* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.
* Update src/diffusers/models/unet_2d_blocks.py
This changes suggest by maintener.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update src/diffusers/models/unet_2d_blocks.py
Add suggested text
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update unet_2d_blocks.py
I changed the Parameter to Args text.
* Update unet_2d_blocks.py
proper indentation set in this file.
* Update unet_2d_blocks.py
a little bit of change in the act_fun argument line.
* I run the black command to reformat style in the code
* Update unet_2d_blocks.py
similar doc-string add to have in the original diffusion repository.
* I removed the dummy variable defined in both the encoder and decoder.
* Now, I run black package to reformat my file
* Remove the redundant line from the adapter.py file.
* Black package using to reformated my file
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.
* Update src/diffusers/models/unet_2d_blocks.py
This changes suggest by maintener.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update src/diffusers/models/unet_2d_blocks.py
Add suggested text
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update unet_2d_blocks.py
I changed the Parameter to Args text.
* Update unet_2d_blocks.py
proper indentation set in this file.
* Update unet_2d_blocks.py
a little bit of change in the act_fun argument line.
* I run the black command to reformat style in the code
* Update unet_2d_blocks.py
similar doc-string add to have in the original diffusion repository.
* I removed the dummy variable defined in both the encoder and decoder.
* Now, I run black package to reformat my file
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* Update final model offload for more pipelines
Add test to ensure all pipeline components are returned to CPU after
execution with model offloading
* Add comment to explain early UNet offload in Text-to-Video pipeline
* Style
* stabilize dpmpp for sdxl by using euler at the final step
* add lu's uniform logsnr time steps
* add test
* fix check_copies
* fix tests
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix error reported 'find_unused_parameters' running in mutiple GPUs or NPUs
* fix code check of importing module by its alphabetic order
---------
Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.
* Update src/diffusers/models/unet_2d_blocks.py
This changes suggest by maintener.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update src/diffusers/models/unet_2d_blocks.py
Add suggested text
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update unet_2d_blocks.py
I changed the Parameter to Args text.
* Update unet_2d_blocks.py
proper indentation set in this file.
* Update unet_2d_blocks.py
a little bit of change in the act_fun argument line.
* I run the black command to reformat style in the code
* Update unet_2d_blocks.py
similar doc-string add to have in the original diffusion repository.
* I use a lower method in the activation function.
* Replace multiple if-else statements with a dictionary of activation functions, and call one if statement to retrieve the appropriate function.
* I am using black package to reforamted my file
* I defined the ACTIVATION_FUNCTIONS variable outside of the function
* activation function variable convert to lower case
* First, I resolved the conflict issue. Then, I ran the Black package to reformat my file.
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* improvement: add typehints and docs to src/diffusers/models/attention_processor.py
* improvement: add typehints and docs to src/diffusers/models/vae.py
* improvement: add missing docs in src/diffusers/models/vq_model.py
* improvement: add typehints and docs to src/diffusers/models/transformer_temporal.py
* improvement: add typehints and docs to src/diffusers/models/t5_film_transformer.py
* improvement: add type hints to src/diffusers/models/unet_1d_blocks.py
* improvement: add missing type hints to src/diffusers/models/unet_2d_blocks.py
* fix: CI error (make fix-copies required)
* fix: CI error (make fix-copies required again)
---------
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* Add a new community pipeline
examples/community/latent_consistency_img2img.py
which can be called like this
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
img2img=LatentConsistencyModelPipeline_img2img(
vae=pipe.vae,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
unet=pipe.unet,
#scheduler=pipe.scheduler,
scheduler=None,
safety_checker=None,
feature_extractor=pipe.feature_extractor,
requires_safety_checker=False,
)
img = Image.open("thisismyimage.png")
result = img2img(prompt,img,strength,num_inference_steps=4)
* Apply suggestions from code review
Fix name formatting for scheduler
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update readme (and run formatter on latent_consistency_img2img.py)
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix
* fix copies
* remove heun from tests
* add back heun and fix the tests to include 2nd order
* fix the other test too
* Apply suggestions from code review
* Apply suggestions from code review
* Apply suggestions from code review
* make style
* add more comments
---------
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* initial commit for LatentConsistencyModelPipeline and LCMScheduler based on the community pipeline
* Add callback and freeu support.
* apply suggestions from review
* Clean up LCMScheduler
* Remove timeindex argument to LCMScheduler.step.
* Add support for clipping or thresholding the predicted original sample.
* Remove unused methods and arguments in LCMScheduler.
* Improve comment about (lack of) negative prompt support.
* Change input guidance_scale to match the StableDiffusionPipeline (Imagen) CFG formulation.
* Move lcm_origin_steps from pipeline __call__ to LCMScheduler.__init__/config (as origin_steps).
* Fix typo when clipping/thresholding in LCMScheduler.
* Add some initial LCMScheduler tests.
* add type annotations from review
* Fix type annotation bug.
* Override test_add_noise_device in LCMSchedulerTest since hardcoded timesteps doesn't work under default settings.
* Add generator argument pipeline prepare_latents call.
* Cast LCMScheduler.timesteps to long in set_timesteps.
* Add onestep and multistep full loop scheduler tests.
* Set default height/width to None and don't hardcode guidance scale embedding dim.
* Add initial LatentConsistencyPipeline fast and slow tests.
* Add initial documentation for LatentConsistencyModelPipeline and LCMScheduler.
* Make remaining failing fast tests pass.
* make style
* Make original_inference_steps configurable from pipeline __call__ again.
* make style
* Remove guidance_rescale arg from pipeline __call__ since LCM currently doesn't support CFG.
* Make LCMScheduler defaults match config of LCM_Dreamshaper_v7 checkpoint.
* Fix LatentConsistencyPipeline slow tests and add dummy expected slices.
* Add checks for original_steps in LCMScheduler.set_timesteps.
* make fix-copies
* Improve LatentConsistencyModelPipeline docs.
* Apply suggestions from code review
Co-authored-by: Aryan V S <avs050602@gmail.com>
* Apply suggestions from code review
Co-authored-by: Aryan V S <avs050602@gmail.com>
* Apply suggestions from code review
Co-authored-by: Aryan V S <avs050602@gmail.com>
* Update src/diffusers/schedulers/scheduling_lcm.py
* Apply suggestions from code review
Co-authored-by: Aryan V S <avs050602@gmail.com>
* finish
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Aryan V S <avs050602@gmail.com>
* add
* Update docs/source/en/api/pipelines/controlnet_sdxl.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update get_dummy_inputs(...) in T2I-Adapter tests to take image height and width as params.
* Update the T2I-Adapter unit tests to run with the standard number of UNet down blocks so that all T2I-Adapter down blocks get exercised.
* Update the T2I-Adapter down blocks to better match the padding behavior of the UNet.
* Revert "Update the T2I-Adapter unit tests to run with the standard number of UNet down blocks so that all T2I-Adapter down blocks get exercised."
This reverts commit 6d4a060a34.
* Create utility functions for testing the T2I-Adapter downscaling bahevior.
* (minor) Improve readability with an intermediate named variable.
* Statically parameterize T2I-Adapter test dimensions rather than generating them dynamically.
* Fix static checks.
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Added args, kwargs to ```U
* Add UNetMidBlock2D as a supported mid block type
* Fix extra init input for UNetMidBlock2D, change allowed types for Mid-block init
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_condition.py
* Update unet_2d_blocks.py
* Update unet_2d_blocks.py
* Update unet_2d_blocks.py
* Update unet_2d_condition.py
* Update unet_2d_blocks.py
* Updated docstring, increased check strictness
Updated the docstring for ```UNet2DConditionModel``` to include ```reverse_transformer_layers_per_block``` and updated checking for nested list type ```transformer_layers_per_block```
* Add basic shape-check test for asymmetrical unets
* Update src/diffusers/models/unet_2d_blocks.py
Removed blank line
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update unet_2d_condition.py
Remove blank space
* Update unet_2d_condition.py
Changed docstring for `mid_block_type`
* Fixed docstring and wrong default value
* Reformat with black
* Reformat with necessary commands
* Add UNetMidBlockFlat to versatile_diffusion/modeling_text_unet.py to ensure consistency
* Removed args, kwargs, use on mid-block type
* Make fix-copies
* Update src/diffusers/models/unet_2d_condition.py
Wrap into single line
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* make fix-copies
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.
* Update src/diffusers/models/unet_2d_blocks.py
This changes suggest by maintener.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update src/diffusers/models/unet_2d_blocks.py
Add suggested text
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update unet_2d_blocks.py
I changed the Parameter to Args text.
* Update unet_2d_blocks.py
proper indentation set in this file.
* Update unet_2d_blocks.py
a little bit of change in the act_fun argument line.
* I run the black command to reformat style in the code
* Update unet_2d_blocks.py
similar doc-string add to have in the original diffusion repository.
* Update unet_2d_blocks.py
Added Beutifull doc-string into the UNetMidBlock2D class.
* Update unet_2d_blocks.py
I replaced the definition in this parameter resnet_time_scale_shift and resnet_groups.
* Update unet_2d_blocks.py
I remove additional sentences into the resnet_groups argument.
* Update unet_2d_blocks.py
I replaced my definition with the maintainer definition in the attention_head_dim parameter.
* I am using black package for reformated my file
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
* added TODOs
* Enhanced and reformatted the docstrings of IFPipeline methods.
* Enhanced and fixed the docstrings of IFImg2ImgSuperResolutionPipeline methods.
* Enhanced and fixed the docstrings of IFImg2ImgPipeline methods.
* Enhanced and fixed the docstrings of IFInpaintingSuperResolutionPipeline methods.
* Enhanced and fixed the docstrings of IFInpaintingPipeline methods.
* Enhanced and fixed the docstrings of IFSuperResolutionPipeline methods.
* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if.py
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* remove redundant code
* fix code style
* revert the ordering to not break backwards compatibility
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* changed channel parameters for UNET and VAE. Decreased hidden layers size with increased attention heads and intermediate size
* changed the assertion check range
* clean up
---------
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* fix: sdxl pipeline when unet is not available.
* fix moe
* account for text
* ifx more
* don't make unet optional.
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* split conditionals.
* add optional components to sdxl pipeline
* propagate changes to the rest of the pipelines.
* add: test
* add to all
* fix: rest of the pipelines.
* use pipeline_class variable
* separate pipeline mixin
* use safe_serialization
* fix: test
* access actual output.
* add: optional test to adapter and ip2p sdxl pipeline tests/
* add optional test to controlnet sdxl.
* fix tests
* fix ip2p tests
* fix more
* fifx more.
* use np output type.
* fix for StableDiffusionXLMultiControlNetPipelineFastTests.
* fix: SDXLOptionalComponentsTesterMixin
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix tests
* Empty-Commit
* revert previous
* quality
* fix: test
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add ability to mix usage of T2I-Adapter(s) and ControlNet(s).
Previously, UNet2DConditional implemnetation onloy allowed use of one or the other.
Adds new forward() arg down_intrablock_additional_residuals specifically for T2I-Adapters. If down_intrablock_addtional_residuals is not used, maintains backward compatibility with prior usage of only T2I-Adapter or ControlNet but not both
* Improving forward() arg docs in src/diffusers/models/unet_2d_condition.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* Add deprecation warning if down_block_additional_residues is used for T2I-Adapter (intrablock residuals)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Oops my bad, fixing last commit.
* Added import of diffusers utils.deprecate
* Conform to max line length
* Modifying T2I-Adapter pipelines to reflect change to UNet forward() arg for T2I-Adapter residuals.
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add: freeu to the core sdxl pipeline.
* add: freeu to video2video
* add: freeu to the core SD pipelines.
* add: freeu to image variation for sdxl.
* add: freeu to SD ControlNet pipelines.
* add: freeu to SDXL controlnet pipelines.
* add: freu to t2i adapter pipelines.
* make fix-copies.
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.
* Update src/diffusers/models/unet_2d_blocks.py
This changes suggest by maintener.
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update src/diffusers/models/unet_2d_blocks.py
Add suggested text
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update unet_2d_blocks.py
I changed the Parameter to Args text.
* Update unet_2d_blocks.py
proper indentation set in this file.
* Update unet_2d_blocks.py
a little bit of change in the act_fun argument line.
* I run the black command to reformat style in the code
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* improvement: add missing typehints and docs to diffusers/models/attention.py
* chore: convert doc strings to raw python strings
add missing typehints
* improvement: add missing typehints and docs to diffusers/models/adapter.py
* improvement: add missing typehints and docs to diffusers/models/lora.py
* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update src/diffusers/models/lora.py
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Added mark_step for sdxl to run with pytorch xla. Also updated README with instructions for xla
* adding soft dependency on torch_xla
* fix some styling
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* add missing docstrings
* chore: run make quality
* improvement: include docs suggestion by @yiyixuxu
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* decrease UNet2DConditionModel & ControlNetModel blocks
* decrease UNet2DConditionModel & ControlNetModel blocks
* decrease even more blocks & number of norm groups
* decrease vae block out channels and n of norm goups
* fix code style
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* fix(gligen_inpaint_pipeline): 🐛 Wrap the timestep() 0-d tensor in a list to convert to 1-d tensor. This avoids the TypeError caused by trying to directly iterate over a 0-dimensional tensor in the denoising stage
* test(gligen/gligen_text_image): unit test using the EulerAncestralDiscreteScheduler
---------
Co-authored-by: zhen-hao.chu <zhen-hao.chu@vitrox.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Min-SNR Gamma: correct the fix for SNR weighted loss in v-prediction by adding 1 to SNR rather than the resulting loss weights
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* ✨ Added Fourier filter function to upsample blocks
* 🔧 Update Fourier_filter for float16 support
* ✨ Added UNetFreeUConfig to UNet model for FreeU adaptation 🛠️
* move unet to its original form and add fourier_filter to torch_utils.
* implement freeU enable mechanism
* implement disable mechanism
* resolution index.
* correct resolution idx condition.
* fix copies.
* no need to use resolution_idx in vae.
* spell out the kwargs
* proper config property
* fix attribution setting
* place unet hasattr properly.
* fix: attribute access.
* proper disable
* remove validation method.
* debug
* debug
* debug
* debug
* debug
* debug
* potential fix.
* add: doc.
* fix copies
* add: tests.
* add: support freeU in SDXL.
* set default value of resolution idx.
* set default values for resolution_idx.
* fix copies
* fix rest.
* fix copies
* address PR comments.
* run fix-copies
* move apply_free_u to utils and other minors.
* introduce support for video (unet3D)
* minor ups
* consistent fix-copies.
* consistent stuff
* fix-copies
* add: rest
* add: docs.
* fix: tests
* fix: doc path
* Apply suggestions from code review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* style up
* move to techniques.
* add: slow test for sd freeu.
* add: slow test for sd freeu.
* add: slow test for sd freeu.
* add: slow test for sd freeu.
* add: slow test for sd freeu.
* add: slow test for sd freeu.
* add: slow test for video with freeu
* add: slow test for video with freeu
* add: slow test for video with freeu
* style
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* handle case when controlnet is list
* Update src/diffusers/loaders.py
* Apply suggestions from code review
* Update src/diffusers/loaders.py
* typecheck comment
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* pipline fetcher
* update script
* clean up
* clean up
* clean up
* new pipeline runner
* rename tests to match modules
* test actions in pr
* change runner to gpu
* clean up
* clean up
* clean up
* fix report
* fix reporting
* clean up
* show test stats in failure reports
* give names to jobs
* add lora tests
* split torch cuda tests and add compile tests
* clean up
* fix tests
* change push to run only on main
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update Unipc einsum to support 1D and 3D diffusion.
* Add unittest
* Update unittest & edge case
* Fix unittest
* Fix testing_utils.py
* Fix unittest file
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add docstring for the AutoencoderKL's encode
#5229
* Support Python 3.8 syntax in AutoencoderKL.decode type hints
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Follow the style guidelines in AutoencoderKL's encode
#5230
---------
Co-authored-by: stano <>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add VAE slicing and tiling methods.
* Switch to using VaeImageProcessing for preprocessing and postprocessing of images.
* Rename the VaeImageProcessor to vae_image_processor to avoid a name clash with the CLIPImageProcessor (image_processor).
* Remove the postprocess() function because we're using a VaeImageProcessor instead.
* Remove UniDiffuserPipeline.decode_image_latents because we're using VaeImageProcessor instead.
* Refactor generating text from text latents into a decode_text_latents method.
* Add enable_full_determinism() to UniDiffuser tests.
* make style
* Add PipelineLatentTesterMixin to UniDiffuserPipelineFastTests.
* Remove enable_model_cpu_offload since it is now part of DiffusionPipeline.
* Rename the VaeImageProcessor instance to self.image_processor for consistency with other pipelines and rename the CLIPImageProcessor instance to clip_image_processor to avoid a name clash.
* Update UniDiffuser conversion script.
* Make safe_serialization configurable in UniDiffuser conversion script.
* Rename image_processor to clip_image_processor in UniDiffuser tests.
* Add PipelineKarrasSchedulerTesterMixin to UniDiffuserPipelineFastTests.
* Add initial test for compiling the UniDiffuser model (not tested yet).
* Update encode_prompt and _encode_prompt to match that of StableDiffusionPipeline.
* Turn off standard classifier-free guidance for now.
* make style
* make fix-copies
* apply suggestions from review
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* added docstrings in forward methods of T2IAdapter model and FullAdapter model
* added docstrings in forward methods of FullAdapterXL and AdapterBlock models
* Added docstrings in forward methods of adapter models
* fix ddim inverse scheduler
* update test of ddim inverse scheduler
* update test of pix2pix_zero
* update test of diffedit
* fix typo
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* split_head_dim flax attn
* Make split_head_dim non default
* make style and make quality
* add description for split_head_dim flag
* Update src/diffusers/models/attention_flax.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Timestep bias for fine-tuning SDXL
* Adjust parameter choices to include "range" and reword the help statements
* Condition our use of weighted timesteps on the value of timestep_bias_strategy
* style
---------
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Fix FullAdapterXL.total_downscale_factor.
* Fix incorrect error message in T2IAdapter.__init__(...).
* Move IP-Adapter test_total_downscale_factor(...) to pipeline test file (requested in code review).
* Add more info to error message about an unsupported T2I-Adapter adapter_type.
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Make sure the repo_id is valid before sending it to huggingface_hub to get a more understandable error message.
Re #5110
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* SDXL microconditioning documentation should indicate the correct default order of parameters, so that developers know
* SDXL microconditioning documentation should indicate the correct default order of parameters, so that developers know
* empty
---------
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* support transformer_layers_per block in flax UNet
* add support for text_time additional embeddings to Flax UNet
* rename attention layers for VAE
* add shape asserts when renaming attention layers
* transpose VAE attention layers
* add pipeline flax SDXL code [WIP]
* continue add pipeline flax SDXL code [WIP]
* cleanup
* Working on JIT support
Fixed prompt embedding shapes so they work in parallel mode. Assuming we
always have both text encoders for now, for simplicity.
* Fixing embeddings (untested)
* Remove spurious line
* Shard guidance_scale when jitting.
* Decode images
* Fix sharding
* style
* Refiner UNet can be loaded.
* Refiner / img2img pipeline
* Allow latent outputs from base and latent inputs in refiner
This makes it possible to chain base + refiner without having to use the
vae decoder in the base model, the vae encoder in the refiner, skipping
conversions to/from PIL, and avoiding TPU <-> CPU memory copies.
* Adapt to FlaxCLIPTextModelOutput
* Update Flax XL pipeline to FlaxCLIPTextModelOutput
* make fix-copies
* make style
* add euler scheduler
* Fix import
* Fix copies, comment unused code.
* Fix SDXL Flax imports
* Fix euler discrete begin
* improve init import
* finish
* put discrete euler in init
* fix flax euler
* Fix more
* make style
* correct init
* correct init
* Temporarily remove FlaxStableDiffusionXLImg2ImgPipeline
* correct pipelines
* finish
---------
Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* min-SNR gamma for Dreambooth training
* Align the mse_loss_weights style with SDXL training example
---------
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Resolve v_prediction issue for min-SNR gamma weighted loss function
* Combine MSE loss calculation of epsilon and velocity, with a note about the application of the epsilon code to sample prediction
* style
---------
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* fix test
* initial commit
* change test
* updates:
* fix tests
* test fix
* test fix
* fix tests
* make test faster
* clean up
* fix precision in test
* fix precision
* Fix tests
* Fix logging test
* fix test
* fix test
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [SDXL] Make sure multi batch prompt embeds works
* [SDXL] Make sure multi batch prompt embeds works
* improve more
* improve more
* Apply suggestions from code review
Fixed `get_word_inds` mistake/typo in P2P community pipeline
The function `get_word_inds` was taking a string of text and either a word (str) or a word index (int) and returned the indices of token(s) the word would be encoded to.
However, there was a typo, in which in the second `if` branch the word was checked to be a `str` **again**, not `int`, which resulted in an [example code from the docs](https://github.com/huggingface/diffusers/tree/main/examples/community#prompt2prompt-pipeline) to result in an error
* add support for clip skip
* fix condition
* fix
* add clip_output_layer_to_default
* expose
* remove the previous functions.
* correct condition.
* apply final layer norm
* address feedback
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* refactor clip_skip.
* port to the other pipelines.
* fix copies one more time
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Remove logger.info statement from Unet2DCondition code to ensure torch compile reliably succeeds
* Convert logging statement to a comment for future archaeologists
* Update src/diffusers/models/unet_2d_condition.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add attn_groups argument to UNet2DMidBlock2D to control theinternal Attention block's GroupNorm.
* Add docstring for attn_norm_num_groups in UNet2DModel.
* Since the test UNet config uses resnet_time_scale_shift == 'scale_shift', also set attn_norm_num_groups to 32.
* Add test for attn_norm_num_groups to UNet2DModelTests.
* Fix expected slices for slow tests.
* Also fix tolerances for slow tests.
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Initial commit P2P
* Replaced CrossAttention, added test skeleton
* bug fixes
* Updated docstring
* Removed unused function
* Created tests
* improved tests
- made fast inference tests faster
- corrected image shape assertions
* Corrected expected output shape in tests
* small fix: test inputs
* Update tests
- used conditional unet2d
- set expected image slices
- edit_kwargs are now not popped, so pipe can be run multiple times
* Fixed bug in int tests
* Fixed tests
* Linting
* Create prompt2prompt.md
* Added to docs toc
* Ran make fix-copies
* Fixed code blocks in docs
* Using same interface as StableDiffusionPipeline
* Fixed small test bug
* Added all options SDPipeline.__call_ has
* Fixed docstring; made __call__ like in SD
* Linting
* Added test for multiple prompts
* Improved docs
* Incorporated feedback
* Reverted formatting on unrelated files
* Moved prompt2prompt to community
- Moved prompt2prompt pipeline from main to community
- Deleted tests
- Moved documentation to community and shorted it
* Update src/diffusers/utils/dummy_torch_and_transformers_objects.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* check out dtypes.
* check out dtypes.
* check out dtypes.
* check out dtypes.
* check out dtypes.
* check out dtypes.
* check out dtypes.
* potential fix
* check out dtypes.
* check out dtypes.
* working?
* Fix an unmatched backtick and make description more general for DiffusionPipeline.enable_sequential_cpu_offload.
* make style
* _exclude_from_cpu_offload -> self._exclude_from_cpu_offload
* make style
* apply suggestions from review
* make style
* speed up lora loading
* Apply suggestions from code review
* up
* up
* Fix more
* Correct more
* Apply suggestions from code review
* up
* Fix more
* Fix more -
* up
* up
* [Draft] Refactor model offload
* [Draft] Refactor model offload
* Apply suggestions from code review
* cpu offlaod updates
* remove model cpu offload from individual pipelines
* add hook to offload models to cpu
* clean up
* model offload
* add model cpu offload string
* make style
* clean up
* fixes for offload issues
* fix tests issues
* resolve merge conflicts
* update src/diffusers/pipelines/pipeline_utils.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* make style
* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
---------
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* Revert "Temp Revert "[Core] better support offloading when side loading is enabled… (#4927)"
This reverts commit 2ab170499e.
* tests: install accelerate from main
* add t2i_example script
* remove in channels logic
* remove comments
* remove use_euler arg
* add requirements
* only use canny example
* use datasets
* comments
* make log_validation consistent with other scripts
* add readme
* fix title in readme
* update check_min_version
* change a few minor things.
* add doc entry
* add: test for t2i adapter training
* remove use_auth_token
* fix: logged info.
* remove tests for now.
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Add --vae_precision option to the SDXL pix2pix script so that we have the option of avoiding float32 overhead
* style
---------
Co-authored-by: bghira <bghira@users.github.com>
* Add dropout param to get_down_block/get_up_block and UNet2DModel/UNet2DConditionModel.
* Add dropout param to Versatile Diffusion modeling, which has a copy of UNet2DConditionModel and its own get_down_block/get_up_block functions.
* Change StableDiffusionInpaintPipelineFastTests.get_dummy_inputs to produce a random image and a white mask_image.
* Add dummy expected slices for the test_stable_diffusion_inpaint tests.
* Remove print statement
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* proposal for flaky tests
* more precision fixes
* move more tests to use cosine distance
* more test fixes
* clean up
* use default attn
* clean up
* update expected value
* make style
* make style
* Apply suggestions from code review
* Update src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
* make style
* fix failing tests
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Initial code to add force_unmasked_unchanged argument to StableDiffusionInpaintPipeline.__call__.
* Try to improve StableDiffusionInpaintPipelineFastTests.get_dummy_inputs.
* Use original mask to preserve unmasked pixels in pixel space rather than latent space.
* make style
* start working on note in docs to force unmasked area to be unchanged
* Add example of forcing the unmasked area to remain unchanged.
* Revert "make style"
This reverts commit fa7759293a.
* Revert "Use original mask to preserve unmasked pixels in pixel space rather than latent space."
This reverts commit 092bd0e9e9.
* Revert "Try to improve StableDiffusionInpaintPipelineFastTests.get_dummy_inputs."
This reverts commit ff41cf43c5.
* Revert "Initial code to add force_unmasked_unchanged argument to StableDiffusionInpaintPipeline.__call__."
This reverts commit 989979752a.
---------
Co-authored-by: Will Berman <wlbberman@gmail.com>
* Fix potential type conversion errors in SDXL pipelines
* make sure vae stays in fp16
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* refactoring of encode_prompt()
* better handling of device.
* fix: device determination
* fix: device determination 2
* handle num_images_per_prompt
* revert changes in loaders.py and give birth to encode_prompt().
* minor refactoring for encode_prompt()/
* make backward compatible.
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix: concatenation of the neg and pos embeddings.
* incorporate encode_prompt() in test_stable_diffusion.py
* turn it into big PR.
* make it bigger
* gligen fixes.
* more fixes to fligen
* _encode_prompt -> encode_prompt in tests
* first batch
* second batch
* fix blasphemous mistake
* fix
* fix: hopefully for the final time.
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* adding save and load for MultiAdapter, adding test
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Adding changes from review test_stable_diffusion_adapter
* import sorting fix
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Increase min accelerate ver to avoid OOM when mixed precision
* Rm re-instantiation of VAE
* Rm casting to float32
* Del unused models and free GPU
* Fix style
* Update textual_inversion.py
fixed safe_path bug in textual inversion training
* Update test_examples.py
update test_textual_inversion for updating saved file's name
* Update textual_inversion.py
fixed some formatting issues
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* empty PR
* init
* changes
* starting with the pipeline
* stable diff
* prev
* more things, getting started
* more functions
* makeing it more readable
* almost done testing
* var changes
* testing
* device
* device support
* maybe
* device malfunctions
* new new
* register
* testing
* exec does not work
* float
* change info
* change of architecture
* might work
* testing with colab
* more attn atuff
* stupid additions
* documenting and testing
* writing tests
* more docs
* tests and docs
* remove test
* empty PR
* init
* changes
* starting with the pipeline
* stable diff
* prev
* more things, getting started
* more functions
* makeing it more readable
* almost done testing
* var changes
* testing
* device
* device support
* maybe
* device malfunctions
* new new
* register
* testing
* exec does not work
* float
* change info
* change of architecture
* might work
* testing with colab
* more attn atuff
* stupid additions
* documenting and testing
* writing tests
* more docs
* tests and docs
* remove test
* change cross attention
* revert back
* tests
* reverting back to orig
* changes
* test passing
* pipeline changes
* before quality
* quality checks pass
* remove print statements
* doc fixes
* __init__ error something
* update docs, working on dim
* working on encoding
* doc fix
* more fixes
* no more dependent on 512*512
* update docs
* fixes
* test passing
* remove comment
* fixes and migration
* simpler tests
* doc changes
* green CI
* changes
* more docs
* changes
* new images
* to community examples
* selete
* more fixes
* changes
* fix
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* Update loaders.py
Solves an error sometimes thrown while iterating over state_dict.keys() caused by using the .pop() method within the loop.
* Update loaders.py
* debugging
* better logic for filtering.
* Update src/diffusers/loaders.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* dreambooth training
* train_dreambooth validation scheduler
* set a particular scheduler via a string
* modify readme after setting a particular scheduler via a string
* modify readme after setting a particular scheduler
* use importlib to set a particular scheduler
* import with correct sort
* Fix AutoencoderTiny encoder scaling convention
* Add [-1, 1] -> [0, 1] rescaling to EncoderTiny
* Move [0, 1] -> [-1, 1] rescaling from AutoencoderTiny.decode to DecoderTiny
(i.e. immediately after the final conv, as early as possible)
* Fix missing [0, 255] -> [0, 1] rescaling in AutoencoderTiny.forward
* Update AutoencoderTinyIntegrationTests to protect against scaling issues.
The new test constructs a simple image, round-trips it through AutoencoderTiny,
and confirms the decoded result is approximately equal to the source image.
This test checks behavior with and without tiling enabled.
This test will fail if new AutoencoderTiny scaling issues are introduced.
* Context: Raw TAESD weights expect images in [0, 1], but diffusers'
convention represents images with zero-centered values in [-1, 1],
so AutoencoderTiny needs to scale / unscale images at the start of
encoding and at the end of decoding in order to work with diffusers.
* Re-add existing AutoencoderTiny test, update golden values
* Add comments to AutoencoderTiny.forward
This is a better method than comparing against a list of supported backends as it allows for supporting any number of backends provided they are installed on the user's system.
This should have no effect on the behaviour of tests in Huggingface's CI workers.
See transformers#25506 where this approach has already been added.
* Update loaders.py
add config_file to from_single_file,
when the download_from_original_stable_diffusion_ckpt use
* Update loaders.py
add config_file to from_single_file,
when the download_from_original_stable_diffusion_ckpt use
* change config_file to original_config_file
* make style && make quality
---------
Co-authored-by: jianghua.zuo <jianghua.zuo@weimob.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* Add SDXL long weighted prompt pipeline
* Add SDXL long weighted prompt pipeline usage sample in the readme document
* Add SDXL long weighted prompt pipeline usage sample in the readme document, add result image
* make safetensors default
* set default save method as safetensors
* update tests
* update to support saving safetensors
* update test to account for safetensors default
* update example tests to use safetensors
* update example to support safetensors
* update unet tests for safetensors
* fix failing loader tests
* fix qc issues
* fix pipeline tests
* fix example test
---------
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
* add: train to text image with sdxl script.
Co-authored-by: CaptnSeraph <s3raph1m@gmail.com>
* fix: partial func.
* fix: default value of output_dir.
* make style
* set num inference steps to 25.
* remove mentions of LoRA.
* up min version
* add: ema cli arg
* run device placement while running step.
* precompute vae encodings too.
* fix
* debug
* should work now.
* debug
* debug
* goes alright?
* style
* debugging
* debugging
* debugging
* debugging
* fix
* reinit scheduler if prediction_type was passed.
* akways cast vae in float32
* better handling of snr.
Co-authored-by: bghira <bghira@users.github.com>
* the vae should be also passed
* add: docs.
* add: sdlx t2i tests
* save the pipeline
* autocast.
* fix: save_model_card
* fix: save_model_card.
---------
Co-authored-by: CaptnSeraph <s3raph1m@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: bghira <bghira@users.github.com>
* Fixing repo_id regex validation error on windows platforms
* Validating correct URL with prefix is provided
If we are loading a URL then we don't need to use os.path.join and array slicing to split out a repo_id and file path from an absolute filepath.
Checking if the URL prefix is valid first before doing any URL splitting otherwise we raise a ValueError since neither a valid filepath or URL was provided.
* Style fixes
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* move slow pix2pixzero tests to nightly
* move slow panorama tests to nightly
* move txt2video full test to nightly
* clean up
* remove nightly test from text to video pipeline
* add load_lora_weights and save_lora_weights to StableDiffusionXLImg2ImgPipeline
* add load_lora_weights and save_lora_weights to StableDiffusionXLInpaintPipeline
* apply black format
* apply black format
* add copy statement
* fix statements
* fix statements
* fix statements
* run `make fix-copies`
* add pipeline class
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* style
---------
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* move audioldm tests to nightly
* move kandinsky im2img ddpm test to nightly
* move flax dpm test to nightly
* move diffedit dpm test to nightly
* move fp16 slow tests to nightly
* add train_text_to_image_lora_sdxl.py
* add train_text_to_image_lora_sdxl.py
* add test and minor fix
* Update examples/text_to_image/README_sdxl.md
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* fix unwrap_model rule
* add invisible-watermark in requirements
* del invisible-watermark
* Update examples/text_to_image/README_sdxl.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update examples/text_to_image/README_sdxl.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update examples/text_to_image/train_text_to_image_lora_sdxl.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* del comment & update readme
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* added placeholder token concatenation during training
* Update examples/textual_inversion/textual_inversion.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Faster controlnet model instantiation, and allow controlnets to be loaded (from ckpt) in a parallel thread with a SD model (ckpt) without tensor errors (race condition)
* type conversion
Default value of `control_guidance_start` and `control_guidance_end` in `StableDiffusionControlNetPipeline.check_inputs` causes `TypeError: object of type 'float' has no len()`
Proposed fix:
Convert `control_guidance_start` and `control_guidance_end` to list if float
* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py
* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Prevent online access when desired
- Bypass requests with config files option added to download_from_original_stable_diffusion_ckpt
- Adds local_files_only flags to all from_pretrained requests
* add zero123 pipeline to community
* add community doc
* reformat
* update zero123 pipeline, including cc_projection within diffusers; add convert ckpt scripts; support diffusers weights
* first draft
* tidy api
* apply feedback
* mdx to md
* apply feedback
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update expected slice so img2img compile tests pass
* use default attn processor
* use default attn processor and update expected slice value to pass test
* use default attn processor
* set default attn processor and update expected slice
* set default attn processor and change precision for check
* set unet to use default attn processor
* fixed typo
* updated doc to be consistent in naming
* make style/quality
* preprocessing for 4 channels and not 6
* make style
* test for 4c
* make style/quality
* fixed test on cpu
* fixed doc typo
* changed default ckpt to 4c
* Update pipeline_stable_diffusion_ldm3d.py
---------
Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
Update unet_1d.py
highlighting the way the modules are actually fed in the main code as the order matters because no skip block attaches time embeds whilst others do not
* [SDXL-IP2P] Add gif for demonstrating training processes
* [SDXL-IP2P] Add gif for demonstrating training processes
* [SDXL-IP2P] Change gif to URLs
* [SDXL-IP2P] Add URLs in case gif now show
---------
Co-authored-by: Harutatsu Akiyama <kf.zy.qin@gmail.com>
* fix_batch_xl
* Fix other pipelines as well
* up
* up
* Update tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py
* sort
* up
* Finish it all up Co-authored-by: Bagheera <bghira@users.github.com>
* Co-authored-by: Bagheera bghira@users.github.com
* Co-authored-by: Bagheera <bghira@users.github.com>
* Finish it all up Co-authored-by: Bagheera <bghira@users.github.com>
* add test for pipeline import.
* Update tests/others/test_dependencies.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* address suggestions
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* initial
* style
* from ...pipelines -> from ..pipeline_util
* make style
* fix-copies
* fix value_guided_sampling oops
* style
* add test
* Show failing test
* update from_pipe
* fix
* add controlnet, additional test and register unused original config
* update for controlnet
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* store unused config as private attribute and pass if can
* add doc
* kandinsky inpaint pipeline does not work with decoder checkpoint
* update doc
* Apply suggestions from code review
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* style
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix
* Apply suggestions from code review
---------
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* fix: #4206
* add: sdxl controlnet training smoketest.
* remove unnecessary token inits.
* add: licensing to model card.
* include SDXL licensing in the model card and make public visibility default
* debugging
* debugging
* disable local file download.
* fix: training test.
* fix: ckpt prefix.
* Fix the XL ensemble not working for any kerras scheduler sigmas and having an off by one bug
* Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py
* make sytle
---------
Co-authored-by: Jimmy <39@🇺🇸.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* fix bug when no cfg
* style
* fix no cfg for shap-e and cycle
* style
* fix no cfg for sdxl
* fix copies
---------
Co-authored-by: yiyixuxu <yixu310@gmail,com>
* 📄 Renamed File for Better Understanding
Renamed the 'rl' file to 'run_locomotion'. This change was made to improve the clarity and readability of the codebase. The 'rl' name was ambiguous, and 'run_locomotion' provides a more clear description of the file's purpose.
Thanks 🙌
* 📁 [Docs] Renamed Directory for Better Clarity
Renamed the 'rl' directory to 'reinforcement_learning'. This change provides a clearer understanding of the directory's purpose and its contents.
* Update examples/reinforcement_learning/README.md
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* 📝 Update README
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix bug in ControlNetPipelines with MultiControlNetModel of length 1
* Add tests for varying number of ControlNet models
* Fix missing indexing for control_guidance_start and control_guidance_end
* Fix code quality
* Separate test for MultiControlNet with one model
* Revert formatting of earlier test
* Add controlnet from single file
* Updates
* make style
* finish
* Apply suggestions from code review
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* feat: add act_fn param to OutValueFunctionBlock
* feat: update unet1d tests to not use mish
* feat: add `mish` as the default activation function
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* feat: drop mish tests from unet1d
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add: controlnet sdxl.
* modifications to controlnet.
* run styling.
* add: __init__.pys
* incorporate https://github.com/huggingface/diffusers/pull/4019 changes.
* run make fix-copies.
* resize the conditioning images.
* remove autocast.
* run styling.
* disable autocast.
* debugging
* device placement.
* back to autocast.
* remove comment.
* save some memory by reusing the vae and unet in the pipeline.
* apply styling.
* Allow low precision sd xl
* finish
* finish
* changes to accommodate the improved VAE.
* modifications to how we handle vae encoding in the training.
* make style
* make existing controlnet fast tests pass.
* change vae checkpoint cli arg.
* fix: vae pretrained paths.
* fix: steps in get_scheduler().
* debugging.
* debugging./
* fix: weight conversion.
* add: docs.
* add: limited tests./
* add: datasets to the requirements.
* update docstrings and incorporate the usage of watermarking.
* incorporate fix from #4083
* fix watermarking dependency handling.
* run make-fix-copies.
* Empty-Commit
* Update requirements_sdxl.txt
* remove vae upcasting part.
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* run make style
* run make fix-copies.
* disable suppot for multicontrolnet.
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* run make fix-copies.
* dtyle/.
* fix-copies.
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add Recent Timestep Scheduling Improvements to DDIM Inverse Scheduler
Roll timesteps by one to reflect origin-destination semantic discrepancy
Restore `set_alpha_to_one` option to handle negative initial timesteps
Remove `set_alpha_to_zero` option not used due to previous truncation
* Bugfix
* Remove unnecessary calls to `detach()`
Use `self.image_processor.preprocess` in DiffEdit pipeline functions
* Preprocess list input for inverted image latents in diffedit pipeline
* Add `timestep_spacing` and `steps_offset` to `DPMSolverMultistepInverseScheduler`
* Update expected test results to account for inverting last forward diffusion step
* Fix inversion progress bar bug
* Add first draft for proper fast tests for DDIMInverseScheduler
* Add deprecated DDIMInverseScheduler kwarg to ConfigMixer registry
* Fix test failure in DPMMultistepInverseScheduler
Invert step specification leads to negative noise variance in SDE-based algs
Add first draft for proper fast tests for DPMMultistepInverseScheduler
* Update expected test results to account for inverting last forward diffusion step
Clean up diffedit fast test
* Quick implementation of t2i-adapter
Load adapter module with from_pretrained
Prototyping generalized adapter framework
Writeup doc string for sideload framework(WIP) + some minor update on implementation
Update adapter models
Remove old adapter optional args in UNet
Add StableDiffusionAdapterPipeline unit test
Handle cpu offload in StableDiffusionAdapterPipeline
Auto correct coding style
Update model repo name to "RzZ/sd-v1-4-adapter-pipeline"
Refactor MultiAdapter to better compatible with config system
Export MultiAdapter
Create pipeline document template from controlnet
Create dummy objects
Supproting new AdapterLight model
Fix StableDiffusionAdapterPipeline common pipeline test
[WIP] Update adapter pipeline document
Handle num_inference_steps in StableDiffusionAdapterPipeline
Update definition of Adapter "channels_in"
Update documents
Apply code style
Fix doc typo and merge error
Update doc string and example
Quality of life improvement
Remove redundant code and file from prototyping
Remove unused pageage
Remove comments
Fix title
Fix typo
Add conditioning scale arg
Bring back old implmentation
Offload sideload
Add supply info on document
Update src/diffusers/models/adapter.py
Co-authored-by: Will Berman <wlbberman@gmail.com>
Update MultiAdapter constructor
Swap out custom checkpoint and update pipeline constructor
Update docment
Apply suggestions from code review
Co-authored-by: Will Berman <wlbberman@gmail.com>
Correcting style
Following single-file policy
Update auto size in image preprocess func
Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_adapter.py
Co-authored-by: Will Berman <wlbberman@gmail.com>
fix copies
Update adapter pipeline behavior
Add adapter_conditioning_scale doc string
Add the missing doc string
Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Fix few bugs from suggestion
Handle L-mode PIL image as control image
Rename to differentiate adapter resblock
Update src/diffusers/models/adapter.py
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Fix typo
Update adapter parameter name
Update test case and code style
Fix copies
Fix typo
Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_adapter.py
Co-authored-by: Will Berman <wlbberman@gmail.com>
Update Adapter class name
Add checkpoint converting script
Fix style
Fix-copies
Remove dev script
Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Updates for parameter rename
Fix convert_adapter
remove main
fix diff
more
refactoring
more
more
small fixes
refactor
tests
more slow tests
more tests
Update docs/source/en/api/pipelines/overview.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
add community contributor to docs
Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
fix
remove from_adapters
license
paper link
docs
more url fixes
more docs
fix
fixes
fix
fix
* fix sample inplace add
* additional_kwargs -> additional_residuals
* move t2i adapter pipeline to own module
* preprocess -> _preprocess_adapter_image
* add TencentArc to license
* fix example code links
* add image converter and fix example doc string
* fix links
* clearer additional residual application
---------
Co-authored-by: HimariO <dsfhe49854@gmail.com>
* 📝 Update doc with more descriptive title and filename for "IF" section
Updated the documentation to provide a more descriptive title and filename for the "IF" section. Previously, having only "IF" as the title was not conveying a clear meaning. By renaming the section to "DeepFloyd IF," we provide users with a more informative and context-specific heading.
Thanks! 🙌
* 📝 Update name for "IF" section in 📝 Update name for "IF" section in README
Updated the link and name for the "IF" section in the README file to reflect the new heading "DeepFloyd IF."
* 📝 Fix broken link for "Instruct Pix2Pix" section in README
Fixed the broken link for the "Instruct Pix2Pix" section in the README file. Previously, the link was pointing to an incorrect location due to the presence of "stable_diffusion" in the URL. By removing "stable_diffusion" from the URL, I have corrected the error and ensured that users are directed to the correct section.
* 🔧💼 Updated parameters in _toctree.yml file
- ✏️ Updated 'local' parameter to 'api/pipelines/deepfloyd_if'.
- ✏️ Updated 'title' parameter to 'DeepFloyd IF'.
🎯 These changes aim to improve visibility and accessibility in the documentation of the DeepFloyd IF pipeline. 🚀📚
* add noise_sampler to StableDiffusionKDiffusionPipeline
* fix/docs: Fix the broken doc links (#3897)
* fix/docs: Fix the broken doc links
Signed-off-by: GitHub <noreply@github.com>
* Update docs/source/en/using-diffusers/write_own_pipeline.mdx
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
---------
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* Add video img2img (#3900)
* Add image to image video
* Improve
* better naming
* make fix copies
* add docs
* finish tests
* trigger tests
* make style
* correct
* finish
* Fix more
* make style
* finish
* fix/doc-code: Updating to the latest version parameters (#3924)
fix/doc-code: update to use the new parameter
Signed-off-by: GitHub <noreply@github.com>
* fix/doc: no import torch issue (#3923)
Ffix/doc: no import torch issue
Signed-off-by: GitHub <noreply@github.com>
* Correct controlnet out of list error (#3928)
* Correct controlnet out of list error
* Apply suggestions from code review
* correct tests
* correct tests
* fix
* test all
* Apply suggestions from code review
* test all
* test all
* Apply suggestions from code review
* Apply suggestions from code review
* fix more tests
* Fix more
* Apply suggestions from code review
* finish
* Apply suggestions from code review
* Update src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py
* finish
* Adding better way to define multiple concepts and also validation capabilities. (#3807)
* - Added validation parameters
- Changed some parameter descriptions to better explain their use.
- Fixed a few typos.
- Added concept_list parameter for better management of multiple subjects
- changed logic for image validation
* - Fixed bad logic for class data root directories
* Defaulting validation_steps to None for an easier logic
* Fixed multiple validation prompts
* Fixed bug on validation negative prompt
* Changed validation logic for tracker.
* Added uuid for validation image labeling
* Fix error when comparing validation prompts and validation negative prompts
* Improved error message when negative prompts for validation are more than the number of prompts
* - Changed image tracking number from epoch to global_step
- Added Typing for functions
* Added some validations more when using concept_list parameter and the regular ones.
* Fixed error message
* Added more validations for validation parameters
* Improved messaging for errors
* Fixed validation error for parameters with default values
* - Added train step to image name for validation
- reformatted code
* - Added train step to image's name for validation
- reformatted code
* Updated README.md file.
* reverted back original script of train_dreambooth.py
* reverted back original script of train_dreambooth.py
* left one blank line at the eof
* reverted back setup.py
* reverted back setup.py
* added same logic for when parameters for prior preservation are used without enabling the flag while using concept_list parameter.
* Ran black formatter.
* fixed a few strings
* fixed import sort with isort and removed fstrings without placeholder
* fixed import order with ruff (since with isort wasn't ok)
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [ldm3d] Update code to be functional with the new checkpoints (#3875)
* fixed typo
* updated doc to be consistent in naming
* make style/quality
* preprocessing for 4 channels and not 6
* make style
* test for 4c
* make style/quality
* fixed test on cpu
---------
Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
* Improve memory text to video (#3930)
* Improve memory text to video
* Apply suggestions from code review
* add test
* Apply suggestions from code review
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* finish test setup
---------
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* revert automatic chunking (#3934)
* revert automatic chunking
* Apply suggestions from code review
* revert automatic chunking
* avoid upcasting by assigning dtype to noise tensor (#3713)
* avoid upcasting by assigning dtype to noise tensor
* make style
* Update train_unconditional.py
* Update train_unconditional.py
* make style
* add unit test for pickle
* revert change
---------
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
* Fix failing np tests (#3942)
* Fix failing np tests
* Apply suggestions from code review
* Update tests/pipelines/test_pipelines_common.py
* Add `timestep_spacing` and `steps_offset` to schedulers (#3947)
* Add timestep_spacing to DDPM, LMSDiscrete, PNDM.
* Remove spurious line.
* More easy schedulers.
* Add `linspace` to DDIM
* Noise sigma for `trailing`.
* Add timestep_spacing to DEISMultistepScheduler.
Not sure the range is the way it was intended.
* Fix: remove line used to debug.
* Support timestep_spacing in DPMSolverMultistep, DPMSolverSDE, UniPC
* Fix: convert to numpy.
* Use sched. defaults when instantiating from_config
For params not present in the original configuration.
This makes it possible to switch pipeline schedulers even if they use
different timestep_spacing (or any other param).
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Missing args in DPMSolverMultistep
* Test: default args not in config
* Style
* Fix scheduler name in test
* Remove duplicated entries
* Add test for solver_type
This test currently fails in main. When switching from DEIS to UniPC,
solver_type is "logrho" (the default value from DEIS), which gets
translated to "bh1" by UniPC. This is different to the default value for
UniPC: "bh2". This is where the translation happens: 36d22d0709/src/diffusers/schedulers/scheduling_unipc_multistep.py (L171)
* UniPC: use same default for solver_type
Fixes a bug when switching from UniPC from another scheduler (i.e.,
DEIS) that uses a different solver type. The solver is now the same as
if we had instantiated the scheduler directly.
* do not save use default values
* fix more
* fix all
* fix schedulers
* fix more
* finish for real
* finish for real
* flaky tests
* Update tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py
* Default steps_offset to 0.
* Add missing docstrings
* Apply suggestions from code review
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add Consistency Models Pipeline (#3492)
* initial commit
* Improve consistency models sampling implementation.
* Add CMStochasticIterativeScheduler, which implements the multi-step sampler (stochastic_iterative_sampler) in the original code, and make further improvements to sampling.
* Add Unet blocks for consistency models
* Add conversion script for Unet
* Fix bug in new unet blocks
* Fix attention weight loading
* Make design improvements to ConsistencyModelPipeline and CMStochasticIterativeScheduler and add initial version of tests.
* make style
* Make small random test UNet class conditional and set resnet_time_scale_shift to 'scale_shift' to better match consistency model checkpoints.
* Add support for converting a test UNet and non-class-conditional UNets to the consistency models conversion script.
* make style
* Change num_class_embeds to 1000 to better match the original consistency models implementation.
* Add support for distillation in pipeline_consistency_models.py.
* Improve consistency model tests:
- Get small testing checkpoints from hub
- Modify tests to take into account "distillation" parameter of ConsistencyModelPipeline
- Add onestep, multistep tests for distillation and distillation + class conditional
- Add expected image slices for onestep tests
* make style
* Improve ConsistencyModelPipeline:
- Add initial support for class-conditional generation
- Fix initial sigma for onestep generation
- Fix some sigma shape issues
* make style
* Improve ConsistencyModelPipeline:
- add latents __call__ argument and prepare_latents method
- add check_inputs method
- add initial docstrings for ConsistencyModelPipeline.__call__
* make style
* Fix bug when randomly generating class labels for class-conditional generation.
* Switch CMStochasticIterativeScheduler to configuring a sigma schedule and make related changes to the pipeline and tests.
* Remove some unused code and make style.
* Fix small bug in CMStochasticIterativeScheduler.
* Add expected slices for multistep sampling tests and make them pass.
* Work on consistency model fast tests:
- in pipeline, call self.scheduler.scale_model_input before denoising
- get expected slices for Euler and Heun scheduler tests
- make Euler test pass
- mark Heun test as expected fail because it doesn't support prediction_type "sample" yet
- remove DPM and Euler Ancestral tests because they don't support use_karras_sigmas
* make style
* Refactor conversion script to make it easier to add more model architectures to convert in the future.
* Work on ConsistencyModelPipeline tests:
- Fix device bug when handling class labels in ConsistencyModelPipeline.__call__
- Add slow tests for onestep and multistep sampling and make them pass
- Refactor fast tests
- Refactor ConsistencyModelPipeline.__init__
* make style
* Remove the add_noise and add_noise_to_input methods from CMStochasticIterativeScheduler for now.
* Run python utils/check_copies.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite to make dummy objects for new pipeline and scheduler.
* Make fast tests from PipelineTesterMixin pass.
* make style
* Refactor consistency models pipeline and scheduler:
- Remove support for Karras schedulers (only support CMStochasticIterativeScheduler)
- Move sigma manipulation, input scaling, denoising from pipeline to scheduler
- Make corresponding changes to tests and ensure they pass
* make style
* Add docstrings and further refactor pipeline and scheduler.
* make style
* Add initial version of the consistency models documentation.
* Refactor custom timesteps logic following DDPMScheduler/IFPipeline and temporarily add torch 2.0 SDPA kernel selection logic for debugging.
* make style
* Convert current slow tests to use fp16 and flash attention.
* make style
* Add slow tests for normal attention on cuda device.
* make style
* Fix attention weights loading
* Update consistency model fast tests for new test checkpoints with attention fix.
* make style
* apply suggestions
* Add add_noise method to CMStochasticIterativeScheduler (copied from EulerDiscreteScheduler).
* Conversion script now outputs pipeline instead of UNet and add support for LSUN-256 models and different schedulers.
* When both timesteps and num_inference_steps are supplied, raise warning instead of error (timesteps take precedence).
* make style
* Add remaining diffusers model checkpoints for models in the original consistency model release and update usage example.
* apply suggestions from review
* make style
* fix attention naming
* Add tests for CMStochasticIterativeScheduler.
* make style
* Make CMStochasticIterativeScheduler tests pass.
* make style
* Override test_step_shape in CMStochasticIterativeSchedulerTest instead of modifying it in SchedulerCommonTest.
* make style
* rename some models
* Improve API
* rename some models
* Remove duplicated block
* Add docstring and make torch compile work
* More fixes
* Fixes
* Apply suggestions from code review
* Apply suggestions from code review
* add more docstring
* update consistency conversion script
---------
Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add test case for StableDiffusionKDiffusionPipeline noise_sampler
---------
Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Aisuko <urakiny@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Andrés Mauricio Repetto Ferrero <amd.repetto@gmail.com>
Co-authored-by: estelleafl <estelle.aflalo@intel.com>
Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
Co-authored-by: Prathik Rao <prathikr@usc.edu>
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
* Add circular padding option
* Fix style with black
* Fix corner case with small image size
* Add circular padding test cases
* Fix docstring
* Improve docstring for circular padding, remove slow test case
* Update docs for circular padding argument
* Add images comparison for circular padding
* diffusers#4003 - initial implementation of max_inference_steps
* diffusers#4003 - initial implementation of max_inference_steps and first_inference_step for img2img
* diffusers#4003 - use first_inference_step as an input arg for get_timestamps in img2img
* diffusers#4003 Do not add noise during img2img when we have a defined first timestep
* diffusers#4003 Mild updates after revert
* diffusers#4003 Missing change
* Show implementation with denoising_start and end
* Apply suggestions from code review
* Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
* move to 0.19.0dev
* Apply suggestions from code review
* add exhaustive tests
* add docs
* finish
* Apply suggestions from code review
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* make style
---------
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
* 📝 Fix broken link to models documentation
Corrected the link to the models documentation in the README. Previously, the link was pointing to an incorrect URL. Now, the link directs users to the correct documentation page for more details on the models.
Thanks! 🙌
* Update src/diffusers/models/README.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* refactor to support patching LoRA into T5
instantiate the lora linear layer on the same device as the regular linear layer
get lora rank from state dict
tests
fmt
can create lora layer in float32 even when rest of model is float16
fix loading model hook
remove load_lora_weights_ and T5 dispatching
remove Unet#attn_processors_state_dict
docstrings
* text encoder monkeypatch class method
* fix test
---------
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-09 18:02:46 +02:00
923 changed files with 131409 additions and 24826 deletions
*Give your issue a fitting title. Assume that someone which very limited knowledge of diffusers can understand your issue. Add links to the source code, documentation other issues, pull requests etc...*
- 2. If your issue is about something not working, **always** provide a reproducible code snippet. The reader should be able to reproduce your issue by **only copy-pasting your code snippet into a Python shell**.
*The community cannot solve your issue if it cannot reproduce it. If your bug is related to training, add your training script and make everything needed to train public. Otherwise, just add a simple Python code snippet.*
- 3. Add the **minimum amount of code / context that is needed to understand, reproduce your issue**.
- 3. Add the **minimum** amount of code / context that is needed to understand, reproduce your issue.
*Make the life of maintainers easy. `diffusers` is getting many issues every day. Make sure your issue is about one bug and one bug only. Make sure you add only the context, code needed to understand your issues - nothing more. Generally, every issue is a way of documenting this library, try to make it a good documentation entry.*
- 4. For issues related to community pipelines (i.e., the pipelines located in the `examples/community` folder), please tag the author of the pipeline in your issue thread as those pipelines are not maintained.
- type:markdown
attributes:
value:|
@@ -60,21 +61,46 @@ body:
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag fewer than 3 people.
General library related questions: @patrickvonplaten and @sayakpaul
Please tag a maximum of 2 people.
Questions on the training examples: @williamberman, @sayakpaul, @yiyixuxu
Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...):
Questions on memory optimizations, LoRA, float16, etc.: @williamberman, @patrickvonplaten, and @sayakpaul
@@ -40,7 +40,7 @@ In the following, we give an overview of different ways to contribute, ranked by
As said before, **all contributions are valuable to the community**.
In the following, we will explain each contribution a bit more in detail.
For all contributions 4.-9. you will need to open a PR. It is explained in detail how to do so in [Opening a pull requst](#how-to-open-a-pr)
For all contributions 4.-9. you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr)
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
@@ -63,7 +63,7 @@ In the same spirit, you are of immense help to the community by answering such q
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accesible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
@@ -168,7 +168,7 @@ more precise, provide the link to a duplicated issue or redirect them to [the fo
If you have verified that the issued bug report is correct and requires a correction in the source code,
please have a look at the next sections.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull requst](#how-to-open-a-pr) section.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
### 4. Fixing a "Good first issue"
@@ -297,7 +297,7 @@ if you don't know yet what specific component you would like to add:
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) a read to better understand the design of any of the three components. Please be aware that
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
@@ -70,7 +70,7 @@ The following design principles are followed:
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
- Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner)
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
- Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
- Pipelines should be named after the task they are intended to solve.
- In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
@@ -90,7 +90,7 @@ The following design principles are followed:
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
### Schedulers
@@ -102,9 +102,9 @@ The following design principles are followed:
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.mdx).
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.md).
- Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved section set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx).
For an example of a rich moved section set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
## Writing Documentation - Specification
@@ -109,8 +109,8 @@ although we can write them directly in Markdown.
Adding a new tutorial or section is done in two steps:
- Add a new file under `docs/source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `docs/source/_toctree.yml` on the correct toc-tree.
- Add a new Markdown (.md) file under `docs/source/<languageCode>`.
- Link that file in `docs/source/<languageCode>/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four.
@@ -119,8 +119,8 @@ depending on the intended targets (beginners, more advanced users, or researcher
When adding a new pipeline:
-create a file `xxx.mdx` under `docs/source/api/pipelines` (don't hesitate to copy an existing file as template).
- Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.mdx`, along with the link to the paper, and a colab notebook (if available).
-Create a file `xxx.md` under `docs/source/<languageCode>/api/pipelines` (don't hesitate to copy an existing file as template).
- Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.md`, along with the link to the paper, and a colab notebook (if available).
- Write a short overview of the diffusion model:
- Overview with paper & authors
- Paper abstract
@@ -129,8 +129,6 @@ When adding a new pipeline:
- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
```
## XXXPipeline
[[autodoc]] XXXPipeline
- all
- __call__
@@ -148,7 +146,7 @@ This will include every public method of the pipeline that is documented, as wel
- disable_xformers_memory_efficient_attention
```
You can follow the same process to create a new scheduler under the `docs/source/api/schedulers` folder
You can follow the same process to create a new scheduler under the `docs/source/<languageCode>/api/schedulers` folder.
### Writing source documentation
@@ -164,7 +162,7 @@ provide its path. For instance: \[\`pipelines.ImagePipelineOutput\`\]. This will
`pipelines.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~pipelines.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
#### Defining arguments in a method
@@ -196,8 +194,8 @@ Here's an example showcasing everything so far:
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
following signature:
```
defmy_function(x: str = None, a: float = 1):
```py
def my_function(x:str=None,a:float=3.14):
```
then its documentation should look like this:
@@ -206,7 +204,7 @@ then its documentation should look like this:
Args:
x (`str`, *optional*):
This argument controls ...
a (`float`, *optional*, defaults to 1):
a (`float`, *optional*, defaults to `3.14`):
This argument is used to ...
```
@@ -268,4 +266,3 @@ We have an automatic script running with the `make style` command that will make
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
The [`DiffusionPipeline`] is the quickest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) for inference.
<Tip>
You shouldn't use the [`DiffusionPipeline`] class for training or finetuning a diffusion model. Individual
components (for example, [`UNet2DModel`] and [`UNet2DConditionModel`]) of diffusion pipelines are usually trained individually, so we suggest directly working with them instead.
</Tip>
The pipeline type (for example [`StableDiffusionPipeline`]) of any diffusion pipeline loaded with [`~DiffusionPipeline.from_pretrained`] is automatically
detected and pipeline components are loaded and passed to the `__init__` function of the pipeline.
Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrained`].
The APIs in this section are more experimental and prone to breaking changes. Most of them are used internally for development, but they may also be useful to you if you're interested in building a diffusion model with some custom parts or if you're interested in some of our helper utilities for working with 🤗 Diffusers.
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
The abstract from the paper is:
*StableDiffusion is a revolutionary text-to-image generator that is causing a stir in the world of image generation and editing. Unlike traditional methods that learn a diffusion model in pixel space, StableDiffusion learns a diffusion model in the latent space via a VQGAN, ensuring both efficiency and quality. It not only supports image generation tasks, but also enables image editing for real images, such as image inpainting and local editing. However, we have observed that the vanilla VQGAN used in StableDiffusion leads to significant information loss, causing distortion artifacts even in non-edited image regions. To this end, we propose a new asymmetric VQGAN with two simple designs. Firstly, in addition to the input from the encoder, the decoder contains a conditional branch that incorporates information from task-specific priors, such as the unmasked image region in inpainting. Secondly, the decoder is much heavier than the encoder, allowing for more detailed recovery while only slightly increasing the total inference cost. The training cost of our asymmetric VQGAN is cheap, and we only need to retrain a new asymmetric decoder while keeping the vanilla VQGAN encoder and StableDiffusion unchanged. Our asymmetric VQGAN can be widely used in StableDiffusion-based inpainting and local editing methods. Extensive experiments demonstrate that it can significantly improve the inpainting and editing performance, while maintaining the original text-to-image capability. The code is available at https://github.com/buxiangzhiren/Asymmetric_VQGAN*
Evaluation results can be found in section 4.1 of the original paper.
Tiny AutoEncoder for Stable Diffusion (TAESD) was introduced in [madebyollin/taesd](https://github.com/madebyollin/taesd) by Ollin Boer Bohan. It is a tiny distilled version of Stable Diffusion's VAE that can quickly decode the latents in a [`StableDiffusionPipeline`] or [`StableDiffusionXLPipeline`] almost instantly.
*How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions are two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.*
## Loading from the original format
By default the [`AutoencoderKL`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
from the original format using [`FromOriginalVAEMixin.from_single_file`] as follows:
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
## Loading from the original format
By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AltDiffusion
AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://huggingface.co/papers/2211.06679) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu.
The abstract from the paper is:
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
## Tips
`AltDiffusion` is conceptually the same as [Stable Diffusion](./stable_diffusion/overview).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AltDiffusion
AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu.
The abstract of the paper is the following:
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
- AltDiffusion is conceptually exactly the same as [Stable Diffusion](./stable_diffusion/overview).
- *Run AltDiffusion*
AltDiffusion can be tested very easily with the [`AltDiffusionPipeline`], [`AltDiffusionImg2ImgPipeline`] and the `"BAAI/AltDiffusion-m9"` checkpoint exactly in the same way it is shown in the [Conditional Image Generation Guide](../../using-diffusers/conditional_image_generation) and the [Image-to-Image Generation Guide](../../using-diffusers/img2img).
- *How to load and use different schedulers.*
The alt diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the alt diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following:
```python
>>> from diffusers import AltDiffusionPipeline, EulerDiscreteScheduler
- *How to convert all use cases with multiple or single pipeline*
If you want to use all possible use cases in a single `DiffusionPipeline` we recommend using the `components` functionality to instantiate all components in the most memory-efficient way:
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-Video Generation with AnimateDiff
## Overview
[AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725) by Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai
The abstract of the paper is the following:
With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at this https URL .
## Available Pipelines
| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
## Available checkpoints
Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/guoyww/). These checkpoints are meant to work with any model based on Stable Diffusion 1.4/1.5
## Usage example
AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
The following example demonstrates how to use a *MotionAdapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples.
</Tip>
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Attend-and-Excite
Attend-and-Excite for Stable Diffusion was proposed in [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://attendandexcite.github.io/Attend-and-Excite/) and provides textual attention control over image generation.
The abstract from the paper is:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
You can find additional information about Attend-and-Excite on the [project page](https://attendandexcite.github.io/Attend-and-Excite/), the [original codebase](https://github.com/AttendAndExcite/Attend-and-Excite), or try it out in a [demo](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Attend and Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
## Overview
Attend and Excite for Stable Diffusion was proposed in [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://attendandexcite.github.io/Attend-and-Excite/) and provides textual attention control over the image generation.
The abstract of the paper is the following:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Audio Diffusion
[Audio Diffusion](https://github.com/teticio/audio-diffusion) is by Robert Dargavel Smith, and it leverages the recent advances in image generation from diffusion models by converting audio samples to and from Mel spectrogram images.
The original codebase, training scripts and example notebooks can be found at [teticio/audio-diffusion](https://github.com/teticio/audio-diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AudioLDM
AudioLDM was proposed in [AudioLDM: Text-to-Audio Generation with Latent Diffusion Models](https://huggingface.co/papers/2301.12503) by Haohe Liu et al. Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional
sound effects, human speech and music.
The abstract from the paper is:
*Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.*
The original codebase can be found at [haoheliu/AudioLDM](https://github.com/haoheliu/AudioLDM).
## Tips
When constructing a prompt, keep in mind:
* Descriptive prompt inputs work best; you can use adjectives to describe the sound (for example, "high quality" or "clear") and make the prompt context specific (for example, "water stream in a forest" instead of "stream").
* It's best to use general terms like "cat" or "dog" instead of specific names or abstract objects the model may not be familiar with.
During inference:
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AudioLDM
## Overview
AudioLDM was proposed in [AudioLDM: Text-to-Audio Generation with Latent Diffusion Models](https://arxiv.org/abs/2301.12503) by Haohe Liu et al.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional
sound effects, human speech and music.
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be found [here](https://github.com/haoheliu/AudioLDM).
## Text-to-Audio
The [`AudioLDMPipeline`] can be used to load pre-trained weights from [cvssp/audioldm-s-full-v2](https://huggingface.co/cvssp/audioldm-s-full-v2) and generate text-conditional audio outputs:
* Descriptive prompt inputs work best: you can use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g., "water stream in a forest" instead of "stream").
* It's best to use general terms like 'cat' or 'dog' instead of specific names or abstract objects that the model may not be familiar with.
Inference:
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument: higher steps give higher quality audio at the expense of slower inference.
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
### How to load and use different schedulers
The AudioLDM pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers
that can be used with the AudioLDM pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
[`EulerAncestralDiscreteScheduler`] etc. We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest
scheduler there is.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`]
method, or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the
[`DPMSolverMultistepScheduler`], you can do the following:
```python
>>> from diffusers import AudioLDMPipeline, DPMSolverMultistepScheduler
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AudioLDM 2
AudioLDM 2 was proposed in [AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining](https://arxiv.org/abs/2308.05734)
by Haohe Liu et al. AudioLDM 2 takes a text prompt as input and predicts the corresponding audio. It can generate
text-conditional sound effects, human speech and music.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM 2
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from text embeddings. Two
text encoder models are used to compute the text embeddings from a prompt input: the text-branch of [CLAP](https://huggingface.co/docs/transformers/main/en/model_doc/clap)
and the encoder of [Flan-T5](https://huggingface.co/docs/transformers/main/en/model_doc/flan-t5). These text embeddings
are then projected to a shared embedding space by an [AudioLDM2ProjectionModel](https://huggingface.co/docs/diffusers/main/api/pipelines/audioldm2#diffusers.AudioLDM2ProjectionModel).
A [GPT2](https://huggingface.co/docs/transformers/main/en/model_doc/gpt2) _language model (LM)_ is used to auto-regressively
predict eight new embedding vectors, conditional on the projected CLAP and Flan-T5 embeddings. The generated embedding
vectors and Flan-T5 text embeddings are used as cross-attention conditioning in the LDM. The [UNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2UNet2DConditionModel)
of AudioLDM 2 is unique in the sense that it takes **two** cross-attention embeddings, as opposed to one cross-attention
conditioning, as in most other LDMs.
The abstract of the paper is the following:
*Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called language of audio (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate new state-of-the-art or competitive performance to previous approaches.*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be
found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
## Tips
### Choosing a checkpoint
AudioLDM2 comes in three variants. Two of these checkpoints are applicable to the general task of text-to-audio
generation. The third checkpoint is trained exclusively on text-to-music generation.
All checkpoints share the same model size for the text encoders and VAE. They differ in the size and depth of the UNet.
See table below for details on the three checkpoints:
| Checkpoint | Task | UNet Model Size | Total Model Size | Training Data / h |
* Descriptive prompt inputs work best: use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g. "water stream in a forest" instead of "stream").
* It's best to use general terms like "cat" or "dog" instead of specific names or abstract objects the model may not be familiar with.
* Using a **negative prompt** can significantly improve the quality of the generated waveform, by guiding the generation away from terms that correspond to poor quality audio. Try using a negative prompt of "Low quality."
### Controlling inference
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
### Evaluating generated waveforms:
* The quality of the generated waveforms can vary significantly based on the seed. Try generating with different seeds until you find a satisfactory generation
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
The following example demonstrates how to construct good music generation using the aforementioned tips: [example](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2Pipeline.__call__.example).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoPipeline
`AutoPipeline` is designed to:
1. make it easy for you to load a checkpoint for a task without knowing the specific pipeline class to use
2. use multiple pipelines in your workflow
Based on the task, the `AutoPipeline` class automatically retrieves the relevant pipeline given the name or path to the pretrained weights with the `from_pretrained()` method.
To seamlessly switch between tasks with the same checkpoint without reallocating additional memory, use the `from_pipe()` method to transfer the components from the original pipeline to the new one.
Blip Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
The abstract from the paper is:
*Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications.*
The original codebase can be found at [salesforce/LAVIS](https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion). You can find the official BLIP Diffusion checkpoints under the [hf.co/SalesForce](https://hf.co/SalesForce) organization.
`BlipDiffusionPipeline` and `BlipDiffusionControlNetPipeline` were contributed by [`ayushtues`](https://github.com/ayushtues/).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Consistency Models were proposed in [Consistency Models](https://huggingface.co/papers/2303.01469) by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
The abstract from the paper is:
*Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256. *
The original codebase can be found at [openai/consistency_models](https://github.com/openai/consistency_models), and additional checkpoints are available at [openai](https://huggingface.co/openai).
The pipeline was contributed by [dg845](https://github.com/dg845) and [ayushtues](https://huggingface.co/ayushtues). ❤️
## Tips
For an additional speed-up, use `torch.compile` to generate multiple images in <1 second:
Consistency Models were proposed in [Consistency Models](https://arxiv.org/abs/2303.01469) by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
The abstract of the [paper](https://arxiv.org/pdf/2303.01469.pdf) is as follows:
*Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256. *
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
This model was contributed by [takuma104](https://huggingface.co/takuma104). ❤️
The original codebase can be found at [lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet), and you can find official ControlNet checkpoints on [lllyasviel's](https://huggingface.co/lllyasviel) Hub profile.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-Image Generation with ControlNet Conditioning
## Overview
[Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
Using the pretrained models we can provide control images (for example, a depth map) to control Stable Diffusion text-to-image generation so that it follows the structure of the depth image and fills in the details.
The abstract of the paper is the following:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
This model was contributed by the community contributor [takuma104](https://huggingface.co/takuma104) ❤️ .
Next, we process the image to get the canny image. This is step *1.* - running the pre-conditioning processor. The pre-conditioning processor is different for every ControlNet. Please see the model cards of the [official checkpoints](#controlnet-with-stable-diffusion-1.5) for more information about other models.
First, we need to install opencv:
```
pip install opencv-contrib-python
```
Next, let's also install all required Hugging Face libraries:
**Note**: To see how to run all other ControlNet checkpoints, please have a look at [ControlNet with Stable Diffusion 1.5](#controlnet-with-stable-diffusion-1.5).
<!-- TODO: add space -->
## Combining multiple conditionings
Multiple ControlNet conditionings can be combined for a single image generation. Pass a list of ControlNets to the pipeline's constructor and a corresponding list of conditionings to `__call__`.
When combining conditionings, it is helpful to mask conditionings such that they do not overlap. In the example, we mask the middle of the canny map where the pose conditioning is located.
It can also be helpful to vary the `controlnet_conditioning_scales` to emphasize one conditioning over the other.
Guess Mode is [a ControlNet feature that was implemented](https://github.com/lllyasviel/ControlNet#guess-mode--non-prompt-mode) after the publication of [the paper](https://arxiv.org/abs/2302.05543). The description states:
>In this mode, the ControlNet encoder will try best to recognize the content of the input control map, like depth map, edge map, scribbles, etc, even if you remove all prompts.
#### The core implementation:
It adjusts the scale of the output residuals from ControlNet by a fixed ratio depending on the block depth. The shallowest DownBlock corresponds to `0.1`. As the blocks get deeper, the scale increases exponentially, and the scale for the output of the MidBlock becomes `1.0`.
Since the core implementation is just this, **it does not have any impact on prompt conditioning**. While it is common to use it without specifying any prompts, it is also possible to provide prompts if desired.
#### Usage:
Just specify `guess_mode=True` in the pipe() function. A `guidance_scale` between 3.0 and 5.0 is [recommended](https://github.com/lllyasviel/ControlNet#guess-mode--non-prompt-mode).
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
ControlNet requires a *control image* in addition to the text-to-image *prompt*.
Each pretrained model is trained using a different conditioning method that requires different images for conditioning the generated outputs. For example, Canny edge conditioning requires the control image to be the output of a Canny filter, while depth conditioning requires the control image to be a depth map. See the overview and image examples below to know more.
All checkpoints can be found under the authors' namespace [lllyasviel](https://huggingface.co/lllyasviel).
**13.04.2024 Update**: The author has released improved controlnet checkpoints v1.1 - see [here](#controlnet-v1.1).
### ControlNet v1.0
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|---|---|---|---|
|[lllyasviel/sd-controlnet-canny](https://huggingface.co/lllyasviel/sd-controlnet-canny)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_canny.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_canny.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"/></a>|
|[lllyasviel/sd-controlnet-depth](https://huggingface.co/lllyasviel/sd-controlnet-depth)<br/> *Trained with Midas depth estimation* |A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_depth.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_depth.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"/></a>|
|[lllyasviel/sd-controlnet-hed](https://huggingface.co/lllyasviel/sd-controlnet-hed)<br/> *Trained with HED edge detection (soft edge)* |A monochrome image with white soft edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_hed.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_hed.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"/></a> |
|[lllyasviel/sd-controlnet-mlsd](https://huggingface.co/lllyasviel/sd-controlnet-mlsd)<br/> *Trained with M-LSD line detection* |A monochrome image composed only of white straight lines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_mlsd.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_mlsd.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"/></a>|
|[lllyasviel/sd-controlnet-normal](https://huggingface.co/lllyasviel/sd-controlnet-normal)<br/> *Trained with normal map* |A [normal mapped](https://en.wikipedia.org/wiki/Normal_mapping) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_normal.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_normal.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"/></a>|
|[lllyasviel/sd-controlnet-openpose](https://huggingface.co/lllyasviel/sd-controlnet_openpose)<br/> *Trained with OpenPose bone image* |A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_openpose.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"/></a>|
|[lllyasviel/sd-controlnet-scribble](https://huggingface.co/lllyasviel/sd-controlnet_scribble)<br/> *Trained with human scribbles* |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> |
| Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example |
|---|---|---|---|---|
|[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>|
|[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>|
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Stable Diffusion XL
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoints from the 🤗 [Diffusers](https://huggingface.co/diffusers) Hub organization, and browse [community-trained](https://huggingface.co/models?other=stable-diffusion-xl&other=controlnet) checkpoints on the Hub.
<Tip warning={true}>
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
</Tip>
If you don't see a checkpoint you're interested in, you can train your own SDXL ControlNet with our [training script](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Cycle Diffusion
Cycle Diffusion is a text guided image-to-image generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://huggingface.co/papers/2210.05559) by Chen Henry Wu, Fernando De la Torre.
The abstract from the paper is:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Cycle Diffusion
## Overview
Cycle Diffusion is a Text-Guided Image-to-Image Generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) by Chen Henry Wu, Fernando De la Torre.
The abstract of the paper is the following:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
*Tips*:
- The Cycle Diffusion pipeline is fully compatible with any [Stable Diffusion](./stable_diffusion) checkpoints
- Currently Cycle Diffusion only works with the [`DDIMScheduler`].
*Example*:
In the following we should how to best use the [`CycleDiffusionPipeline`]
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import CycleDiffusionPipeline, DDIMScheduler
# load the pipeline
# make sure you're logged in with `huggingface-cli login`
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDIM
[Denoising Diffusion Implicit Models](https://huggingface.co/papers/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The abstract from the paper is:
*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.*
The original codebase can be found at [ermongroup/ddim](https://github.com/ermongroup/ddim).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDIM
## Overview
[Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The abstract of the paper is the following:
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
The original codebase of this paper can be found here: [ermongroup/ddim](https://github.com/ermongroup/ddim).
For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDPM
[Denoising Diffusion Probabilistic Models](https://huggingface.co/papers/2006.11239) (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the 🤗 Diffusers library, DDPM refers to the *discrete denoising scheduler* from the paper as well as the pipeline.
The abstract from the paper is:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
The original codebase can be found at [hohonathanho/diffusion](https://github.com/hojonathanho/diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
(DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes the diffusion based model of the same name, but in the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
The abstract of the paper is the following:
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.
The original codebase of this paper can be found [here](https://github.com/hojonathanho/diffusion).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DiffEdit
[DiffEdit: Diffusion-based semantic image editing with mask guidance](https://huggingface.co/papers/2210.11427) is by Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord.
The abstract from the paper is:
*Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.*
The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion), and you can try it out in this [demo](https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html).
This pipeline was contributed by [clarencechen](https://github.com/clarencechen). ❤️
## Tips
* The pipeline can generate masks that can be fed into other inpainting pipelines.
* In order to generate an image using this pipeline, both an image mask (source and target prompts can be manually specified or generated, and passed to [`~StableDiffusionDiffEditPipeline.generate_mask`])
and a set of partially inverted latents (generated using [`~StableDiffusionDiffEditPipeline.invert`]) _must_ be provided as arguments when calling the pipeline to generate the final edited image.
* The function [`~StableDiffusionDiffEditPipeline.generate_mask`] exposes two prompt arguments, `source_prompt` and `target_prompt`
that let you control the locations of the semantic edits in the final image to be generated. Let's say,
you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect
this in the generated mask, you simply have to set the embeddings related to the phrases including "cat" to
`source_prompt` and "dog" to `target_prompt`.
* When generating partially inverted latents using `invert`, assign a caption or text embedding describing the
overall image to the `prompt` argument to help guide the inverse latent sampling process. In most cases, the
source concept is sufficiently descriptive to yield good results, but feel free to explore alternatives.
* When calling the pipeline to generate the final edited image, assign the source concept to `negative_prompt`
and the target concept to `prompt`. Taking the above example, you simply have to set the embeddings related to
the phrases including "cat" to `negative_prompt` and "dog" to `prompt`.
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_prompt` and `target_prompt` in the arguments to `generate_mask`.
* Change the input prompt in [`~StableDiffusionDiffEditPipeline.invert`] to include "dog".
* Swap the `prompt` and `negative_prompt` in the arguments to call the pipeline to generate the final edited image.
* The source and target prompts, or their corresponding embeddings, can also be automatically generated. Please refer to the [DiffEdit](/using-diffusers/diffedit) guide for more details.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Zero-shot Diffusion-based Semantic Image Editing with Mask Guidance
## Overview
[DiffEdit: Diffusion-based semantic image editing with mask guidance](https://arxiv.org/abs/2210.11427) by Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord.
The abstract of the paper is the following:
*Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.*
Resources:
* [Paper](https://arxiv.org/abs/2210.11427).
* [Blog Post with Demo](https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html).
* [Implementation on Github](https://github.com/Xiang-cd/DiffEdit-stable-diffusion/).
## Tips
* The pipeline can generate masks that can be fed into other inpainting pipelines. Check out the code examples below to know more.
* In order to generate an image using this pipeline, both an image mask (manually specified or generated using `generate_mask`)
and a set of partially inverted latents (generated using `invert`) _must_ be provided as arguments when calling the pipeline to generate the final edited image.
Refer to the code examples below for more details.
* The function `generate_mask` exposes two prompt arguments, `source_prompt` and `target_prompt`,
that let you control the locations of the semantic edits in the final image to be generated. Let's say,
you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect
this in the generated mask, you simply have to set the embeddings related to the phrases including "cat" to
`source_prompt_embeds` and "dog" to `target_prompt_embeds`. Refer to the code example below for more details.
* When generating partially inverted latents using `invert`, assign a caption or text embedding describing the
overall image to the `prompt` argument to help guide the inverse latent sampling process. In most cases, the
source concept is sufficently descriptive to yield good results, but feel free to explore alternatives.
Please refer to [this code example](#generating-image-captions-for-inversion) for more details.
* When calling the pipeline to generate the final edited image, assign the source concept to `negative_prompt`
and the target concept to `prompt`. Taking the above example, you simply have to set the embeddings related to
the phrases including "cat" to `negative_prompt_embeds` and "dog" to `prompt_embeds`. Refer to the code example
below for more details.
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_prompt` and `target_prompt` in the arguments to `generate_mask`.
* Change the input prompt for `invert` to include "dog".
* Swap the `prompt` and `negative_prompt` in the arguments to call the pipeline to generate the final edited image.
* Note that the source and target prompts, or their corresponding embeddings, can also be automatically generated. Please, refer to [this discussion](#generating-source-and-target-embeddings) for more details.
When the pipeline is conditioned on an input image, we first obtain partially inverted latents from the input image using a
`DDIMInverseScheduler` with the help of a caption. Then we generate an editing mask to identify relevant regions in the image using the source and target prompts. Finally,
the inverted noise and generated mask is used to start the generation process.
First, let's load our pipeline:
```py
import torch
from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
Now, generate the image with the inverted latents and semantically generated mask:
```py
image = pipeline(
prompt=target_prompt,
mask_image=mask_image,
image_latents=inv_latents,
generator=generator,
negative_prompt=source_prompt,
).images[0]
image.save("edited_image.png")
```
## Generating image captions for inversion
The authors originally used the source concept prompt as the caption for generating the partially inverted latents. However, we can also leverage open source and public image captioning models for the same purpose.
Below, we provide an end-to-end example with the [BLIP](https://huggingface.co/docs/transformers/model_doc/blip) model
We encourage you to play around with the different parameters supported by the
`generate()` method ([documentation](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.generation_tf_utils.TFGenerationMixin.generate)) for the generation quality you are looking for.
**4. Load the embedding model**:
Here, we need to use the same text encoder model used by the subsequent Stable Diffusion model.
```py
from diffusers import StableDiffusionDiffEditPipeline
@@ -10,50 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Scalable Diffusion Models with Transformers (DiT)
# DiT
## Overview
[Scalable Diffusion Models with Transformers](https://huggingface.co/papers/2212.09748) (DiT) is by William Peebles and Saining Xie.
[Scalable Diffusion Models with Transformers](https://arxiv.org/abs/2212.09748) (DiT) by William Peebles and Saining Xie.
The abstract of the paper is the following:
The abstract from the paper is:
*We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.*
The original codebase of this paper can be found here: [facebookresearch/dit](https://github.com/facebookresearch/dit).
The original codebase can be found at [facebookresearch/dit](https://github.com/facebookresearch/dit).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
## Usage example
```python
from diffusers import DiTPipeline, DPMSolverMultistepScheduler
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 2.1
Kandinsky 2.1 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov).
The description from it's GitHub page is:
*Kandinsky 2.1 inherits best practicies from Dall-E 2 and Latent diffusion, while introducing some new ideas. As text and image encoder it uses CLIP model and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.*
The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2).
<Tip>
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky
## Overview
Kandinsky inherits best practices from [DALL-E 2](https://huggingface.co/papers/2204.06125) and [Latent Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/latent_diffusion), while introducing some new ideas.
It uses [CLIP](https://huggingface.co/docs/transformers/model_doc/clip) for encoding images and text, and a diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach enhances the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.
The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov). The original codebase can be found [here](https://github.com/ai-forever/Kandinsky-2)
## Usage example
In the following, we will walk you through some examples of how to use the Kandinsky pipelines to create some visually aesthetic artwork.
### Text-to-Image Generation
For text-to-image generation, we need to use both [`KandinskyPriorPipeline`] and [`KandinskyPipeline`].
The first step is to encode text prompts with CLIP and then diffuse the CLIP text embeddings to CLIP image embeddings,
as first proposed in [DALL-E 2](https://cdn.openai.com/papers/dall-e-2.pdf).
Let's throw a fun prompt at Kandinsky to see what it comes up with.
The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.
```python
prompt = "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background"
The same Kandinsky model weights can be used for text-guided image-to-image translation. In this case, just make sure to load the weights using the [`KandinskyImg2ImgPipeline`] pipeline.
**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines
without loading them twice by making use of the [`~DiffusionPipeline.components`] function as explained [here](#converting-between-different-pipelines).
The [`KandinskyPriorPipeline`] also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on "The Starry Night".
Note that you can interpolate between texts and images - in the below example, we passed a text prompt "a cat" and two images to the `interplate` function, along with a `weights` variable containing the corresponding weights for each condition we interplate.
```python
from diffusers import KandinskyPriorPipeline, KandinskyPipeline
### Text-to-Image Generation with ControlNet Conditioning
In the following, we give a simple example of how to use [`KandinskyV22ControlnetPipeline`] to add control to the text-to-image generation with a depth image.
First, let's take an image and extract its depth map.
Now we can pass the image embeddings and the depth image we extracted to the controlnet pipeline. With Kandinsky 2.2, only prior pipelines accept `prompt` input. You do not need to pass the prompt to the controlnet pipeline.
### Image-to-Image Generation with ControlNet Conditioning
Kandinsky 2.2 also includes a [`KandinskyV22ControlnetImg2ImgPipeline`] that will allow you to add control to the image generation process with both the image and its depth map. This pipeline works really well with [`KandinskyV22PriorEmb2EmbPipeline`], which generates image embeddings based on both a text prompt and an image.
For our robot cat example, we will pass the prompt and cat image together to the prior pipeline to generate an image embedding. We will then use that image embedding and the depth map of the cat to further control the image generation process.
We can use the same cat image and its depth map from the last example.
```python
import torch
import numpy as np
from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline
Here is the output. Compared with the output from our text-to-image controlnet example, it kept a lot more cat facial details from the original image and worked into the robot style we asked for.
The Kandinsky 2.2 release includes robust new text-to-image models that support text-to-image generation, image-to-image generation, image interpolation, and text-guided image inpainting. The general workflow to perform these tasks using Kandinsky 2.2 is the same as in Kandinsky 2.1. First, you will need to use a prior pipeline to generate image embeddings based on your text prompt, and then use one of the image decoding pipelines to generate the output image. The only difference is that in Kandinsky 2.2, all of the decoding pipelines no longer accept the `prompt` input, and the image generation process is conditioned with only `image_embeds` and `negative_image_embeds`.
Let's look at an example of how to perform text-to-image generation using Kandinsky 2.2.
First, let's create the prior pipeline and text-to-image pipeline with Kandinsky 2.2 checkpoints.
Now you can pass these embeddings to the text-to-image pipeline. When using Kandinsky 2.2 you don't need to pass the `prompt` (but you do with the previous version, Kandinsky 2.1).
We used the text-to-image pipeline as an example, but the same process applies to all decoding pipelines in Kandinsky 2.2. For more information, please refer to our API section for each pipeline.
## Optimization
Running Kandinsky in inference requires running both a first prior pipeline: [`KandinskyPriorPipeline`]
and a second image decoding pipeline which is one of [`KandinskyPipeline`], [`KandinskyImg2ImgPipeline`], or [`KandinskyInpaintPipeline`].
The bulk of the computation time will always be the second image decoding pipeline, so when looking
into optimizing the model, one should look into the second image decoding pipeline.
When running with PyTorch < 2.0, we strongly recommend making use of [`xformers`](https://github.com/facebookresearch/xformers)
to speed-up the optimization. This can be done by simply running:
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 2.2
Kandinsky 2.1 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov).
The description from it's GitHub page is:
*Kandinsky 2.2 brings substantial improvements upon its predecessor, Kandinsky 2.1, by introducing a new, more powerful image encoder - CLIP-ViT-G and the ControlNet support. The switch to CLIP-ViT-G as the image encoder significantly increases the model's capability to generate more aesthetic pictures and better understand text, thus enhancing the model's overall performance. The addition of the ControlNet mechanism allows the model to effectively control the process of generating images. This leads to more accurate and visually appealing outputs and opens new possibilities for text-guided image manipulation.*
The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2).
<Tip>
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
Latent Consistency Models (LCMs) were proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao.
The abstract of the [paper](https://arxiv.org/pdf/2310.04378.pdf) is as follows:
*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference.*
A demo for the [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) checkpoint can be found [here](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).
The pipelines were contributed by [luosiallen](https://luosiallen.github.io/), [nagolinc](https://github.com/nagolinc), and [dg845](https://github.com/dg845).
@@ -12,31 +12,19 @@ specific language governing permissions and limitations under the License.
# Latent Diffusion
## Overview
Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
The abstract of the paper is the following:
The abstract from the paper is:
*By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
The original codebase can be found [here](https://github.com/CompVis/latent-diffusion).
The original codebase can be found at [Compvis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## LDMTextToImagePipeline
[[autodoc]] LDMTextToImagePipeline
@@ -47,3 +35,6 @@ The original codebase can be found [here](https://github.com/CompVis/latent-diff
@@ -12,31 +12,24 @@ specific language governing permissions and limitations under the License.
# Unconditional Latent Diffusion
## Overview
Unconditional Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
Unconditional Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
The abstract of the paper is the following:
The abstract from the paper is:
*By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
The original codebase can be found [here](https://github.com/CompVis/latent-diffusion).
The original codebase can be found at [CompVis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
## Tips:
<Tip>
-
-
-
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
@@ -10,52 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Editing Implicit Assumptions in Text-to-Image Diffusion Models
# Text-to-image model editing
## Overview
[Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://huggingface.co/papers/2303.08084) is by Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov. This pipeline enables editing diffusion model weights, such that its assumptions of a given concept are changed. The resulting change is expected to take effect in all prompt generations related to the edited concept.
[Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://arxiv.org/abs/2303.08084) by Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov.
The abstract of the paper is the following:
The abstract from the paper is:
*Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.*
Resources:
You can find additional information about model editing on the [project page](https://time-diffusion.github.io/), [original codebase](https://github.com/bahjat-kawar/time-diffusion), and try it out in a [demo](https://huggingface.co/spaces/bahjat-kawar/time-diffusion).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionModelEditingPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py) | *Text-to-Image Model Editing* | [🤗 Space](https://huggingface.co/spaces/bahjat-kawar/time-diffusion)) |
This pipeline enables editing the diffusion model weights, such that its assumptions on a given concept are changed. The resulting change is expected to take effect in all prompt generations pertaining to the edited concept.
## Usage example
```python
import torch
from diffusers import StableDiffusionModelEditingPipeline
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MusicLDM
MusicLDM was proposed in [MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies](https://huggingface.co/papers/2308.01546) by Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
MusicLDM takes a text prompt as input and predicts the corresponding music sample.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview) and [AudioLDM](https://huggingface.co/docs/diffusers/api/pipelines/audioldm/overview),
MusicLDM is a text-to-music _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents.
MusicLDM is trained on a corpus of 466 hours of music data. Beat-synchronous data augmentation strategies are applied to
the music samples, both in the time domain and in the latent space. Using beat-synchronous data augmentation strategies
encourages the model to interpolate between the training samples, but stay within the domain of the training data. The
result is generated music that is more diverse while staying faithful to the corresponding style.
The abstract of the paper is the following:
*In this paper, we present MusicLDM, a state-of-the-art text-to-music model that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, to encourage the model to generate music more diverse while still staying faithful to the corresponding style.*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi).
## Tips
When constructing a prompt, keep in mind:
* Descriptive prompt inputs work best; use adjectives to describe the sound (for example, "high quality" or "clear") and make the prompt context specific where possible (e.g. "melodic techno with a fast beat and synths" works better than "techno").
* Using a *negative prompt* can significantly improve the quality of the generated audio. Try using a negative prompt of "low quality, average quality".
During inference:
* The _quality_ of the generated audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1 to enable. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
* The _length_ of the generated audio sample can be controlled by varying the `audio_length_in_s` argument.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
Pipelines provide a simple way to run state-of-the-art diffusion models in inference by bundling all of the necessary components (multiple independently-trained models, schedulers, and processors) into a single end-to-end class. Pipelines are flexible and they can be adapted to use different schedulers or even model components.
All pipelines are built from the base [`DiffusionPipeline`] class which provides basic functionality for loading, downloading, and saving all the components. Specific pipeline types (for example [`StableDiffusionPipeline`]) loaded with [`~DiffusionPipeline.from_pretrained`] are automatically detected and the pipeline components are loaded and passed to the `__init__` function of the pipeline.
<Tip warning={true}>
You shouldn't use the [`DiffusionPipeline`] class for training. Individual components (for example, [`UNet2DModel`] and [`UNet2DConditionModel`]) of diffusion pipelines are usually trained individually, so we suggest directly working with them instead.
<br>
Pipelines do not offer any training functionality. You'll notice PyTorch's autograd is disabled by decorating the [`~DiffusionPipeline.__call__`] method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should not be used for training. If you're interested in training, please take a look at the [Training](../../training/overview) guides instead!
</Tip>
The table below lists all the pipelines currently available in 🤗 Diffusers and the tasks they support. Click on a pipeline to view its abstract and published paper.
- [CLIP text encoder](https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/clip#transformers.CLIPTextModel)
- a scheduler component, [scheduler](./api/scheduler#pndm),
- a [CLIPImageProcessor](https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/clip#transformers.CLIPImageProcessor),
- as well as a [safety checker](./stable_diffusion#safety_checker).
All of these components are necessary to run stable diffusion in inference even though they were trained
or created independently from each other.
To that end, we strive to offer all open-sourced, state-of-the-art diffusion system under a unified API.
More specifically, we strive to provide pipelines that
- 1. can load the officially published weights and yield 1-to-1 the same outputs as the original implementation according to the corresponding paper (*e.g.* [LDMTextToImagePipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/latent_diffusion), uses the officially released weights of [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)),
- 2. have a simple user interface to run the model in inference (see the [Pipelines API](#pipelines-api) section),
- 3. are easy to understand with code that is self-explanatory and can be read along-side the official paper (see [Pipelines summary](#pipelines-summary)),
- 4. can easily be contributed by the community (see the [Contribution](#contribution) section).
**Note** that pipelines do not (and should not) offer any training functionality.
If you are looking for *official* training examples, please have a look at [examples](https://github.com/huggingface/diffusers/tree/main/examples).
## 🧨 Diffusers Summary
The following table summarizes all officially supported pipelines, their corresponding paper, and if
available a colab notebook to directly try them out.
| [stochastic_karras_ve](./stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [text_to_video_sd](./api/pipelines/text_to_video) | [**Modelscope's Text-to-video-synthesis Model in Open Domain**](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | Text-to-Video Generation |
| [versatile_diffusion](./versatile_diffusion) | [**Versatile Diffusion: Text, Images and Variations All in One Diffusion Model**](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./versatile_diffusion) | [**Versatile Diffusion: Text, Images and Variations All in One Diffusion Model**](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./versatile_diffusion) | [**Versatile Diffusion: Text, Images and Variations All in One Diffusion Model**](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./vq_diffusion) | [**Vector Quantized Diffusion Model for Text-to-Image Synthesis**](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
| [text_to_video_zero](./text_to_video_zero) | [**Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators**](https://arxiv.org/abs/2303.13439) | Text-to-Video Generation |
**Note**: Pipelines are simple examples of how to play around with the diffusion systems as described in the corresponding papers.
However, most of them can be adapted to use different scheduler components or even different model components. Some pipeline examples are shown in the [Examples](#examples) below.
## Pipelines API
Diffusion models often consist of multiple independently-trained models or other previously existing components.
Each model has been trained independently on a different task and the scheduler can easily be swapped out and replaced with a different one.
During inference, we however want to be able to easily load all components and use them in inference - even if one component, *e.g.* CLIP's text encoder, originates from a different library, such as [Transformers](https://github.com/huggingface/transformers). To that end, all pipelines provide the following functionality:
- [`from_pretrained` method](../diffusion_pipeline) that accepts a Hugging Face Hub repository id, *e.g.* [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) or a path to a local directory, *e.g.*
"./stable-diffusion". To correctly retrieve which models and components should be loaded, one has to provide a `model_index.json` file, *e.g.* [runwayml/stable-diffusion-v1-5/model_index.json](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), which defines all components that should be
loaded into the pipelines. More specifically, for each model/component one needs to define the format `<name>: ["<library>", "<class name>"]`. `<name>` is the attribute name given to the loaded instance of `<class name>` which can be found in the library or pipeline folder called `"<library>"`.
- [`save_pretrained`](../diffusion_pipeline) that accepts a local path, *e.g.* `./stable-diffusion` under which all models/components of the pipeline will be saved. For each component/model a folder is created inside the local path that is named after the given attribute name, *e.g.* `./stable_diffusion/unet`.
In addition, a `model_index.json` file is created at the root of the local path, *e.g.* `./stable_diffusion/model_index.json` so that the complete pipeline can again be instantiated
from the local path.
- [`to`](../diffusion_pipeline) which accepts a `string` or `torch.device` to move all models that are of type `torch.nn.Module` to the passed device. The behavior is fully analogous to [PyTorch's `to` method](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.to).
- [`__call__`] method to use the pipeline in inference. `__call__` defines inference logic of the pipeline and should ideally encompass all aspects of it, from pre-processing to forwarding tensors to the different models and schedulers, as well as post-processing. The API of the `__call__` method can strongly vary from pipeline to pipeline. *E.g.* a text-to-image pipeline, such as [`StableDiffusionPipeline`](./stable_diffusion) should accept among other things the text prompt to generate the image. A pure image generation pipeline, such as [DDPMPipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/ddpm) on the other hand can be run without providing any inputs. To better understand what inputs can be adapted for
each pipeline, one should look directly into the respective pipeline.
**Note**: All pipelines have PyTorch's autograd disabled by decorating the `__call__` method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should
not be used for training. If you want to store the gradients during the forward pass, we recommend writing your own pipeline, see also our [community-examples](https://github.com/huggingface/diffusers/tree/main/examples/community).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Paint By Example
[Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://huggingface.co/papers/2211.13227) is by Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen.
The abstract from the paper is:
*Language-guided image editing has achieved great success recently. In this paper, for the first time, we investigate exemplar-guided image editing for more precise control. We achieve this goal by leveraging self-supervised training to disentangle and re-organize the source image and the exemplar. However, the naive approach will cause obvious fusing artifacts. We carefully analyze it and propose an information bottleneck and strong augmentations to avoid the trivial solution of directly copying and pasting the exemplar image. Meanwhile, to ensure the controllability of the editing process, we design an arbitrary shape mask for the exemplar image and leverage the classifier-free guidance to increase the similarity to the exemplar image. The whole framework involves a single forward of the diffusion model without any iterative optimization. We demonstrate that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity.*
The original codebase can be found at [Fantasy-Studio/Paint-by-Example](https://github.com/Fantasy-Studio/Paint-by-Example), and you can try it out in a [demo](https://huggingface.co/spaces/Fantasy-Studio/Paint-by-Example).
## Tips
PaintByExample is supported by the official [Fantasy-Studio/Paint-by-Example](https://huggingface.co/Fantasy-Studio/Paint-by-Example) checkpoint. The checkpoint is warm-started from [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) to inpaint partly masked images conditioned on example and reference images.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PaintByExample
## Overview
[Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://arxiv.org/abs/2211.13227) by Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen.
The abstract of the paper is the following:
*Language-guided image editing has achieved great success recently. In this paper, for the first time, we investigate exemplar-guided image editing for more precise control. We achieve this goal by leveraging self-supervised training to disentangle and re-organize the source image and the exemplar. However, the naive approach will cause obvious fusing artifacts. We carefully analyze it and propose an information bottleneck and strong augmentations to avoid the trivial solution of directly copying and pasting the exemplar image. Meanwhile, to ensure the controllability of the editing process, we design an arbitrary shape mask for the exemplar image and leverage the classifier-free guidance to increase the similarity to the exemplar image. The whole framework involves a single forward of the diffusion model without any iterative optimization. We demonstrate that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity.*
The original codebase can be found [here](https://github.com/Fantasy-Studio/Paint-by-Example).
- PaintByExample is supported by the official [Fantasy-Studio/Paint-by-Example](https://huggingface.co/Fantasy-Studio/Paint-by-Example) checkpoint. The checkpoint has been warm-started from the [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) and with the objective to inpaint partly masked images conditioned on example / reference images
- To quickly demo *PaintByExample*, please have a look at [this demo](https://huggingface.co/spaces/Fantasy-Studio/Paint-by-Example)
- You can run the following code snippet as an example:
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MultiDiffusion
[MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation](https://huggingface.co/papers/2302.08113) is by Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
The abstract from the paper is:
*Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.*
You can find additional information about MultiDiffusion on the [project page](https://multidiffusion.github.io/), [original codebase](https://github.com/omerbt/MultiDiffusion), and try it out in a [demo](https://huggingface.co/spaces/weizmannscience/MultiDiffusion).
## Tips
While calling [`StableDiffusionPanoramaPipeline`], it's possible to specify the `view_batch_size` parameter to be > 1.
For some GPUs with high performance, this can speedup the generation process and increase VRAM usage.
To generate panorama-like images make sure you pass the width parameter accordingly. We recommend a width value of 2048 which is the default.
Circular padding is applied to ensure there are no stitching artifacts when working with
panoramas to ensure a seamless transition from the rightmost part to the leftmost part.
By enabling circular padding (set `circular_padding=True`), the operation applies additional
crops after the rightmost point of the image, allowing the model to "see” the transition
from the rightmost part to the leftmost part. This helps maintain visual consistency in
a 360-degree sense and creates a proper “panorama” that can be viewed using 360-degree
panorama viewers. When decoding latents in Stable Diffusion, circular padding is applied
to ensure that the decoded latents match in the RGB space.
For example, without circular padding, there is a stitching artifact (default):
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation
## Overview
[MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation](https://arxiv.org/abs/2302.08113) by Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
The abstract of the paper is the following:
*Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.
@@ -10,74 +10,45 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Parallel Sampling of Diffusion Models (ParaDiGMS)
# Parallel Sampling of Diffusion Models
## Overview
[Parallel Sampling of Diffusion Models](https://huggingface.co/papers/2305.16317) is by Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari.
[Parallel Sampling of Diffusion Models](https://arxiv.org/abs/2305.16317) by Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari.
The abstract of the paper is the following:
The abstract from the paper is:
*Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.*
Resources:
The original codebase can be found at [AndyShih12/paradigms](https://github.com/AndyShih12/paradigms), and the pipeline was contributed by [AndyShih12](https://github.com/AndyShih12). ❤️
This pipeline improves sampling speed by running denoising steps in parallel, at the cost of increased total FLOPs.
Therefore, it is better to call this pipeline when running on multiple GPUs. Otherwise, without enough GPU bandwidth
sampling may be even slower than sequential sampling.
The two parameters to play with are `parallel` (batch size) and `tolerance`.
- If it fits in memory, for 1000-step DDPM you can aim for a batch size of around 100
(e.g. 8 GPUs and batch_per_device=12 to get parallel=96). Higher batch size
- If it fits in memory, for a 1000-step DDPM you can aim for a batch size of around 100
(for example, 8 GPUs and `batch_per_device=12` to get `parallel=96`). A higher batch size
may not fit in memory, and lower batch size gives less parallelism.
- For tolerance, using a higher tolerance may get better speedups but can risk sample quality degradation.
If there is quality degradation with the default tolerance, then use a lower tolerance (e.g. 0.001).
If there is quality degradation with the default tolerance, then use a lower tolerance like `0.001`.
For 1000-step DDPM on 8 A100 GPUs, you can expect around a 3x speedup by StableDiffusionParadigmsPipeline instead of StableDiffusionPipeline
by setting parallel=80 and tolerance=0.1.
</Tip>
For a 1000-step DDPM on 8 A100 GPUs, you can expect around a 3x speedup from [`StableDiffusionParadigmsPipeline`] compared to the [`StableDiffusionPipeline`]
by setting `parallel=80` and `tolerance=0.1`.
🤗 Diffusers offers [distributed inference support](../training/distributed_inference) for generating multiple prompts
in parallel on multiple GPUs. But [`StableDiffusionParadigmsPipeline`] is designed for speeding up sampling of a single prompt by using multiple GPUs.
<Tip>
Diffusers also offers distributed inference support for generating multiple prompts
in parallel on multiple GPUs. Check out the docs [here](https://huggingface.co/docs/diffusers/main/en/training/distributed_inference).
In contrast, this pipeline is designed for speeding up sampling of a single prompt (by using multiple GPUs).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
@@ -10,59 +10,21 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# InstructPix2Pix: Learning to Follow Image Editing Instructions
# InstructPix2Pix
## Overview
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://huggingface.co/papers/2211.09800) is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract of the paper is the following:
The abstract from the paper is:
*We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.*
Resources:
You can find additional information about InstructPix2Pix on the [project page](https://www.timothybrooks.com/instruct-pix2pix), [original codebase](https://github.com/timothybrooks/instruct-pix2pix), and try it out in a [demo](https://huggingface.co/spaces/timbrooks/instruct-pix2pix).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
@@ -10,22 +10,15 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Zero-shot Image-to-Image Translation
# Pix2Pix Zero
## Overview
[Zero-shot Image-to-Image Translation](https://huggingface.co/papers/2302.03027) is by Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
*Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.*
You can find additional information about Pix2Pix Zero on the [project page](https://pix2pixzero.github.io/), [original codebase](https://github.com/pix2pixzero/pix2pix-zero), and try it out in a [demo](https://huggingface.co/spaces/pix2pix-zero-library/pix2pix-zero-demo).
[PixArt-α: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis](https://huggingface.co/papers/2310.00426) is Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li.
The abstract from the paper is:
*The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-α, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-α's training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-α only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly $300,000 ($26,000 vs. $320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-α excels in image quality, artistry, and semantic control. We hope PIXART-α will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.*
You can find the original codebase at [PixArt-alpha/PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha) and all the available checkpoints at [PixArt-alpha](https://huggingface.co/PixArt-alpha).
Some notes about this pipeline:
* It uses a Transformer backbone (instead of a UNet) for denoising. As such it has a similar architecture as [DiT](./dit.md).
* It was trained using text conditions computed from T5. This aspect makes the pipeline better at following complex text prompts with intricate details.
* It is good at producing high-resolution images at different aspect ratios. To get the best results, the authors recommend some size brackets which can be found [here](https://github.com/PixArt-alpha/PixArt-alpha/blob/08fbbd281ec96866109bdd2cdb75f2f58fb17610/diffusion/data/datasets/utils.py).
* It rivals the quality of state-of-the-art text-to-image generation systems (as of this writing) such as Stable Diffusion XL, Imagen, and DALL-E 2, while being more efficient than them.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PNDM
[Pseudo Numerical methods for Diffusion Models on manifolds](https://huggingface.co/papers/2202.09778) (PNDM) is by Luping Liu, Yi Ren, Zhijie Lin and Zhou Zhao.
The abstract from the paper is:
*Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules.*
The original codebase can be found at [luping-liu/PNDM](https://github.com/luping-liu/PNDM).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PNDM
## Overview
[Pseudo Numerical methods for Diffusion Models on manifolds](https://arxiv.org/abs/2202.09778) (PNDM) by Luping Liu, Yi Ren, Zhijie Lin and Zhou Zhao.
The abstract of the paper is the following:
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples. However, DDPMs require hundreds to thousands of iterations to produce final samples. Several prior works have successfully accelerated DDPMs through adjusting the variance schedule (e.g., Improved Denoising Diffusion Probabilistic Models) or the denoising equation (e.g., Denoising Diffusion Implicit Models (DDIMs)). However, these acceleration methods cannot maintain the quality of samples and even introduce new noise at a high speedup rate, which limit their practicability. To accelerate the inference process while keeping the sample quality, we provide a fresh perspective that DDPMs should be treated as solving differential equations on manifolds. Under such a perspective, we propose pseudo numerical methods for diffusion models (PNDMs). Specifically, we figure out how to solve differential equations on manifolds and show that DDIMs are simple cases of pseudo numerical methods. We change several classical numerical methods to corresponding pseudo numerical methods and find that the pseudo linear multi-step method is the best in most situations. According to our experiments, by directly using pre-trained models on Cifar10, CelebA and LSUN, PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup), significantly outperform DDIMs with 250 steps (by around 0.4 in FID) and have good generalization on different variance schedules.
The original codebase can be found [here](https://github.com/luping-liu/PNDM).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RePaint
[RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://huggingface.co/papers/2201.09865) is by Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool.
The abstract from the paper is:
*Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks.
RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions.*
The original codebase can be found at [andreas128/RePaint](https://github.com/andreas128/RePaint).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# RePaint
## Overview
[RePaint: Inpainting using Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2201.09865) (PNDM) by Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, Luc Van Gool.
The abstract of the paper is the following:
Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask. Most existing approaches train for a certain distribution of masks, which limits their generalization capabilities to unseen mask types. Furthermore, training with pixel-wise and perceptual losses often leads to simple textural extensions towards the missing areas instead of semantically meaningful generation. In this work, we propose RePaint: A Denoising Diffusion Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks. We employ a pretrained unconditional DDPM as the generative prior. To condition the generation process, we only alter the reverse diffusion iterations by sampling the unmasked regions using the given image information. Since this technique does not modify or condition the original DDPM network itself, the model produces high-quality and diverse output images for any inpainting form. We validate our method for both faces and general-purpose image inpainting using standard and extreme masks.
RePaint outperforms state-of-the-art Autoregressive, and GAN approaches for at least five out of six mask distributions.
The original codebase can be found [here](https://github.com/andreas128/RePaint).
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Score SDE VE
[Score-Based Generative Modeling through Stochastic Differential Equations](https://huggingface.co/papers/2011.13456) (Score SDE) is by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon and Ben Poole. This pipeline implements the variance expanding (VE) variant of the stochastic differential equation method.
The abstract from the paper is:
*Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.*
The original codebase can be found at [yang-song/score_sde_pytorch](https://github.com/yang-song/score_sde_pytorch).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Score SDE VE
## Overview
[Score-Based Generative Modeling through Stochastic Differential Equations](https://arxiv.org/abs/2011.13456) (Score SDE) by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon and Ben Poole.
The abstract of the paper is the following:
Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
The original codebase can be found [here](https://github.com/yang-song/score_sde_pytorch).
This pipeline implements the Variance Expanding (VE) variant of the method.
@@ -10,56 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Self-Attention Guidance (SAG)
# Self-Attention Guidance
## Overview
[Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://huggingface.co/papers/2210.00939) is by Susung Hong et al.
[Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939) by Susung Hong et al.
The abstract of the paper is the following:
The abstract from the paper is:
*Denoising diffusion models (DDMs) have attracted attention for their exceptional generation quality and diversity. This success is largely attributed to the use of class- or text-conditional diffusion guidance methods, such as classifier and classifier-free guidance. In this paper, we present a more comprehensive perspective that goes beyond the traditional guidance methods. From this generalized perspective, we introduce novel condition- and training-free strategies to enhance the quality of generated images. As a simple solution, blur guidance improves the suitability of intermediate samples for their fine-scale information and structures, enabling diffusion models to generate higher quality samples with a moderate guidance scale. Improving upon this, Self-Attention Guidance (SAG) uses the intermediate self-attention maps of diffusion models to enhance their stability and efficacy. Specifically, SAG adversarially blurs only the regions that diffusion models attend to at each iteration and guides them accordingly. Our experimental results show that our SAG improves the performance of various diffusion models, including ADM, IDDPM, Stable Diffusion, and DiT. Moreover, combining SAG with conventional guidance methods leads to further improvement.*
Resources:
You can find additional information about Self-Attention Guidance on the [project page](https://ku-cvlab.github.io/Self-Attention-Guidance), [original codebase](https://github.com/KU-CVLAB/Self-Attention-Guidance), and try it out in a [demo](https://huggingface.co/spaces/susunghong/Self-Attention-Guidance) or [notebook](https://colab.research.google.com/github/SusungHong/Self-Attention-Guidance/blob/main/SAG_Stable.ipynb).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Semantic Guidance
Semantic Guidance for Diffusion Models was proposed in [SEGA: Instructing Diffusion using Semantic Dimensions](https://huggingface.co/papers/2301.12247) and provides strong semantic control over image generation.
Small changes to the text prompt usually result in entirely different output images. However, with SEGA a variety of changes to the image are enabled that can be controlled easily and intuitively, while staying true to the original image composition.
The abstract from the paper is:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.