mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 04:54:47 +08:00
Compare commits
1 Commits
v0.16.0
...
update-che
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
fd5c52e16b |
0
tests/models/test_embeddings.py
Normal file
0
tests/models/test_embeddings.py
Normal file
@@ -22,7 +22,6 @@ from collections import OrderedDict
|
||||
from difflib import get_close_matches
|
||||
from pathlib import Path
|
||||
|
||||
from diffusers.models.auto import get_values
|
||||
from diffusers.utils import ENV_VARS_TRUE_VALUES, is_flax_available, is_tf_available, is_torch_available
|
||||
|
||||
|
||||
@@ -33,168 +32,19 @@ PATH_TO_TESTS = "tests"
|
||||
PATH_TO_DOC = "docs/source/en"
|
||||
|
||||
# Update this list with models that are supposed to be private.
|
||||
PRIVATE_MODELS = [
|
||||
"DPRSpanPredictor",
|
||||
"RealmBertModel",
|
||||
"T5Stack",
|
||||
"TFDPRSpanPredictor",
|
||||
]
|
||||
PRIVATE_MODELS = []
|
||||
|
||||
# Update this list for models that are not tested with a comment explaining the reason it should not be.
|
||||
# Being in this list is an exception and should **not** be the rule.
|
||||
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
|
||||
# models to ignore for not tested
|
||||
"OPTDecoder", # Building part of bigger (tested) model.
|
||||
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
|
||||
"SegformerDecodeHead", # Building part of bigger (tested) model.
|
||||
"PLBartEncoder", # Building part of bigger (tested) model.
|
||||
"PLBartDecoder", # Building part of bigger (tested) model.
|
||||
"PLBartDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"BigBirdPegasusEncoder", # Building part of bigger (tested) model.
|
||||
"BigBirdPegasusDecoder", # Building part of bigger (tested) model.
|
||||
"BigBirdPegasusDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"DetrEncoder", # Building part of bigger (tested) model.
|
||||
"DetrDecoder", # Building part of bigger (tested) model.
|
||||
"DetrDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"M2M100Encoder", # Building part of bigger (tested) model.
|
||||
"M2M100Decoder", # Building part of bigger (tested) model.
|
||||
"Speech2TextEncoder", # Building part of bigger (tested) model.
|
||||
"Speech2TextDecoder", # Building part of bigger (tested) model.
|
||||
"LEDEncoder", # Building part of bigger (tested) model.
|
||||
"LEDDecoder", # Building part of bigger (tested) model.
|
||||
"BartDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"BartEncoder", # Building part of bigger (tested) model.
|
||||
"BertLMHeadModel", # Needs to be setup as decoder.
|
||||
"BlenderbotSmallEncoder", # Building part of bigger (tested) model.
|
||||
"BlenderbotSmallDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"BlenderbotEncoder", # Building part of bigger (tested) model.
|
||||
"BlenderbotDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"MBartEncoder", # Building part of bigger (tested) model.
|
||||
"MBartDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
|
||||
"MegatronBertEncoder", # Building part of bigger (tested) model.
|
||||
"MegatronBertDecoder", # Building part of bigger (tested) model.
|
||||
"MegatronBertDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"PegasusEncoder", # Building part of bigger (tested) model.
|
||||
"PegasusDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"DPREncoder", # Building part of bigger (tested) model.
|
||||
"ProphetNetDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"RealmBertModel", # Building part of bigger (tested) model.
|
||||
"RealmReader", # Not regular model.
|
||||
"RealmScorer", # Not regular model.
|
||||
"RealmForOpenQA", # Not regular model.
|
||||
"ReformerForMaskedLM", # Needs to be setup as decoder.
|
||||
"Speech2Text2DecoderWrapper", # Building part of bigger (tested) model.
|
||||
"TFDPREncoder", # Building part of bigger (tested) model.
|
||||
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFModelMixin ?)
|
||||
"TFRobertaForMultipleChoice", # TODO: fix
|
||||
"TrOCRDecoderWrapper", # Building part of bigger (tested) model.
|
||||
"SeparableConv1D", # Building part of bigger (tested) model.
|
||||
"FlaxBartForCausalLM", # Building part of bigger (tested) model.
|
||||
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
|
||||
"OPTDecoderWrapper",
|
||||
]
|
||||
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + []
|
||||
|
||||
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
|
||||
# trigger the common tests.
|
||||
TEST_FILES_WITH_NO_COMMON_TESTS = [
|
||||
"models/decision_transformer/test_modeling_decision_transformer.py",
|
||||
"models/camembert/test_modeling_camembert.py",
|
||||
"models/mt5/test_modeling_flax_mt5.py",
|
||||
"models/mbart/test_modeling_mbart.py",
|
||||
"models/mt5/test_modeling_mt5.py",
|
||||
"models/pegasus/test_modeling_pegasus.py",
|
||||
"models/camembert/test_modeling_tf_camembert.py",
|
||||
"models/mt5/test_modeling_tf_mt5.py",
|
||||
"models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
|
||||
"models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
|
||||
"models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
|
||||
"models/xlm_roberta/test_modeling_xlm_roberta.py",
|
||||
"models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
|
||||
"models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
|
||||
"models/decision_transformer/test_modeling_decision_transformer.py",
|
||||
]
|
||||
TEST_FILES_WITH_NO_COMMON_TESTS = []
|
||||
|
||||
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
|
||||
# should **not** be the rule.
|
||||
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
|
||||
# models to ignore for model xxx mapping
|
||||
"DPTForDepthEstimation",
|
||||
"DecisionTransformerGPT2Model",
|
||||
"GLPNForDepthEstimation",
|
||||
"ViltForQuestionAnswering",
|
||||
"ViltForImagesAndTextClassification",
|
||||
"ViltForImageAndTextRetrieval",
|
||||
"ViltForMaskedLM",
|
||||
"XGLMEncoder",
|
||||
"XGLMDecoder",
|
||||
"XGLMDecoderWrapper",
|
||||
"PerceiverForMultimodalAutoencoding",
|
||||
"PerceiverForOpticalFlow",
|
||||
"SegformerDecodeHead",
|
||||
"FlaxBeitForMaskedImageModeling",
|
||||
"PLBartEncoder",
|
||||
"PLBartDecoder",
|
||||
"PLBartDecoderWrapper",
|
||||
"BeitForMaskedImageModeling",
|
||||
"CLIPTextModel",
|
||||
"CLIPVisionModel",
|
||||
"TFCLIPTextModel",
|
||||
"TFCLIPVisionModel",
|
||||
"FlaxCLIPTextModel",
|
||||
"FlaxCLIPVisionModel",
|
||||
"FlaxWav2Vec2ForCTC",
|
||||
"DetrForSegmentation",
|
||||
"DPRReader",
|
||||
"FlaubertForQuestionAnswering",
|
||||
"FlavaImageCodebook",
|
||||
"FlavaTextModel",
|
||||
"FlavaImageModel",
|
||||
"FlavaMultimodalModel",
|
||||
"GPT2DoubleHeadsModel",
|
||||
"LukeForMaskedLM",
|
||||
"LukeForEntityClassification",
|
||||
"LukeForEntityPairClassification",
|
||||
"LukeForEntitySpanClassification",
|
||||
"OpenAIGPTDoubleHeadsModel",
|
||||
"RagModel",
|
||||
"RagSequenceForGeneration",
|
||||
"RagTokenForGeneration",
|
||||
"RealmEmbedder",
|
||||
"RealmForOpenQA",
|
||||
"RealmScorer",
|
||||
"RealmReader",
|
||||
"TFDPRReader",
|
||||
"TFGPT2DoubleHeadsModel",
|
||||
"TFOpenAIGPTDoubleHeadsModel",
|
||||
"TFRagModel",
|
||||
"TFRagSequenceForGeneration",
|
||||
"TFRagTokenForGeneration",
|
||||
"Wav2Vec2ForCTC",
|
||||
"HubertForCTC",
|
||||
"SEWForCTC",
|
||||
"SEWDForCTC",
|
||||
"XLMForQuestionAnswering",
|
||||
"XLNetForQuestionAnswering",
|
||||
"SeparableConv1D",
|
||||
"VisualBertForRegionToPhraseAlignment",
|
||||
"VisualBertForVisualReasoning",
|
||||
"VisualBertForQuestionAnswering",
|
||||
"VisualBertForMultipleChoice",
|
||||
"TFWav2Vec2ForCTC",
|
||||
"TFHubertForCTC",
|
||||
"MaskFormerForInstanceSegmentation",
|
||||
]
|
||||
|
||||
# Update this list for models that have multiple model types for the same
|
||||
# model doc
|
||||
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
|
||||
[
|
||||
("data2vec-text", "data2vec"),
|
||||
("data2vec-audio", "data2vec"),
|
||||
("data2vec-vision", "data2vec"),
|
||||
]
|
||||
)
|
||||
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + []
|
||||
|
||||
|
||||
# This is to make sure the transformers module imported is the one in the repo.
|
||||
@@ -206,173 +56,104 @@ spec = importlib.util.spec_from_file_location(
|
||||
diffusers = spec.loader.load_module()
|
||||
|
||||
|
||||
def check_model_list():
|
||||
"""Check the model list inside the transformers library."""
|
||||
# Get the models from the directory structure of `src/diffusers/models/`
|
||||
models_dir = os.path.join(PATH_TO_DIFFUSERS, "models")
|
||||
_models = []
|
||||
for model in os.listdir(models_dir):
|
||||
model_dir = os.path.join(models_dir, model)
|
||||
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
|
||||
_models.append(model)
|
||||
def check_modules_are_in_local_init():
|
||||
"""Check the model list inside the diffusers library."""
|
||||
# Get the modules from the directory structure of `src/diffusers/<models,schedulers,pipelines>/`
|
||||
modules_dirs = [os.path.join(PATH_TO_DIFFUSERS, subdir) for subdir in ["models", "pipelines", "schedulers"]]
|
||||
for modules_dir in modules_dirs:
|
||||
_modules = []
|
||||
for module in os.listdir(modules_dir):
|
||||
module_dir = os.path.join(modules_dir, module)
|
||||
if os.path.isdir(module_dir) and "__init__.py" in os.listdir(module_dir):
|
||||
_modules.append(module)
|
||||
elif os.path.isfile(module_dir) and not module.startswith("_") and module_dir.endswith(".py") :
|
||||
_modules.append(module.replace(".py", ""))
|
||||
|
||||
# Get the models from the directory structure of `src/transformers/models/`
|
||||
models = [model for model in dir(diffusers.models) if not model.startswith("__")]
|
||||
# Get the modules from the directory structure of `src/diffusers/<models,schedulers,pipelines>/`
|
||||
module_dirs = dir(diffusers.models) + dir(diffusers.pipelines) + dir(diffusers.schedulers)
|
||||
modules = [module for module in module_dirs if not module.startswith("__")]
|
||||
|
||||
missing_models = sorted(list(set(_models).difference(models)))
|
||||
if missing_models:
|
||||
raise Exception(
|
||||
f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
|
||||
)
|
||||
missing_modules = sorted(list(set(_modules).difference(modules)))
|
||||
if missing_modules:
|
||||
raise Exception(
|
||||
f"The following modules should be included in {modules_dir}/__init__.py: {','.join(missing_modules)}."
|
||||
)
|
||||
|
||||
|
||||
# If some modeling modules should be ignored for all checks, they should be added in the nested list
|
||||
# _ignore_modules of this function.
|
||||
def get_model_modules():
|
||||
"""Get the model modules inside the transformers library."""
|
||||
_ignore_modules = [
|
||||
"modeling_auto",
|
||||
"modeling_encoder_decoder",
|
||||
"modeling_marian",
|
||||
"modeling_mmbt",
|
||||
"modeling_outputs",
|
||||
"modeling_retribert",
|
||||
"modeling_utils",
|
||||
"modeling_flax_auto",
|
||||
"modeling_flax_encoder_decoder",
|
||||
"modeling_flax_utils",
|
||||
"modeling_speech_encoder_decoder",
|
||||
"modeling_flax_speech_encoder_decoder",
|
||||
"modeling_flax_vision_encoder_decoder",
|
||||
"modeling_transfo_xl_utilities",
|
||||
"modeling_tf_auto",
|
||||
"modeling_tf_encoder_decoder",
|
||||
"modeling_tf_outputs",
|
||||
"modeling_tf_pytorch_utils",
|
||||
"modeling_tf_utils",
|
||||
"modeling_tf_transfo_xl_utilities",
|
||||
"modeling_tf_vision_encoder_decoder",
|
||||
"modeling_vision_encoder_decoder",
|
||||
]
|
||||
"""Get the model modules inside the diffusers library."""
|
||||
_ignore_modules = []
|
||||
modules = []
|
||||
for model in dir(diffusers.models):
|
||||
# There are some magic dunder attributes in the dir, we ignore them
|
||||
if not model.startswith("__"):
|
||||
model_module = getattr(diffusers.models, model)
|
||||
for submodule in dir(model_module):
|
||||
if submodule.startswith("modeling") and submodule not in _ignore_modules:
|
||||
modeling_module = getattr(model_module, submodule)
|
||||
if inspect.ismodule(modeling_module):
|
||||
modules.append(modeling_module)
|
||||
if inspect.ismodule(model_module):
|
||||
modules.append(model_module)
|
||||
return modules
|
||||
|
||||
|
||||
def get_models(module, include_pretrained=False):
|
||||
"""Get the objects in module that are models."""
|
||||
models = []
|
||||
model_classes = (diffusers.ModelMixin, diffusers.TFModelMixin, diffusers.FlaxModelMixin)
|
||||
def get_modules(module):
|
||||
"""Get the objects in module that are models/schedulers/pipelines."""
|
||||
objects = []
|
||||
objects_classes = (diffusers.modeling_utils.ModelMixin, diffusers.SchedulerMixin, diffusers.DiffusionPipeline)
|
||||
for attr_name in dir(module):
|
||||
if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
|
||||
continue
|
||||
attr = getattr(module, attr_name)
|
||||
if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
|
||||
models.append((attr_name, attr))
|
||||
return models
|
||||
if isinstance(attr, type) and issubclass(attr, objects_classes) and attr.__module__ == module.__name__:
|
||||
objects.append((attr_name, attr))
|
||||
return objects
|
||||
|
||||
|
||||
def is_a_private_model(model):
|
||||
"""Returns True if the model should not be in the main init."""
|
||||
if model in PRIVATE_MODELS:
|
||||
return True
|
||||
|
||||
# Wrapper, Encoder and Decoder are all privates
|
||||
if model.endswith("Wrapper"):
|
||||
return True
|
||||
if model.endswith("Encoder"):
|
||||
return True
|
||||
if model.endswith("Decoder"):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_models_are_in_init():
|
||||
def check_modules_are_in_global_init():
|
||||
"""Checks all models defined in the library are in the main init."""
|
||||
models_not_in_init = []
|
||||
dir_transformers = dir(diffusers)
|
||||
modules_not_in_init = []
|
||||
dir_diffusers = dir(diffusers)
|
||||
for module in get_model_modules():
|
||||
models_not_in_init += [
|
||||
model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
|
||||
modules_not_in_init += [
|
||||
module[0] for module in get_modules(module) if module[0] not in dir_diffusers
|
||||
]
|
||||
|
||||
# Remove private models
|
||||
models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
|
||||
if len(models_not_in_init) > 0:
|
||||
raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")
|
||||
if len(modules_not_in_init) > 0:
|
||||
raise Exception(f"The following models should be in the main init: {','.join(modules_not_in_init)}.")
|
||||
|
||||
|
||||
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
|
||||
# If some test files should be ignored when checking models are all tested, they should be added in the
|
||||
# nested list _ignore_files of this function.
|
||||
def get_model_test_files():
|
||||
"""Get the model test files.
|
||||
def get_module_test_files():
|
||||
"""Get the model/scheduler/pipeline test files.
|
||||
|
||||
The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
|
||||
considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
|
||||
"""
|
||||
|
||||
_ignore_files = [
|
||||
"test_modeling_common",
|
||||
"test_modeling_encoder_decoder",
|
||||
"test_modeling_flax_encoder_decoder",
|
||||
"test_modeling_flax_speech_encoder_decoder",
|
||||
"test_modeling_marian",
|
||||
"test_modeling_tf_common",
|
||||
"test_modeling_tf_encoder_decoder",
|
||||
]
|
||||
_ignore_files = []
|
||||
test_files = []
|
||||
# Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
|
||||
model_test_root = os.path.join(PATH_TO_TESTS, "models")
|
||||
|
||||
model_test_root = os.path.join(PATH_TO_TESTS)
|
||||
model_test_dirs = []
|
||||
for x in os.listdir(model_test_root):
|
||||
x = os.path.join(model_test_root, x)
|
||||
if os.path.isdir(x):
|
||||
model_test_dirs.append(x)
|
||||
|
||||
for target_dir in [PATH_TO_TESTS] + model_test_dirs:
|
||||
for target_dir in model_test_dirs:
|
||||
for file_or_dir in os.listdir(target_dir):
|
||||
path = os.path.join(target_dir, file_or_dir)
|
||||
if os.path.isfile(path):
|
||||
filename = os.path.split(path)[-1]
|
||||
if "test_modeling" in filename and not os.path.splitext(filename)[0] in _ignore_files:
|
||||
if "test_" in filename and not os.path.splitext(filename)[0] in _ignore_files:
|
||||
file = os.path.join(*path.split(os.sep)[1:])
|
||||
test_files.append(file)
|
||||
|
||||
return test_files
|
||||
|
||||
|
||||
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
|
||||
# for the all_model_classes variable.
|
||||
def find_tested_models(test_file):
|
||||
"""Parse the content of test_file to detect what's in all_model_classes"""
|
||||
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
|
||||
with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
|
||||
content = f.read()
|
||||
all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
|
||||
# Check with one less parenthesis as well
|
||||
all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
|
||||
if len(all_models) > 0:
|
||||
model_tested = []
|
||||
for entry in all_models:
|
||||
for line in entry.split(","):
|
||||
name = line.strip()
|
||||
if len(name) > 0:
|
||||
model_tested.append(name)
|
||||
return model_tested
|
||||
|
||||
|
||||
def check_models_are_tested(module, test_file):
|
||||
"""Check models defined in module are tested in test_file."""
|
||||
# XxxModelMixin are not tested
|
||||
defined_models = get_models(module)
|
||||
defined_models = get_modules(module)
|
||||
tested_models = find_tested_models(test_file)
|
||||
if tested_models is None:
|
||||
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
|
||||
@@ -394,10 +175,10 @@ def check_models_are_tested(module, test_file):
|
||||
return failures
|
||||
|
||||
|
||||
def check_all_models_are_tested():
|
||||
"""Check all models are properly tested."""
|
||||
def check_all_modules_are_tested():
|
||||
"""Check all models/schedulers/pipelines are properly tested."""
|
||||
modules = get_model_modules()
|
||||
test_files = get_model_test_files()
|
||||
test_files = get_module_test_files()
|
||||
failures = []
|
||||
for module in modules:
|
||||
test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
|
||||
@@ -413,84 +194,6 @@ def check_all_models_are_tested():
|
||||
if len(failures) > 0:
|
||||
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
||||
|
||||
|
||||
def get_all_auto_configured_models():
|
||||
"""Return the list of all models in at least one auto class."""
|
||||
result = set() # To avoid duplicates we concatenate all model classes in a set.
|
||||
if is_torch_available():
|
||||
for attr_name in dir(diffusers.models.auto.modeling_auto):
|
||||
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
||||
result = result | set(get_values(getattr(diffusers.models.auto.modeling_auto, attr_name)))
|
||||
if is_tf_available():
|
||||
for attr_name in dir(diffusers.models.auto.modeling_tf_auto):
|
||||
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
||||
result = result | set(get_values(getattr(diffusers.models.auto.modeling_tf_auto, attr_name)))
|
||||
if is_flax_available():
|
||||
for attr_name in dir(diffusers.models.auto.modeling_flax_auto):
|
||||
if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
|
||||
result = result | set(get_values(getattr(diffusers.models.auto.modeling_flax_auto, attr_name)))
|
||||
return [cls for cls in result]
|
||||
|
||||
|
||||
def ignore_unautoclassed(model_name):
|
||||
"""Rules to determine if `name` should be in an auto class."""
|
||||
# Special white list
|
||||
if model_name in IGNORE_NON_AUTO_CONFIGURED:
|
||||
return True
|
||||
# Encoder and Decoder should be ignored
|
||||
if "Encoder" in model_name or "Decoder" in model_name:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_models_are_auto_configured(module, all_auto_models):
|
||||
"""Check models defined in module are each in an auto class."""
|
||||
defined_models = get_models(module)
|
||||
failures = []
|
||||
for model_name, _ in defined_models:
|
||||
if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
|
||||
failures.append(
|
||||
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
|
||||
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
|
||||
"`utils/check_repo.py`."
|
||||
)
|
||||
return failures
|
||||
|
||||
|
||||
def check_all_models_are_auto_configured():
|
||||
"""Check all models are each in an auto class."""
|
||||
missing_backends = []
|
||||
if not is_torch_available():
|
||||
missing_backends.append("PyTorch")
|
||||
if not is_tf_available():
|
||||
missing_backends.append("TensorFlow")
|
||||
if not is_flax_available():
|
||||
missing_backends.append("Flax")
|
||||
if len(missing_backends) > 0:
|
||||
missing = ", ".join(missing_backends)
|
||||
if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
|
||||
raise Exception(
|
||||
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
|
||||
f"Transformers repo, the following are missing: {missing}."
|
||||
)
|
||||
else:
|
||||
warnings.warn(
|
||||
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
|
||||
f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
|
||||
"didn't make any change in one of those backends modeling files, you should probably execute the "
|
||||
"command above to be on the safe side."
|
||||
)
|
||||
modules = get_model_modules()
|
||||
all_auto_models = get_all_auto_configured_models()
|
||||
failures = []
|
||||
for module in modules:
|
||||
new_failures = check_models_are_auto_configured(module, all_auto_models)
|
||||
if new_failures is not None:
|
||||
failures += new_failures
|
||||
if len(failures) > 0:
|
||||
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
|
||||
|
||||
|
||||
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
|
||||
|
||||
|
||||
@@ -545,77 +248,14 @@ def find_all_documented_objects():
|
||||
|
||||
|
||||
# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
|
||||
DEPRECATED_OBJECTS = [
|
||||
"AutoModelWithLMHead",
|
||||
"BartPretrainedModel",
|
||||
"DataCollator",
|
||||
"DataCollatorForSOP",
|
||||
"GlueDataset",
|
||||
"GlueDataTrainingArguments",
|
||||
"LineByLineTextDataset",
|
||||
"LineByLineWithRefDataset",
|
||||
"LineByLineWithSOPTextDataset",
|
||||
"PretrainedBartModel",
|
||||
"PretrainedFSMTModel",
|
||||
"SingleSentenceClassificationProcessor",
|
||||
"SquadDataTrainingArguments",
|
||||
"SquadDataset",
|
||||
"SquadExample",
|
||||
"SquadFeatures",
|
||||
"SquadV1Processor",
|
||||
"SquadV2Processor",
|
||||
"TFAutoModelWithLMHead",
|
||||
"TFBartPretrainedModel",
|
||||
"TextDataset",
|
||||
"TextDatasetForNextSentencePrediction",
|
||||
"Wav2Vec2ForMaskedLM",
|
||||
"Wav2Vec2Tokenizer",
|
||||
"glue_compute_metrics",
|
||||
"glue_convert_examples_to_features",
|
||||
"glue_output_modes",
|
||||
"glue_processors",
|
||||
"glue_tasks_num_labels",
|
||||
"squad_convert_examples_to_features",
|
||||
"xnli_compute_metrics",
|
||||
"xnli_output_modes",
|
||||
"xnli_processors",
|
||||
"xnli_tasks_num_labels",
|
||||
"TFTrainer",
|
||||
"TFTrainingArguments",
|
||||
]
|
||||
DEPRECATED_OBJECTS = []
|
||||
|
||||
# Exceptionally, some objects should not be documented after all rules passed.
|
||||
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
|
||||
UNDOCUMENTED_OBJECTS = [
|
||||
"AddedToken", # This is a tokenizers class.
|
||||
"BasicTokenizer", # Internal, should never have been in the main init.
|
||||
"CharacterTokenizer", # Internal, should never have been in the main init.
|
||||
"DPRPretrainedReader", # Like an Encoder.
|
||||
"DummyObject", # Just picked by mistake sometimes.
|
||||
"MecabTokenizer", # Internal, should never have been in the main init.
|
||||
"ModelCard", # Internal type.
|
||||
"SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer)
|
||||
"TFDPRPretrainedReader", # Like an Encoder.
|
||||
"TransfoXLCorpus", # Internal type.
|
||||
"WordpieceTokenizer", # Internal, should never have been in the main init.
|
||||
"absl", # External module
|
||||
"add_end_docstrings", # Internal, should never have been in the main init.
|
||||
"add_start_docstrings", # Internal, should never have been in the main init.
|
||||
"cached_path", # Internal used for downloading models.
|
||||
"convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights
|
||||
"logger", # Internal logger
|
||||
"logging", # External module
|
||||
"requires_backends", # Internal function
|
||||
]
|
||||
UNDOCUMENTED_OBJECTS = []
|
||||
|
||||
# This list should be empty. Objects in it should get their own doc page.
|
||||
SHOULD_HAVE_THEIR_OWN_PAGE = [
|
||||
# Benchmarks
|
||||
"PyTorchBenchmark",
|
||||
"PyTorchBenchmarkArguments",
|
||||
"TensorFlowBenchmark",
|
||||
"TensorFlowBenchmarkArguments",
|
||||
]
|
||||
SHOULD_HAVE_THEIR_OWN_PAGE = []
|
||||
|
||||
|
||||
def ignore_undocumented(name):
|
||||
@@ -659,9 +299,7 @@ def ignore_undocumented(name):
|
||||
def check_all_objects_are_documented():
|
||||
"""Check all models are properly documented."""
|
||||
documented_objs = find_all_documented_objects()
|
||||
modules = diffusers._modules
|
||||
objects = [c for c in dir(diffusers) if c not in modules and not c.startswith("_")]
|
||||
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
|
||||
undocumented_objs = [c for c in dir(diffusers) if c not in documented_objs and not ignore_undocumented(c) and not c.startswith("_")]
|
||||
if len(undocumented_objs) > 0:
|
||||
raise Exception(
|
||||
"The following objects are in the public init so should be documented:\n - "
|
||||
@@ -677,7 +315,6 @@ def check_model_type_doc_match():
|
||||
model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]
|
||||
|
||||
model_types = list(diffusers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
|
||||
model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
|
||||
|
||||
errors = []
|
||||
for m in model_docs:
|
||||
@@ -744,17 +381,15 @@ def check_docstrings_are_in_md():
|
||||
|
||||
def check_repo_quality():
|
||||
"""Check all models are properly tested and documented."""
|
||||
print("Checking all models are included.")
|
||||
check_model_list()
|
||||
print("Checking all models are public.")
|
||||
check_models_are_in_init()
|
||||
print("Checking all models are properly tested.")
|
||||
print("Checking all models, schedulers and pipelines are included.")
|
||||
check_modules_are_in_local_init()
|
||||
print("Checking all models, schedulers and pipelines are public.")
|
||||
check_modules_are_in_global_init()
|
||||
print("Checking all models, schedulers and pipelines are properly tested.")
|
||||
check_all_decorator_order()
|
||||
check_all_models_are_tested()
|
||||
check_all_modules_are_tested()
|
||||
print("Checking all objects are properly documented.")
|
||||
check_all_objects_are_documented()
|
||||
print("Checking all models are in at least one auto class.")
|
||||
check_all_models_are_auto_configured()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user