Compare commits

...

119 Commits

Author SHA1 Message Date
sayakpaul
48577ff990 Release: v0.20.1 2023-08-28 10:04:02 +05:30
Patrick von Platen
0b621e61c3 [Torch compile] Fix torch compile for controlnet (#4795)
Fix torch compile for controlnete
2023-08-28 10:01:27 +05:30
Patrick von Platen
5e5236278a [Docs] Fix docs controlnet missing /Tip (#4717) 2023-08-28 10:01:07 +05:30
Sayak Paul
e3380c02cf Release: v0.20.0 2023-08-17 13:43:23 +05:30
Patrick von Platen
029fb41695 [Safetensors] Make safetensors the default way of saving weights (#4235)
* make safetensors default

* set default save method as safetensors

* update tests

* update to support saving safetensors

* update test to account for safetensors default

* update example tests to use safetensors

* update example to support safetensors

* update unet tests for safetensors

* fix failing loader tests

* fix qc issues

* fix pipeline tests

* fix example test

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-17 10:54:28 +05:30
Batuhan Taskaya
852dc76d6d Support higher dimension LoRAs (#4625)
* Support higher dimension LoRAs

* add: tests

* fix: assertion values.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-17 10:07:07 +05:30
Scott Lessans
064f150813 Fix UnboundLocalError during LoRA loading (#4523)
* fixed

* add: tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-17 09:33:35 +05:30
Sayak Paul
5333f4c0ec make things clear in the controlnet sdxl doc. (#4644) 2023-08-17 09:04:28 +05:30
Dhruv Nair
3d08d8dc4e fix loading custom text encoder when using from_single_file (#4571)
fix loading custom text encoder when using from_single_file
2023-08-17 08:41:09 +05:30
Steven Liu
bdc4c3265f [docs] MultiControlNet (#4635)
multicontrolnet docs
2023-08-17 08:14:20 +05:30
Steven Liu
4ff7264d9b [docs] PushToHubMixin (#4622)
* push to hub docs

* fix typo

* feedback

* make style
2023-08-16 13:20:59 -06:00
Sayak Paul
5049599143 [Core] feat: MultiControlNet support for SDXL ControlNet pipeline (#4597)
* core: add multicontrolnet support to sdxl controlnet

* modify checks.

* fix: original_size determination

* add: tests for multi controlnet sdxl.

* remove unnecessary prints.
2023-08-16 20:30:39 +05:30
Suraj Patil
7b93c2a882 [research_projects] SDXL controlnet script (#4633)
add controlent script,
2023-08-16 18:27:08 +05:30
Dirk Morris
a7de96505b Fix unipc use_karras_sigmas exception - fixes huggingface/diffusers#4580 (#4581)
* Fix unipc karras sigmas exception - fixes huggingface/diffusers#4580

* Add unipc scheduler tests for karras sigmas
2023-08-16 10:01:53 +05:30
Sayak Paul
351aab60e9 Update text2image.md to fix the links (#4626) 2023-08-16 09:53:10 +05:30
nikhil-masterful
da5ab51d54 Add GLIGEN implementation (#4441)
* Add GLIGEN implementation

* GLIGEN: Fix code quality check failures

* GLIGEN: Fix Import block un-sorted or un-formatted failures

* GLIGEN: Fix check_repository_consistency failures

* GLIGEN: Add 'PositionNet' to versatile_diffusion/modeling_text_unet.py

* GLIGEN: check_repository_consistency: fix 'copy does not match' error

* GLIGEN: Fix review comments (1)

* GLIGEN: Fix E721 Do not compare types, use `isinstance()` failures

* GLIGEN : Ensure _encode_prompt() copy matches to StableDiffusionPipeline

* GLIGEN: Fix ruff E721 failure in unidiffuser/test_unidiffuser.py

* GLIGEN: doc_builder: restyle pipeline_stable_diffusion_gligen.py

* GIGLEN: reset files unrelated to gligen

* GLIGEN: Fix documentation comments (1)

* GLIGEN: Fix review comments (2)

* GLIGEN: Added FastTest

* GLIGEN: Fix review comments (3)
2023-08-16 09:34:17 +05:30
Sayak Paul
5175d3d7a5 add: train to text image with sdxl script. (#4505)
* add: train to text image with sdxl script.

Co-authored-by: CaptnSeraph <s3raph1m@gmail.com>

* fix: partial func.

* fix: default value of output_dir.

* make style

* set num inference steps to 25.

* remove mentions of LoRA.

* up min version

* add: ema cli arg

* run device placement while running step.

* precompute vae encodings too.

* fix

* debug

* should work now.

* debug

* debug

* goes alright?

* style

* debugging

* debugging

* debugging

* debugging

* fix

* reinit scheduler if prediction_type was passed.

* akways cast vae in float32

* better handling of snr.

Co-authored-by: bghira <bghira@users.github.com>

* the vae should be also passed

* add: docs.

* add: sdlx t2i tests

* save the pipeline

* autocast.

* fix: save_model_card

* fix: save_model_card.

---------

Co-authored-by: CaptnSeraph <s3raph1m@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: bghira <bghira@users.github.com>
2023-08-16 09:02:49 +05:30
Sayak Paul
a7508a76f0 add: pushtohubmixin to pipelines and schedulers docs overview. (#4607)
* add: pushtohubmixin to pipelines and schedulers docs overview.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-15 22:23:17 +05:30
Sayak Paul
aaef41b5fe [Docs] fix links in the controlling generation doc. (#4612)
* fix links in the controlling generation doc.

* more fixes.
2023-08-15 20:27:13 +05:30
Wang Qiang
078df46bc9 An invalid clerical error in sdxl finetune (#4608) 2023-08-15 10:41:51 +05:30
Sayak Paul
15782fd506 [Pipeline utils] feat: implement push_to_hub for standalone models, schedulers as well as pipelines (#4128)
* feat: implement push_to_hub for standalone models.

* address PR feedback.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* remove max_shard_size.

* add: support for scheduler push_to_hub

* enable push_to_hub support for flax schedulers.

* enable push_to_hub for pipelines.

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* reflect pr feedback.

* address another round of deedback.

* better handling of kwargs.

* add: tests

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* setting hub staging to False for now.

* incorporate staging test as a separate job.

Co-authored-by: ydshieh <2521628+ydshieh@users.noreply.github.com>

* fix: tokenizer loading.

* fix: json dumping.

* move is_staging_test to a better location.

* better treatment to tokens.

* define repo_id to better handle concurrency

* style

* explicitly set token

* Empty-Commit

* move SUER, TOKEN to test

* collate org_repo_id

* delete repo

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: ydshieh <2521628+ydshieh@users.noreply.github.com>
2023-08-15 07:39:22 +05:30
Sayak Paul
d93ca26893 [Examples] Update InstructPix2Pix README_sdxl.md to fix mentions (#4574)
* Update README_sdxl.md to fix mentions

* add --push_to_hub

* add --push_to_hub

* fix: mention
2023-08-14 17:48:13 +05:30
Claire Froelich
32963c24c5 Fix git-lfs command typo in docs (#4586)
fix typo in git-lfs command

added missing hyphen. "git lfs" is not a command
2023-08-14 17:21:45 +05:30
AisingioroHao
1b739e7344 Fixed invalid pipeline_class_name parameter. (#4590)
* Fixed invalid pipeline_class_name parameter.

* Fix the format
2023-08-14 17:21:17 +05:30
Sayak Paul
d67eba0f31 [Utility] adds an image grid utility (#4576)
* add: utility for image grid.

* add: return type.

* change necessary places.

* add to utility page.
2023-08-12 10:34:51 +05:30
Steven Liu
714bfed859 [docs] Fix ControlNet SDXL docstring (#4582)
fix
2023-08-11 10:43:40 -07:00
Sayak Paul
d5983a6779 [Examples] fix: network_alpha -> network_alphas (#4572)
network_alpha
2023-08-11 14:18:49 +05:30
Mystfit
796c01534d Fixing repo_id regex validation error on windows platforms (#4358)
* Fixing repo_id regex validation error on windows platforms

* Validating correct URL with prefix is provided

If we are loading a URL then we don't need to use os.path.join and array slicing to split out a repo_id and file path from an absolute filepath. 

Checking if the URL prefix is valid first before doing any URL splitting otherwise we raise a ValueError since neither a valid filepath or URL was provided.

* Style fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-11 11:11:43 +05:30
Abhipsha Das
c8d86e9f0a Remove code snippets containing is_safetensors_available() (#4521)
* [WIP] Remove code snippets containing `is_safetensors_available()`

* Modifying `import_utils.py`

* update pipeline tests for safetensor default

* fix test related to cached requests

* address import nits

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-11 11:05:22 +05:30
dotieuthien
b28cd3fba0 Convert Stable Diffusion ControlNet to TensorRT (#4465)
* convert tensorrt controlnet

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix number controlnet condition

* Add convert SD XL to onnx

* Add convert SD XL to tensorrt

* Add convert SD XL to tensorrt

* Add examples in comments

* Add examples in comments

* Add test onnx controlnet

* Add tensorrt test

* Remove copied

* Move file test to examples/community

* Remove script

* Remove script

* Remove text

---------

Co-authored-by: dotieuthien <thien.do@mservice.com.vn>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-11 08:12:26 +05:30
Steven Liu
cd7071e750 [docs] Add safetensors flag (#4245)
* add safetensors flag

* apply review
2023-08-10 12:37:23 -07:00
Steven Liu
e31f38b5d6 [docs] Remove attention slicing (#4518)
* remove attention slicing

* apply feedback
2023-08-10 11:00:03 -07:00
Steven Liu
3bd5e073cb [docs] Expand prompt weighting (#4516)
* add more weighting/blend/conjunction

* finish blend/conjunction

* add textual inversion example

* add dreambooth
2023-08-10 10:56:53 -07:00
YiYi Xu
3df52ba8dc [Doc] update sdxl-controlnet repo name (#4564)
* rename

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-10 22:02:32 +05:30
Sayak Paul
c697c5ab57 improve controlnet sdxl docs now that we have a good checkpoint. (#4556) 2023-08-10 08:21:36 +05:30
VV-A-VV
3fd45eb10f fix some typo error (#4546)
* fix some typo error

* Undo changes to capitalization
2023-08-10 06:49:25 +05:30
Patrick von Platen
5cbcbe3c63 Revert "introduce minimalistic reimplementation of SDXL on the SDXL doc" (#4548)
Revert "introduce minimalistic reimplementation of SDXL on the SDXL doc (#4532)"

This reverts commit e7e3749498.
2023-08-10 06:49:06 +05:30
Dhruv Nair
7b07f9812a Move controlnet load local tests to nightly (#4543)
move controlnet load local tests to nihghtly
2023-08-09 23:00:42 +05:30
Steven Liu
16ad13b61d [docs] Clean scheduler api (#4204)
* clean scheduler mixin

* up to dpmsolvermultistep

* finish cleaning

* first draft

* fix overview table

* apply feedback

* update reference code
2023-08-09 09:00:35 -07:00
Dhruv Nair
da0e2fce38 pin ruff version for quality checks (#4539)
* pin ruff version for quality checks

* update dependency versions table

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-09 16:46:45 +05:30
Dhruv Nair
a67ff32301 Move slow tests to nightly (#4526)
* move slow pix2pixzero tests to nightly

* move slow panorama tests to nightly

* move txt2video full test to nightly

* clean up

* remove nightly test from text to video pipeline
2023-08-09 12:38:15 +02:00
jere357
3c1b4933bd Changed code that converts tensors to PIL images in the write_your_own_pipeline notebook (#4489)
changed code that converts tensors to PIL images
2023-08-09 15:00:51 +05:30
Sayak Paul
e731ae0ec8 Update README_sdxl.md to include the free-tier Colab Notebook (#4540)
Update README_sdxl.md
2023-08-09 14:32:14 +05:30
Rastislav Švarba
6c5b5b260e Fix push_to_hub in train_text_to_image_lora_sdxl.py example (#4535)
fix: push_to_hub in train text2image lora sdxl
2023-08-09 11:48:24 +05:30
Simo Ryu
e7e3749498 introduce minimalistic reimplementation of SDXL on the SDXL doc (#4532)
minsdxl
2023-08-09 07:33:07 +05:30
Wooyeol Baek
c7c0b57541 Copy lora functions to XLPipelines (#4512)
* add load_lora_weights and save_lora_weights to StableDiffusionXLImg2ImgPipeline

* add load_lora_weights and save_lora_weights to StableDiffusionXLInpaintPipeline

* apply black format

* apply black format

* add copy statement

* fix statements

* fix statements

* fix statements

* run `make fix-copies`
2023-08-08 18:53:22 +05:30
Dhruv Nair
c91272d631 fix indexing issue in sd reference pipeline (#4531) 2023-08-08 15:14:19 +02:00
George He
f0725c5845 Fix misc typos (#4479)
Fix typos
2023-08-07 17:21:19 -07:00
YiYi Xu
aef11cbf66 add pipeline_class_name argument to Stable Diffusion conversion script (#4461)
* add pipeline class

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-07 06:44:31 -10:00
Dhruv Nair
71c8224159 Moving certain pipelines slow tests to nightly (#4469)
* move audioldm tests to nightly

* move kandinsky im2img ddpm test to nightly

* move flax dpm test to nightly

* move diffedit dpm test to nightly

* move fp16 slow tests to nightly
2023-08-07 17:28:56 +02:00
Patrick von Platen
4367b8a300 move pipeline only when running validation (#4515) 2023-08-07 17:20:18 +02:00
ethansmith2000
f4f854138d grad checkpointing (#4474)
* grad checkpointing

* fix make fix-copies

* fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-07 15:26:54 +02:00
Patrick von Platen
e1b5b8ba13 Make sure fp16-fix is used as default (#4510)
* Make sue fp16-fix is used as default

* fix vae

* finish

* fix
2023-08-07 15:16:37 +02:00
Patrick von Platen
dff5ff35a9 [SDXL LoRA] fix batch size lora (#4509)
fix batch size lora
2023-08-07 13:27:13 +02:00
Sayak Paul
b2456717e6 Update lora.md to clarify SDXL support (#4503)
* Update lora.md

* Update lora.md
2023-08-07 11:06:30 +05:30
Vladislav Artemyev
2e69cf16fe Log global_step instead of epoch to tensorboard (#4493)
Co-authored-by: mrlzla <noname@noname.com>
2023-08-07 07:49:39 +05:30
takuoko
9c29bc2df8 [Examples] Support train_text_to_image_lora_sdxl.py (#4365)
* add train_text_to_image_lora_sdxl.py

* add train_text_to_image_lora_sdxl.py

* add test and minor fix

* Update examples/text_to_image/README_sdxl.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix unwrap_model rule

* add invisible-watermark in requirements

* del invisible-watermark

* Update examples/text_to_image/README_sdxl.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/text_to_image/README_sdxl.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/text_to_image/train_text_to_image_lora_sdxl.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* del comment & update readme

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-06 13:47:20 +05:30
AisingioroHao
70d098540d Add a data_dir parameter to the load_dataset method. (#4482)
Co-authored-by: AisingioroHao0 <1286098622@qq.com>
2023-08-06 08:45:48 +05:30
Patrick von Platen
ea1fcc28a4 [SDXL] Allow SDXL LoRA to be run with less than 16GB of VRAM (#4470)
* correct

* correct blocks

* finish

* finish

* finish

* Apply suggestions from code review

* fix

* up

* up

* up

* Update examples/dreambooth/README_sdxl.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-04 20:06:38 +02:00
Patrick von Platen
66de221409 Update README_sdxl.md (#4472) 2023-08-04 16:23:35 +02:00
Sayak Paul
06f73bd6d1 [Tests] Adds integration tests for SDXL LoRAs (#4462)
* add: integration tests for SDXL LoRAs.

* change pipeline class.

* fix assertion values.

* print values again.

* let's see.

* let's see.

* let's see.

* finish
2023-08-04 16:25:53 +05:30
asfiyab-nvidia
c14c141b86 TensorRT Inpaint pipeline: minor fixes (#4457)
Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
2023-08-04 12:28:28 +02:00
manosplitsis
79ef9e528c Fixed multi-token textual inversion training (#4452)
* added placeholder token concatenation during training

* Update examples/textual_inversion/textual_inversion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-04 12:21:31 +02:00
Dhruv Nair
801a5e2199 Cleanup Pass on flaky slow tests for Stable Diffusion (#4455)
* lower num inference steps and precision checkk

* fix flaky inpaint tests

* remove unsued imports

* set unet default attn processor
2023-08-04 10:24:56 +02:00
YiYi Xu
1edd0debaa fix-format (#4458)
make style

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-03 20:34:37 -07:00
YiYi Xu
29ece0db79 a few fix for kandinsky combined pipeline (#4352)
* add xformer

* enable_sequential_cpu_offload

* style

* Update src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-03 15:10:41 -10:00
Patrick von Platen
1a8843f93e add sdxl to prompt weighting (#4439)
* add sdxl to prompt weighting

* Update docs/source/en/using-diffusers/weighted_prompts.md

* Update docs/source/en/using-diffusers/weighted_prompts.md

* add sdxl to prompt weighting

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

* Update docs/source/en/using-diffusers/weighted_prompts.md

* Apply suggestions from code review

* correct

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-03 21:41:48 +02:00
JinK
e391b789ac Support different strength for Stable Diffusion TensorRT Inpainting pipeline (#4216)
* Support different strength

* run make style
2023-08-03 21:32:44 +02:00
VV-A-VV
d0b8de1262 Delete the duplicate code for the contolnet img 2 img (#4411)
delete the duplicated code from the controlnet-img-2-img pipelines
2023-08-03 20:32:03 +02:00
Yuyang Zhao
b9058754c5 Fix bug caused by typo (#4357)
Fix the typo that causes `omegaconf.errors.ConfigAttributeError: Missing key parms`
2023-08-03 20:27:42 +02:00
Alan Ji
777becda6b fix typo to ensure make test-examples work correctly (#4329)
fix typo to ensure `make test-examples` work correctly
2023-08-03 20:17:48 +02:00
cmdr2
380bfd82c1 Allow controlnets to be loaded (from ckpt) in a parallel thread with a SD model (ckpt), and speed it up slightly (#4298)
Faster controlnet model instantiation, and allow controlnets to be loaded (from ckpt) in a parallel thread with a SD model (ckpt) without  tensor errors (race condition)
2023-08-03 20:11:13 +02:00
Steven Liu
5989a85edb [docs] Distilled SD (#4442)
* first draft

* add blog link
2023-08-03 11:03:42 -07:00
Levi McCallum
4188f3063a Add rank argument to train_dreambooth_lora_sdxl.py (#4343)
* Add rank argument to train_dreambooth_lora_sdxl.py

* Update train_dreambooth_lora_sdxl.py
2023-08-03 23:27:30 +05:30
George He
0b4430e840 Fix typerror in pipeline handling for MultiControlNets which only contain a single ControlNet (#4454)
* Handle single controlnet in multicontrolnet

* Fix formatting
2023-08-03 17:37:07 +02:00
Patrick von Platen
a74c995e7d make style 2023-08-03 14:45:06 +00:00
Neil Wang
85aa673bec auto type conversion (#4270)
* type conversion

Default value of `control_guidance_start` and `control_guidance_end` in `StableDiffusionControlNetPipeline.check_inputs` causes `TypeError: object of type 'float' has no len()`

Proposed fix: 
Convert `control_guidance_start` and `control_guidance_end` to list if float

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-03 16:44:48 +02:00
Dhruv Nair
1d2587bb34 move tests to nightly (#4451)
* move tests to nightly

* clean up code quality issues

* more clean up
2023-08-03 15:25:28 +02:00
Patrick von Platen
372b58108e fix make style 2023-08-03 10:17:00 +00:00
w4ffl35
45171174b8 Prevent online access when desired when using download_from_original_stable_diffusion_ckpt (#4271)
Prevent online access when desired

- Bypass requests with config files option added to download_from_original_stable_diffusion_ckpt
- Adds local_files_only flags to all from_pretrained requests
2023-08-03 12:16:41 +02:00
cmdr2
4c4fe042a7 Accept pooled_prompt_embeds in the SDXL Controlnet pipeline. Fixes an error if prompt_embeds are passed. (#4309)
* Accept pooled_prompt_embeds in the SDXL Controlnet pipeline. Fixes an error if prompt_embeds are passed.

* Add a test for pooled prompt embeds
2023-08-03 13:05:19 +05:30
Will Berman
47bf8e566c can call encode_prompt with out setting a text encoder instance variable (#4396)
* can call encode_prompt with out setting a text encoder instance variable

* fix
2023-08-02 21:25:30 -07:00
Sayak Paul
18fc40c169 [Feat] add tiny Autoencoder for (almost) instant decoding (#4384)
* add: model implementation of tiny autoencoder.

* add: inits.

* push the latest devs.

* add: conversion script and finish.

* add: scaling factor args.

* debugging

* fix denormalization.

* fix: positional argument.

* handle use_torch_2_0_or_xformers.

* handle post_quant_conv

* handle dtype

* fix: sdxl image processor for tiny ae.

* fix: sdxl image processor for tiny ae.

* unify upcasting logic.

* copied from madness.

* remove trailing whitespace.

* set is_tiny_vae = False

* address PR comments.

* change to AutoencoderTiny

* make act_fn an str throughout

* fix: apply_forward_hook decorator call

* get rid of the special is_tiny_vae flag.

* directly scale the output.

* fix dummies?

* fix: act_fn.

* get rid of the Clamp() layer.

* bring back copied from.

* movement of the blocks to appropriate modules.

* add: docstrings to AutoencoderTiny

* add: documentation.

* changes to the conversion script.

* add doc entry.

* settle tests.

* style

* add one slow test.

* fix

* fix 2

* fix 2

* fix: 4

* fix: 5

* finish integration tests

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-02 23:58:05 +05:30
Xin Kong
615c04db15 [Pipelines] Add community pipeline for Zero123 (#4295)
* add zero123 pipeline to community

* add community doc

* reformat

* update zero123 pipeline, including cc_projection within diffusers; add convert ckpt scripts; support diffusers weights
2023-08-02 19:36:49 +02:00
Steven Liu
ae82a3eb34 [docs] AutoPipeline tutorial (#4273)
* first draft

* tidy api

* apply feedback

* mdx to md

* apply feedback

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-02 10:32:02 -07:00
Sayak Paul
816ca0048f [LoRA] Fix SDXL text encoder LoRAs (#4371)
* temporarily disable text encoder loras.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debbuging.

* modify doc.

* rename tests.

* print slices.

* fix: assertions

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-02 17:00:56 +05:30
Sayak Paul
fef8d2f726 remove mentions of textual inversion from sdxl. (#4404) 2023-08-02 15:29:46 +05:30
Ella Charlaix
579b4b2020 Update documentation (#4422)
* update documentation

* minor
2023-08-02 11:49:22 +02:00
Steven Liu
6c5bd2a38d [docs] Fix SDXL docstring (#4397)
fix guidance scale value
2023-08-01 16:40:15 -07:00
Will Berman
160474ac61 train dreambooth fix pre encode class prompt (#4395) 2023-08-01 12:00:05 -07:00
YiYi Xu
c10861ee1b fix test_float16_inference (#4412)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-01 07:49:50 -10:00
YiYi Xu
94b332c476 support from_single_file for SDXL inpainting (#4408)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-01 07:47:22 -10:00
Dhruv Nair
6f4355f89f Cleanup pass for flaky Slow Tests for Stable diffusion (#4415)
* update expected slice so img2img compile tests pass

* use default attn processor

* use default attn processor and update expected slice value to pass test

* use default attn processor

* set default attn processor and update expected slice

* set default attn processor and change precision for check

* set unet to use default attn processor
2023-08-01 18:21:14 +02:00
estelleafl
05a1cb902c [ldm3d] documentation fixing typos (#4284)
* fixed typo

* updated doc to be consistent in naming

* make style/quality

* preprocessing for 4 channels and not 6

* make style

* test for 4c

* make style/quality

* fixed test on cpu

* fixed doc typo

* changed default ckpt to 4c

* Update pipeline_stable_diffusion_ldm3d.py

---------

Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
2023-08-01 09:03:29 -07:00
Patrick von Platen
c69526a3d5 [AutoPipeline] Correct naming (#4420) 2023-08-01 14:56:27 +02:00
Nishant Rajadhyaksha
6c49d542a3 Update docs of unet_1d.py (#4394)
Update unet_1d.py

highlighting the way the modules are actually fed in the main code as the order matters because no skip block attaches time embeds whilst others do not
2023-07-31 11:04:47 -07:00
Sayak Paul
ba43ce3476 minor doc fixes. (#4380) 2023-07-31 12:15:56 +05:30
Andrey Voroshilov
ea5b0575f8 Clean up duplicate lines in encode_prompt (#4369)
* Clean up duplicate line

* Clean up duplicate lines

* Clean up duplicate line
2023-07-30 15:49:46 +05:30
Patrick von Platen
4f986fb28a [SDXL] Fix dummy imports incorrect naming (#4370)
[SDXL] Fix dummy imports
2023-07-30 12:17:38 +02:00
Harutatsu Akiyama
aae27262f4 [SDXL-IP2P] Add gif for demonstrating training processes (#4342)
* [SDXL-IP2P] Add gif for demonstrating training processes

* [SDXL-IP2P] Add gif for demonstrating training processes

* [SDXL-IP2P] Change gif to URLs

* [SDXL-IP2P] Add URLs in case gif now show

---------

Co-authored-by: Harutatsu Akiyama <kf.zy.qin@gmail.com>
2023-07-30 10:07:10 +05:30
Sayak Paul
34b5b63bb8 Update README.md to have PyPI-friendly path (#4351) 2023-07-29 08:59:18 +05:30
Will Berman
2b1786735e fix fp type in t2i adapter docs (#4350) 2023-07-28 13:01:52 -07:00
Sayak Paul
4a4cdd6b07 [Feat] Support SDXL Kohya-style LoRA (#4287)
* sdxl lora changes.

* better name replacement.

* better replacement.

* debugging

* debugging

* debugging

* debugging

* debugging

* remove print.

* print state dict keys.

* print

* distingisuih better

* debuggable.

* fxi: tyests

* fix: arg from training script.

* access from class.

* run style

* debug

* save intermediate

* some simplifications for SDXL LoRA

* styling

* unet config is not needed in diffusers format.

* fix: dynamic SGM block mapping for SDXL kohya loras (#4322)

* Use lora compatible layers for linear proj_in/proj_out (#4323)

* improve condition for using the sgm_diffusers mapping

* informative comment.

* load compatible keys and embedding layer maaping.

* Get SDXL 1.0 example lora to load

* simplify

* specif ranks and hidden sizes.

* better handling of k rank and hidden

* debug

* debug

* debug

* debug

* debug

* fix: alpha keys

* add check for handling LoRAAttnAddedKVProcessor

* sanity comment

* modifications for text encoder SDXL

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* denugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* up

* up

* up

* up

* up

* up

* unneeded comments.

* unneeded comments.

* kwargs for the other attention processors.

* kwargs for the other attention processors.

* debugging

* debugging

* debugging

* debugging

* improve

* debugging

* debugging

* more print

* Fix alphas

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* clean up

* clean up.

* debugging

* fix: text

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Batuhan Taskaya <batuhan@python.org>
2023-07-28 19:49:49 +02:00
Patrick von Platen
b7b6d6138d [SDXL] Make watermarker optional under certain circumstances to improve usability of SDXL 1.0 (#4346)
* improve sdxl

* more fixes

* improve sdxl

* improve sdxl

* improve sdxl

* finish
2023-07-28 19:29:22 +02:00
kathath
faa6cbc959 Fix repeat of negative prompt (#4335)
fix repeat of negative prompt
2023-07-28 18:14:22 +02:00
Patrick von Platen
306a7bd047 [ONNX] Don't download ONNX model by default (#4338)
* [Download] Don't download ONNX weights by default

* [Download] Don't download ONNX weights by default

* [Download] Don't download ONNX weights by default

* fix more

* finish

* finish

* finish
2023-07-28 14:02:48 +02:00
Tanupriya Singh
c7250f2b8a correct doc string for default value of guidance_scale (#4339) 2023-07-28 13:54:28 +02:00
Patrick von Platen
18b018c864 [SDXL Refiner] Fix refiner forward pass for batched input (#4327)
* fix_batch_xl

* Fix other pipelines as well

* up

* up

* Update tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py

* sort

* up

* Finish it all up Co-authored-by: Bagheera <bghira@users.github.com>

* Co-authored-by: Bagheera bghira@users.github.com

* Co-authored-by: Bagheera <bghira@users.github.com>

* Finish it all up Co-authored-by: Bagheera <bghira@users.github.com>
2023-07-28 12:34:18 +02:00
Sayak Paul
54fab2cd5f Update README_sdxl.md to correct the header (#4330)
Update README_sdxl.md
2023-07-28 09:22:14 +05:30
Sayak Paul
961173064d Honor the SDXL 1.0 licensing from the training scripts. (#4319)
* honor the original license.

* train_instruct_pix2pix_xl -> train_instruct_pix2pix_sdxl
2023-07-28 01:28:36 +05:30
Sayak Paul
7d0d073261 [Tests] add test for pipeline import. (#4276)
* add test for pipeline import.

* Update tests/others/test_dependencies.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address suggestions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-28 00:08:15 +05:30
Xinyang Li
01b6ec21fa fix validation option for dreambooth training example (#4317) 2023-07-27 09:58:52 -07:00
Ella Charlaix
92e5ddd295 Fix typo documentation (#4320)
fix typo documentation
2023-07-27 21:31:58 +05:30
Patrick von Platen
1926331eaf [Local loading] Correct bug with local files only (#4318)
* [Local loading] Correct bug with local files only

* file not found error

* fix

* finish
2023-07-27 16:16:46 +02:00
YiYi Xu
5fd3dca5f3 fix a bug in StableDiffusionUpscalePipeline when prompt is None (#4278)
* fix batch_size

* add test

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-07-27 15:07:50 +02:00
Duong A. Nguyen
a2091b7071 Fix SDXL conversion from original to diffusers (#4280)
* fix sdxl conversion

* convention
2023-07-27 15:05:43 +02:00
Patrick von Platen
d8bc1a4e51 [Torch.compile] Fixes torch compile graph break (#4315)
* fix torch compile

* Fix all

* make style
2023-07-27 13:53:36 +02:00
YiYi Xu
80c10d8245 update Kandinsky doc (#4301)
* update doc

* fix an error in autopipe doc

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-07-27 13:10:41 +02:00
Patrick von Platen
20e92586c1 0.20.0dev0 (#4299)
* 0.20.0dev0

* make style
2023-07-26 23:06:18 +02:00
302 changed files with 17476 additions and 3355 deletions

View File

@@ -113,3 +113,60 @@ jobs:
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_staging_tests:
strategy:
fail-fast: false
matrix:
config:
- name: Hub tests for models, schedulers, and pipelines
framework: hub_tests_pytorch
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_hub
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
run: |
HUGGINGFACE_CO_STAGING=true python -m pytest \
-m "is_staging_test" \
--make-reports=tests_${{ matrix.config.report }} \
tests
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -78,7 +78,7 @@ test:
# Run tests for examples
test-examples:
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/
python -m pytest -n auto --dist=loadfile -s -v ./examples/
# Release stuff

View File

@@ -90,7 +90,7 @@ The following design principles are followed:
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
### Schedulers

View File

@@ -1,6 +1,6 @@
<p align="center">
<br>
<img src="https://github.com/huggingface/diffusers/blob/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">

View File

@@ -13,6 +13,8 @@
title: Overview
- local: using-diffusers/write_own_pipeline
title: Understanding models and schedulers
- local: tutorials/autopipeline
title: AutoPipeline
- local: tutorials/basic_training
title: Train a diffusion model
title: Tutorials
@@ -30,6 +32,8 @@
title: Load safetensors
- local: using-diffusers/other-formats
title: Load different Stable Diffusion formats
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Loading & Hub
- sections:
- local: using-diffusers/pipeline_overview
@@ -48,6 +52,8 @@
title: Textual inversion
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/distilled_sd
title: Distilled Stable Diffusion inference
- local: using-diffusers/reusing_seeds
title: Improve image quality with deterministic generation
- local: using-diffusers/control_brightness
@@ -61,7 +67,7 @@
- local: using-diffusers/stable_diffusion_jax_how_to
title: Stable Diffusion in JAX/Flax
- local: using-diffusers/weighted_prompts
title: Weighting Prompts
title: Prompt weighting
title: Pipelines for Inference
- sections:
- local: training/overview
@@ -162,6 +168,8 @@
title: AutoencoderKL
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/transformer2d
title: Transformer2D
- local: api/models/transformer_temporal
@@ -188,6 +196,8 @@
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
@@ -259,6 +269,8 @@
title: LDM3D Text-to-(RGB, Depth)
- local: api/pipelines/stable_diffusion/adapter
title: Stable Diffusion T2I-adapter
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
title: Stable Diffusion
- local: api/pipelines/stable_unclip
title: Stable unCLIP
@@ -287,49 +299,49 @@
- local: api/schedulers/overview
title: Overview
- local: api/schedulers/cm_stochastic_iterative
title: Consistency Model Multistep Scheduler
- local: api/schedulers/ddim
title: DDIM
title: CMStochasticIterativeScheduler
- local: api/schedulers/ddim_inverse
title: DDIMInverse
title: DDIMInverseScheduler
- local: api/schedulers/ddim
title: DDIMScheduler
- local: api/schedulers/ddpm
title: DDPM
title: DDPMScheduler
- local: api/schedulers/deis
title: DEIS
- local: api/schedulers/dpm_discrete
title: DPM Discrete Scheduler
- local: api/schedulers/dpm_discrete_ancestral
title: DPM Discrete Scheduler with ancestral sampling
title: DEISMultistepScheduler
- local: api/schedulers/multistep_dpm_solver_inverse
title: DPMSolverMultistepInverse
- local: api/schedulers/multistep_dpm_solver
title: DPMSolverMultistepScheduler
- local: api/schedulers/dpm_sde
title: DPMSolverSDEScheduler
- local: api/schedulers/euler_ancestral
title: Euler Ancestral Scheduler
- local: api/schedulers/euler
title: Euler scheduler
- local: api/schedulers/heun
title: Heun Scheduler
- local: api/schedulers/multistep_dpm_solver_inverse
title: Inverse Multistep DPM-Solver
- local: api/schedulers/ipndm
title: IPNDM
- local: api/schedulers/lms_discrete
title: Linear Multistep
- local: api/schedulers/multistep_dpm_solver
title: Multistep DPM-Solver
- local: api/schedulers/pndm
title: PNDM
- local: api/schedulers/repaint
title: RePaint Scheduler
- local: api/schedulers/singlestep_dpm_solver
title: Singlestep DPM-Solver
title: DPMSolverSinglestepScheduler
- local: api/schedulers/euler_ancestral
title: EulerAncestralDiscreteScheduler
- local: api/schedulers/euler
title: EulerDiscreteScheduler
- local: api/schedulers/heun
title: HeunDiscreteScheduler
- local: api/schedulers/ipndm
title: IPNDMScheduler
- local: api/schedulers/stochastic_karras_ve
title: Stochastic Kerras VE
title: KarrasVeScheduler
- local: api/schedulers/dpm_discrete_ancestral
title: KDPM2AncestralDiscreteScheduler
- local: api/schedulers/dpm_discrete
title: KDPM2DiscreteScheduler
- local: api/schedulers/lms_discrete
title: LMSDiscreteScheduler
- local: api/schedulers/pndm
title: PNDMScheduler
- local: api/schedulers/repaint
title: RePaintScheduler
- local: api/schedulers/score_sde_ve
title: ScoreSdeVeScheduler
- local: api/schedulers/score_sde_vp
title: ScoreSdeVpScheduler
- local: api/schedulers/unipc
title: UniPCMultistepScheduler
- local: api/schedulers/score_sde_ve
title: VE-SDE
- local: api/schedulers/score_sde_vp
title: VP-SDE
- local: api/schedulers/vq_diffusion
title: VQDiffusionScheduler
title: Schedulers

View File

@@ -0,0 +1,45 @@
# Tiny AutoEncoder
Tiny AutoEncoder for Stable Diffusion (TAESD) was introduced in [madebyollin/taesd](https://github.com/madebyollin/taesd) by Ollin Boer Bohan. It is a tiny distilled version of Stable Diffusion's VAE that can quickly decode the latents in a [`StableDiffusionPipeline`] or [`StableDiffusionXLPipeline`] almost instantly.
To use with Stable Diffusion v-2.1:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake.png")
```
To use with Stable Diffusion XL 1.0
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake_sdxl.png")
```
## AutoencoderTiny
[[autodoc]] AutoencoderTiny
## AutoencoderTinyOutput
[[autodoc]] models.autoencoder_tiny.AutoencoderTinyOutput

View File

@@ -9,4 +9,8 @@ All models are built from the base [`ModelMixin`] class which is a [`torch.nn.mo
## FlaxModelMixin
[[autodoc]] FlaxModelMixin
[[autodoc]] FlaxModelMixin
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -12,35 +12,41 @@ specific language governing permissions and limitations under the License.
# AutoPipeline
In many cases, one checkpoint can be used for multiple tasks. For example, you may be able to use the same checkpoint for Text-to-Image, Image-to-Image, and Inpainting. However, you'll need to know the pipeline class names linked to your checkpoint.
`AutoPipeline` is designed to:
AutoPipeline is designed to make it easy for you to use multiple pipelines in your workflow. We currently provide 3 AutoPipeline classes to perform three different tasks, i.e. [`AutoPipelineForText2Image`], [`AutoPipelineForImage2Image`], and [`AutoPipelineForInpainting`]. You'll need to choose the AutoPipeline class based on the task you want to perform and use it to automatically retrieve the relevant pipeline given the name/path to the pre-trained weights.
1. make it easy for you to load a checkpoint for a task without knowing the specific pipeline class to use
2. use multiple pipelines in your workflow
For example, to perform Image-to-Image with the SD1.5 checkpoint, you can do
Based on the task, the `AutoPipeline` class automatically retrieves the relevant pipeline given the name or path to the pretrained weights with the `from_pretrained()` method.
```python
from diffusers import PipelineForImageToImage
To seamlessly switch between tasks with the same checkpoint without reallocating additional memory, use the `from_pipe()` method to transfer the components from the original pipeline to the new one.
pipe_i2i = PipelineForImageoImage.from_pretrained("runwayml/stable-diffusion-v1-5")
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipeline(prompt, num_inference_steps=25).images[0]
```
It will also help you switch between tasks seamlessly using the same checkpoint without reallocating additional memory. For example, to re-use the Image-to-Image pipeline we just created for inpainting, you can do
<Tip>
```python
from diffusers import PipelineForInpainting
Check out the [AutoPipeline](/tutorials/autopipeline) tutorial to learn how to use this API!
pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_i2i)
```
All the components will be transferred to the inpainting pipeline with zero cost.
</Tip>
`AutoPipeline` supports text-to-image, image-to-image, and inpainting for the following diffusion models:
Currently AutoPipeline support the Text-to-Image, Image-to-Image, and Inpainting tasks for below diffusion models:
- [stable Diffusion](./stable_diffusion)
- [Stable Diffusion Controlnet](./api/pipelines/controlnet)
- [Stable Diffusion XL](./stable_diffusion/stable_diffusion_xl)
- [IF](./if)
- [Kandinsky](./kandinsky)(./kandinsky)(./kandinsky)(./kandinsky)(./kandinsky)
- [Kandinsky 2.2]()(./kandinsky)
- [Stable Diffusion](./stable_diffusion)
- [ControlNet](./api/pipelines/controlnet)
- [Stable Diffusion XL (SDXL)](./stable_diffusion/stable_diffusion_xl)
- [DeepFloyd IF](./if)
- [Kandinsky](./kandinsky)
- [Kandinsky 2.2](./kandinsky#kandinsky-22)
## AutoPipelineForText2Image

View File

@@ -0,0 +1,162 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Stable Diffusion XL
[Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
Using a pretrained model, we can provide control images (for example, a depth map) to control Stable Diffusion text-to-image generation so that it follows the structure of the depth image and fills in the details.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
We provide support using ControlNets with [Stable Diffusion XL](./stable_diffusion/stable_diffusion_xl.md) (SDXL).
You can find numerous SDXL ControlNet checkpoints from [this link](https://huggingface.co/models?other=stable-diffusion-xl&other=controlnet). There are some smaller ControlNet checkpoints too:
* [controlnet-canny-sdxl-1.0-small](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0-small)
* [controlnet-canny-sdxl-1.0-mid](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0-mid)
* [controlnet-depth-sdxl-1.0-small](https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0-small)
* [controlnet-depth-sdxl-1.0-mid](https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0-mid)
We also encourage you to train custom ControlNets; we provide a [training script](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md) for this.
You can find some results below:
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/sd_xl/sdxl_controlnet_canny_grid.png" width=600/>
🚨 At the time of this writing, many of these SDXL ControlNet checkpoints are experimental and there is a lot of room for improvement. We encourage our users to provide feedback. 🚨
## MultiControlNet
You can compose multiple ControlNet conditionings from different image inputs to create a *MultiControlNet*. To get better results, it is often helpful to:
1. mask conditionings such that they don't overlap (for example, mask the area of a canny image where the pose conditioning is located)
2. experiment with the [`controlnet_conditioning_scale`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet#diffusers.StableDiffusionControlNetPipeline.__call__.controlnet_conditioning_scale) parameter to determine how much weight to assign to each conditioning input
In this example, you'll combine a canny image and a human pose estimation image to generate a new image.
Prepare the canny image conditioning:
```py
from diffusers.utils import load_image
from PIL import Image
import numpy as np
import cv2
canny_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png"
)
canny_image = np.array(canny_image)
low_threshold = 100
high_threshold = 200
canny_image = cv2.Canny(canny_image, low_threshold, high_threshold)
# zero out middle columns of image where pose will be overlayed
zero_start = canny_image.shape[1] // 4
zero_end = zero_start + canny_image.shape[1] // 2
canny_image[:, zero_start:zero_end] = 0
canny_image = canny_image[:, :, None]
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
canny_image = Image.fromarray(canny_image).resize((1024, 1024))
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/controlnet/landscape_canny_masked.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">canny image</figcaption>
</div>
</div>
Prepare the human pose estimation conditioning:
```py
from controlnet_aux import OpenposeDetector
from diffusers.utils import load_image
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
openpose_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png"
)
openpose_image = openpose(openpose_image).resize((1024, 1024))
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/controlnet/person_pose.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">human pose image</figcaption>
</div>
</div>
Load a list of ControlNet models that correspond to each conditioning, and pass them to the [`StableDiffusionXLControlNetPipeline`]. Use the faster [`UniPCMultistepScheduler`] and nable model offloading to reduce memory usage.
```py
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL, UniPCMultistepScheduler
import torch
controlnets = [
ControlNetModel.from_pretrained(
"thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True
),
ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True),
]
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnets, vae=vae, torch_dtype=torch.float16, use_safetensors=True
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
```
Now you can pass your prompt (an optional negative prompt if you're using one), canny image, and pose image to the pipeline:
```py
prompt = "a giant standing in a fantasy landscape, best quality"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
generator = torch.manual_seed(1)
images = [openpose_image, canny_image]
images = pipe(
prompt,
image=images,
num_inference_steps=25,
generator=generator,
negative_prompt=negative_prompt,
num_images_per_prompt=3,
controlnet_conditioning_scale=[1.0, 0.8],
).images[0]
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/multicontrolnet.png"/>
</div>
## StableDiffusionXLControlNetPipeline
[[autodoc]] StableDiffusionXLControlNetPipeline
- all
- __call__

View File

@@ -105,6 +105,30 @@ One cheeseburger monster coming up! Enjoy!
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png)
<Tip>
We also provide an end-to-end Kandinsky pipeline [`KandinskyCombinedPipeline`], which combines both the prior pipeline and text-to-image pipeline, and lets you perform inference in a single step. You can create the combined pipeline with the [`~AutoPipelineForText2Image.from_pretrained`] method
```python
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained(
"kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
```
Under the hood, it will automatically load both [`KandinskyPriorPipeline`] and [`KandinskyPipeline`]. To generate images, you no longer need to call both pipelines and pass the outputs from one to another. You only need to call the combined pipeline once. You can set different `guidance_scale` and `num_inference_steps` for the prior pipeline with the `prior_guidance_scale` and `prior_num_inference_steps` arguments.
```python
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, guidance_scacle = 4.0, height=768, width=768).images[0]
```
</Tip>
The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.
```python
@@ -187,6 +211,34 @@ out.images[0].save("fantasy_land.png")
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png)
<Tip>
You can also use the [`KandinskyImg2ImgCombinedPipeline`] for end-to-end image-to-image generation with Kandinsky 2.1
```python
from diffusers import AutoPipelineForImage2Image
import torch
import requests
from io import BytesIO
from PIL import Image
import os
pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image.thumbnail((768, 768))
image = pipe(prompt=prompt, image=original_image, strength=0.3).images[0]
```
</Tip>
### Text Guided Inpainting Generation
You can use [`KandinskyInpaintPipeline`] to edit images. In this example, we will add a hat to the portrait of a cat.
@@ -231,6 +283,33 @@ image.save("cat_with_hat.png")
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png)
<Tip>
To use the [`KandinskyInpaintCombinedPipeline`] to perform end-to-end image inpainting generation, you can run below code instead
```python
from diffusers import AutoPipelineForInpainting
pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
image = pipe(prompt=prompt, image=original_image, mask_image=mask).images[0]
```
</Tip>
🚨🚨🚨 __Breaking change for Kandinsky Mask Inpainting__ 🚨🚨🚨
We introduced a breaking change for Kandinsky inpainting pipeline in the following pull request: https://github.com/huggingface/diffusers/pull/4207. Previously we accepted a mask format where black pixels represent the masked-out area. This is inconsistent with all other pipelines in diffusers. We have changed the mask format in Knaindsky and now using white pixels instead.
Please upgrade your inpainting code to follow the above. If you are using Kandinsky Inpaint in production. You now need to change the mask to:
```python
# For PIL input
import PIL.ImageOps
mask = PIL.ImageOps.invert(mask)
# For PyTorch and Numpy input
mask = 1 - mask
```
### Interpolate
The [`KandinskyPriorPipeline`] also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on "The Starry Night".

View File

@@ -11,7 +11,22 @@ specific language governing permissions and limitations under the License.
The Kandinsky 2.2 release includes robust new text-to-image models that support text-to-image generation, image-to-image generation, image interpolation, and text-guided image inpainting. The general workflow to perform these tasks using Kandinsky 2.2 is the same as in Kandinsky 2.1. First, you will need to use a prior pipeline to generate image embeddings based on your text prompt, and then use one of the image decoding pipelines to generate the output image. The only difference is that in Kandinsky 2.2, all of the decoding pipelines no longer accept the `prompt` input, and the image generation process is conditioned with only `image_embeds` and `negative_image_embeds`.
Let's look at an example of how to perform text-to-image generation using Kandinsky 2.2.
Same as with Kandinsky 2.1, the easiest way to perform text-to-image generation is to use the combined Kandinsky pipeline. This process is exactly the same as Kandinsky 2.1. All you need to do is to replace the Kandinsky 2.1 checkpoint with 2.2.
```python
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, height=768, width=768).images[0]
```
Now, let's look at an example where we take separate steps to run the prior pipeline and text-to-image pipeline. This way, we can understand what's happening under the hood and how Kandinsky 2.2 differs from Kandinsky 2.1.
First, let's create the prior pipeline and text-to-image pipeline with Kandinsky 2.2 checkpoints.

View File

@@ -34,3 +34,7 @@ Pipelines do not offer any training functionality. You'll notice PyTorch's autog
## FlaxDiffusionPipeline
[[autodoc]] pipelines.pipeline_flax_utils.FlaxDiffusionPipeline
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -69,7 +69,7 @@ Next, create the adapter pipeline
import torch
from diffusers import StableDiffusionAdapterPipeline, T2IAdapter
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_color_sd14v1")
adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_color_sd14v1", torch_dtype=torch.float16)
pipe = StableDiffusionAdapterPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
adapter=adapter,

View File

@@ -0,0 +1,46 @@
<!--Copyright 2023 The GLIGEN Authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# GLIGEN (Grounded Language-to-Image Generation)
The GLIGEN model was created by researchers and engineers from [University of Wisconsin-Madison, Columbia University, and Microsoft](https://github.com/gligen/GLIGEN). The [`StableDiffusionGLIGENPipeline`] can generate photorealistic images conditioned on grounding inputs. Along with text and bounding boxes, if input images are given, this pipeline can insert objects described by text at the region defined by bounding boxes. Otherwise, it'll generate an image described by the caption/prompt and insert objects described by text at the region defined by bounding boxes. It's trained on COCO2014D and COCO2014CD datasets, and the model uses a frozen CLIP ViT-L/14 text encoder to condition itself on grounding inputs.
The abstract from the [paper](https://huggingface.co/papers/2301.07093) is:
*Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configurations and concepts. GLIGENs zeroshot performance on COCO and LVIS outperforms existing supervised layout-to-image baselines by a large margin.*
<Tip>
Make sure to check out the Stable Diffusion [Tips](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality and how to reuse pipeline components efficiently!
If you want to use one of the official checkpoints for a task, explore the [gligen](https://huggingface.co/gligen) Hub organizations!
</Tip>
This pipeline was contributed by [Nikhil Gajendrakumar](https://github.com/nikhil-masterful).
## StableDiffusionGLIGENPipeline
[[autodoc]] StableDiffusionGLIGENPipeline
- all
- __call__
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
- enable_model_cpu_offload
- prepare_latents
- enable_fuser
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -30,8 +30,8 @@ Make sure to check out the Stable Diffusion [Tips](overview#tips) section to lea
- all
- __call__
## StableDiffusionPipelineOutput
## LDM3DPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
- all
- __call__

View File

@@ -38,9 +38,25 @@ You can install the libraries as follows:
pip install transformers
pip install accelerate
pip install safetensors
```
### Watermarker
We recommend to add an invisible watermark to images generating by Stable Diffusion XL, this can help with identifying if an image is machine-synthesised for downstream applications. To do so, please install
the [invisible-watermark library](https://pypi.org/project/invisible-watermark/) via:
```
pip install invisible-watermark>=0.2.0
```
If the `invisible-watermark` library is installed the watermarker will be used **by default**.
If you have other provisions for generating or deploying images safely, you can disable the watermarker as follows:
```py
pipe = StableDiffusionXLPipeline.from_pretrained(..., add_watermarker=False)
```
### Text-to-Image
You can use SDXL as follows for *text-to-image*:

View File

@@ -1,11 +1,15 @@
# Consistency Model Multistep Scheduler
# CMStochasticIterativeScheduler
## Overview
[Consistency Models](https://huggingface.co/papers/2303.01469) by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever introduced a multistep and onestep scheduler (Algorithm 1) that is capable of generating good samples in one or a small number of steps.
Multistep and onestep scheduler (Algorithm 1) introduced alongside consistency models in the paper [Consistency Models](https://arxiv.org/abs/2303.01469) by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
Based on the [original consistency models implementation](https://github.com/openai/consistency_models).
Should generate good samples from [`ConsistencyModelPipeline`] in one or a small number of steps.
The abstract from the paper is:
*Diffusion models have made significant breakthroughs in image, audio, and video generation, but they depend on an iterative generation process that causes slow sampling speed and caps their potential for real-time applications. To overcome this limitation, we propose consistency models, a new family of generative models that achieve high sample quality without adversarial training. They support fast one-step generation by design, while still allowing for few-step sampling to trade compute for sample quality. They also support zero-shot data editing, like image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either as a way to distill pre-trained diffusion models, or as standalone generative models. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step generation. For example, we achieve the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained as standalone generative models, consistency models also outperform single-step, non-adversarial generative models on standard benchmarks like CIFAR-10, ImageNet 64x64 and LSUN 256x256.*
The original codebase can be found at [openai/consistency_models](https://github.com/openai/consistency_models).
## CMStochasticIterativeScheduler
[[autodoc]] CMStochasticIterativeScheduler
## CMStochasticIterativeSchedulerOutput
[[autodoc]] schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput

View File

@@ -10,13 +10,11 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Denoising Diffusion Implicit Models (DDIM)
# DDIMScheduler
## Overview
[Denoising Diffusion Implicit Models](https://huggingface.co/papers/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
[Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The abstract of the paper is the following:
The abstract from the paper is:
*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training,
yet they require simulating a Markov chain for many steps to produce a sample.
@@ -26,50 +24,43 @@ We construct a class of non-Markovian diffusion processes that lead to the same
We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off
computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.*
The original codebase of this paper can be found here: [ermongroup/ddim](https://github.com/ermongroup/ddim).
For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
The original codebase of this paper can be found at [ermongroup/ddim](https://github.com/ermongroup/ddim), and you can contact the author on [tsong.me](https://tsong.me/).
### Experimental: "Common Diffusion Noise Schedules and Sample Steps are Flawed":
## Tips
The paper **[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891)**
claims that a mismatch between the training and inference settings leads to suboptimal inference generation results for Stable Diffusion.
The paper [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) claims that a mismatch between the training and inference settings leads to suboptimal inference generation results for Stable Diffusion. To fix this, the authors propose:
The abstract reads as follows:
<Tip warning={true}>
*We discover that common diffusion noise schedules do not enforce the last timestep to have zero signal-to-noise ratio (SNR),
and some implementations of diffusion samplers do not start from the last timestep.
Such designs are flawed and do not reflect the fact that the model is given pure Gaussian noise at inference, creating a discrepancy between training and inference.
We show that the flawed design causes real problems in existing implementations.
In Stable Diffusion, it severely limits the model to only generate images with medium brightness and
prevents it from generating very bright and dark samples. We propose a few simple fixes:
- (1) rescale the noise schedule to enforce zero terminal SNR;
- (2) train the model with v prediction;
- (3) change the sampler to always start from the last timestep;
- (4) rescale classifier-free guidance to prevent over-exposure.
These simple changes ensure the diffusion process is congruent between training and inference and
allow the model to generate samples more faithful to the original data distribution.*
🧪 This is an experimental feature!
</Tip>
1. rescale the noise schedule to enforce zero terminal signal-to-noise ratio (SNR)
You can apply all of these changes in `diffusers` when using [`DDIMScheduler`]:
- (1) rescale the noise schedule to enforce zero terminal SNR;
```py
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, rescale_betas_zero_snr=True)
```
- (2) train the model with v prediction;
Continue fine-tuning a checkpoint with [`train_text_to_image.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [`train_text_to_image_lora.py`](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py)
and `--prediction_type="v_prediction"`.
- (3) change the sampler to always start from the last timestep;
2. train a model with `v_prediction` (add the following argument to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts)
```bash
--prediction_type="v_prediction"
```
3. change the sampler to always start from the last timestep
```py
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
```
- (4) rescale classifier-free guidance to prevent over-exposure.
4. rescale classifier-free guidance to prevent over-exposure
```py
pipe(..., guidance_rescale=0.7)
image = pipeline(prompt, guidance_rescale=0.7).images[0]
```
An example is to use [this checkpoint](https://huggingface.co/ptx0/pseudo-journey-v2)
which has been fine-tuned using the `"v_prediction"`.
The checkpoint can then be run in inference as follows:
For example:
```py
from diffusers import DiffusionPipeline, DDIMScheduler
@@ -86,3 +77,6 @@ image = pipeline(prompt, guidance_rescale=0.7).images[0]
## DDIMScheduler
[[autodoc]] DDIMScheduler
## DDIMSchedulerOutput
[[autodoc]] schedulers.scheduling_ddim.DDIMSchedulerOutput

View File

@@ -10,12 +10,10 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Inverse Denoising Diffusion Implicit Models (DDIMInverse)
# DDIMInverseScheduler
## Overview
This scheduler is the inverted scheduler of [Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/pdf/2211.09794.pdf)
`DDIMInverseScheduler` is the inverted scheduler from [Denoising Diffusion Implicit Models](https://huggingface.co/papers/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The implementation is mostly based on the DDIM inversion definition from [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://huggingface.co/papers/2211.09794.pdf).
## DDIMInverseScheduler
[[autodoc]] DDIMInverseScheduler

View File

@@ -10,18 +10,16 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Denoising Diffusion Probabilistic Models (DDPM)
# DDPMScheduler
## Overview
[Denoising Diffusion Probabilistic Models](https://huggingface.co/papers/2006.11239) (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
(DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes the diffusion based model of the same name, but in the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
The abstract from the paper is:
The abstract of the paper is the following:
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.
The original paper can be found [here](https://arxiv.org/abs/2010.02502).
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
## DDPMScheduler
[[autodoc]] DDPMScheduler
## DDPMSchedulerOutput
[[autodoc]] schedulers.scheduling_ddpm.DDPMSchedulerOutput

View File

@@ -10,13 +10,27 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# DEIS
# DEISMultistepScheduler
Fast Sampling of Diffusion Models with Exponential Integrator.
Diffusion Exponential Integrator Sampler (DEIS) is proposed in [Fast Sampling of Diffusion Models with Exponential Integrator](https://huggingface.co/papers/2204.13902) by Qinsheng Zhang and Yongxin Chen. `DEISMultistepScheduler` is a fast high order solver for diffusion ordinary differential equations (ODEs).
## Overview
This implementation modifies the polynomial fitting formula in log-rho space instead of the original linear `t` space in the DEIS paper. The modification enjoys closed-form coefficients for exponential multistep update instead of replying on the numerical solver.
Original paper can be found [here](https://arxiv.org/abs/2204.13902). The original implementation can be found [here](https://github.com/qsh-zh/deis).
The abstract from the paper is:
*The past few years have witnessed the great success of Diffusion models~(DMs) in generating high-fidelity samples in generative modeling tasks. A major limitation of the DM is its notoriously slow sampling procedure which normally requires hundreds to thousands of time discretization steps of the learned diffusion process to reach the desired accuracy. Our goal is to develop a fast sampling method for DMs with a much less number of steps while retaining high sample quality. To this end, we systematically analyze the sampling procedure in DMs and identify key factors that affect the sample quality, among which the method of discretization is most crucial. By carefully examining the learned diffusion process, we propose Diffusion Exponential Integrator Sampler~(DEIS). It is based on the Exponential Integrator designed for discretizing ordinary differential equations (ODEs) and leverages a semilinear structure of the learned diffusion process to reduce the discretization error. The proposed method can be applied to any DMs and can generate high-fidelity samples in as few as 10 steps. In our experiments, it takes about 3 minutes on one A6000 GPU to generate 50k images from CIFAR10. Moreover, by directly using pre-trained DMs, we achieve the state-of-art sampling performance when the number of score function evaluation~(NFE) is limited, e.g., 4.17 FID with 10 NFEs, 3.37 FID, and 9.74 IS with only 15 NFEs on CIFAR10. Code is available at [this https URL](https://github.com/qsh-zh/deis).*
The original codebase can be found at [qsh-zh/deis](https://github.com/qsh-zh/deis).
## Tips
It is recommended to set `solver_order` to 2 or 3, while `solver_order=1` is equivalent to [`DDIMScheduler`].
Dynamic thresholding from [Imagen](https://huggingface.co/papers/2205.11487) is supported, and for pixel-space
diffusion models, you can set `thresholding=True` to use the dynamic thresholding.
## DEISMultistepScheduler
[[autodoc]] DEISMultistepScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,13 +10,14 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# DPM Discrete Scheduler inspired by Karras et. al paper
# KDPM2DiscreteScheduler
## Overview
The `KDPM2DiscreteScheduler` is inspired by the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper, and the scheduler is ported from and created by [Katherine Crowson](https://github.com/crowsonkb/).
Inspired by [Karras et. al](https://arxiv.org/abs/2206.00364). Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
The original codebase can be found at [crowsonkb/k-diffusion](https://github.com/crowsonkb/k-diffusion).
## KDPM2DiscreteScheduler
[[autodoc]] KDPM2DiscreteScheduler
[[autodoc]] KDPM2DiscreteScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,13 +10,14 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# DPM Discrete Scheduler with ancestral sampling inspired by Karras et. al paper
# KDPM2AncestralDiscreteScheduler
## Overview
The `KDPM2DiscreteScheduler` with ancestral sampling is inspired by the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper, and the scheduler is ported from and created by [Katherine Crowson](https://github.com/crowsonkb/).
Inspired by [Karras et. al](https://arxiv.org/abs/2206.00364). Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
The original codebase can be found at [crowsonkb/k-diffusion](https://github.com/crowsonkb/k-diffusion).
## KDPM2AncestralDiscreteScheduler
[[autodoc]] KDPM2AncestralDiscreteScheduler
[[autodoc]] KDPM2AncestralDiscreteScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,14 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# DPM Stochastic Scheduler inspired by Karras et. al paper
# DPMSolverSDEScheduler
## Overview
Inspired by Stochastic Sampler from [Karras et. al](https://arxiv.org/abs/2206.00364).
Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
The `DPMSolverSDEScheduler` is inspired by the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper, and the scheduler is ported from and created by [Katherine Crowson](https://github.com/crowsonkb/).
## DPMSolverSDEScheduler
[[autodoc]] DPMSolverSDEScheduler
[[autodoc]] DPMSolverSDEScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,12 +10,13 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Euler scheduler
# EulerDiscreteScheduler
## Overview
The Euler scheduler (Algorithm 2) is from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper by Karras et al. This is a fast scheduler which can often generate good outputs in 20-30 steps. The scheduler is based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51) implementation by [Katherine Crowson](https://github.com/crowsonkb/).
Euler scheduler (Algorithm 2) from the paper [Elucidating the Design Space of Diffusion-Based Generative Models](https://arxiv.org/abs/2206.00364) by Karras et al. (2022). Based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51) implementation by Katherine Crowson.
Fast scheduler which often times generates good outputs with 20-30 steps.
## EulerDiscreteScheduler
[[autodoc]] EulerDiscreteScheduler
[[autodoc]] EulerDiscreteScheduler
## EulerDiscreteSchedulerOutput
[[autodoc]] schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput

View File

@@ -10,12 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Euler Ancestral scheduler
# EulerAncestralDiscreteScheduler
## Overview
Ancestral sampling with Euler method steps. Based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72) implementation by Katherine Crowson.
Fast scheduler which often times generates good outputs with 20-30 steps.
A scheduler that uses ancestral sampling with Euler method steps. This is a fast scheduler which can often generate good outputs in 20-30 steps. The scheduler is based on the original [k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72) implementation by [Katherine Crowson](https://github.com/crowsonkb/).
## EulerAncestralDiscreteScheduler
[[autodoc]] EulerAncestralDiscreteScheduler
## EulerAncestralDiscreteSchedulerOutput
[[autodoc]] schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput

View File

@@ -10,14 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Heun scheduler inspired by Karras et. al paper
# HeunDiscreteScheduler
## Overview
Algorithm 1 of [Karras et. al](https://arxiv.org/abs/2206.00364).
Scheduler ported from @crowsonkb's https://github.com/crowsonkb/k-diffusion library:
All credit for making this scheduler work goes to [Katherine Crowson](https://github.com/crowsonkb/)
The Heun scheduler (Algorithm 1) is from the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper by Karras et al. The scheduler is ported from the [k-diffusion](https://github.com/crowsonkb/k-diffusion) library and created by [Katherine Crowson](https://github.com/crowsonkb/).
## HeunDiscreteScheduler
[[autodoc]] HeunDiscreteScheduler
[[autodoc]] HeunDiscreteScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,11 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# improved pseudo numerical methods for diffusion models (iPNDM)
# IPNDMScheduler
## Overview
Original implementation can be found [here](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296).
`IPNDMScheduler` is a fourth-order Improved Pseudo Linear Multistep scheduler. The original implementation can be found at [crowsonkb/v-diffusion-pytorch](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296).
## IPNDMScheduler
[[autodoc]] IPNDMScheduler
[[autodoc]] IPNDMScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,11 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Linear multistep scheduler for discrete beta schedules
# LMSDiscreteScheduler
## Overview
Original implementation can be found [here](https://arxiv.org/abs/2206.00364).
`LMSDiscreteScheduler` is a linear multistep scheduler for discrete beta schedules. The scheduler is ported from and created by [Katherine Crowson](https://github.com/crowsonkb/), and the original implementation can be found at [crowsonkb/k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181).
## LMSDiscreteScheduler
[[autodoc]] LMSDiscreteScheduler
[[autodoc]] LMSDiscreteScheduler
## LMSDiscreteSchedulerOutput
[[autodoc]] schedulers.scheduling_lms_discrete.LMSDiscreteSchedulerOutput

View File

@@ -10,11 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Multistep DPM-Solver
# DPMSolverMultistepScheduler
## Overview
`DPMSolverMultistep` is a multistep scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality
samples, and it can generate quite good samples even in 10 steps.
## Tips
It is recommended to set `solver_order` to 2 for guide sampling, and `solver_order=3` for unconditional sampling.
Dynamic thresholding from Imagen (https://huggingface.co/papers/2205.11487) is supported, and for pixel-space
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
thresholding. This thresholding method is unsuitable for latent-space diffusion models such as
Stable Diffusion.
The SDE variant of DPMSolver and DPM-Solver++ is also supported, but only for the first and second-order solvers. This is a fast SDE solver for the reverse diffusion SDE. It is recommended to use the second-order `sde-dpmsolver++`.
## DPMSolverMultistepScheduler
[[autodoc]] DPMSolverMultistepScheduler
[[autodoc]] DPMSolverMultistepScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,13 +10,21 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Inverse Multistep DPM-Solver (DPMSolverMultistepInverse)
# DPMSolverMultistepInverse
## Overview
`DPMSolverMultistepInverse` is the inverted scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
This scheduler is the inverted scheduler of [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://arxiv.org/abs/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models
](https://arxiv.org/abs/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/pdf/2211.09794.pdf) and the ad-hoc notebook implementation for DiffEdit latent inversion [here](https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/diffedit.ipynb).
The implementation is mostly based on the DDIM inversion definition of [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://huggingface.co/papers/2211.09794.pdf) and notebook implementation of the [`DiffEdit`] latent inversion from [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/diffedit.ipynb).
## Tips
Dynamic thresholding from Imagen (https://huggingface.co/papers/2205.11487) is supported, and for pixel-space
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
thresholding. This thresholding method is unsuitable for latent-space diffusion models such as
Stable Diffusion.
## DPMSolverMultistepInverseScheduler
[[autodoc]] DPMSolverMultistepInverseScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -12,81 +12,53 @@ specific language governing permissions and limitations under the License.
# Schedulers
Diffusers contains multiple pre-built schedule functions for the diffusion process.
🤗 Diffusers provides many scheduler functions for the diffusion process. A scheduler takes a model's output (the sample which the diffusion process is iterating on) and a timestep to return a denoised sample. The timestep is important because it dictates where in the diffusion process the step is; data is generated by iterating forward *n* timesteps and inference occurs by propagating backward through the timesteps. Based on the timestep, a scheduler may be *discrete* in which case the timestep is an `int` or *continuous* in which case the timestep is a `float`.
## What is a scheduler?
Depending on the context, a scheduler defines how to iteratively add noise to an image or how to update a sample based on a model's output:
The schedule functions, denoted *Schedulers* in the library take in the output of a trained model, a sample which the diffusion process is iterating on, and a timestep to return a denoised sample. That's why schedulers may also be called *Samplers* in other diffusion models implementations.
- during *training*, a scheduler adds noise (there are different algorithms for how to add noise) to a sample to train a diffusion model
- during *inference*, a scheduler defines how to update a sample based on a pretrained model's output
- Schedulers define the methodology for iteratively adding noise to an image or for updating a sample based on model outputs.
- adding noise in different manners represent the algorithmic processes to train a diffusion model by adding noise to images.
- for inference, the scheduler defines how to update a sample based on an output from a pretrained model.
- Schedulers are often defined by a *noise schedule* and an *update rule* to solve the differential equation solution.
Many schedulers are implemented from the [k-diffusion](https://github.com/crowsonkb/k-diffusion) library by [Katherine Crowson](https://github.com/crowsonkb/), and they're also widely used in A1111. To help you map the schedulers from k-diffusion and A1111 to the schedulers in 🤗 Diffusers, take a look at the table below:
### Discrete versus continuous schedulers
| A1111/k-diffusion | 🤗 Diffusers | Usage |
|---------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------|
| DPM++ 2M | [`DPMSolverMultistepScheduler`] | |
| DPM++ 2M Karras | [`DPMSolverMultistepScheduler`] | init with `use_karras_sigmas=True` |
| DPM++ 2M SDE | [`DPMSolverMultistepScheduler`] | init with `algorithm_type="sde-dpmsolver++"` |
| DPM++ 2M SDE Karras | [`DPMSolverMultistepScheduler`] | init with `use_karras_sigmas=True` and `algorithm_type="sde-dpmsolver++"` |
| DPM++ 2S a | N/A | very similar to `DPMSolverSinglestepScheduler` |
| DPM++ 2S a Karras | N/A | very similar to `DPMSolverSinglestepScheduler(use_karras_sigmas=True, ...)` |
| DPM++ SDE | [`DPMSolverSinglestepScheduler`] | |
| DPM++ SDE Karras | [`DPMSolverSinglestepScheduler`] | init with `use_karras_sigmas=True` |
| DPM2 | [`KDPM2DiscreteScheduler`] | |
| DPM2 Karras | [`KDPM2DiscreteScheduler`] | init with `use_karras_sigmas=True` |
| DPM2 a | [`KDPM2AncestralDiscreteScheduler`] | |
| DPM2 a Karras | [`KDPM2AncestralDiscreteScheduler`] | init with `use_karras_sigmas=True` |
| DPM adaptive | N/A | |
| DPM fast | N/A | |
| Euler | [`EulerDiscreteScheduler`] | |
| Euler a | [`EulerAncestralDiscreteScheduler`] | |
| Heun | [`HeunDiscreteScheduler`] | |
| LMS | [`LMSDiscreteScheduler`] | |
| LMS Karras | [`LMSDiscreteScheduler`] | init with `use_karras_sigmas=True` |
| N/A | [`DEISMultistepScheduler`] | |
| N/A | [`UniPCMultistepScheduler`] | |
All schedulers take in a timestep to predict the updated version of the sample being diffused.
The timesteps dictate where in the diffusion process the step is, where data is generated by iterating forward in time and inference is executed by propagating backwards through timesteps.
Different algorithms use timesteps that can be discrete (accepting `int` inputs), such as the [`DDPMScheduler`] or [`PNDMScheduler`], or continuous (accepting `float` inputs), such as the score-based schedulers [`ScoreSdeVeScheduler`] or [`ScoreSdeVpScheduler`].
All schedulers are built from the base [`SchedulerMixin`] class which implements low level utilities shared by all schedulers.
## Designing Re-usable schedulers
The core design principle between the schedule functions is to be model, system, and framework independent.
This allows for rapid experimentation and cleaner abstractions in the code, where the model prediction is separated from the sample update.
To this end, the design of schedulers is such that:
- Schedulers can be used interchangeably between diffusion models in inference to find the preferred trade-off between speed and generation quality.
- Schedulers are currently by default in PyTorch, but are designed to be framework independent (partial Jax support currently exists).
- Many diffusion pipelines, such as [`StableDiffusionPipeline`] and [`DiTPipeline`] can use any of [`KarrasDiffusionSchedulers`]
## Schedulers Summary
The following table summarizes all officially supported schedulers, their corresponding paper
| Scheduler | Paper |
|---|---|
| [ddim](./ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) |
| [ddim_inverse](./ddim_inverse) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) |
| [ddpm](./ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) |
| [deis](./deis) | [**DEISMultistepScheduler**](https://arxiv.org/abs/2204.13902) |
| [singlestep_dpm_solver](./singlestep_dpm_solver) | [**Singlestep DPM-Solver**](https://arxiv.org/abs/2206.00927) |
| [multistep_dpm_solver](./multistep_dpm_solver) | [**Multistep DPM-Solver**](https://arxiv.org/abs/2206.00927) |
| [heun](./heun) | [**Heun scheduler inspired by Karras et. al paper**](https://arxiv.org/abs/2206.00364) |
| [dpm_discrete](./dpm_discrete) | [**DPM Discrete Scheduler inspired by Karras et. al paper**](https://arxiv.org/abs/2206.00364) |
| [dpm_discrete_ancestral](./dpm_discrete_ancestral) | [**DPM Discrete Scheduler with ancestral sampling inspired by Karras et. al paper**](https://arxiv.org/abs/2206.00364) |
| [stochastic_karras_ve](./stochastic_karras_ve) | [**Variance exploding, stochastic sampling from Karras et. al**](https://arxiv.org/abs/2206.00364) |
| [lms_discrete](./lms_discrete) | [**Linear multistep scheduler for discrete beta schedules**](https://arxiv.org/abs/2206.00364) |
| [pndm](./pndm) | [**Pseudo numerical methods for diffusion models (PNDM)**](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181) |
| [score_sde_ve](./score_sde_ve) | [**variance exploding stochastic differential equation (VE-SDE) scheduler**](https://arxiv.org/abs/2011.13456) |
| [ipndm](./ipndm) | [**improved pseudo numerical methods for diffusion models (iPNDM)**](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296) |
| [score_sde_vp](./score_sde_vp) | [**Variance preserving stochastic differential equation (VP-SDE) scheduler**](https://arxiv.org/abs/2011.13456) |
| [euler](./euler) | [**Euler scheduler**](https://arxiv.org/abs/2206.00364) |
| [euler_ancestral](./euler_ancestral) | [**Euler Ancestral scheduler**](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72) |
| [vq_diffusion](./vq_diffusion) | [**VQDiffusionScheduler**](https://arxiv.org/abs/2111.14822) |
| [unipc](./unipc) | [**UniPCMultistepScheduler**](https://arxiv.org/abs/2302.04867) |
| [repaint](./repaint) | [**RePaint scheduler**](https://arxiv.org/abs/2201.09865) |
## API
The core API for any new scheduler must follow a limited structure.
- Schedulers should provide one or more `def step(...)` functions that should be called to update the generated sample iteratively.
- Schedulers should provide a `set_timesteps(...)` method that configures the parameters of a schedule function for a specific inference task.
- Schedulers should be framework-specific.
The base class [`SchedulerMixin`] implements low level utilities used by multiple schedulers.
### SchedulerMixin
## SchedulerMixin
[[autodoc]] SchedulerMixin
### SchedulerOutput
The class [`SchedulerOutput`] contains the outputs from any schedulers `step(...)` call.
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput
### KarrasDiffusionSchedulers
## KarrasDiffusionSchedulers
`KarrasDiffusionSchedulers` encompasses the main generalization of schedulers in Diffusers. The schedulers in this class are distinguished, at a high level, by their noise sampling strategy; the type of network and scaling; and finally the training strategy or how the loss is weighed.
[`KarrasDiffusionSchedulers`] are a broad generalization of schedulers in 🤗 Diffusers. The schedulers in this class are distinguished at a high level by their noise sampling strategy, the type of network and scaling, the training strategy, and how the loss is weighed.
The different schedulers, depending on the type of ODE solver, fall into the above taxonomy and provide a good abstraction for the design of the main schedulers implemented in Diffusers. The schedulers in this class are given below:
The different schedulers in this class, depending on the ordinary differential equations (ODE) solver type, fall into the above taxonomy and provide a good abstraction for the design of the main schedulers implemented in 🤗 Diffusers. The schedulers in this class are given [here](https://github.com/huggingface/diffusers/blob/a69754bb879ed55b9b6dc9dd0b3cf4fa4124c765/src/diffusers/schedulers/scheduling_utils.py#L32).
[[autodoc]] schedulers.scheduling_utils.KarrasDiffusionSchedulers
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -10,11 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Pseudo numerical methods for diffusion models (PNDM)
# PNDMScheduler
## Overview
Original implementation can be found [here](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181).
`PNDMScheduler`, or pseudo numerical methods for diffusion models, uses more advanced ODE integration techniques like the Runge-Kutta and linear multi-step method. The original implementation can be found at [crowsonkb/k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181).
## PNDMScheduler
[[autodoc]] PNDMScheduler
[[autodoc]] PNDMScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,14 +10,18 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# RePaint scheduler
# RePaintScheduler
## Overview
`RePaintScheduler` is a DDPM-based inpainting scheduler for unsupervised inpainting with extreme masks. It is designed to be used with the [`RePaintPipeline`], and it is based on the paper [RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://huggingface.co/papers/2201.09865) by Andreas Lugmayr et al.
DDPM-based inpainting scheduler for unsupervised inpainting with extreme masks.
Intended for use with [`RePaintPipeline`].
Based on the paper [RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2201.09865)
and the original implementation by Andreas Lugmayr et al.: https://github.com/andreas128/RePaint
The abstract from the paper is:
*Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks. RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions. Github Repository: git.io/RePaint*.
The original implementation can be found at [andreas128/RePaint](https://github.com/andreas128/).
## RePaintScheduler
[[autodoc]] RePaintScheduler
[[autodoc]] RePaintScheduler
## RePaintSchedulerOutput
[[autodoc]] schedulers.scheduling_repaint.RePaintSchedulerOutput

View File

@@ -10,11 +10,16 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Variance Exploding Stochastic Differential Equation (VE-SDE) scheduler
# ScoreSdeVeScheduler
## Overview
`ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler. It was introduced in the [Score-Based Generative Modeling through Stochastic Differential Equations](https://huggingface.co/papers/2011.13456) paper by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole.
Original paper can be found [here](https://arxiv.org/abs/2011.13456).
The abstract from the paper is:
*Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model*.
## ScoreSdeVeScheduler
[[autodoc]] ScoreSdeVeScheduler
## SdeVeOutput
[[autodoc]] schedulers.scheduling_sde_ve.SdeVeOutput

View File

@@ -10,15 +10,17 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Variance Preserving Stochastic Differential Equation (VP-SDE) scheduler
# ScoreSdeVpScheduler
## Overview
`ScoreSdeVpScheduler` is a variance preserving stochastic differential equation (SDE) scheduler. It was introduced in the [Score-Based Generative Modeling through Stochastic Differential Equations](https://huggingface.co/papers/2011.13456) paper by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole.
Original paper can be found [here](https://arxiv.org/abs/2011.13456).
The abstract from the paper is:
*Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model*.
<Tip warning={true}>
Score SDE-VP is under construction.
🚧 This scheduler is under construction!
</Tip>

View File

@@ -10,11 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Singlestep DPM-Solver
# DPMSolverSinglestepScheduler
## Overview
`DPMSolverSinglestepScheduler` is a single step scheduler from [DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps](https://huggingface.co/papers/2206.00927) and [DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models](https://huggingface.co/papers/2211.01095) by Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
Original paper can be found [here](https://arxiv.org/abs/2206.00927) and the [improved version](https://arxiv.org/abs/2211.01095). The original implementation can be found [here](https://github.com/LuChengTHU/dpm-solver).
DPMSolver (and the improved version DPMSolver++) is a fast dedicated high-order solver for diffusion ODEs with convergence order guarantee. Empirically, DPMSolver sampling with only 20 steps can generate high-quality
samples, and it can generate quite good samples even in 10 steps.
The original implementation can be found at [LuChengTHU/dpm-solver](https://github.com/LuChengTHU/dpm-solver).
## Tips
It is recommended to set `solver_order` to 2 for guide sampling, and `solver_order=3` for unconditional sampling.
Dynamic thresholding from Imagen (https://huggingface.co/papers/2205.11487) is supported, and for pixel-space
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use dynamic
thresholding. This thresholding method is unsuitable for latent-space diffusion models such as
Stable Diffusion.
## DPMSolverSinglestepScheduler
[[autodoc]] DPMSolverSinglestepScheduler
[[autodoc]] DPMSolverSinglestepScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -10,11 +10,12 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Variance exploding, stochastic sampling from Karras et. al
# KarrasVeScheduler
## Overview
Original paper can be found [here](https://arxiv.org/abs/2206.00364).
`KarrasVeScheduler` is a stochastic sampler tailored o variance-expanding (VE) models. It is based on the [Elucidating the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) and [Score-based generative modeling through stochastic differential equations](https://huggingface.co/papers/2011.13456) papers.
## KarrasVeScheduler
[[autodoc]] KarrasVeScheduler
[[autodoc]] KarrasVeScheduler
## KarrasVeOutput
[[autodoc]] schedulers.scheduling_karras_ve.KarrasVeOutput

View File

@@ -10,15 +10,28 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# UniPC
# UniPCMultistepScheduler
## Overview
`UniPCMultistepScheduler` is a training-free framework designed for fast sampling of diffusion models. It was introduced in [UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models](https://huggingface.co/papers/2302.04867) by Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, Jiwen Lu.
UniPC is a training-free framework designed for the fast sampling of diffusion models, which consists of a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders.
It consists of a corrector (UniC) and a predictor (UniP) that share a unified analytical form and support arbitrary orders.
UniPC is by design model-agnostic, supporting pixel-space/latent-space DPMs on unconditional/conditional sampling. It can also be applied to both noise prediction and data prediction models. The corrector UniC can be also applied after any off-the-shelf solvers to increase the order of accuracy.
For more details about the method, please refer to the [paper](https://arxiv.org/abs/2302.04867) and the [code](https://github.com/wl-zhao/UniPC).
The abstract from the paper is:
Fast Sampling of Diffusion Models with Exponential Integrator.
*Diffusion probabilistic models (DPMs) have demonstrated a very promising ability in high-resolution image synthesis. However, sampling from a pre-trained DPM usually requires hundreds of model evaluations, which is computationally expensive. Despite recent progress in designing high-order solvers for DPMs, there still exists room for further speedup, especially in extremely few steps (e.g., 5~10 steps). Inspired by the predictor-corrector for ODE solvers, we develop a unified corrector (UniC) that can be applied after any existing DPM sampler to increase the order of accuracy without extra model evaluations, and derive a unified predictor (UniP) that supports arbitrary order as a byproduct. Combining UniP and UniC, we propose a unified predictor-corrector framework called UniPC for the fast sampling of DPMs, which has a unified analytical form for any order and can significantly improve the sampling quality over previous methods. We evaluate our methods through extensive experiments including both unconditional and conditional sampling using pixel-space and latent-space DPMs. Our UniPC can achieve 3.87 FID on CIFAR10 (unconditional) and 7.51 FID on ImageNet 256times256 (conditional) with only 10 function evaluations. Code is available at https://github.com/wl-zhao/UniPC*.
The original codebase can be found at [wl-zhao/UniPC](https://github.com/wl-zhao/UniPC).
## Tips
It is recommended to set `solver_order` to 2 for guide sampling, and `solver_order=3` for unconditional sampling.
Dynamic thresholding from Imagen (https://huggingface.co/papers/2205.11487) is supported, and for pixel-space
diffusion models, you can set both `predict_x0=True` and `thresholding=True` to use dynamic thresholding. This thresholding method is unsuitable for latent-space diffusion models such as Stable Diffusion.
## UniPCMultistepScheduler
[[autodoc]] UniPCMultistepScheduler
## SchedulerOutput
[[autodoc]] schedulers.scheduling_utils.SchedulerOutput

View File

@@ -12,9 +12,14 @@ specific language governing permissions and limitations under the License.
# VQDiffusionScheduler
## Overview
`VQDiffusionScheduler` converts the transformer model's output into a sample for the unnoised image at the previous diffusion timestep. It was introduced in [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://huggingface.co/papers/2111.14822) by Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, Baining Guo.
Original paper can be found [here](https://arxiv.org/abs/2111.14822)
The abstract from the paper is:
*We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.*
## VQDiffusionScheduler
[[autodoc]] VQDiffusionScheduler
[[autodoc]] VQDiffusionScheduler
## VQDiffusionSchedulerOutput
[[autodoc]] schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput

View File

@@ -20,4 +20,8 @@ Utility and helper functions for working with 🤗 Diffusers.
## export_to_video
[[autodoc]] utils.testing_utils.export_to_video
[[autodoc]] utils.testing_utils.export_to_video
## make_image_grid
[[autodoc]] utils.pil_utils.make_image_grid

View File

@@ -90,7 +90,7 @@ The following design principles are followed:
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
### Schedulers

View File

@@ -51,6 +51,7 @@ from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe = pipe.to("cuda")
@@ -65,42 +66,11 @@ image = pipe(prompt).images[0]
</Tip>
## Sliced attention for additional memory savings
For even additional memory savings, you can use a sliced version of attention that performs the computation in steps instead of all at once.
<Tip>
Attention slicing is useful even if a batch size of just 1 is used - as long
as the model uses more than one attention head. If there is more than one
attention head the *QK^T* attention matrix can be computed sequentially for
each head which can save a significant amount of memory.
</Tip>
To perform the attention computation sequentially over each head, you only need to invoke [`~DiffusionPipeline.enable_attention_slicing`] in your pipeline before inference, like here:
```Python
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_attention_slicing()
image = pipe(prompt).images[0]
```
There's a small performance penalty of about 10% slower inference times, but this method allows you to use Stable Diffusion in as little as 3.2 GB of VRAM!
## Sliced VAE decode for larger batches
To decode large batches of images with limited VRAM, or to enable batches with 32 images or more, you can use sliced VAE decode that decodes the batch latents one image at a time.
You likely want to couple this with [`~StableDiffusionPipeline.enable_attention_slicing`] or [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`] to further minimize memory use.
You likely want to couple this with [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`] to further minimize memory use.
To perform the VAE decode one image at a time, invoke [`~StableDiffusionPipeline.enable_vae_slicing`] in your pipeline before inference. For example:
@@ -111,6 +81,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe = pipe.to("cuda")
@@ -126,7 +97,7 @@ You may see a small performance boost in VAE decode on multi-image batches. Ther
Tiled VAE processing makes it possible to work with large images on limited VRAM. For example, generating 4k images in 8GB of VRAM. Tiled VAE decoder splits the image into overlapping tiles, decodes the tiles, and blends the outputs to make the final image.
You want to couple this with [`~StableDiffusionPipeline.enable_attention_slicing`] or [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`] to further minimize memory use.
You want to couple this with [`~StableDiffusionPipeline.enable_xformers_memory_efficient_attention`] to further minimize memory use.
To use tiled VAE processing, invoke [`~StableDiffusionPipeline.enable_vae_tiling`] in your pipeline before inference. For example:
@@ -137,6 +108,7 @@ from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
@@ -164,6 +136,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
prompt = "a photo of an astronaut riding a horse on mars"
@@ -188,11 +161,11 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_sequential_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
@@ -221,6 +194,7 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
prompt = "a photo of an astronaut riding a horse on mars"
@@ -237,11 +211,11 @@ from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
)
prompt = "a photo of an astronaut riding a horse on mars"
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing(1)
image = pipe(prompt).images[0]
```
@@ -300,6 +274,7 @@ def generate_inputs():
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
unet = pipe.unet
unet.eval()
@@ -363,6 +338,7 @@ class UNet2DConditionOutput:
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
# use jitted unet
@@ -422,6 +398,7 @@ import torch
pipe = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()

View File

@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License.
-->
# How to use the ONNX Runtime for inference
# How to use ONNX Runtime for inference
🤗 [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with ONNX Runtime.
@@ -27,7 +27,7 @@ pip install optimum["onnxruntime"]
### Inference
To load an ONNX model and run inference with the ONNX Runtime, you need to replace [`StableDiffusionPipeline`] with `ORTStableDiffusionPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
To load an ONNX model and run inference with ONNX Runtime, you need to replace [`StableDiffusionPipeline`] with `ORTStableDiffusionPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
```python
from optimum.onnxruntime import ORTStableDiffusionPipeline
@@ -86,12 +86,13 @@ optimum-cli export onnx --model stabilityai/stable-diffusion-xl-base-1.0 --task
### Inference
To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionPipelineXL` with `ORTStableDiffusionPipelineXL` :
Here is an example of how you can load a SDXL ONNX model from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and run inference with ONNX Runtime :
```python
from optimum.onnxruntime import ORTStableDiffusionXLPipeline
pipeline = ORTStableDiffusionXLPipeline.from_pretrained("sd_xl_onnx")
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = ORTStableDiffusionXLPipeline.from_pretrained(model_id)
prompt = "sailing ship in storm by Leonardo da Vinci"
image = pipeline(prompt).images[0]
```

View File

@@ -85,11 +85,13 @@ You can find more examples in the optimum [documentation](https://huggingface.co
### Inference
Here is an example of how you can load a SDXL OpenVINO model from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and run inference with OpenVINO Runtime :
```python
from optimum.intel import OVStableDiffusionXLPipeline
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id, export=True)
pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id)
prompt = "sailing ship in storm by Rembrandt"
image = pipeline(prompt).images[0]
```

View File

@@ -39,7 +39,7 @@ pip install --upgrade torch diffusers
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
@@ -53,7 +53,7 @@ pip install --upgrade torch diffusers
from diffusers import DiffusionPipeline
+ from diffusers.models.attention_processor import AttnProcessor2_0
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
+ pipe.unet.set_attn_processor(AttnProcessor2_0())
prompt = "a photo of an astronaut riding a horse on mars"
@@ -69,7 +69,7 @@ pip install --upgrade torch diffusers
from diffusers import DiffusionPipeline
from diffusers.models.attention_processor import AttnProcessor
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe.unet.set_default_attn_processor()
prompt = "a photo of an astronaut riding a horse on mars"
@@ -107,7 +107,7 @@ path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
@@ -140,7 +140,7 @@ path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
@@ -180,7 +180,7 @@ path = "runwayml/stable-diffusion-inpainting"
run_compile = True # Set True / False
pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16)
pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.unet.to(memory_format=torch.channels_last)
@@ -212,9 +212,9 @@ init_image = init_image.resize((512, 512))
path = "runwayml/stable-diffusion-v1-5"
run_compile = True # Set True / False
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
path, controlnet=controlnet, torch_dtype=torch.float16
path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
pipe = pipe.to("cuda")
@@ -240,11 +240,11 @@ import torch
run_compile = True # Set True / False
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16, use_safetensors=True)
pipe.to("cuda")
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16)
pipe_2 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-M-v1.0", variant="fp16", text_encoder=None, torch_dtype=torch.float16, use_safetensors=True)
pipe_2.to("cuda")
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16)
pipe_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16, use_safetensors=True)
pipe_3.to("cuda")

View File

@@ -67,7 +67,7 @@ Load the model with the [`~DiffusionPipeline.from_pretrained`] method:
```python
>>> from diffusers import DiffusionPipeline
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components. You'll see that the Stable Diffusion pipeline is composed of the [`UNet2DConditionModel`] and [`PNDMScheduler`] among other things:
@@ -130,7 +130,7 @@ You can also use the pipeline locally. The only difference is you need to downlo
Then load the saved weights into the pipeline:
```python
>>> pipeline = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5")
>>> pipeline = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", use_safetensors=True)
```
Now you can run the pipeline as you would in the section above.
@@ -142,7 +142,7 @@ Different schedulers come with different denoising speeds and quality trade-offs
```py
>>> from diffusers import EulerDiscreteScheduler
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
```
@@ -160,7 +160,7 @@ Models are initiated with the [`~ModelMixin.from_pretrained`] method which also
>>> from diffusers import UNet2DModel
>>> repo_id = "google/ddpm-cat-256"
>>> model = UNet2DModel.from_pretrained(repo_id)
>>> model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
```
To access the model parameters, call `model.config`:

View File

@@ -26,7 +26,7 @@ Begin by loading the [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/r
from diffusers import DiffusionPipeline
model_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
```
The example prompt you'll use is a portrait of an old warrior chief, but feel free to use your own prompt:
@@ -75,7 +75,7 @@ Let's start by loading the model in `float16` and generate an image:
```python
import torch
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True)
pipeline = pipeline.to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator).images[0]
@@ -152,26 +152,13 @@ def get_inputs(batch_size=1):
return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps}
```
You'll also need a function that'll display each batch of images:
```python
from PIL import Image
def image_grid(imgs, rows=2, cols=2):
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
```
Start with `batch_size=4` and see how much memory you've consumed:
```python
from diffusers.utils import make_image_grid
images = pipeline(**get_inputs(batch_size=4)).images
image_grid(images)
make_image_grid(images, 2, 2)
```
Unless you have a GPU with more RAM, the code above probably returned an `OOM` error! Most of the memory is taken up by the cross-attention layers. Instead of running this operation in a batch, you can run it sequentially to save a significant amount of memory. All you have to do is configure the pipeline to use the [`~DiffusionPipeline.enable_attention_slicing`] function:
@@ -184,7 +171,7 @@ Now try increasing the `batch_size` to 8!
```python
images = pipeline(**get_inputs(batch_size=8)).images
image_grid(images, rows=2, cols=4)
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
@@ -213,7 +200,7 @@ from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda")
pipeline.vae = vae
images = pipeline(**get_inputs(batch_size=8)).images
image_grid(images, rows=2, cols=4)
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
@@ -238,7 +225,7 @@ Generate a batch of images with the new prompt:
```python
images = pipeline(**get_inputs(batch_size=8)).images
image_grid(images, rows=2, cols=4)
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
@@ -257,7 +244,7 @@ prompts = [
generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))]
images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images
image_grid(images)
make_image_grid(images, 2, 2)
```
<div class="flex justify-center">

View File

@@ -11,7 +11,7 @@ A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](h
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
pipeline.unet.config["in_channels"]
4
```
@@ -21,7 +21,7 @@ Inpainting requires 9 channels in the input sample. You can check this value in
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", use_safetensors=True)
pipeline.unet.config["in_channels"]
9
```
@@ -35,7 +35,12 @@ from diffusers import UNet2DConditionModel
model_id = "runwayml/stable-diffusion-v1-5"
unet = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True
model_id,
subfolder="unet",
in_channels=9,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True,
use_safetensors=True,
)
```

View File

@@ -265,7 +265,7 @@ distributed_type: DEEPSPEED
See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options.
<Tip>
</Tip>
Changing the default Adam optimizer to DeepSpeed's Adam
`deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but
@@ -306,9 +306,9 @@ import torch
base_model_path = "path to model"
controlnet_path = "path to controlnet"
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
base_model_path, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True
)
# speed up diffusion process with faster scheduler and memory optimization
@@ -327,3 +327,7 @@ image = pipe(prompt, num_inference_steps=20, generator=generator, image=control_
image.save("./output.png")
```
## Stable Diffusion XL
Training with [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) is also supported via the `train_controlnet_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).

View File

@@ -222,7 +222,9 @@ Once you have trained a model using the above command, you can run inference usi
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
pipe.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion("path-to-save-model", weight_name="<new1>.bin")
@@ -246,7 +248,7 @@ model_id = "sayakpaul/custom-diffusion-cat"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
@@ -270,7 +272,7 @@ model_id = "sayakpaul/custom-diffusion-cat-wooden-pot"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, use_safetensors=True).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
pipe.load_textual_inversion(model_id, weight_name="<new2>.bin")

View File

@@ -16,7 +16,9 @@ Now use the [`~accelerate.PartialState.split_between_processes`] utility as a co
from accelerate import PartialState
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
distributed_state = PartialState()
pipeline.to(distributed_state.device)
@@ -50,7 +52,9 @@ import torch.multiprocessing as mp
from diffusers import DiffusionPipeline
sd = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
sd = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
```
You'll want to create a function to run inference; [`init_process_group`](https://pytorch.org/docs/stable/distributed.html?highlight=init_process_group#torch.distributed.init_process_group) handles creating a distributed environment with the type of backend to use, the `rank` of the current process, and the `world_size` or the number of processes participating. If you're running inference in parallel over 2 GPUs, then the `world_size` is 2.

View File

@@ -303,7 +303,9 @@ unet = UNet2DConditionModel.from_pretrained("/sddata/dreambooth/daruma-v2-1/chec
# if you have trained with `--args.train_text_encoder` make sure to also load the text encoder
text_encoder = CLIPTextModel.from_pretrained("/sddata/dreambooth/daruma-v2-1/checkpoint-100/text_encoder")
pipeline = DiffusionPipeline.from_pretrained(model_id, unet=unet, text_encoder=text_encoder, dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
model_id, unet=unet, text_encoder=text_encoder, dtype=torch.float16, use_safetensors=True
)
pipeline.to("cuda")
# Perform inference, or save, or push to the hub
@@ -318,7 +320,7 @@ from diffusers import DiffusionPipeline
# Load the pipeline with the same arguments (model, revision) that were used for training
model_id = "CompVis/stable-diffusion-v1-4"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
accelerator = Accelerator()
@@ -333,6 +335,7 @@ pipeline = DiffusionPipeline.from_pretrained(
model_id,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
use_safetensors=True,
)
# Perform inference, or save, or push to the hub
@@ -488,7 +491,7 @@ from diffusers import DiffusionPipeline
import torch
model_id = "path_to_saved_model"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True).to("cuda")
prompt = "A photo of sks dog in a bucket"
image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
@@ -510,7 +513,7 @@ must also update the pipeline's scheduler config.
```py
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", use_safetensors=True)
pipe.load_lora_weights("<lora weights path>")
@@ -704,4 +707,4 @@ accelerate launch train_dreambooth.py \
## Stable Diffusion XL
We support fine-tuning of the UNet shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) with DreamBooth and LoRA via the `train_dreambooth_lora_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sdxl.md).
We support fine-tuning of the UNet and text encoders shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) with DreamBooth and LoRA via the `train_dreambooth_lora_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sdxl.md).

View File

@@ -165,7 +165,9 @@ import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
model_id = "your_model_id" # <- replace this
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
model_id, torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/test_pix2pix_4.png"
@@ -212,4 +214,4 @@ If you're looking for some interesting ways to use the InstructPix2Pix training
## Stable Diffusion XL
We support fine-tuning of the UNet shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) with DreamBooth and LoRA via the `train_dreambooth_lora_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md).
Training with [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) is also supported via the `train_instruct_pix2pix_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/README_sdxl.md).

View File

@@ -98,7 +98,7 @@ Now you can use the model for inference by loading the base model in the [`Stabl
>>> model_base = "runwayml/stable-diffusion-v1-5"
>>> pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
>>> pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True)
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
```
@@ -137,7 +137,7 @@ lora_model_id = "sayakpaul/sd-model-finetuned-lora-t4"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, use_safetensors=True)
...
```
@@ -211,7 +211,7 @@ Now you can use the model for inference by loading the base model in the [`Stabl
>>> model_base = "runwayml/stable-diffusion-v1-5"
>>> pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16)
>>> pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True)
```
Load the LoRA weights from your finetuned DreamBooth model *on top of the base model weights*, and then move the pipeline to a GPU for faster inference. When you merge the LoRA weights with the frozen pretrained model weights, you can optionally adjust how much of the weights to merge with the `scale` parameter:
@@ -251,7 +251,7 @@ lora_model_id = "sayakpaul/dreambooth-text-encoder-test"
card = RepoCard.load(lora_model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, use_safetensors=True)
pipe = pipe.to("cuda")
pipe.load_lora_weights(lora_model_id)
image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0]
@@ -307,7 +307,7 @@ import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
pipeline = StableDiffusionPipeline.from_pretrained(
"gsdf/Counterfeit-V2.5", torch_dtype=torch.float16, safety_checker=None
"gsdf/Counterfeit-V2.5", torch_dtype=torch.float16, safety_checker=None, use_safetensors=True
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
pipeline.scheduler.config, use_karras_sigmas=True
@@ -354,4 +354,59 @@ directly with [`~diffusers.loaders.LoraLoaderMixin.load_lora_weights`] like so:
lora_model_id = "sayakpaul/civitai-light-shadow-lora"
lora_filename = "light_and_shadow.safetensors"
pipeline.load_lora_weights(lora_model_id, weight_name=lora_filename)
```
```
### Supporting Stable Diffusion XL LoRAs trained using the Kohya-trainer
With this [PR](https://github.com/huggingface/diffusers/pull/4287), there should now be better support for loading Kohya-style LoRAs trained on Stable Diffusion XL (SDXL).
Here are some example checkpoints we tried out:
* SDXL 0.9:
* https://civitai.com/models/22279?modelVersionId=118556
* https://civitai.com/models/104515/sdxlor30costumesrevue-starlight-saijoclaudine-lora
* https://civitai.com/models/108448/daiton-sdxl-test
* https://filebin.net/2ntfqqnapiu9q3zx/pixelbuildings128-v1.safetensors
* SDXL 1.0:
* https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_offset_example-lora_1.0.safetensors
Here is an example of how to perform inference with these checkpoints in `diffusers`:
```python
from diffusers import DiffusionPipeline
import torch
base_model_id = "stabilityai/stable-diffusion-xl-base-0.9"
pipeline = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipeline.load_lora_weights(".", weight_name="Kamepan.safetensors")
prompt = "anime screencap, glint, drawing, best quality, light smile, shy, a full body of a girl wearing wedding dress in the middle of the forest beneath the trees, fireflies, big eyes, 2d, cute, anime girl, waifu, cel shading, magical girl, vivid colors, (outline:1.1), manga anime artstyle, masterpiece, offical wallpaper, glint <lora:kame_sdxl_v2:1>"
negative_prompt = "(deformed, bad quality, sketch, depth of field, blurry:1.1), grainy, bad anatomy, bad perspective, old, ugly, realistic, cartoon, disney, bad propotions"
generator = torch.manual_seed(2947883060)
num_inference_steps = 30
guidance_scale = 7
image = pipeline(
prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps,
generator=generator, guidance_scale=guidance_scale
).images[0]
image.save("Kamepan.png")
```
`Kamepan.safetensors` comes from https://civitai.com/models/22279?modelVersionId=118556 .
If you notice carefully, the inference UX is exactly identical to what we presented in the sections above.
Thanks to [@isidentical](https://github.com/isidentical) for helping us on integrating this feature.
### Known limitations specific to the Kohya-styled LoRAs
* When images don't looks similar to other UIs, such as ComfyUI, it can be because of multiple reasons, as explained [here](https://github.com/huggingface/diffusers/pull/4287/#issuecomment-1655110736).
* We don't fully support [LyCORIS checkpoints](https://github.com/KohakuBlueleaf/LyCORIS). To the best of our knowledge, our current `load_lora_weights()` should support LyCORIS checkpoints that have LoRA and LoCon modules but not the other ones, such as Hada, LoKR, etc.
## Stable Diffusion XL
We support fine-tuning with [Stable Diffusion XL](https://huggingface.co/papers/2307.01952). Please refer to the following docs:
* [text_to_image/README_sdxl.md](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/README_sdxl.md)
* [dreambooth/README_sdxl.md](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_sdxl.md)

View File

@@ -238,7 +238,7 @@ Now you can load the fine-tuned model for inference by passing the model path or
from diffusers import StableDiffusionPipeline
model_path = "path_to_saved_model"
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float16, use_safetensors=True)
pipe.to("cuda")
image = pipe(prompt="yoda").images[0]
@@ -275,3 +275,9 @@ image.save("yoda-pokemon.png")
```
</jax>
</frameworkcontent>
## Stable Diffusion XL
* We support fine-tuning the UNet shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) via the `train_text_to_image_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/README_sdxl.md).
* We also support fine-tuning of the UNet and Text Encoder shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) with LoRA via the `train_text_to_image_lora_sdxl.py` script. Please refer to the docs [here](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/README_sdxl.md).

View File

@@ -204,7 +204,7 @@ from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True).to("cuda")
```
Next, we need to load the textual inversion embedding vector which can be done via the [`TextualInversionLoaderMixin.load_textual_inversion`]

View File

@@ -0,0 +1,146 @@
# AutoPipeline
🤗 Diffusers is able to complete many different tasks, and you can often reuse the same pretrained weights for multiple tasks such as text-to-image, image-to-image, and inpainting. If you're new to the library and diffusion models though, it may be difficult to know which pipeline to use for a task. For example, if you're using the [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint for text-to-image, you might not know that you could also use it for image-to-image and inpainting by loading the checkpoint with the [`StableDiffusionImg2ImgPipeline`] and [`StableDiffusionInpaintPipeline`] classes respectively.
The `AutoPipeline` class is designed to simplify the variety of pipelines in 🤗 Diffusers. It is a generic, *task-first* pipeline that lets you focus on the task. The `AutoPipeline` automatically detects the correct pipeline class to use, which makes it easier to load a checkpoint for a task without knowing the specific pipeline class name.
<Tip>
Take a look at the [AutoPipeline](./pipelines/auto_pipeline) reference to see which tasks are supported. Currently, it supports text-to-image, image-to-image, and inpainting.
</Tip>
This tutorial shows you how to use an `AutoPipeline` to automatically infer the pipeline class to load for a specific task, given the pretrained weights.
## Choose an AutoPipeline for your task
Start by picking a checkpoint. For example, if you're interested in text-to-image with the [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) checkpoint, use [`AutoPipelineForText2Image`]:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
prompt = "peasant and dragon combat, wood cutting style, viking era, bevel with rune"
image = pipeline(prompt, num_inference_steps=25).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-text2img.png" alt="generated image of peasant fighting dragon in wood cutting style"/>
</div>
Under the hood, [`AutoPipelineForText2Image`]:
1. automatically detects a `"stable-diffusion"` class from the [`model_index.json`](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json) file
2. loads the corresponding text-to-image [`StableDiffusionPipline`] based on the `"stable-diffusion"` class name
Likewise, for image-to-image, [`AutoPipelineForImage2Image`] detects a `"stable-diffusion"` checkpoint from the `model_index.json` file and it'll load the corresponding [`StableDiffusionImg2ImgPipeline`] behind the scenes. You can also pass any additional arguments specific to the pipeline class such as `strength`, which determines the amount of noise or variation added to an input image:
```py
from diffusers import AutoPipelineForImage2Image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
prompt = "a portrait of a dog wearing a pearl earring"
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/1665_Girl_with_a_Pearl_Earring.jpg/800px-1665_Girl_with_a_Pearl_Earring.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image.thumbnail((768, 768))
image = pipeline(prompt, image, num_inference_steps=200, strength=0.75, guidance_scale=10.5).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-img2img.png" alt="generated image of a vermeer portrait of a dog wearing a pearl earring"/>
</div>
And if you want to do inpainting, then [`AutoPipelineForInpainting`] loads the underlying [`StableDiffusionInpaintPipeline`] class in the same way:
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
pipeline = AutoPipelineForInpainting.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = load_image(img_url).convert("RGB")
mask_image = load_image(mask_url).convert("RGB")
prompt = "A majestic tiger sitting on a bench"
image = pipeline(prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-inpaint.png" alt="generated image of a tiger sitting on a bench"/>
</div>
If you try to load an unsupported checkpoint, it'll throw an error:
```py
from diffusers import AutoPipelineForImage2Image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained(
"openai/shap-e-img2img", torch_dtype=torch.float16, use_safetensors=True
)
"ValueError: AutoPipeline can't find a pipeline linked to ShapEImg2ImgPipeline for None"
```
## Use multiple pipelines
For some workflows or if you're loading many pipelines, it is more memory-efficient to reuse the same components from a checkpoint instead of reloading them which would unnecessarily consume additional memory. For example, if you're using a checkpoint for text-to-image and you want to use it again for image-to-image, use the [`~AutoPipelineForImage2Image.from_pipe`] method. This method creates a new pipeline from the components of a previously loaded pipeline at no additional memory cost.
The [`~AutoPipelineForImage2Image.from_pipe`] method detects the original pipeline class and maps it to the new pipeline class corresponding to the task you want to do. For example, if you load a `"stable-diffusion"` class pipeline for text-to-image:
```py
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
pipeline_text2img = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
print(type(pipeline_text2img))
"<class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'>"
```
Then [`~AutoPipelineForImage2Image.from_pipe`] maps the original `"stable-diffusion"` pipeline class to [`StableDiffusionImg2ImgPipeline`]:
```py
pipeline_img2img = AutoPipelineForImage2Image.from_pipe(pipeline_text2img)
print(type(pipeline_img2img))
"<class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline'>"
```
If you passed an optional argument - like disabling the safety checker - to the original pipeline, this argument is also passed on to the new pipeline:
```py
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
pipeline_text2img = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True,
requires_safety_checker=False,
).to("cuda")
pipeline_img2img = AutoPipelineForImage2Image.from_pipe(pipeline_text2img)
print(pipe.config.requires_safety_checker)
"False"
```
You can overwrite any of the arguments and even configuration from the original pipeline if you want to change the behavior of the new pipeline. For example, to turn the safety checker back on and add the `strength` argument:
```py
pipeline_img2img = AutoPipelineForImage2Image.from_pipe(pipeline_text2img, requires_safety_checker=True, strength=0.3)
```

View File

@@ -252,18 +252,11 @@ Then, you'll need a way to evaluate the model. For evaluation, you can use the [
```py
>>> from diffusers import DDPMPipeline
>>> from diffusers.utils import make_image_grid
>>> import math
>>> import os
>>> def make_grid(images, rows, cols):
... w, h = images[0].size
... grid = Image.new("RGB", size=(cols * w, rows * h))
... for i, image in enumerate(images):
... grid.paste(image, box=(i % cols * w, i // cols * h))
... return grid
>>> def evaluate(config, epoch, pipeline):
... # Sample some images from random noise (this is the backward diffusion process).
... # The default pipeline output type is `List[PIL.Image]`
@@ -273,7 +266,7 @@ Then, you'll need a way to evaluate the model. For evaluation, you can use the [
... ).images
... # Make a grid out of the images
... image_grid = make_grid(images, rows=4, cols=4)
... image_grid = make_image_grid(images, rows=4, cols=4)
... # Save the images
... test_dir = os.path.join(config.output_dir, "samples")

View File

@@ -25,7 +25,7 @@ In this guide, you'll use [`DiffusionPipeline`] for text-to-image generation wit
```python
>>> from diffusers import DiffusionPipeline
>>> generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> generator = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components.

View File

@@ -94,7 +94,7 @@ output = pipeline()
But what's even better is you can load pre-existing weights into the pipeline if the pipeline structure is identical. For example, you can load the [`google/ddpm-cifar10-32`](https://huggingface.co/google/ddpm-cifar10-32) weights into the one-step pipeline:
```python
pipeline = UnetSchedulerOneForwardPipeline.from_pretrained("google/ddpm-cifar10-32")
pipeline = UnetSchedulerOneForwardPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
output = pipeline()
```
@@ -108,7 +108,9 @@ Once it is merged, anyone with `diffusers >= 0.4.0` installed can use this pipel
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", use_safetensors=True
)
pipe()
```
@@ -117,7 +119,9 @@ Another way to share your community pipeline is to upload the `one_step_unet.py`
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="stevhliu/one_step_unet")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="stevhliu/one_step_unet", use_safetensors=True
)
```
Take a look at the following table to compare the two sharing workflows to help you decide the best option for you:
@@ -161,6 +165,7 @@ pipeline = DiffusionPipeline.from_pretrained(
feature_extractor=feature_extractor,
scheduler=scheduler,
torch_dtype=torch.float16,
use_safetensors=True,
)
```

View File

@@ -24,7 +24,7 @@ Next, configure the following parameters in the [`DDIMScheduler`]:
```py
>>> from diffusers import DiffusionPipeline, DDIMScheduler
>>> pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2")
>>> pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True)
# switch the scheduler in the pipeline to use the DDIMScheduler
>>> pipeline.scheduler = DDIMScheduler.from_config(

View File

@@ -40,6 +40,7 @@ Unless otherwise mentioned, these are techniques that work with existing models
12. [Custom Diffusion](#custom-diffusion)
13. [Model Editing](#model-editing)
14. [DiffEdit](#diffedit)
15. [T2I-Adapter](#t2i-adapter)
For convenience, we provide a table to denote which methods are inference-only and which require fine-tuning/training.
@@ -65,16 +66,16 @@ For convenience, we provide a table to denote which methods are inference-only a
[Paper](https://arxiv.org/abs/2211.09800)
[Instruct Pix2Pix](../api/pipelines/stable_diffusion/pix2pix) is fine-tuned from stable diffusion to support editing input images. It takes as inputs an image and a prompt describing an edit, and it outputs the edited image.
[Instruct Pix2Pix](../api/pipelines/pix2pix) is fine-tuned from stable diffusion to support editing input images. It takes as inputs an image and a prompt describing an edit, and it outputs the edited image.
Instruct Pix2Pix has been explicitly trained to work well with [InstructGPT](https://openai.com/blog/instruction-following/)-like prompts.
See [here](../api/pipelines/stable_diffusion/pix2pix) for more information on how to use it.
See [here](../api/pipelines/pix2pix) for more information on how to use it.
## Pix2Pix Zero
[Paper](https://arxiv.org/abs/2302.03027)
[Pix2Pix Zero](../api/pipelines/stable_diffusion/pix2pix_zero) allows modifying an image so that one concept or subject is translated to another one while preserving general image semantics.
[Pix2Pix Zero](../api/pipelines/pix2pix_zero) allows modifying an image so that one concept or subject is translated to another one while preserving general image semantics.
The denoising process is guided from one conceptual embedding towards another conceptual embedding. The intermediate latents are optimized during the denoising process to push the attention maps towards reference attention maps. The reference attention maps are from the denoising process of the input image and are used to encourage semantic preservation.
@@ -87,26 +88,26 @@ Pix2Pix Zero can be used both to edit synthetic images as well as real images.
<Tip>
Pix2Pix Zero is the first model that allows "zero-shot" image editing. This means that the model
can edit an image in less than a minute on a consumer GPU as shown [here](../api/pipelines/stable_diffusion/pix2pix_zero#usage-example).
can edit an image in less than a minute on a consumer GPU as shown [here](../api/pipelines/pix2pix_zero#usage-example).
</Tip>
As mentioned above, Pix2Pix Zero includes optimizing the latents (and not any of the UNet, VAE, or the text encoder) to steer the generation toward a specific concept. This means that the overall
pipeline might require more memory than a standard [StableDiffusionPipeline](../api/pipelines/stable_diffusion/text2img).
See [here](../api/pipelines/stable_diffusion/pix2pix_zero) for more information on how to use it.
See [here](../api/pipelines/pix2pix_zero) for more information on how to use it.
## Attend and Excite
[Paper](https://arxiv.org/abs/2301.13826)
[Attend and Excite](../api/pipelines/stable_diffusion/attend_and_excite) allows subjects in the prompt to be faithfully represented in the final image.
[Attend and Excite](../api/pipelines/attend_and_excite) allows subjects in the prompt to be faithfully represented in the final image.
A set of token indices are given as input, corresponding to the subjects in the prompt that need to be present in the image. During denoising, each token index is guaranteed to have a minimum attention threshold for at least one patch of the image. The intermediate latents are iteratively optimized during the denoising process to strengthen the attention of the most neglected subject token until the attention threshold is passed for all subject tokens.
Like Pix2Pix Zero, Attend and Excite also involves a mini optimization loop (leaving the pre-trained weights untouched) in its pipeline and can require more memory than the usual `StableDiffusionPipeline`.
Like Pix2Pix Zero, Attend and Excite also involves a mini optimization loop (leaving the pre-trained weights untouched) in its pipeline and can require more memory than the usual [StableDiffusionPipeline](../api/pipelines/stable_diffusion/text2img).
See [here](../api/pipelines/stable_diffusion/attend_and_excite) for more information on how to use it.
See [here](../api/pipelines/attend_and_excite) for more information on how to use it.
## Semantic Guidance (SEGA)
@@ -124,11 +125,11 @@ See [here](../api/pipelines/semantic_stable_diffusion) for more information on h
[Paper](https://arxiv.org/abs/2210.00939)
[Self-attention Guidance](../api/pipelines/stable_diffusion/self_attention_guidance) improves the general quality of images.
[Self-attention Guidance](../api/pipelines/self_attention_guidance) improves the general quality of images.
SAG provides guidance from predictions not conditioned on high-frequency details to fully conditioned images. The high frequency details are extracted out of the UNet self-attention maps.
See [here](../api/pipelines/stable_diffusion/self_attention_guidance) for more information on how to use it.
See [here](../api/pipelines/self_attention_guidance) for more information on how to use it.
## Depth2Image
@@ -153,9 +154,9 @@ apply Pix2Pix Zero to any of the available Stable Diffusion models.
[Paper](https://arxiv.org/abs/2302.08113)
MultiDiffusion defines a new generation process over a pre-trained diffusion model. This process binds together multiple diffusion generation methods that can be readily applied to generate high quality and diverse images. Results adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.
[MultiDiffusion Panorama](../api/pipelines/stable_diffusion/panorama) allows to generate high-quality images at arbitrary aspect ratios (e.g., panoramas).
[MultiDiffusion Panorama](../api/pipelines/panorama) allows to generate high-quality images at arbitrary aspect ratios (e.g., panoramas).
See [here](../api/pipelines/stable_diffusion/panorama) for more information on how to use it to generate panoramic images.
See [here](../api/pipelines/panorama) for more information on how to use it to generate panoramic images.
## Fine-tuning your own models
@@ -205,20 +206,20 @@ For more details, check out our [official doc](../training/custom_diffusion).
[Paper](https://arxiv.org/abs/2303.08084)
The [text-to-image model editing pipeline](../api/pipelines/stable_diffusion/model_editing) helps you mitigate some of the incorrect implicit assumptions a pre-trained text-to-image
The [text-to-image model editing pipeline](../api/pipelines/model_editing) helps you mitigate some of the incorrect implicit assumptions a pre-trained text-to-image
diffusion model might make about the subjects present in the input prompt. For example, if you prompt Stable Diffusion to generate images for "A pack of roses", the roses in the generated images
are more likely to be red. This pipeline helps you change that assumption.
To know more details, check out the [official doc](../api/pipelines/stable_diffusion/model_editing).
To know more details, check out the [official doc](../api/pipelines/model_editing).
## DiffEdit
[Paper](https://arxiv.org/abs/2210.11427)
[DiffEdit](../api/pipelines/stable_diffusion/diffedit) allows for semantic editing of input images along with
[DiffEdit](../api/pipelines/diffedit) allows for semantic editing of input images along with
input prompts while preserving the original input images as much as possible.
To know more details, check out the [official doc](../api/pipelines/stable_diffusion/model_editing).
To know more details, check out the [official doc](../api/pipelines/diffedit).
## T2I-Adapter

View File

@@ -32,7 +32,7 @@ If a community doesn't work as expected, please open an issue and ping the autho
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
```py
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", custom_pipeline="filename_in_the_community_folder"
"CompVis/stable-diffusion-v1-4", custom_pipeline="filename_in_the_community_folder", use_safetensors=True
)
```
@@ -61,6 +61,7 @@ guided_pipeline = DiffusionPipeline.from_pretrained(
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
use_safetensors=True,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
@@ -117,6 +118,7 @@ pipe = DiffusionPipeline.from_pretrained(
torch_dtype=torch.float16,
safety_checker=None, # Very important for videos...lots of false positives while interpolating
custom_pipeline="interpolate_stable_diffusion",
use_safetensors=True,
).to("cuda")
pipe.enable_attention_slicing()
@@ -159,6 +161,7 @@ pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="stable_diffusion_mega",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.to("cuda")
pipe.enable_attention_slicing()
@@ -203,7 +206,7 @@ from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"hakurei/waifu-diffusion", custom_pipeline="lpw_stable_diffusion", torch_dtype=torch.float16
"hakurei/waifu-diffusion", custom_pipeline="lpw_stable_diffusion", torch_dtype=torch.float16, use_safetensors=True
)
pipe = pipe.to("cuda")
@@ -224,6 +227,7 @@ pipe = DiffusionPipeline.from_pretrained(
custom_pipeline="lpw_stable_diffusion_onnx",
revision="onnx",
provider="CUDAExecutionProvider",
use_safetensors=True,
)
prompt = "a photo of an astronaut riding a horse on mars, best quality"
@@ -267,8 +271,8 @@ diffuser_pipeline = DiffusionPipeline.from_pretrained(
custom_pipeline="speech_to_image_diffusion",
speech_model=model,
speech_processor=processor,
torch_dtype=torch.float16,
use_safetensors=True,
)
diffuser_pipeline.enable_attention_slicing()

View File

@@ -30,7 +30,7 @@ To load any community pipeline on the Hub, pass the repository id of the communi
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline", use_safetensors=True
)
```
@@ -50,6 +50,7 @@ pipeline = DiffusionPipeline.from_pretrained(
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
use_safetensors=True,
)
```

View File

@@ -28,6 +28,7 @@ from diffusers import StableDiffusionDepth2ImgPipeline
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-depth",
torch_dtype=torch.float16,
use_safetensors=True,
).to("cuda")
```

View File

@@ -0,0 +1,121 @@
# Distilled Stable Diffusion inference
[[open-in-colab]]
Stable Diffusion inference can be a computationally intensive process because it must iteratively denoise the latents to generate an image. To reduce the computational burden, you can use a *distilled* version of the Stable Diffusion model from [Nota AI](https://huggingface.co/nota-ai). The distilled version of their Stable Diffusion model eliminates some of the residual and attention blocks from the UNet, reducing the model size by 51% and improving latency on CPU/GPU by 43%.
<Tip>
Read this [blog post](https://huggingface.co/blog/sd_distillation) to learn more about how knowledge distillation training works to produce a faster, smaller, and cheaper generative model.
</Tip>
Let's load the distilled Stable Diffusion model and compare it against the original Stable Diffusion model:
```py
from diffusers import StableDiffusionPipeline
import torch
distilled = StableDiffusionPipeline.from_pretrained(
"nota-ai/bk-sdm-small", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
original = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
```
Given a prompt, get the inference time for the original model:
```py
import time
seed = 2023
generator = torch.manual_seed(seed)
NUM_ITERS_TO_RUN = 3
NUM_INFERENCE_STEPS = 25
NUM_IMAGES_PER_PROMPT = 4
prompt = "a golden vase with different flowers"
start = time.time_ns()
for _ in range(NUM_ITERS_TO_RUN):
images = original(
prompt,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT
).images
end = time.time_ns()
original_sd = f"{(end - start) / 1e6:.1f}"
print(f"Execution time -- {original_sd} ms\n")
"Execution time -- 45781.5 ms"
```
Time the distilled model inference:
```py
start = time.time_ns()
for _ in range(NUM_ITERS_TO_RUN):
images = distilled(
prompt,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT
).images
end = time.time_ns()
distilled_sd = f"{(end - start) / 1e6:.1f}"
print(f"Execution time -- {distilled_sd} ms\n")
"Execution time -- 29884.2 ms"
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/original_sd.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original Stable Diffusion (45781.5 ms)</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion (29884.2 ms)</figcaption>
</div>
</div>
## Tiny AutoEncoder
To speed inference up even more, use a tiny distilled version of the [Stable Diffusion VAE](https://huggingface.co/sayakpaul/taesdxl-diffusers) to denoise the latents into images. Replace the VAE in the distilled Stable Diffusion model with the tiny VAE:
```py
from diffusers import AutoencoderTiny
distilled.vae = AutoencoderTiny.from_pretrained(
"sayakpaul/taesd-diffusers", torch_dtype=torch.float16, use_safetensors=True,
).to("cuda")
```
Time the distilled model and distilled VAE inference:
```py
start = time.time_ns()
for _ in range(NUM_ITERS_TO_RUN):
images = distilled(
prompt,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
num_images_per_prompt=NUM_IMAGES_PER_PROMPT
).images
end = time.time_ns()
distilled_tiny_sd = f"{(end - start) / 1e6:.1f}"
print(f"Execution time -- {distilled_tiny_sd} ms\n")
"Execution time -- 27165.7 ms"
```
<div class="flex justify-center">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/distilled_sd_vae.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">distilled Stable Diffusion + Tiny AutoEncoder (27165.7 ms)</figcaption>
</div>
</div>

View File

@@ -33,9 +33,9 @@ from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipeline
device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16).to(
device
)
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"nitrosocke/Ghibli-Diffusion", torch_dtype=torch.float16, use_safetensors=True
).to(device)
```
Download and preprocess an initial image so you can pass it to the pipeline:

View File

@@ -29,6 +29,7 @@ from diffusers import StableDiffusionInpaintPipeline
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipeline = pipeline.to("cuda")
```

View File

@@ -39,7 +39,7 @@ The [`DiffusionPipeline`] class is the simplest and most generic way to load any
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
pipe = DiffusionPipeline.from_pretrained(repo_id)
pipe = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```
You can also load a checkpoint with it's specific pipeline class. The example above loaded a Stable Diffusion model; to get the same result, use the [`StableDiffusionPipeline`] class:
@@ -48,7 +48,7 @@ You can also load a checkpoint with it's specific pipeline class. The example ab
from diffusers import StableDiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(repo_id)
pipe = StableDiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```
A checkpoint (such as [`CompVis/stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) or [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) may also be used for more than one task, like text-to-image or image-to-image. To differentiate what task you want to use the checkpoint for, you have to load it directly with it's corresponding task-specific pipeline class:
@@ -65,7 +65,7 @@ pipe = StableDiffusionImg2ImgPipeline.from_pretrained(repo_id)
To load a diffusion pipeline locally, use [`git-lfs`](https://git-lfs.github.com/) to manually download the checkpoint (in this case, [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5)) to your local disk. This creates a local folder, `./stable-diffusion-v1-5`, on your disk:
```bash
git lfs install
git-lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5
```
@@ -75,7 +75,7 @@ Then pass the local path to [`~DiffusionPipeline.from_pretrained`]:
from diffusers import DiffusionPipeline
repo_id = "./stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
```
The [`~DiffusionPipeline.from_pretrained`] method won't download any files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint.
@@ -94,7 +94,7 @@ To find out which schedulers are compatible for customization, you can use the `
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
stable_diffusion.scheduler.compatibles
```
@@ -109,7 +109,7 @@ repo_id = "runwayml/stable-diffusion-v1-5"
scheduler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, scheduler=scheduler, use_safetensors=True)
```
### Safety checker
@@ -120,7 +120,7 @@ Diffusion models like Stable Diffusion can generate harmful content, which is wh
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None)
stable_diffusion = DiffusionPipeline.from_pretrained(repo_id, safety_checker=None, use_safetensors=True)
```
### Reuse components across pipelines
@@ -131,7 +131,7 @@ You can also reuse the same components in multiple pipelines to avoid loading th
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
components = stable_diffusion_txt2img.components
```
@@ -148,7 +148,7 @@ You can also pass the components individually to the pipeline if you want more f
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
model_id = "runwayml/stable-diffusion-v1-5"
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id)
stable_diffusion_txt2img = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
stable_diffusion_img2img = StableDiffusionImg2ImgPipeline(
vae=stable_diffusion_txt2img.vae,
text_encoder=stable_diffusion_txt2img.text_encoder,
@@ -194,10 +194,12 @@ import torch
# load fp16 variant
stable_diffusion = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16
"runwayml/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
# load non_ema variant
stable_diffusion = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", variant="non_ema")
stable_diffusion = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", variant="non_ema", use_safetensors=True
)
```
To save a checkpoint stored in a different floating point type or as a non-EMA variant, use the [`DiffusionPipeline.save_pretrained`] method and specify the `variant` argument. You should try and save a variant to the same folder as the original checkpoint, so you can load both from the same folder:
@@ -215,10 +217,12 @@ If you don't save the variant to an existing folder, you must specify the `varia
```python
# 👎 this won't work
stable_diffusion = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", torch_dtype=torch.float16)
stable_diffusion = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
# 👍 this works
stable_diffusion = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16
"./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```
@@ -233,7 +237,7 @@ load model variants, e.g.:
```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16")
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", use_safetensors=True)
```
However, this behavior is now deprecated since the "revision" argument should (just as it's done in GitHub) better be used to load model checkpoints from a specific commit or branch in development.
@@ -259,7 +263,7 @@ Models can be loaded from a subfolder with the `subfolder` argument. For example
from diffusers import UNet2DConditionModel
repo_id = "runwayml/stable-diffusion-v1-5"
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet")
model = UNet2DConditionModel.from_pretrained(repo_id, subfolder="unet", use_safetensors=True)
```
Or directly from a repository's [directory](https://huggingface.co/google/ddpm-cifar10-32/tree/main):
@@ -268,7 +272,7 @@ Or directly from a repository's [directory](https://huggingface.co/google/ddpm-c
from diffusers import UNet2DModel
repo_id = "google/ddpm-cifar10-32"
model = UNet2DModel.from_pretrained(repo_id)
model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
```
You can also load and save model variants by specifying the `variant` argument in [`ModelMixin.from_pretrained`] and [`ModelMixin.save_pretrained`]:
@@ -276,7 +280,9 @@ You can also load and save model variants by specifying the `variant` argument i
```python
from diffusers import UNet2DConditionModel
model = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet", variant="non-ema")
model = UNet2DConditionModel.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="unet", variant="non-ema", use_safetensors=True
)
model.save_pretrained("./local-unet", variant="non-ema")
```
@@ -310,7 +316,7 @@ euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
# replace `dpm` with any of `ddpm`, `ddim`, `pndm`, `lms`, `euler_anc`, `euler`
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm)
pipeline = StableDiffusionPipeline.from_pretrained(repo_id, scheduler=dpm, use_safetensors=True)
```
## DiffusionPipeline explained
@@ -326,7 +332,7 @@ The pipelines underlying folder structure corresponds directly with their class
from diffusers import DiffusionPipeline
repo_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(repo_id)
pipeline = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
print(pipeline)
```
@@ -460,4 +466,4 @@ Every pipeline expects a `model_index.json` file that tells the [`DiffusionPipel
"AutoencoderKL"
]
}
```
```

View File

@@ -111,7 +111,9 @@ If you prefer to run inference with code, click on the **Use in Diffusers** butt
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline", use_safetensors=True
)
```
Then you can generate an image like:
@@ -119,7 +121,9 @@ Then you can generate an image like:
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"sayakpaul/textual-inversion-cat-kerascv_sd_diffusers_pipeline", use_safetensors=True
)
pipeline.to("cuda")
placeholder_token = "<my-funny-cat-token>"
@@ -171,22 +175,12 @@ images = pipeline(
).images
```
Finally, create a helper function to display the images:
Display the images:
```py
from PIL import Image
from diffusers.utils import make_image_grid
def image_grid(imgs, rows=2, cols=2):
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
image_grid(images)
make_image_grid(images, 2, 2)
```
<div class="flex justify-center">

View File

@@ -0,0 +1,171 @@
# Push files to the Hub
[[open-in-colab]]
🤗 Diffusers provides a [`~diffusers.utils.PushToHubMixin`] for uploading your model, scheduler, or pipeline to the Hub. It is an easy way to store your files on the Hub, and also allows you to share your work with others. Under the hood, the [`~diffusers.utils.PushToHubMixin`]:
1. creates a repository on the Hub
2. saves your model, scheduler, or pipeline files so they can be reloaded later
3. uploads folder containing these files to the Hub
This guide will show you how to use the [`~diffusers.utils.PushToHubMixin`] to upload your files to the Hub.
You'll need to log in to your Hub account with your access [token](https://huggingface.co/settings/tokens) first:
```py
from huggingface_hub import notebook_login
notebook_login()
```
## Models
To push a model to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specfiy the repository id of the model to be stored on the Hub:
```py
from diffusers import ControlNetModel
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet.push_to_hub("my-controlnet-model")
```
For model's, you can also specify the [*variant*](loading#checkpoint-variants) of the weights to push to the Hub. For example, to push `fp16` weights:
```py
controlnet.push_to_hub("my-controlnet-model", variant="fp16")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the model's `config.json` file and the weights are automatically saved in the `safetensors` format.
Now you can reload the model from your repository on the Hub:
```py
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model")
```
## Scheduler
To push a scheduler to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specfiy the repository id of the scheduler to be stored on the Hub:
```py
from diffusers import DDIMScheduler
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
scheduler.push_to_hub("my-controlnet-scheduler")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the scheduler's `scheduler_config.json` file to the specified repository.
Now you can reload the scheduler from your repository on the Hub:
```py
scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-scheduler")
```
## Pipeline
You can also push an entire pipeline with all it's components to the Hub. For example, initialize the components of a [`StableDiffusionPipeline`] with the parameters you want:
```py
from diffusers import (
UNet2DConditionModel,
AutoencoderKL,
DDIMScheduler,
StableDiffusionPipeline,
)
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTokenizer
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
```
Pass all of the components to the [`StableDiffusionPipeline`] and call [`~diffusers.utils.PushToHubMixin.push_to_hub`] to push the pipeline to the Hub:
```py
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub("my-pipeline")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves each component to a subfolder in the repository. Now you can reload the pipeline from your repository on the Hub:
```py
pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline")
```
## Privacy
Set `private=True` in the [`~diffusers.utils.PushToHubMixin.push_to_hub`] function to keep your model, scheduler, or pipeline files private:
```py
controlnet.push_to_hub("my-controlnet-model", private=True)
```
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Repo not found error.`
To load a model, scheduler, or pipeline from a private or gated repositories, set `use_auth_token=True`:
```py
model = ControlNet.from_pretrained("your-namespace/my-controlnet-model", use_auth_token=True)
```

View File

@@ -40,7 +40,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
# run pipeline for just two steps and return numpy tensor
image = ddim(num_inference_steps=2, output_type="np").images
@@ -65,7 +65,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
# create a generator for reproducibility
generator = torch.Generator(device="cpu").manual_seed(0)
@@ -100,7 +100,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
ddim.to("cuda")
# create a generator for reproducibility
@@ -125,7 +125,7 @@ import numpy as np
model_id = "google/ddpm-cifar10-32"
# load model and scheduler
ddim = DDIMPipeline.from_pretrained(model_id)
ddim = DDIMPipeline.from_pretrained(model_id, use_safetensors=True)
ddim.to("cuda")
# create a generator for reproducibility; notice you don't place it on the GPU!
@@ -174,7 +174,7 @@ from diffusers import DDIMScheduler, StableDiffusionPipeline
import numpy as np
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_safetensors=True).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
g = torch.Generator(device="cuda")

View File

@@ -27,7 +27,9 @@ Instantiate a pipeline with [`DiffusionPipeline.from_pretrained`] and place it o
```python
>>> from diffusers import DiffusionPipeline
>>> pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
>>> pipe = DiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
... )
>>> pipe = pipe.to("cuda")
```

View File

@@ -39,7 +39,9 @@ import torch
login()
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
```
Next, we move it to GPU:

View File

@@ -153,19 +153,10 @@ images = pipeline.numpy_to_pil(images)
### Visualization
Let's create a helper function to display images in a grid.
```python
def image_grid(imgs, rows, cols):
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
```
from diffusers import make_image_grid
```python
image_grid(images, 2, 4)
make_image_grid(images, 2, 4)
```
![img](https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/stable_diffusion_jax_how_to_cell_38_output_0.jpeg)
@@ -198,7 +189,7 @@ images = pipeline(prompt_ids, p_params, rng, jit=True).images
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
images = pipeline.numpy_to_pil(images)
image_grid(images, 2, 4)
make_image_grid(images, 2, 4)
```
![img](https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/stable_diffusion_jax_how_to_cell_43_output_0.jpeg)

View File

@@ -14,7 +14,7 @@ from huggingface_hub import notebook_login
notebook_login()
```
Import the necessary libraries, and create a helper function to visualize the generated images:
Import the necessary libraries:
```py
import os
@@ -24,19 +24,8 @@ import PIL
from PIL import Image
from diffusers import StableDiffusionPipeline
from diffusers.utils import make_image_grid
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
```
Pick a Stable Diffusion checkpoint and a pre-learned concept from the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer):
@@ -49,7 +38,9 @@ repo_id_embeds = "sd-concepts-library/cat-toy"
Now you can load a pipeline, and pass the pre-learned concept to it:
```py
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16).to("cuda")
pipeline = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path, torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
pipeline.load_textual_inversion(repo_id_embeds)
```
@@ -71,7 +62,7 @@ for _ in range(num_rows):
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images
all_images.extend(images)
grid = image_grid(all_images, num_samples, num_rows)
grid = make_image_grid(all_images, num_samples, num_rows)
grid
```

View File

@@ -32,7 +32,7 @@ In this guide, you'll use [`DiffusionPipeline`] for unconditional image generati
```python
>>> from diffusers import DiffusionPipeline
>>> generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128")
>>> generator = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components.

View File

@@ -40,7 +40,9 @@ You can use the model with the new `.safetensors` weights by specifying the refe
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", revision="refs/pr/22")
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1", revision="refs/pr/22", use_safetensors=True
)
```
## Why use safetensors?
@@ -55,7 +57,7 @@ There are several reasons for using safetensors:
```py
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
pipeline = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", use_safetensors=True)
"Loaded in safetensors 0:00:02.033658"
"Loaded in PyTorch 0:00:02.663379"
```

View File

@@ -10,31 +10,36 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Weighting prompts
# Prompt weighting
[[open-in-colab]]
Text-guided diffusion models generate images based on a given text prompt. The text prompt
can include multiple concepts that the model should generate and it's often desirable to weight
certain parts of the prompt more or less.
Prompt weighting provides a way to emphasize or de-emphasize certain parts of a prompt, allowing for more control over the generated image. A prompt can include several concepts, which gets turned into contextualized text embeddings. The embeddings are used by the model to condition its cross-attention layers to generate an image (read the Stable Diffusion [blog post](https://huggingface.co/blog/stable_diffusion) to learn more about how it works).
Diffusion models work by conditioning the cross attention layers of the diffusion model with contextualized text embeddings (see the [Stable Diffusion Guide for more information](../stable-diffusion)).
Thus a simple way to emphasize (or de-emphasize) certain parts of the prompt is by increasing or reducing the scale of the text embedding vector that corresponds to the relevant part of the prompt.
This is called "prompt-weighting" and has been a highly demanded feature by the community (see issue [here](https://github.com/huggingface/diffusers/issues/2431)).
Prompt weighting works by increasing or decreasing the scale of the text embedding vector that corresponds to its concept in the prompt because you may not necessarily want the model to focus on all concepts equally. The easiest way to prepare the prompt-weighted embeddings is to use [Compel](https://github.com/damian0815/compel), a text prompt-weighting and blending library. Once you have the prompt-weighted embeddings, you can pass them to any pipeline that has a [`prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) (and optionally [`negative_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.negative_prompt_embeds)) parameter, such as [`StableDiffusionPipeline`], [`StableDiffusionControlNetPipeline`], and [`StableDiffusionXLPipeline`].
## How to do prompt-weighting in Diffusers
<Tip>
We believe the role of `diffusers` is to be a toolbox that provides essential features that enable other projects, such as [InvokeAI](https://github.com/invoke-ai/InvokeAI) or [diffuzers](https://github.com/abhishekkrthakur/diffuzers), to build powerful UIs. In order to support arbitrary methods to manipulate prompts, `diffusers` exposes a [`prompt_embeds`](https://huggingface.co/docs/diffusers/v0.14.0/en/api/pipelines/stable_diffusion/text2img#diffusers.StableDiffusionPipeline.__call__.prompt_embeds) function argument to many pipelines such as [`StableDiffusionPipeline`], allowing to directly pass the "prompt-weighted"/scaled text embeddings to the pipeline.
If your favorite pipeline doesn't have a `prompt_embeds` parameter, please open an [issue](https://github.com/huggingface/diffusers/issues/new/choose) so we can add it!
The [compel library](https://github.com/damian0815/compel) provides an easy way to emphasize or de-emphasize portions of the prompt for you. We strongly recommend it instead of preparing the embeddings yourself.
</Tip>
Let's look at a simple example. Imagine you want to generate an image of `"a red cat playing with a ball"` as
follows:
This guide will show you how to weight and blend your prompts with Compel in 🤗 Diffusers.
Before you begin, make sure you have the latest version of Compel installed:
```py
# uncomment to install in Colab
#!pip install compel --upgrade
```
For this guide, let's generate an image with the prompt `"a red cat playing with a ball"` using the [`StableDiffusionPipeline`]:
```py
from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler
import torch
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_safetensors=True)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
prompt = "a red cat playing with a ball"
@@ -45,19 +50,13 @@ image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
image
```
This gives you:
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_0.png"/>
</div>
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_0.png)
## Weighting
As you can see, there is no "ball" in the image. Let's emphasize this part!
For this we should install the `compel` library:
```
pip install compel
```
and then create a `Compel` object:
You'll notice there is no "ball" in the image! Let's use compel to upweight the concept of "ball" in the prompt. Create a [`Compel`](https://github.com/damian0815/compel/blob/main/doc/compel.md#compel-objects) object, and pass it a tokenizer and text encoder:
```py
from compel import Compel
@@ -65,40 +64,114 @@ from compel import Compel
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
```
Now we emphasize the part "ball" with the `"++"` syntax:
compel uses `+` or `-` to increase or decrease the weight of a word in the prompt. To increase the weight of "ball":
<Tip>
`+` corresponds to the value `1.1`, `++` corresponds to `1.1^2`, and so on. Similarly, `-` corresponds to `0.9` and `--` corresponds to `0.9^2`. Feel free to experiment with adding more `+` or `-` in your prompt!
</Tip>
```py
prompt = "a red cat playing with a ball++"
```
and instead of passing this to the pipeline directly, we have to process it using `compel_proc`:
Pass the prompt to `compel_proc` to create the new prompt embeddings which are passed to the pipeline:
```py
prompt_embeds = compel_proc(prompt)
```
generator = torch.manual_seed(33)
Now we can pass `prompt_embeds` directly to the pipeline:
```py
generator = torch.Generator(device="cpu").manual_seed(33)
images = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
We now get the following image which has a "ball"!
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_1.png"/>
</div>
![img](https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/forest_1.png)
To downweight parts of the prompt, use the `-` suffix:
Similarly, we de-emphasize parts of the sentence by using the `--` suffix for words, feel free to give it
a try!
```py
prompt = "a red------- cat playing with a ball"
prompt_embeds = compel_proc(prompt)
If your favorite pipeline does not have a `prompt_embeds` input, please make sure to open an issue, the
diffusers team tries to be as responsive as possible.
Compel 1.1.6 adds a utility class to simplify using textual inversions. Instantiate a `DiffusersTextualInversionManager` and pass it to Compel init:
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"/>
</div>
You can even up or downweight multiple concepts in the same prompt:
```py
prompt = "a red cat++ playing with a ball----"
prompt_embeds = compel_proc(prompt)
generator = torch.manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-pos-neg.png"/>
</div>
## Blending
You can also create a weighted *blend* of prompts by adding `.blend()` to a list of prompts and passing it some weights. Your blend may not always produce the result you expect because it breaks some assumptions about how the text encoder functions, so just have fun and experiment with it!
```py
prompt_embeds = compel_proc('("a red cat playing with a ball", "jungle").blend(0.7, 0.8)')
generator = torch.Generator(device="cuda").manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-blend.png"/>
</div>
## Conjunction
A conjunction diffuses each prompt independently and concatenates their results by their weighted sum. Add `.and()` to the end of a list of prompts to create a conjunction:
```py
prompt_embeds = compel_proc('("a red cat, playing with a, ball").and()')
generator = torch.Generator(device="cuda").manual_seed(33)
image = pipe(prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-conj.png"/>
</div>
## Textual inversion
[Textual inversion](../training/text_inversion) is a technique for learning a specific concept from some images which you can use to generate new images conditioned on that concept.
Create a pipeline and use the [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] function to load the textual inversion embeddings (feel free to browse the [Stable Diffusion Conceptualizer](https://huggingface.co/spaces/sd-concepts-library/stable-diffusion-conceptualizer) for 100+ trained concepts):
```py
import torch
from diffusers import StableDiffusionPipeline
from compel import Compel, DiffusersTextualInversionManager
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda")
pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
```
Compel provides a `DiffusersTextualInversionManager` class to simplify prompt weighting with textual inversion. Instantiate `DiffusersTextualInversionManager` and pass it to the `Compel` class:
```py
textual_inversion_manager = DiffusersTextualInversionManager(pipe)
compel = Compel(
tokenizer=pipe.tokenizer,
@@ -106,5 +179,87 @@ compel = Compel(
textual_inversion_manager=textual_inversion_manager)
```
Also, please check out the documentation of the [compel](https://github.com/damian0815/compel) library for
more information.
Incorporate the concept to condition a prompt with using the `<concept>` syntax:
```py
prompt_embeds = compel_proc('("A red cat++ playing with a ball <midjourney-style>")')
image = pipe(prompt_embeds=prompt_embeds).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-text-inversion.png"/>
</div>
## DreamBooth
[DreamBooth](../training/dreambooth) is a technique for generating contextualized images of a subject given just a few images of the subject to train on. It is similar to textual inversion, but DreamBooth trains the full model whereas textual inversion only fine-tunes the text embeddings. This means you should use [`~DiffusionPipeline.from_pretrained`] to load the DreamBooth model (feel free to browse the [Stable Diffusion Dreambooth Concepts Library](https://huggingface.co/sd-dreambooth-library) for 100+ trained models):
```py
import torch
from diffusers import DiffusionPipeline, UniPCMultistepScheduler
from compel import Compel
pipe = DiffusionPipeline.from_pretrained("sd-dreambooth-library/dndcoverart-v1", torch_dtype=torch.float16).to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
```
Create a `Compel` class with a tokenizer and text encoder, and pass your prompt to it. Depending on the model you use, you'll need to incorporate the model's unique identifier into your prompt. For example, the `dndcoverart-v1` model uses the identifier `dndcoverart`:
```py
compel_proc = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
prompt_embeds = compel_proc('("magazine cover of a dndcoverart dragon, high quality, intricate details, larry elmore art style").and()')
image = pipe(prompt_embeds=prompt_embeds).images[0]
image
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-dreambooth.png"/>
</div>
## Stable Diffusion XL
Stable Diffusion XL (SDXL) has two tokenizers and text encoders so it's usage is a bit different. To address this, you should pass both tokenizers and encoders to the `Compel` class:
```py
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16
).to("cuda")
compel = Compel(
tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
```
This time, let's upweight "ball" by a factor of 1.5 for the first prompt, and downweight "ball" by 0.6 for the second prompt. The [`StableDiffusionXLPipeline`] also requires [`pooled_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline.__call__.pooled_prompt_embeds) (and optionally [`negative_pooled_prompt_embeds`](https://huggingface.co/docs/diffusers/en/api/pipelines/stable_diffusion/stable_diffusion_xl#diffusers.StableDiffusionXLInpaintPipeline.__call__.negative_pooled_prompt_embeds)) so you should pass those to the pipeline along with the conditioning tensors:
```py
# apply weights
prompt = ["a red cat playing with a (ball)1.5", "a red cat playing with a (ball)0.6"]
conditioning, pooled = compel(prompt)
# generate image
generator = [torch.Generator().manual_seed(33) for _ in range(len(prompt))]
images = pipeline(prompt_embeds=conditioning, pooled_prompt_embeds=pooled, generator=generator, num_inference_steps=30).images
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/sdxl_ball1.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a red cat playing with a (ball)1.5"</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/compel/sdxl_ball2.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">"a red cat playing with a (ball)0.6"</figcaption>
</div>
</div>

View File

@@ -25,7 +25,7 @@ A pipeline is a quick and easy way to run a model for inference, requiring no mo
```py
>>> from diffusers import DDPMPipeline
>>> ddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256").to("cuda")
>>> ddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda")
>>> image = ddpm(num_inference_steps=25).images[0]
>>> image
```
@@ -46,7 +46,7 @@ To recreate the pipeline with the model and scheduler separately, let's write ou
>>> from diffusers import DDPMScheduler, UNet2DModel
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
>>> model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
>>> model = UNet2DModel.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda")
```
2. Set the number of timesteps to run the denoising process for:
@@ -94,9 +94,9 @@ This is the entire denoising process, and you can use this same pattern to write
>>> from PIL import Image
>>> import numpy as np
>>> image = (input / 2 + 0.5).clamp(0, 1)
>>> image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
>>> image = Image.fromarray((image * 255).round().astype("uint8"))
>>> image = (input / 2 + 0.5).clamp(0, 1).squeeze()
>>> image = (image.permute(1, 2, 0) * 255).round().to(torch.uint8).cpu().numpy()
>>> image = Image.fromarray(image)
>>> image
```
@@ -124,10 +124,14 @@ Now that you know what you need for the Stable Diffusion pipeline, load all thes
>>> from transformers import CLIPTextModel, CLIPTokenizer
>>> from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
>>> vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
>>> vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_safetensors=True)
>>> tokenizer = CLIPTokenizer.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="tokenizer")
>>> text_encoder = CLIPTextModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="text_encoder")
>>> unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
>>> text_encoder = CLIPTextModel.from_pretrained(
... "CompVis/stable-diffusion-v1-4", subfolder="text_encoder", use_safetensors=True
... )
>>> unet = UNet2DConditionModel.from_pretrained(
... "CompVis/stable-diffusion-v1-4", subfolder="unet", use_safetensors=True
... )
```
Instead of the default [`PNDMScheduler`], exchange it for the [`UniPCMultistepScheduler`] to see how easy it is to plug a different scheduler in:
@@ -267,11 +271,11 @@ with torch.no_grad():
Lastly, convert the image to a `PIL.Image` to see your generated image!
```py
>>> image = (image / 2 + 0.5).clamp(0, 1)
>>> image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
>>> image = (image / 2 + 0.5).clamp(0, 1).squeeze()
>>> image = (image.permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
>>> images = (image * 255).round().astype("uint8")
>>> pil_images = [Image.fromarray(image) for image in images]
>>> pil_images[0]
>>> image = Image.fromarray(image)
>>> image
```
<div class="flex justify-center">

View File

@@ -39,6 +39,8 @@ If a community doesn't work as expected, please open an issue and ping the autho
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
| TensorRT Stable Diffusion Inpainting Pipeline | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) | [IADB Pipeline](#iadb-pipeline) | - | [Thomas Chambon](https://github.com/tchambon)
| Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) | [Zero1to3 Pipeline](#Zero1to3-pipeline) | - | [Xin Kong](https://github.com/kxhit)
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
```py
@@ -1644,13 +1646,13 @@ from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
pipe = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
custom_pipeline="stable_diffusion_tensorrt_inpaint",
revision='fp16',
torch_dtype=torch.float16,
@@ -1767,3 +1769,84 @@ while True:
loss.backward()
optimizer.step()
```
### Zero1to3 pipeline
This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) paper.
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).
The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.
```python
import os
import torch
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from diffusers.utils import load_image
model_id = "kxic/zero123-165000" # zero123-105000, zero123-165000, zero123-xl
pipe = Zero1to3StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing()
pipe = pipe.to("cuda")
num_images_per_prompt = 4
# test inference pipeline
# x y z, Polar angle (vertical rotation in degrees) Azimuth angle (horizontal rotation in degrees) Zoom (relative distance from center)
query_pose1 = [-75.0, 100.0, 0.0]
query_pose2 = [-20.0, 125.0, 0.0]
query_pose3 = [-55.0, 90.0, 0.0]
# load image
# H, W = (256, 256) # H, W = (512, 512) # zero123 training is 256,256
# for batch input
input_image1 = load_image("./demo/4_blackarm.png") #load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/4_blackarm.png")
input_image2 = load_image("./demo/8_motor.png") #load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/8_motor.png")
input_image3 = load_image("./demo/7_london.png") #load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/7_london.png")
input_images = [input_image1, input_image2, input_image3]
query_poses = [query_pose1, query_pose2, query_pose3]
# # for single input
# H, W = (256, 256)
# input_images = [input_image2.resize((H, W), PIL.Image.NEAREST)]
# query_poses = [query_pose2]
# better do preprocessing
from gradio_new import preprocess_image, create_carvekit_interface
import numpy as np
import PIL.Image as Image
pre_images = []
models = dict()
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
if not isinstance(input_images, list):
input_images = [input_images]
for raw_im in input_images:
input_im = preprocess_image(models, raw_im, True)
H, W = input_im.shape[:2]
pre_images.append(Image.fromarray((input_im * 255.0).astype(np.uint8)))
input_images = pre_images
# infer pipeline, in original zero123 num_inference_steps=76
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W,
guidance_scale=3.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=50).images
# save imgs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
bs = len(input_images)
i = 0
for obj in range(bs):
for idx in range(num_images_per_prompt):
images[i].save(os.path.join(log_dir,f"obj{obj}_{idx}.jpg"))
i += 1
```

View File

@@ -2,14 +2,8 @@ import glob
import os
from typing import Dict, List, Union
import safetensors.torch
import torch
from diffusers.utils import is_safetensors_available
if is_safetensors_available():
import safetensors.torch
from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline, __version__
@@ -229,14 +223,14 @@ class CheckpointMergerPipeline(DiffusionPipeline):
update_theta_0 = getattr(module, "load_state_dict")
theta_1 = (
safetensors.torch.load_file(checkpoint_path_1)
if (is_safetensors_available() and checkpoint_path_1.endswith(".safetensors"))
if (checkpoint_path_1.endswith(".safetensors"))
else torch.load(checkpoint_path_1, map_location="cpu")
)
theta_2 = None
if checkpoint_path_2:
theta_2 = (
safetensors.torch.load_file(checkpoint_path_2)
if (is_safetensors_available() and checkpoint_path_2.endswith(".safetensors"))
if (checkpoint_path_2.endswith(".safetensors"))
else torch.load(checkpoint_path_2, map_location="cpu")
)

View File

@@ -423,7 +423,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >

View File

@@ -967,7 +967,7 @@ class StableDiffusionLongPromptWeightingPipeline(
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Returns:
`None` if cancelled by `is_cancelled_callback`,
@@ -1202,7 +1202,7 @@ class StableDiffusionLongPromptWeightingPipeline(
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Returns:
`None` if cancelled by `is_cancelled_callback`,
@@ -1316,7 +1316,7 @@ class StableDiffusionLongPromptWeightingPipeline(
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Returns:
`None` if cancelled by `is_cancelled_callback`,
@@ -1437,7 +1437,7 @@ class StableDiffusionLongPromptWeightingPipeline(
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Returns:
`None` if cancelled by `is_cancelled_callback`,

View File

@@ -0,0 +1,890 @@
# A diffuser version implementation of Zero1to3 (https://github.com/cvlab-columbia/zero123), ICCV 2023
# by Xin Kong
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import kornia
import numpy as np
import PIL
import torch
from packaging import version
from transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection
# from ...configuration_utils import FrozenDict
# from ...models import AutoencoderKL, UNet2DConditionModel
# from ...schedulers import KarrasDiffusionSchedulers
# from ...utils import (
# deprecate,
# is_accelerate_available,
# is_accelerate_version,
# logging,
# randn_tensor,
# replace_example_docstring,
# )
# from ..pipeline_utils import DiffusionPipeline
# from . import StableDiffusionPipelineOutput
# from .safety_checker import StableDiffusionSafetyChecker
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
from diffusers.configuration_utils import ConfigMixin, FrozenDict
from diffusers.models.modeling_utils import ModelMixin
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# todo
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import StableDiffusionPipeline
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt).images[0]
```
"""
class CCProjection(ModelMixin, ConfigMixin):
def __init__(self, in_channel=772, out_channel=768):
super().__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.projection = torch.nn.Linear(in_channel, out_channel)
def forward(self, x):
return self.projection(x)
class Zero1to3StableDiffusionPipeline(DiffusionPipeline):
r"""
Pipeline for single view conditioned novel view generation using Zero1to3.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
image_encoder ([`CLIPVisionModelWithProjection`]):
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
cc_projection ([`CCProjection`]):
Projection layer to project the concated CLIP features and pose embeddings to the original CLIP feature size.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
image_encoder: CLIPVisionModelWithProjection,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
cc_projection: CCProjection,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
cc_projection=cc_projection,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# self.model_mode = None
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding.
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
from accelerate import cpu_offload
else:
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
cpu_offload(cpu_offloaded_model, device)
if self.safety_checker is not None:
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
if self.safety_checker is not None:
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def CLIP_preprocess(self, x):
dtype = x.dtype
# following openai's implementation
# TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741
# follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608
if isinstance(x, torch.Tensor):
if x.min() < -1.0 or x.max() > 1.0:
raise ValueError("Expected input tensor to have values in the range [-1, 1]")
x = kornia.geometry.resize(
x.to(torch.float32), (224, 224), interpolation="bicubic", align_corners=True, antialias=False
).to(dtype=dtype)
x = (x + 1.0) / 2.0
# renormalize according to clip
x = kornia.enhance.normalize(
x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), torch.Tensor([0.26862954, 0.26130258, 0.27577711])
)
return x
# from image_variation
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
assert image.ndim == 4, "Image must have 4 dimensions"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
image = image.to(device=device, dtype=dtype)
image = self.CLIP_preprocess(image)
# if not isinstance(image, torch.Tensor):
# # 0-255
# print("Warning: image is processed by hf's preprocess, which is different from openai original's.")
# image = self.feature_extractor(images=image, return_tensors="pt").pixel_values
image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype)
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(image_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
return image_embeddings
def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance):
dtype = next(self.cc_projection.parameters()).dtype
if isinstance(pose, torch.Tensor):
pose_embeddings = pose.unsqueeze(1).to(device=device, dtype=dtype)
else:
if isinstance(pose[0], list):
pose = torch.Tensor(pose)
else:
pose = torch.Tensor([pose])
x, y, z = pose[:, 0].unsqueeze(1), pose[:, 1].unsqueeze(1), pose[:, 2].unsqueeze(1)
pose_embeddings = (
torch.cat([torch.deg2rad(x), torch.sin(torch.deg2rad(y)), torch.cos(torch.deg2rad(y)), z], dim=-1)
.unsqueeze(1)
.to(device=device, dtype=dtype)
) # B, 1, 4
# duplicate pose embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = pose_embeddings.shape
pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1)
pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
negative_prompt_embeds = torch.zeros_like(pose_embeddings)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings])
return pose_embeddings
def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance):
img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False)
pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False)
prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1)
prompt_embeds = self.cc_projection(prompt_embeds)
# prompt_embeds = img_prompt_embeds
# follow 0123, add negative prompt, after projection
if do_classifier_free_guidance:
negative_prompt = torch.zeros_like(prompt_embeds)
prompt_embeds = torch.cat([negative_prompt, prompt_embeds])
return prompt_embeds
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
else:
has_nsfw_concept = None
return image, has_nsfw_concept
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, image, height, width, callback_steps):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_img_latents(self, image, batch_size, dtype, device, generator=None, do_classifier_free_guidance=False):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
assert image.ndim == 4, "Image must have 4 dimensions"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.mode(generator[i]) for i in range(batch_size) # sample
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.mode()
# init_latents = self.vae.config.scaling_factor * init_latents # todo in original zero123's inference gradio_new.py, model.encode_first_stage() is not scaled by scaling_factor
if batch_size > init_latents.shape[0]:
# init_latents = init_latents.repeat(batch_size // init_latents.shape[0], 1, 1, 1)
num_images_per_prompt = batch_size // init_latents.shape[0]
# duplicate image latents for each generation per prompt, using mps friendly method
bs_embed, emb_c, emb_h, emb_w = init_latents.shape
init_latents = init_latents.unsqueeze(1)
init_latents = init_latents.repeat(1, num_images_per_prompt, 1, 1, 1)
init_latents = init_latents.view(bs_embed * num_images_per_prompt, emb_c, emb_h, emb_w)
# init_latents = torch.cat([init_latents]*2) if do_classifier_free_guidance else init_latents # follow zero123
init_latents = (
torch.cat([torch.zeros_like(init_latents), init_latents]) if do_classifier_free_guidance else init_latents
)
init_latents = init_latents.to(device=device, dtype=dtype)
return init_latents
# def load_cc_projection(self, pretrained_weights=None):
# self.cc_projection = torch.nn.Linear(772, 768)
# torch.nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
# torch.nn.init.zeros_(list(self.cc_projection.parameters())[1])
# if pretrained_weights is not None:
# self.cc_projection.load_state_dict(pretrained_weights)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
input_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None,
prompt_imgs: Union[torch.FloatTensor, PIL.Image.Image] = None,
poses: Union[List[float], List[List[float]]] = None,
torch_dtype=torch.float32,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 3.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: float = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
input_imgs (`PIL` or `List[PIL]`, *optional*):
The single input image for each 3D object
prompt_imgs (`PIL` or `List[PIL]`, *optional*):
Same as input_imgs, but will be used later as an image prompt condition, encoded by CLIP feature
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
# input_image = hint_imgs
self.check_inputs(input_imgs, height, width, callback_steps)
# 2. Define call parameters
if isinstance(input_imgs, PIL.Image.Image):
batch_size = 1
elif isinstance(input_imgs, list):
batch_size = len(input_imgs)
else:
batch_size = input_imgs.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input image with pose as prompt
prompt_embeds = self._encode_image_with_pose(
prompt_imgs, poses, device, num_images_per_prompt, do_classifier_free_guidance
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
4,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare image latents
img_latents = self.prepare_img_latents(
input_imgs,
batch_size * num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = torch.cat([latent_model_input, img_latents], dim=1)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
# latents = self.scheduler.step(noise_pred.to(dtype=torch.float32), t, latents.to(dtype=torch.float32)).prev_sample.to(prompt_embeds.dtype)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
has_nsfw_concept = None
if output_type == "latent":
image = latents
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -777,7 +777,7 @@ class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline):
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.

View File

@@ -912,7 +912,7 @@ class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.

View File

@@ -911,7 +911,7 @@ class StableDiffusionControlNetInpaintImg2ImgPipeline(DiffusionPipeline):
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.

View File

@@ -201,7 +201,7 @@ class StableDiffusionControlNetReferencePipeline(StableDiffusionControlNetPipeli
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the

View File

@@ -729,7 +729,7 @@ class StableDiffusionIPEXPipeline(DiffusionPipeline):
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Examples:

View File

@@ -153,8 +153,6 @@ class StableDiffusionReferencePipeline(StableDiffusionPipeline):
)
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
# aligning device to prevent device errors when concating it with the latent model input
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
return ref_image_latents
@@ -249,7 +247,7 @@ class StableDiffusionReferencePipeline(StableDiffusionPipeline):
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
@@ -733,6 +731,7 @@ class StableDiffusionReferencePipeline(StableDiffusionPipeline):
1,
),
)
ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt
ref_xt = self.scheduler.scale_model_input(ref_xt, t)
MODE = "write"

View File

@@ -823,14 +823,14 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
return self
def __initialize_timesteps(self, timesteps, strength):
self.scheduler.set_timesteps(timesteps)
offset = self.scheduler.steps_offset if hasattr(self.scheduler, "steps_offset") else 0
init_timestep = int(timesteps * strength) + offset
init_timestep = min(init_timestep, timesteps)
t_start = max(timesteps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start:].to(self.torch_device)
return timesteps, t_start
def __initialize_timesteps(self, num_inference_steps, strength):
self.scheduler.set_timesteps(num_inference_steps)
offset = self.scheduler.config.steps_offset if hasattr(self.scheduler, "steps_offset") else 0
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
t_start = max(num_inference_steps - init_timestep + offset, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :].to(self.torch_device)
return timesteps, num_inference_steps - t_start
def __preprocess_images(self, batch_size, images=()):
init_images = []
@@ -953,7 +953,7 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
strength: float = 0.75,
strength: float = 1.0,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
@@ -1043,9 +1043,32 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
latent_height = self.image_height // 8
latent_width = self.image_width // 8
# Pre-process input images
mask, masked_image, init_image = self.__preprocess_images(
batch_size,
prepare_mask_and_masked_image(
image,
mask_image,
self.image_height,
self.image_width,
return_image=True,
),
)
mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width))
mask = torch.cat([mask] * 2)
# Initialize timesteps
timesteps, t_start = self.__initialize_timesteps(self.denoising_steps, strength)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
# Pre-initialize latents
num_channels_latents = self.vae.config.latent_channels
latents = self.prepare_latents(
latents_outputs = self.prepare_latents(
batch_size,
num_channels_latents,
self.image_height,
@@ -1053,16 +1076,12 @@ class TensorRTStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline):
torch.float32,
self.torch_device,
generator,
image=init_image,
timestep=latent_timestep,
is_strength_max=is_strength_max,
)
# Pre-process input images
mask, masked_image = self.__preprocess_images(batch_size, prepare_mask_and_masked_image(image, mask_image))
# print(mask)
mask = torch.nn.functional.interpolate(mask, size=(latent_height, latent_width))
mask = torch.cat([mask] * 2)
# Initialize timesteps
timesteps, t_start = self.__initialize_timesteps(self.denoising_steps, strength)
latents = latents_outputs[0]
# VAE encode masked image
masked_latents = self.__encode_image(masked_image)

View File

@@ -0,0 +1,909 @@
import argparse
import inspect
import os
import time
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
from PIL import Image
from transformers import CLIPTokenizer
from diffusers import OnnxRuntimeModel, StableDiffusionImg2ImgPipeline, UniPCMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
logging,
randn_tensor,
replace_example_docstring,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> np_image = np.array(image)
>>> # get canny image
>>> np_image = cv2.Canny(np_image, 100, 200)
>>> np_image = np_image[:, :, None]
>>> np_image = np.concatenate([np_image, np_image, np_image], axis=2)
>>> canny_image = Image.fromarray(np_image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman",
... num_inference_steps=20,
... generator=generator,
... image=image,
... control_image=canny_image,
... ).images[0]
```
"""
def prepare_image(image):
if isinstance(image, torch.Tensor):
# Batch single image
if image.ndim == 3:
image = image.unsqueeze(0)
image = image.to(dtype=torch.float32)
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
return image
class OnnxStableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline):
vae_encoder: OnnxRuntimeModel
vae_decoder: OnnxRuntimeModel
text_encoder: OnnxRuntimeModel
tokenizer: CLIPTokenizer
unet: OnnxRuntimeModel
scheduler: KarrasDiffusionSchedulers
def __init__(
self,
vae_encoder: OnnxRuntimeModel,
vae_decoder: OnnxRuntimeModel,
text_encoder: OnnxRuntimeModel,
tokenizer: CLIPTokenizer,
unet: OnnxRuntimeModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__()
self.register_modules(
vae_encoder=vae_encoder,
vae_decoder=vae_decoder,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (4 - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
def _encode_prompt(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: Optional[int],
do_classifier_free_guidance: bool,
negative_prompt: Optional[str],
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
prompt_embeds (`np.ndarray`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`np.ndarray`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt] * batch_size
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
if do_classifier_free_guidance:
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
num_controlnet,
prompt,
image,
callback_steps,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Check `image`
if num_controlnet == 1:
self.check_image(image, prompt, prompt_embeds)
elif num_controlnet > 1:
if not isinstance(image, list):
raise TypeError("For multiple controlnets: `image` must be type `list`")
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != num_controlnet:
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {num_controlnet} ControlNets."
)
for image_ in image:
self.check_image(image_, prompt, prompt_embeds)
else:
assert False
# Check `controlnet_conditioning_scale`
if num_controlnet == 1:
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif num_controlnet > 1:
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif (
isinstance(controlnet_conditioning_scale, list)
and len(controlnet_conditioning_scale) != num_controlnet
):
raise ValueError(
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
" the same length as the number of controlnets"
)
else:
assert False
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
if num_controlnet > 1:
if len(control_guidance_start) != num_controlnet:
raise ValueError(
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {num_controlnet} controlnets available. Make sure to provide {num_controlnet}."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0]
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
)
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
def prepare_control_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
else:
_image = image.cpu().detach().numpy()
init_latents = self.vae_encoder(sample=_image)[0]
init_latents = torch.from_numpy(init_latents).to(device=device, dtype=dtype)
init_latents = 0.18215 * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
num_controlnet: int,
fp16: bool = True,
prompt: Union[str, List[str]] = None,
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
control_image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.8,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The initial image will be used as the starting point for the image generation process. Can also accpet
image latents as `image`, if passing latents directly, it will not be encoded again.
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
specified in init, images must be passed as a list such that each element of the list can be correctly
batched for input to a single controlnet.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
than for [`~StableDiffusionControlNetPipeline.__call__`].
guess_mode (`bool`, *optional*, defaults to `False`):
In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the controlnet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the controlnet stops applying.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
if fp16:
torch_dtype = torch.float16
np_dtype = np.float16
else:
torch_dtype = torch.float32
np_dtype = np.float32
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = num_controlnet
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
num_controlnet,
prompt,
control_image,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if num_controlnet > 1 and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * num_controlnet
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare image
image = self.image_processor.preprocess(image).to(dtype=torch.float32)
# 5. Prepare controlnet_conditioning_image
if num_controlnet == 1:
control_image = self.prepare_control_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=torch_dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
elif num_controlnet > 1:
control_images = []
for control_image_ in control_image:
control_image_ = self.prepare_control_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=torch_dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
control_images.append(control_image_)
control_image = control_images
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 6. Prepare latent variables
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
torch_dtype,
device,
generator,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if num_controlnet == 1 else keeps)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
# predict the noise residual
_latent_model_input = latent_model_input.cpu().detach().numpy()
_prompt_embeds = np.array(prompt_embeds, dtype=np_dtype)
_t = np.array([t.cpu().detach().numpy()], dtype=np_dtype)
if num_controlnet == 1:
control_images = np.array([control_image], dtype=np_dtype)
else:
control_images = []
for _control_img in control_image:
_control_img = _control_img.cpu().detach().numpy()
control_images.append(_control_img)
control_images = np.array(control_images, dtype=np_dtype)
control_scales = np.array(cond_scale, dtype=np_dtype)
control_scales = np.resize(control_scales, (num_controlnet, 1))
noise_pred = self.unet(
sample=_latent_model_input,
timestep=_t,
encoder_hidden_states=_prompt_embeds,
controlnet_conds=control_images,
conditioning_scales=control_scales,
)[0]
noise_pred = torch.from_numpy(noise_pred).to(device)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
_latents = latents.cpu().detach().numpy() / 0.18215
_latents = np.array(_latents, dtype=np_dtype)
image = self.vae_decoder(latent_sample=_latents)[0]
image = torch.from_numpy(image).to(device, dtype=torch.float32)
has_nsfw_concept = None
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--sd_model",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument(
"--onnx_model_dir",
type=str,
required=True,
help="Path to the ONNX directory",
)
parser.add_argument("--qr_img_path", type=str, required=True, help="Path to the qr code image")
args = parser.parse_args()
qr_image = Image.open(args.qr_img_path)
qr_image = qr_image.resize((512, 512))
# init stable diffusion pipeline
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(args.sd_model)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
provider = ["CUDAExecutionProvider", "CPUExecutionProvider"]
onnx_pipeline = OnnxStableDiffusionControlNetImg2ImgPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "vae_encoder"), provider=provider
),
vae_decoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "vae_decoder"), provider=provider
),
text_encoder=OnnxRuntimeModel.from_pretrained(
os.path.join(args.onnx_model_dir, "text_encoder"), provider=provider
),
tokenizer=pipeline.tokenizer,
unet=OnnxRuntimeModel.from_pretrained(os.path.join(args.onnx_model_dir, "unet"), provider=provider),
scheduler=pipeline.scheduler,
)
onnx_pipeline = onnx_pipeline.to("cuda")
prompt = "a cute cat fly to the moon"
negative_prompt = "paintings, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, age spot, glans, nsfw, nipples, necklace, worst quality, low quality, watermark, username, signature, multiple breasts, lowres, bad anatomy, bad hands, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, bad feet, single color, ugly, duplicate, morbid, mutilated, tranny, trans, trannsexual, hermaphrodite, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, disfigured, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, bad body perspect"
for i in range(10):
start_time = time.time()
image = onnx_pipeline(
num_controlnet=2,
prompt=prompt,
negative_prompt=negative_prompt,
image=qr_image,
control_image=[qr_image, qr_image],
width=512,
height=512,
strength=0.75,
num_inference_steps=20,
num_images_per_prompt=1,
controlnet_conditioning_scale=[0.8, 0.8],
control_guidance_start=[0.3, 0.3],
control_guidance_end=[0.9, 0.9],
).images[0]
print(time.time() - start_time)
image.save("output_qr_code.png")

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
# DreamBooth training example for Stable Diffusion XL (SDXL)
# ControlNet training example for Stable Diffusion XL (SDXL)
The `train_controlnet_sdxl.py` script shows how to implement the training procedure and adapt it for [Stable Diffusion XL](https://huggingface.co/papers/2307.01952).
The `train_controlnet_sdxl.py` script shows how to implement the ControlNet training procedure and adapt it for [Stable Diffusion XL](https://huggingface.co/papers/2307.01952).
## Running locally with PyTorch
@@ -128,4 +128,4 @@ image.save("./output.png")
### Specifying a better VAE
SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
SDXL's VAE is known to suffer from numerical instability issues. This is why we also expose a CLI argument namely `--pretrained_vae_model_name_or_path` that lets you specify the location of a better VAE (such as [this one](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).

View File

@@ -4,6 +4,5 @@ transformers>=4.25.1
ftfy
tensorboard
Jinja2
invisible-watermark>=0.2.0
datasets
wandb

View File

@@ -56,7 +56,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.19.0.dev0")
check_min_version("0.20.0")
logger = get_logger(__name__)

View File

@@ -47,7 +47,7 @@ from diffusers import (
FlaxStableDiffusionControlNetPipeline,
FlaxUNet2DConditionModel,
)
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
# To prevent an error that occurs when there are abnormally large compressed data chunk in the png image
@@ -59,23 +59,11 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.19.0.dev0")
check_min_version("0.20.0")
logger = logging.getLogger(__name__)
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def log_validation(pipeline, pipeline_params, controlnet_params, tokenizer, args, rng, weight_dtype):
logger.info("Running validation...")
@@ -154,7 +142,7 @@ def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=N
validation_image.save(os.path.join(repo_folder, "image_control.png"))
img_str += f"prompt: {validation_prompt}\n"
images = [validation_image] + images
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
img_str += f"![images_{i})](./images_{i}.png)\n"
yaml = f"""

View File

@@ -50,7 +50,7 @@ from diffusers import (
UniPCMultistepScheduler,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
from diffusers.utils.import_utils import is_xformers_available
@@ -58,22 +58,11 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.20.0")
logger = get_logger(__name__)
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step):
logger.info("Running validation... ")
@@ -205,12 +194,12 @@ def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=N
validation_image.save(os.path.join(repo_folder, "image_control.png"))
img_str += f"prompt: {validation_prompt}\n"
images = [validation_image] + images
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
img_str += f"![images_{i})](./images_{i}.png)\n"
yaml = f"""
---
license: creativeml-openrail-m
license: openrail++
base_model: {base_model}
tags:
- stable-diffusion-xl
@@ -227,12 +216,7 @@ inference: true
These are controlnet weights trained on {base_model} with new type of conditioning.
{img_str}
"""
model_card += """
## License
[SDXL 1.0 License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
"""
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card)
@@ -904,6 +888,7 @@ def main(args):
if args.gradient_checkpointing:
controlnet.enable_gradient_checkpointing()
unet.enable_gradient_checkpointing()
# Check that all trainable models are in full precision
low_precision_error_string = (

Some files were not shown because too many files have changed in this diff Show More