,0 +1,418 @@
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..loaders import FromOriginalModelMixin, PeftAdapterMixin
from ..models.attention import JointTransformerBlock
from ..models.attention_processor import Attention, AttentionProcessor
from ..models.modeling_outputs import Transformer2DModelOutput
from ..models.modeling_utils import ModelMixin
from ..utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from .controlnet import BaseOutput, zero_module
from .embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class SD3ControlNetOutput(BaseOutput):
controlnet_block_samples: Tuple[torch.Tensor]
class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 18,
attention_head_dim: int = 64,
num_attention_heads: int = 18,
joint_attention_dim: int = 4096,
caption_projection_dim: int = 1152,
pooled_projection_dim: int = 2048,
out_channels: int = 16,
pos_embed_max_size: int = 96,
):
super().__init__()
default_out_channels = in_channels
self.out_channels = out_channels if out_channels is not None else default_out_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
pos_embed_max_size=pos_embed_max_size,
)
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
)
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
# `attention_head_dim` is doubled to account for the mixing.
# It needs to crafted when we get the actual checkpoints.
self.transformer_blocks = nn.ModuleList(
[
JointTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=self.inner_dim,
context_pre_only=False,
)
for i in range(num_layers)
]
)
# controlnet_blocks
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
controlnet_block = nn.Linear(self.inner_dim, self.inner_dim)
controlnet_block = zero_module(controlnet_block)
self.controlnet_blocks.append(controlnet_block)
pos_embed_input = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
pos_embed_type=None,
)
self.pos_embed_input = zero_module(pos_embed_input)
self.gradient_checkpointing = False
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@classmethod
def from_transformer(cls, transformer, num_layers=None, load_weights_from_transformer=True):
config = transformer.config
config["num_layers"] = num_layers or config.num_layers
controlnet = cls(**config)
if load_weights_from_transformer:
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict(), strict=False)
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict(), strict=False)
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict(), strict=False)
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict())
controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input)
return controlnet
def forward(
self,
hidden_states: torch.FloatTensor,
controlnet_cond: torch.Tensor,
conditioning_scale: float = 1.0,
encoder_hidden_states: torch.FloatTensor = None,
pooled_projections: torch.FloatTensor = None,
timestep: torch.LongTensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
"""
The [`SD3Transformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
controlnet_cond (`torch.Tensor`):
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
conditioning_scale (`float`, defaults to `1.0`):
The scale factor for ControlNet outputs.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
height, width = hidden_states.shape[-2:]
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
temb = self.time_text_embed(timestep, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
# add
hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)
block_res_samples = ()
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
)
block_res_samples = block_res_samples + (hidden_states,)
controlnet_block_res_samples = ()
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
block_res_sample = controlnet_block(block_res_sample)
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
# 6. scaling
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (controlnet_block_res_samples,)
return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
class SD3MultiControlNetModel(ModelMixin):
r"""
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
compatible with `SD3ControlNetModel`.
Args:
controlnets (`List[SD3ControlNetModel]`):
Provides additional conditioning to the unet during the denoising process. You must set multiple
`SD3ControlNetModel` as a list.
"""
def __init__(self, controlnets):
super().__init__()
self.nets = nn.ModuleList(controlnets)
def forward(
self,
hidden_states: torch.FloatTensor,
controlnet_cond: List[torch.tensor],
conditioning_scale: List[float],
pooled_projections: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
timestep: torch.LongTensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[SD3ControlNetOutput, Tuple]:
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
block_samples = controlnet(
hidden_states=hidden_states,
timestep=timestep,
encoder_hidden_states=encoder_hidden_states,
pooled_projections=pooled_projections,
controlnet_cond=image,
conditioning_scale=scale,
joint_attention_kwargs=joint_attention_kwargs,
return_dict=return_dict,
)
# merge samples
if i == 0:
control_block_samples = block_samples
else:
control_block_samples = [
control_block_sample + block_sample
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
]
control_block_samples = (tuple(control_block_samples),)
return control_block_samples

View File

@@ -462,7 +462,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be defined for each
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
same device.
same device. Defaults to `None`, meaning that the model will be loaded on CPU.
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
more information about each option see [designing a device
@@ -774,7 +774,12 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
else: # else let accelerate handle loading and dispatching.
# Load weights and dispatch according to the device_map
# by default the device_map is None and the weights are loaded on the CPU
force_hook = True
device_map = _determine_device_map(model, device_map, max_memory, torch_dtype)
if device_map is None and is_sharded:
# we load the parameters on the cpu
device_map = {"": "cpu"}
force_hook = False
try:
accelerate.load_checkpoint_and_dispatch(
model,
@@ -784,7 +789,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
force_hooks=True,
force_hooks=force_hook,
strict=True,
)
except AttributeError as e:
@@ -808,12 +813,14 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
model._temp_convert_self_to_deprecated_attention_blocks()
accelerate.load_checkpoint_and_dispatch(
model,
model_file,
model_file if not is_sharded else sharded_ckpt_cached_folder,
device_map,
max_memory=max_memory,
offload_folder=offload_folder,
offload_state_dict=offload_state_dict,
dtype=torch_dtype,
force_hooks=force_hook,
strict=True,
)
model._undo_temp_convert_self_to_deprecated_attention_blocks()
else:

View File

@@ -30,8 +30,10 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class Transformer2DModelOutput(Transformer2DModelOutput):
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
def __init__(self, *args, **kwargs):
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
super().__init__(*args, **kwargs)
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):

View File

@@ -1,4 +1,4 @@
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -13,7 +13,7 @@
# limitations under the License.
from typing import Any, Dict, Optional, Union
from typing import Any, Dict, List, Optional, Union
import torch
import torch.nn as nn
@@ -26,7 +26,7 @@ from ...models.modeling_utils import ModelMixin
from ...models.normalization import AdaLayerNormContinuous
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
from .transformer_2d import Transformer2DModelOutput
from ..modeling_outputs import Transformer2DModelOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -245,6 +245,7 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
encoder_hidden_states: torch.FloatTensor = None,
pooled_projections: torch.FloatTensor = None,
timestep: torch.LongTensor = None,
block_controlnet_hidden_states: List = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
@@ -260,6 +261,8 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
from the embeddings of input conditions.
timestep ( `torch.LongTensor`):
Used to indicate denoising step.
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
A list of tensors that if specified are added to the residuals of transformer blocks.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
@@ -282,9 +285,10 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
height, width = hidden_states.shape[-2:]
@@ -292,7 +296,7 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
temb = self.time_text_embed(timestep, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
for block in self.transformer_blocks:
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
@@ -305,7 +309,7 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
@@ -318,6 +322,11 @@ class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
)
# controlnet residual
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)

View File

@@ -20,6 +20,7 @@ from ..utils import (
_dummy_objects = {}
_import_structure = {
"controlnet": [],
"controlnet_sd3": [],
"controlnet_xs": [],
"deprecated": [],
"latent_diffusion": [],
@@ -142,6 +143,11 @@ else:
"StableDiffusionXLControlNetXSPipeline",
]
)
_import_structure["controlnet_sd3"].extend(
[
"StableDiffusion3ControlNetPipeline",
]
)
_import_structure["deepfloyd_if"] = [
"IFImg2ImgPipeline",
"IFImg2ImgSuperResolutionPipeline",
@@ -394,6 +400,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
StableDiffusionXLControlNetInpaintPipeline,
StableDiffusionXLControlNetPipeline,
)
from .controlnet_sd3 import (
StableDiffusion3ControlNetPipeline,
)
from .controlnet_xs import (
StableDiffusionControlNetXSPipeline,
StableDiffusionXLControlNetXSPipeline,

View File

@@ -27,6 +27,7 @@ from .controlnet import (
StableDiffusionXLControlNetPipeline,
)
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline
from .hunyuandit import HunyuanDiTPipeline
from .kandinsky import (
KandinskyCombinedPipeline,
KandinskyImg2ImgCombinedPipeline,
@@ -52,6 +53,10 @@ from .stable_diffusion import (
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
)
from .stable_diffusion_3 import (
StableDiffusion3Img2ImgPipeline,
StableDiffusion3Pipeline,
)
from .stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
@@ -64,7 +69,9 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionPipeline),
("stable-diffusion-xl", StableDiffusionXLPipeline),
("stable-diffusion-3", StableDiffusion3Pipeline),
("if", IFPipeline),
("hunyuan", HunyuanDiTPipeline),
("kandinsky", KandinskyCombinedPipeline),
("kandinsky22", KandinskyV22CombinedPipeline),
("kandinsky3", Kandinsky3Pipeline),
@@ -82,6 +89,7 @@ AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
[
("stable-diffusion", StableDiffusionImg2ImgPipeline),
("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline),
("stable-diffusion-3", StableDiffusion3Img2ImgPipeline),
("if", IFImg2ImgPipeline),
("kandinsky", KandinskyImg2ImgCombinedPipeline),
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline),

View File

@@ -0,0 +1,53 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_flax_available,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_stable_diffusion_3_controlnet"] = ["StableDiffusion3ControlNetPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_stable_diffusion_3_controlnet import StableDiffusion3ControlNetPipeline
try:
if not (is_transformers_available() and is_flax_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

File diff suppressed because it is too large Load Diff

View File

@@ -205,6 +205,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 256,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
@@ -216,7 +217,11 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
if self.text_encoder_3 is None:
return torch.zeros(
(batch_size, self.tokenizer_max_length, self.transformer.config.joint_attention_dim),
(
batch_size * num_images_per_prompt,
self.tokenizer_max_length,
self.transformer.config.joint_attention_dim,
),
device=device,
dtype=dtype,
)
@@ -224,7 +229,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
text_inputs = self.tokenizer_3(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
@@ -235,8 +240,8 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer_max_length} tokens: {removed_text}"
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
@@ -323,6 +328,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
clip_skip: Optional[int] = None,
max_sequence_length: int = 256,
):
r"""
@@ -403,6 +409,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
t5_prompt_embed = self._get_t5_prompt_embeds(
prompt=prompt_3,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
@@ -456,7 +463,10 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, device=device
prompt=negative_prompt_3,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
negative_clip_prompt_embeds = torch.nn.functional.pad(
@@ -486,6 +496,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
@@ -557,6 +568,9 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
def prepare_latents(
self,
batch_size,
@@ -643,6 +657,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 256,
):
r"""
Function invoked when calling the pipeline for generation.
@@ -726,6 +741,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
Examples:
@@ -753,6 +769,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
@@ -790,6 +807,7 @@ class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingle
device=device,
clip_skip=self.clip_skip,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
if self.do_classifier_free_guidance:

View File

@@ -220,6 +220,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 256,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
@@ -231,7 +232,11 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
if self.text_encoder_3 is None:
return torch.zeros(
(batch_size, self.tokenizer_max_length, self.transformer.config.joint_attention_dim),
(
batch_size * num_images_per_prompt,
self.tokenizer_max_length,
self.transformer.config.joint_attention_dim,
),
device=device,
dtype=dtype,
)
@@ -239,7 +244,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
text_inputs = self.tokenizer_3(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
@@ -250,8 +255,8 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer_max_length} tokens: {removed_text}"
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
@@ -340,6 +345,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
clip_skip: Optional[int] = None,
max_sequence_length: int = 256,
):
r"""
@@ -420,6 +426,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
t5_prompt_embed = self._get_t5_prompt_embeds(
prompt=prompt_3,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
@@ -473,7 +480,10 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, device=device
prompt=negative_prompt_3,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
negative_clip_prompt_embeds = torch.nn.functional.pad(
@@ -502,6 +512,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
@@ -573,6 +584,9 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps)
@@ -686,6 +700,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 256,
):
r"""
Function invoked when calling the pipeline for generation.
@@ -765,6 +780,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
Examples:
@@ -788,6 +804,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
@@ -824,6 +841,7 @@ class StableDiffusion3Img2ImgPipeline(DiffusionPipeline):
device=device,
clip_skip=self.clip_skip,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
)
if self.do_classifier_free_guidance:

View File

@@ -242,6 +242,36 @@ class PriorTransformer(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class SD3ControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SD3MultiControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class SD3Transformer2DModel(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -902,6 +902,21 @@ class StableCascadePriorPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusion3ControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class StableDiffusion3Img2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -872,6 +872,39 @@ class ModelTesterMixin:
@require_torch_gpu
def test_sharded_checkpoints(self):
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**config).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
max_shard_size = int((model_size * 0.75) / (2**10)) # Convert to KB as these test models are small.
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir, max_shard_size=f"{max_shard_size}KB")
self.assertTrue(os.path.exists(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
# Now check if the right number of shards exists. First, let's get the number of shards.
# Since this number can be dependent on the model being tested, it's important that we calculate it
# instead of hardcoding it.
with open(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)) as f:
weight_map_dict = json.load(f)["weight_map"]
first_key = list(weight_map_dict.keys())[0]
weight_loc = weight_map_dict[first_key] # e.g., diffusion_pytorch_model-00001-of-00002.safetensors
expected_num_shards = int(weight_loc.split("-")[-1].split(".")[0])
actual_num_shards = len([file for file in os.listdir(tmp_dir) if file.endswith(".safetensors")])
self.assertTrue(actual_num_shards == expected_num_shards)
new_model = self.model_class.from_pretrained(tmp_dir)
torch.manual_seed(0)
new_output = new_model(**inputs_dict)
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_torch_gpu
def test_sharded_checkpoints_device_map(self):
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**config).eval()
if model._no_split_modules is None:

View File

@@ -1038,7 +1038,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
@require_torch_gpu
def test_load_sharded_checkpoint_from_hub(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy", device_map="auto")
loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy")
new_output = loaded_model(**inputs_dict)
assert loaded_model
@@ -1046,6 +1046,25 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
@require_torch_gpu
def test_load_sharded_checkpoint_from_hub_local(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True)
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_gpu
def test_load_sharded_checkpoint_device_map_from_hub(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy", device_map="auto")
new_output = loaded_model(**inputs_dict)
assert loaded_model
assert new_output.sample.shape == (4, 4, 16, 16)
@require_torch_gpu
def test_load_sharded_checkpoint_device_map_from_hub_local(self):
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto")

View File

@@ -0,0 +1,348 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
SD3Transformer2DModel,
StableDiffusion3ControlNetPipeline,
)
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
require_torch_gpu,
slow,
torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = StableDiffusion3ControlNetPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
def get_dummy_components(self):
torch.manual_seed(0)
transformer = SD3Transformer2DModel(
sample_size=32,
patch_size=1,
in_channels=8,
num_layers=4,
attention_head_dim=8,
num_attention_heads=4,
joint_attention_dim=32,
caption_projection_dim=32,
pooled_projection_dim=64,
out_channels=8,
)
torch.manual_seed(0)
controlnet = SD3ControlNetModel(
sample_size=32,
patch_size=1,
in_channels=8,
num_layers=1,
attention_head_dim=8,
num_attention_heads=4,
joint_attention_dim=32,
caption_projection_dim=32,
pooled_projection_dim=64,
out_channels=8,
)
clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
torch.manual_seed(0)
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
torch.manual_seed(0)
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
vae = AutoencoderKL(
sample_size=32,
in_channels=3,
out_channels=3,
block_out_channels=(4,),
layers_per_block=1,
latent_channels=8,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
shift_factor=0.0609,
scaling_factor=1.5035,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"text_encoder_2": text_encoder_2,
"text_encoder_3": text_encoder_3,
"tokenizer": tokenizer,
"tokenizer_2": tokenizer_2,
"tokenizer_3": tokenizer_3,
"transformer": transformer,
"vae": vae,
"controlnet": controlnet,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
control_image = randn_tensor(
(1, 3, 32, 32),
generator=generator,
device=torch.device(device),
dtype=torch.float16,
)
controlnet_conditioning_scale = 0.5
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"control_image": control_image,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
}
return inputs
def test_controlnet_sd3(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusion3ControlNetPipeline(**components)
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = sd_pipe(**inputs)
image = output.images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array(
[0.5761719, 0.71777344, 0.59228516, 0.578125, 0.6020508, 0.39453125, 0.46728516, 0.51708984, 0.58984375]
)
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"
@slow
@require_torch_gpu
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
pipeline_class = StableDiffusion3ControlNetPipeline
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_canny(self):
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
n_prompt = "NSFW, nude, naked, porn, ugly"
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=0.5,
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.20947266, 0.1574707, 0.19897461, 0.15063477, 0.1418457, 0.17285156, 0.14160156, 0.13989258, 0.30810547]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
def test_pose(self):
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
n_prompt = "NSFW, nude, naked, porn, ugly"
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=0.5,
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.8671875, 0.86621094, 0.91015625, 0.8491211, 0.87890625, 0.9140625, 0.8300781, 0.8334961, 0.8623047]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
def test_tile(self):
controlnet = SD3ControlNetModel.from_pretrained("InstantX//SD3-Controlnet-Tile", torch_dtype=torch.float16)
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
n_prompt = "NSFW, nude, naked, porn, ugly"
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=control_image,
controlnet_conditioning_scale=0.5,
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.6982422, 0.7011719, 0.65771484, 0.6904297, 0.7416992, 0.6904297, 0.6977539, 0.7080078, 0.6386719]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2
def test_multi_controlnet(self):
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
controlnet = SD3MultiControlNetModel([controlnet, controlnet])
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
n_prompt = "NSFW, nude, naked, porn, ugly"
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
output = pipe(
prompt,
negative_prompt=n_prompt,
control_image=[control_image, control_image],
controlnet_conditioning_scale=[0.25, 0.25],
guidance_scale=5.0,
num_inference_steps=2,
output_type="np",
generator=generator,
)
image = output.images[0]
assert image.shape == (1024, 1024, 3)
original_image = image[-3:, -3:, -1].flatten()
expected_image = np.array(
[0.7451172, 0.7416992, 0.7158203, 0.7792969, 0.7607422, 0.7089844, 0.6855469, 0.71777344, 0.7314453]
)
assert np.abs(original_image.flatten() - expected_image).max() < 1e-2