Compare commits

...

2 Commits

Author SHA1 Message Date
Dhruv Nair
d510b08ca4 update 2023-12-26 14:02:52 +00:00
Dhruv Nair
bdeb3ea983 add scripts 2023-12-26 13:43:36 +00:00
2 changed files with 102 additions and 0 deletions

View File

@@ -0,0 +1,51 @@
import argparse
import torch
from safetensors.torch import save_file
def convert_motion_module(original_state_dict):
converted_state_dict = {}
for k, v in original_state_dict.items():
if "pos_encoder" in k:
continue
else:
converted_state_dict[
k.replace(".norms.0", ".norm1")
.replace(".norms.1", ".norm2")
.replace(".ff_norm", ".norm3")
.replace(".attention_blocks.0", ".attn1")
.replace(".attention_blocks.1", ".attn2")
.replace(".temporal_transformer", "")
] = v
return converted_state_dict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
state_dict = torch.load(args.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
conv_state_dict = convert_motion_module(state_dict)
# convert to new format
output_dict = {}
for module_name, params in conv_state_dict.items():
if type(params) is not torch.Tensor:
continue
output_dict.update({f"unet.{module_name}": params})
save_file(output_dict, f"{args.output_path}/diffusion_pytorch_model.safetensors")

View File

@@ -0,0 +1,51 @@
import argparse
import torch
from diffusers import MotionAdapter
def convert_motion_module(original_state_dict):
converted_state_dict = {}
for k, v in original_state_dict.items():
if "pos_encoder" in k:
continue
else:
converted_state_dict[
k.replace(".norms.0", ".norm1")
.replace(".norms.1", ".norm2")
.replace(".ff_norm", ".norm3")
.replace(".attention_blocks.0", ".attn1")
.replace(".attention_blocks.1", ".attn2")
.replace(".temporal_transformer", "")
] = v
return converted_state_dict
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
parser.add_argument("--use_motion_mid_block", action="store_true")
parser.add_argument("--motion_max_seq_length", type=int, default=32)
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
state_dict = torch.load(args.ckpt_path, map_location="cpu")
if "state_dict" in state_dict.keys():
state_dict = state_dict["state_dict"]
conv_state_dict = convert_motion_module(state_dict)
adapter = MotionAdapter(
use_motion_mid_block=args.use_motion_mid_block, motion_max_seq_length=args.motion_max_seq_length
)
# skip loading position embeddings
adapter.load_state_dict(conv_state_dict, strict=False)
adapter.save_pretrained(args.output_path)
adapter.save_pretrained(args.output_path, variant="fp16", torch_dtype=torch.float16)