mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-09 12:25:15 +08:00
Compare commits
2 Commits
transforme
...
qwen-test-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ffdfe28983 | ||
|
|
31ed009706 |
27
.github/workflows/pr_tests.yml
vendored
27
.github/workflows/pr_tests.yml
vendored
@@ -92,9 +92,8 @@ jobs:
|
||||
runner: aws-general-8-plus
|
||||
image: diffusers/diffusers-pytorch-cpu
|
||||
report: torch_example_cpu
|
||||
transformers_version: ["main"]
|
||||
|
||||
name: ${{ matrix.config.name }} (transformers ${{ matrix.transformers_version }})
|
||||
name: ${{ matrix.config.name }}
|
||||
|
||||
runs-on:
|
||||
group: ${{ matrix.config.runner }}
|
||||
@@ -116,11 +115,8 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
uv pip install -e ".[quality]"
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
|
||||
- name: Environment
|
||||
@@ -159,7 +155,7 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
|
||||
path: reports
|
||||
|
||||
run_staging_tests:
|
||||
@@ -224,10 +220,8 @@ jobs:
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
transformers_version: ["main"]
|
||||
|
||||
name: LoRA tests with PEFT main (transformers ${{ matrix.transformers_version }})
|
||||
name: LoRA tests with PEFT main
|
||||
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
@@ -253,12 +247,9 @@ jobs:
|
||||
uv pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
|
||||
uv pip install -U tokenizers
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
python utils/print_env.py
|
||||
@@ -284,6 +275,6 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pr_lora_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
name: pr_main_test_reports
|
||||
path: reports
|
||||
|
||||
|
||||
42
.github/workflows/pr_tests_gpu.yml
vendored
42
.github/workflows/pr_tests_gpu.yml
vendored
@@ -14,7 +14,6 @@ on:
|
||||
- "tests/pipelines/test_pipelines_common.py"
|
||||
- "tests/models/test_modeling_common.py"
|
||||
- "examples/**/*.py"
|
||||
- ".github/**.yml"
|
||||
workflow_dispatch:
|
||||
|
||||
concurrency:
|
||||
@@ -107,14 +106,13 @@ jobs:
|
||||
path: reports
|
||||
|
||||
torch_pipelines_cuda_tests:
|
||||
name: Torch Pipelines CUDA Tests (transformers ${{ matrix.transformers_version }})
|
||||
name: Torch Pipelines CUDA Tests
|
||||
needs: setup_torch_cuda_pipeline_matrix
|
||||
strategy:
|
||||
fail-fast: false
|
||||
max-parallel: 8
|
||||
matrix:
|
||||
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
|
||||
transformers_version: ["main"]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
@@ -133,12 +131,8 @@ jobs:
|
||||
run: |
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -178,11 +172,11 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: pipeline_${{ matrix.module }}_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
name: pipeline_${{ matrix.module }}_test_reports
|
||||
path: reports
|
||||
|
||||
torch_cuda_tests:
|
||||
name: Torch CUDA Tests (transformers ${{ matrix.transformers_version }})
|
||||
name: Torch CUDA Tests
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
@@ -197,7 +191,6 @@ jobs:
|
||||
max-parallel: 4
|
||||
matrix:
|
||||
module: [models, schedulers, lora, others]
|
||||
transformers_version: ["main"]
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v6
|
||||
@@ -209,12 +202,8 @@ jobs:
|
||||
uv pip install -e ".[quality]"
|
||||
uv pip install peft@git+https://github.com/huggingface/peft.git
|
||||
uv pip uninstall accelerate && uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
|
||||
- name: Environment
|
||||
run: |
|
||||
@@ -252,16 +241,12 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: torch_cuda_test_reports_${{ matrix.module }}_transformers_${{ matrix.transformers_version }}
|
||||
name: torch_cuda_test_reports_${{ matrix.module }}
|
||||
path: reports
|
||||
|
||||
run_examples_tests:
|
||||
name: Examples PyTorch CUDA tests on Ubuntu (transformers ${{ matrix.transformers_version }})
|
||||
name: Examples PyTorch CUDA tests on Ubuntu
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
transformers_version: ["main"]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
|
||||
@@ -279,11 +264,8 @@ jobs:
|
||||
nvidia-smi
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
if [ "${{ matrix.transformers_version }}" = "main" ]; then
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
else
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==${{ matrix.transformers_version }}
|
||||
fi
|
||||
#uv pip uninstall transformers huggingface_hub && uv pip install --prerelease allow -U transformers@git+https://github.com/huggingface/transformers.git
|
||||
uv pip uninstall transformers huggingface_hub && uv pip install transformers==4.57.1
|
||||
uv pip install -e ".[quality,training]"
|
||||
|
||||
- name: Environment
|
||||
@@ -307,6 +289,6 @@ jobs:
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v6
|
||||
with:
|
||||
name: examples_transformers_${{ matrix.transformers_version }}_test_reports
|
||||
name: examples_test_reports
|
||||
path: reports
|
||||
|
||||
|
||||
@@ -17,9 +17,6 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
from diffusers.utils import is_transformers_version
|
||||
|
||||
|
||||
sys.path.append("..")
|
||||
@@ -33,7 +30,6 @@ stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
@unittest.skipIf(is_transformers_version(">=", "4.57.5"), "Size mismatch")
|
||||
class CustomDiffusion(ExamplesTestsAccelerate):
|
||||
def test_custom_diffusion(self):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
|
||||
@@ -44,7 +44,6 @@ _GO_LC_SUPPORTED_PYTORCH_LAYERS = (
|
||||
torch.nn.ConvTranspose2d,
|
||||
torch.nn.ConvTranspose3d,
|
||||
torch.nn.Linear,
|
||||
torch.nn.Embedding,
|
||||
# TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
|
||||
# because of double invocation of the same norm layer in CogVideoXLayerNorm
|
||||
)
|
||||
|
||||
@@ -2321,14 +2321,8 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
|
||||
prefix = "diffusion_model."
|
||||
original_state_dict = {k[len(prefix) :]: v for k, v in state_dict.items()}
|
||||
|
||||
num_double_layers = 0
|
||||
num_single_layers = 0
|
||||
for key in original_state_dict.keys():
|
||||
if key.startswith("single_blocks."):
|
||||
num_single_layers = max(num_single_layers, int(key.split(".")[1]) + 1)
|
||||
elif key.startswith("double_blocks."):
|
||||
num_double_layers = max(num_double_layers, int(key.split(".")[1]) + 1)
|
||||
|
||||
num_double_layers = 8
|
||||
num_single_layers = 48
|
||||
lora_keys = ("lora_A", "lora_B")
|
||||
attn_types = ("img_attn", "txt_attn")
|
||||
|
||||
|
||||
@@ -21,12 +21,7 @@ from tokenizers import Tokenizer as TokenizerFast
|
||||
from torch import nn
|
||||
|
||||
from ..models.modeling_utils import load_state_dict
|
||||
from ..utils import (
|
||||
_get_model_file,
|
||||
is_accelerate_available,
|
||||
is_transformers_available,
|
||||
logging,
|
||||
)
|
||||
from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
|
||||
|
||||
|
||||
if is_transformers_available():
|
||||
|
||||
@@ -287,9 +287,6 @@ class Cosmos2_5_PredictBasePipeline(DiffusionPipeline):
|
||||
truncation=True,
|
||||
padding="max_length",
|
||||
)
|
||||
input_ids = (
|
||||
input_ids["input_ids"] if not isinstance(input_ids, list) and "input_ids" in input_ids else input_ids
|
||||
)
|
||||
input_ids = torch.LongTensor(input_ids)
|
||||
input_ids_batch.append(input_ids)
|
||||
|
||||
|
||||
@@ -20,8 +20,6 @@ class MultilingualCLIP(PreTrainedModel):
|
||||
self.LinearTransformation = torch.nn.Linear(
|
||||
in_features=config.transformerDimensions, out_features=config.numDims
|
||||
)
|
||||
if hasattr(self, "post_init"):
|
||||
self.post_init()
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
embs = self.transformer(input_ids=input_ids, attention_mask=attention_mask)[0]
|
||||
|
||||
@@ -782,9 +782,6 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
self.prefix_encoder = PrefixEncoder(config)
|
||||
self.dropout = torch.nn.Dropout(0.1)
|
||||
|
||||
if hasattr(self, "post_init"):
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embedding.word_embeddings
|
||||
|
||||
@@ -814,7 +811,7 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else getattr(self.config, "use_cache", None)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
batch_size, seq_length = input_ids.shape
|
||||
|
||||
@@ -340,7 +340,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
|
||||
save_method_accept_variant = "variant" in save_method_signature.parameters
|
||||
save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
|
||||
save_method_accept_peft_format = "save_peft_format" in save_method_signature.parameters
|
||||
|
||||
save_kwargs = {}
|
||||
if save_method_accept_safe:
|
||||
@@ -350,11 +349,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
if save_method_accept_max_shard_size and max_shard_size is not None:
|
||||
# max_shard_size is expected to not be None in ModelMixin
|
||||
save_kwargs["max_shard_size"] = max_shard_size
|
||||
if save_method_accept_peft_format:
|
||||
# Set save_peft_format=False for transformers>=5.0.0 compatibility
|
||||
# In transformers 5.0.0+, the default save_peft_format=True adds "base_model.model" prefix
|
||||
# to adapter keys, but from_pretrained expects keys without this prefix
|
||||
save_kwargs["save_peft_format"] = False
|
||||
|
||||
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
|
||||
|
||||
|
||||
@@ -20,9 +20,7 @@ class TestAutoModel(unittest.TestCase):
|
||||
side_effect=[EnvironmentError("File not found"), {"model_type": "clip_text_model"}],
|
||||
)
|
||||
def test_load_from_config_transformers_with_subfolder(self, mock_load_config):
|
||||
model = AutoModel.from_pretrained(
|
||||
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder", use_safetensors=False
|
||||
)
|
||||
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
|
||||
assert isinstance(model, CLIPTextModel)
|
||||
|
||||
def test_load_from_config_without_subfolder(self):
|
||||
@@ -30,7 +28,5 @@ class TestAutoModel(unittest.TestCase):
|
||||
assert isinstance(model, LongformerModel)
|
||||
|
||||
def test_load_from_model_index(self):
|
||||
model = AutoModel.from_pretrained(
|
||||
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder", use_safetensors=False
|
||||
)
|
||||
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="text_encoder")
|
||||
assert isinstance(model, CLIPTextModel)
|
||||
|
||||
@@ -13,49 +13,87 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import QwenImageTransformer2DModel
|
||||
from diffusers.models.transformers.transformer_qwenimage import compute_text_seq_len_from_mask
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
|
||||
from ..testing_utils import (
|
||||
AttentionTesterMixin,
|
||||
BaseModelTesterConfig,
|
||||
BitsAndBytesTesterMixin,
|
||||
ContextParallelTesterMixin,
|
||||
LoraHotSwappingForModelTesterMixin,
|
||||
LoraTesterMixin,
|
||||
MemoryTesterMixin,
|
||||
ModelTesterMixin,
|
||||
TorchAoTesterMixin,
|
||||
TorchCompileTesterMixin,
|
||||
TrainingTesterMixin,
|
||||
)
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = QwenImageTransformer2DModel
|
||||
main_input_name = "hidden_states"
|
||||
# We override the items here because the transformer under consideration is small.
|
||||
model_split_percents = [0.7, 0.6, 0.6]
|
||||
|
||||
# Skip setting testing with default: AttnProcessor
|
||||
uses_custom_attn_processor = True
|
||||
class QwenImageTransformerTesterConfig(BaseModelTesterConfig):
|
||||
@property
|
||||
def model_class(self):
|
||||
return QwenImageTransformer2DModel
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
return self.prepare_dummy_input()
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
def output_shape(self) -> tuple[int, int]:
|
||||
return (16, 16)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
def input_shape(self) -> tuple[int, int]:
|
||||
return (16, 16)
|
||||
|
||||
def prepare_dummy_input(self, height=4, width=4):
|
||||
@property
|
||||
def model_split_percents(self) -> list:
|
||||
# We override the items here because the transformer under consideration is small.
|
||||
return [0.7, 0.6, 0.6]
|
||||
|
||||
@property
|
||||
def main_input_name(self) -> str:
|
||||
return "hidden_states"
|
||||
|
||||
@property
|
||||
def uses_custom_attn_processor(self) -> bool:
|
||||
# Skip setting testing with default: AttnProcessor
|
||||
return True
|
||||
|
||||
@property
|
||||
def generator(self):
|
||||
return torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
def get_init_dict(self) -> dict[str, int | list[int]]:
|
||||
return {
|
||||
"patch_size": 2,
|
||||
"in_channels": 16,
|
||||
"out_channels": 4,
|
||||
"num_layers": 2,
|
||||
"attention_head_dim": 16,
|
||||
"num_attention_heads": 4, # Must be divisible by 2 for Ulysses context parallel
|
||||
"joint_attention_dim": 16,
|
||||
"guidance_embeds": False,
|
||||
"axes_dims_rope": (8, 4, 4),
|
||||
}
|
||||
|
||||
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
|
||||
batch_size = 1
|
||||
num_latent_channels = embedding_dim = 16
|
||||
sequence_length = 7
|
||||
sequence_length = 8 # Must be divisible by 2 for context parallel tests
|
||||
vae_scale_factor = 4
|
||||
|
||||
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states_mask = torch.ones((batch_size, sequence_length)).to(torch_device, torch.long)
|
||||
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
orig_height = height * 2 * vae_scale_factor
|
||||
@@ -70,29 +108,12 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
"img_shapes": img_shapes,
|
||||
}
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"patch_size": 2,
|
||||
"in_channels": 16,
|
||||
"out_channels": 4,
|
||||
"num_layers": 2,
|
||||
"attention_head_dim": 16,
|
||||
"num_attention_heads": 3,
|
||||
"joint_attention_dim": 16,
|
||||
"guidance_embeds": False,
|
||||
"axes_dims_rope": (8, 4, 4),
|
||||
}
|
||||
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"QwenImageTransformer2DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
class TestQwenImageTransformer(QwenImageTransformerTesterConfig, ModelTesterMixin):
|
||||
def test_infers_text_seq_len_from_mask(self):
|
||||
"""Test that compute_text_seq_len_from_mask correctly infers sequence lengths and returns tensors."""
|
||||
init_dict, inputs = self.prepare_init_args_and_inputs_for_common()
|
||||
init_dict = self.get_init_dict()
|
||||
inputs = self.get_dummy_inputs()
|
||||
model = self.model_class(**init_dict).to(torch_device)
|
||||
|
||||
# Test 1: Contiguous mask with padding at the end (only first 2 tokens valid)
|
||||
@@ -104,55 +125,56 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
)
|
||||
|
||||
# Verify rope_text_seq_len is returned as an int (for torch.compile compatibility)
|
||||
self.assertIsInstance(rope_text_seq_len, int)
|
||||
assert isinstance(rope_text_seq_len, int)
|
||||
|
||||
# Verify per_sample_len is computed correctly (max valid position + 1 = 2)
|
||||
self.assertIsInstance(per_sample_len, torch.Tensor)
|
||||
self.assertEqual(int(per_sample_len.max().item()), 2)
|
||||
assert isinstance(per_sample_len, torch.Tensor)
|
||||
assert int(per_sample_len.max().item()) == 2
|
||||
|
||||
# Verify mask is normalized to bool dtype
|
||||
self.assertTrue(normalized_mask.dtype == torch.bool)
|
||||
self.assertEqual(normalized_mask.sum().item(), 2) # Only 2 True values
|
||||
assert normalized_mask.dtype == torch.bool
|
||||
assert normalized_mask.sum().item() == 2 # Only 2 True values
|
||||
|
||||
# Verify rope_text_seq_len is at least the sequence length
|
||||
self.assertGreaterEqual(rope_text_seq_len, inputs["encoder_hidden_states"].shape[1])
|
||||
assert rope_text_seq_len >= inputs["encoder_hidden_states"].shape[1]
|
||||
|
||||
# Test 2: Verify model runs successfully with inferred values
|
||||
inputs["encoder_hidden_states_mask"] = normalized_mask
|
||||
with torch.no_grad():
|
||||
output = model(**inputs)
|
||||
self.assertEqual(output.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
assert output.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
|
||||
# Test 3: Different mask pattern (padding at beginning)
|
||||
encoder_hidden_states_mask2 = inputs["encoder_hidden_states_mask"].clone()
|
||||
encoder_hidden_states_mask2[:, :3] = 0 # First 3 tokens are padding
|
||||
encoder_hidden_states_mask2[:, 3:] = 1 # Last 4 tokens are valid
|
||||
encoder_hidden_states_mask2[:, 3:] = 1 # Last 5 tokens are valid (seq_len=8)
|
||||
|
||||
rope_text_seq_len2, per_sample_len2, normalized_mask2 = compute_text_seq_len_from_mask(
|
||||
inputs["encoder_hidden_states"], encoder_hidden_states_mask2
|
||||
)
|
||||
|
||||
# Max valid position is 6 (last token), so per_sample_len should be 7
|
||||
self.assertEqual(int(per_sample_len2.max().item()), 7)
|
||||
self.assertEqual(normalized_mask2.sum().item(), 4) # 4 True values
|
||||
# Max valid position is 7 (last token), so per_sample_len should be 8
|
||||
assert int(per_sample_len2.max().item()) == 8
|
||||
assert normalized_mask2.sum().item() == 5 # 5 True values
|
||||
|
||||
# Test 4: No mask provided (None case)
|
||||
rope_text_seq_len_none, per_sample_len_none, normalized_mask_none = compute_text_seq_len_from_mask(
|
||||
inputs["encoder_hidden_states"], None
|
||||
)
|
||||
self.assertEqual(rope_text_seq_len_none, inputs["encoder_hidden_states"].shape[1])
|
||||
self.assertIsInstance(rope_text_seq_len_none, int)
|
||||
self.assertIsNone(per_sample_len_none)
|
||||
self.assertIsNone(normalized_mask_none)
|
||||
assert rope_text_seq_len_none == inputs["encoder_hidden_states"].shape[1]
|
||||
assert isinstance(rope_text_seq_len_none, int)
|
||||
assert per_sample_len_none is None
|
||||
assert normalized_mask_none is None
|
||||
|
||||
def test_non_contiguous_attention_mask(self):
|
||||
"""Test that non-contiguous masks work correctly (e.g., [1, 0, 1, 0, 1, 0, 0])"""
|
||||
init_dict, inputs = self.prepare_init_args_and_inputs_for_common()
|
||||
"""Test that non-contiguous masks work correctly (e.g., [1, 0, 1, 0, 1, 0, 0, 0])"""
|
||||
init_dict = self.get_init_dict()
|
||||
inputs = self.get_dummy_inputs()
|
||||
model = self.model_class(**init_dict).to(torch_device)
|
||||
|
||||
# Create a non-contiguous mask pattern: valid, padding, valid, padding, etc.
|
||||
encoder_hidden_states_mask = inputs["encoder_hidden_states_mask"].clone()
|
||||
# Pattern: [True, False, True, False, True, False, False]
|
||||
# Pattern: [True, False, True, False, True, False, False, False] (seq_len=8)
|
||||
encoder_hidden_states_mask[:, 1] = 0
|
||||
encoder_hidden_states_mask[:, 3] = 0
|
||||
encoder_hidden_states_mask[:, 5:] = 0
|
||||
@@ -160,21 +182,22 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
inferred_rope_len, per_sample_len, normalized_mask = compute_text_seq_len_from_mask(
|
||||
inputs["encoder_hidden_states"], encoder_hidden_states_mask
|
||||
)
|
||||
self.assertEqual(int(per_sample_len.max().item()), 5)
|
||||
self.assertEqual(inferred_rope_len, inputs["encoder_hidden_states"].shape[1])
|
||||
self.assertIsInstance(inferred_rope_len, int)
|
||||
self.assertTrue(normalized_mask.dtype == torch.bool)
|
||||
assert int(per_sample_len.max().item()) == 5
|
||||
assert inferred_rope_len == inputs["encoder_hidden_states"].shape[1]
|
||||
assert isinstance(inferred_rope_len, int)
|
||||
assert normalized_mask.dtype == torch.bool
|
||||
|
||||
inputs["encoder_hidden_states_mask"] = normalized_mask
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(**inputs)
|
||||
|
||||
self.assertEqual(output.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
assert output.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
|
||||
def test_txt_seq_lens_deprecation(self):
|
||||
"""Test that passing txt_seq_lens raises a deprecation warning."""
|
||||
init_dict, inputs = self.prepare_init_args_and_inputs_for_common()
|
||||
init_dict = self.get_init_dict()
|
||||
inputs = self.get_dummy_inputs()
|
||||
model = self.model_class(**init_dict).to(torch_device)
|
||||
|
||||
# Prepare inputs with txt_seq_lens (deprecated parameter)
|
||||
@@ -186,18 +209,24 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
inputs_with_deprecated["txt_seq_lens"] = txt_seq_lens
|
||||
|
||||
# Test that deprecation warning is raised
|
||||
with self.assertWarns(FutureWarning) as warning_context:
|
||||
import warnings
|
||||
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
warnings.simplefilter("always")
|
||||
with torch.no_grad():
|
||||
output = model(**inputs_with_deprecated)
|
||||
|
||||
# Verify the warning message mentions the deprecation
|
||||
warning_message = str(warning_context.warning)
|
||||
self.assertIn("txt_seq_lens", warning_message)
|
||||
self.assertIn("deprecated", warning_message)
|
||||
self.assertIn("encoder_hidden_states_mask", warning_message)
|
||||
# Verify a FutureWarning was raised
|
||||
future_warnings = [x for x in w if issubclass(x.category, FutureWarning)]
|
||||
assert len(future_warnings) > 0, "Expected FutureWarning to be raised"
|
||||
|
||||
# Verify the warning message mentions the deprecation
|
||||
warning_message = str(future_warnings[0].message)
|
||||
assert "txt_seq_lens" in warning_message
|
||||
assert "deprecated" in warning_message
|
||||
|
||||
# Verify the model still works correctly despite the deprecation
|
||||
self.assertEqual(output.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
assert output.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
|
||||
def test_layered_model_with_mask(self):
|
||||
"""Test QwenImageTransformer2DModel with use_layer3d_rope=True (layered model)."""
|
||||
@@ -208,7 +237,7 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
"out_channels": 4,
|
||||
"num_layers": 2,
|
||||
"attention_head_dim": 16,
|
||||
"num_attention_heads": 3,
|
||||
"num_attention_heads": 4, # Must be divisible by 2 for Ulysses context parallel
|
||||
"joint_attention_dim": 16,
|
||||
"axes_dims_rope": (8, 4, 4), # Must match attention_head_dim (8+4+4=16)
|
||||
"use_layer3d_rope": True, # Enable layered RoPE
|
||||
@@ -220,11 +249,11 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
# Verify the model uses QwenEmbedLayer3DRope
|
||||
from diffusers.models.transformers.transformer_qwenimage import QwenEmbedLayer3DRope
|
||||
|
||||
self.assertIsInstance(model.pos_embed, QwenEmbedLayer3DRope)
|
||||
assert isinstance(model.pos_embed, QwenEmbedLayer3DRope)
|
||||
|
||||
# Test single generation with layered structure
|
||||
batch_size = 1
|
||||
text_seq_len = 7
|
||||
text_seq_len = 8
|
||||
img_h, img_w = 4, 4
|
||||
layers = 4
|
||||
|
||||
@@ -262,24 +291,104 @@ class QwenImageTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
additional_t_cond=addition_t_cond,
|
||||
)
|
||||
|
||||
self.assertEqual(output.sample.shape[1], hidden_states.shape[1])
|
||||
assert output.sample.shape[1] == hidden_states.shape[1]
|
||||
|
||||
|
||||
class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
|
||||
model_class = QwenImageTransformer2DModel
|
||||
class TestQwenImageTransformerMemory(QwenImageTransformerTesterConfig, MemoryTesterMixin):
|
||||
"""Memory optimization tests for QwenImage Transformer."""
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
return QwenImageTransformerTests().prepare_init_args_and_inputs_for_common()
|
||||
|
||||
def prepare_dummy_input(self, height, width):
|
||||
return QwenImageTransformerTests().prepare_dummy_input(height=height, width=width)
|
||||
class TestQwenImageTransformerTraining(QwenImageTransformerTesterConfig, TrainingTesterMixin):
|
||||
"""Training tests for QwenImage Transformer."""
|
||||
|
||||
def test_torch_compile_recompilation_and_graph_break(self):
|
||||
super().test_torch_compile_recompilation_and_graph_break()
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"QwenImageTransformer2DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
|
||||
class TestQwenImageTransformerAttention(QwenImageTransformerTesterConfig, AttentionTesterMixin):
|
||||
"""Attention processor tests for QwenImage Transformer."""
|
||||
|
||||
|
||||
class TestQwenImageTransformerContextParallel(QwenImageTransformerTesterConfig, ContextParallelTesterMixin):
|
||||
"""Context Parallel inference tests for QwenImage Transformer."""
|
||||
|
||||
|
||||
class TestQwenImageTransformerLoRA(QwenImageTransformerTesterConfig, LoraTesterMixin):
|
||||
"""LoRA adapter tests for QwenImage Transformer."""
|
||||
|
||||
|
||||
class TestQwenImageTransformerLoRAHotSwap(QwenImageTransformerTesterConfig, LoraHotSwappingForModelTesterMixin):
|
||||
"""LoRA hot-swapping tests for QwenImage Transformer."""
|
||||
|
||||
@property
|
||||
def different_shapes_for_compilation(self):
|
||||
return [(4, 4), (4, 8), (8, 8)]
|
||||
|
||||
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
|
||||
"""Override to support dynamic height/width for LoRA hotswap tests."""
|
||||
batch_size = 1
|
||||
num_latent_channels = embedding_dim = 16
|
||||
sequence_length = 8
|
||||
vae_scale_factor = 4
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states_mask = torch.ones((batch_size, sequence_length)).to(torch_device, torch.long)
|
||||
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
orig_height = height * 2 * vae_scale_factor
|
||||
orig_width = width * 2 * vae_scale_factor
|
||||
img_shapes = [(1, orig_height // vae_scale_factor // 2, orig_width // vae_scale_factor // 2)] * batch_size
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"encoder_hidden_states_mask": encoder_hidden_states_mask,
|
||||
"timestep": timestep,
|
||||
"img_shapes": img_shapes,
|
||||
}
|
||||
|
||||
|
||||
class TestQwenImageTransformerCompile(QwenImageTransformerTesterConfig, TorchCompileTesterMixin):
|
||||
@property
|
||||
def different_shapes_for_compilation(self):
|
||||
return [(4, 4), (4, 8), (8, 8)]
|
||||
|
||||
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
|
||||
"""Override to support dynamic height/width for compilation tests."""
|
||||
batch_size = 1
|
||||
num_latent_channels = embedding_dim = 16
|
||||
sequence_length = 8 # Must be divisible by 2 for context parallel tests
|
||||
vae_scale_factor = 4
|
||||
|
||||
hidden_states = randn_tensor(
|
||||
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states = randn_tensor(
|
||||
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
|
||||
)
|
||||
encoder_hidden_states_mask = torch.ones((batch_size, sequence_length)).to(torch_device, torch.long)
|
||||
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
orig_height = height * 2 * vae_scale_factor
|
||||
orig_width = width * 2 * vae_scale_factor
|
||||
img_shapes = [(1, orig_height // vae_scale_factor // 2, orig_width // vae_scale_factor // 2)] * batch_size
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"encoder_hidden_states_mask": encoder_hidden_states_mask,
|
||||
"timestep": timestep,
|
||||
"img_shapes": img_shapes,
|
||||
}
|
||||
|
||||
def test_torch_compile_with_and_without_mask(self):
|
||||
"""Test that torch.compile works with both None mask and padding mask."""
|
||||
init_dict, inputs = self.prepare_init_args_and_inputs_for_common()
|
||||
init_dict = self.get_init_dict()
|
||||
inputs = self.get_dummy_inputs()
|
||||
model = self.model_class(**init_dict).to(torch_device)
|
||||
model.eval()
|
||||
model.compile(mode="default", fullgraph=True)
|
||||
@@ -300,13 +409,13 @@ class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCas
|
||||
):
|
||||
output_no_mask_2 = model(**inputs_no_mask)
|
||||
|
||||
self.assertEqual(output_no_mask.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
self.assertEqual(output_no_mask_2.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
assert output_no_mask.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
assert output_no_mask_2.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
|
||||
# Test 2: Run with all-ones mask (should behave like None)
|
||||
inputs_all_ones = inputs.copy()
|
||||
# Keep the all-ones mask
|
||||
self.assertTrue(inputs_all_ones["encoder_hidden_states_mask"].all().item())
|
||||
assert inputs_all_ones["encoder_hidden_states_mask"].all().item()
|
||||
|
||||
# First run to allow compilation
|
||||
with torch.no_grad():
|
||||
@@ -320,8 +429,8 @@ class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCas
|
||||
):
|
||||
output_all_ones_2 = model(**inputs_all_ones)
|
||||
|
||||
self.assertEqual(output_all_ones.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
self.assertEqual(output_all_ones_2.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
assert output_all_ones.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
assert output_all_ones_2.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
|
||||
# Test 3: Run with actual padding mask (has zeros)
|
||||
inputs_with_padding = inputs.copy()
|
||||
@@ -342,8 +451,16 @@ class QwenImageTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCas
|
||||
):
|
||||
output_with_padding_2 = model(**inputs_with_padding)
|
||||
|
||||
self.assertEqual(output_with_padding.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
self.assertEqual(output_with_padding_2.sample.shape[1], inputs["hidden_states"].shape[1])
|
||||
assert output_with_padding.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
assert output_with_padding_2.sample.shape[1] == inputs["hidden_states"].shape[1]
|
||||
|
||||
# Verify that outputs are different (mask should affect results)
|
||||
self.assertFalse(torch.allclose(output_no_mask.sample, output_with_padding.sample, atol=1e-3))
|
||||
assert not torch.allclose(output_no_mask.sample, output_with_padding.sample, atol=1e-3)
|
||||
|
||||
|
||||
class TestQwenImageTransformerBitsAndBytes(QwenImageTransformerTesterConfig, BitsAndBytesTesterMixin):
|
||||
"""BitsAndBytes quantization tests for QwenImage Transformer."""
|
||||
|
||||
|
||||
class TestQwenImageTransformerTorchAo(QwenImageTransformerTesterConfig, TorchAoTesterMixin):
|
||||
"""TorchAO quantization tests for QwenImage Transformer."""
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import AutoConfig, T5EncoderModel, T5TokenizerFast
|
||||
from transformers import T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -89,8 +89,7 @@ class BriaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -2,7 +2,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, ChromaPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
||||
|
||||
@@ -41,8 +41,7 @@ class ChromaPipelineFastTests(
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, ChromaImg2ImgPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
||||
|
||||
@@ -42,8 +42,7 @@ class ChromaImg2ImgPipelineFastTests(
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -17,7 +17,6 @@ import unittest
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -72,8 +71,7 @@ class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
|
||||
@@ -117,8 +117,7 @@ class CogVideoXPipelineFastTests(
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXFunControlPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
|
||||
@@ -104,8 +104,7 @@ class CogVideoXFunControlPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel, DDIMScheduler
|
||||
from diffusers.utils import load_image
|
||||
@@ -113,8 +113,7 @@ class CogVideoXImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXVideoToVideoPipeline, DDIMScheduler
|
||||
|
||||
@@ -99,8 +99,7 @@ class CogVideoXVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestC
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, CogVideoXDDIMScheduler, CogView3PlusPipeline, CogView3PlusTransformer2DModel
|
||||
|
||||
@@ -89,8 +89,7 @@ class CogView3PlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = CogVideoXDDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -108,7 +108,7 @@ class CogView4PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "dance monkey",
|
||||
"negative_prompt": "bad",
|
||||
"negative_prompt": "",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 6.0,
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCogVideoX, ConsisIDPipeline, ConsisIDTransformer3DModel, DDIMScheduler
|
||||
from diffusers.utils import load_image
|
||||
@@ -122,8 +122,7 @@ class ConsisIDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import AutoConfig, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -97,8 +97,7 @@ class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, Fl
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -2,7 +2,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -13,7 +13,9 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import torch_device
|
||||
from ...testing_utils import (
|
||||
torch_device,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineTesterMixin, check_qkv_fused_layers_exist
|
||||
|
||||
|
||||
@@ -68,8 +70,7 @@ class FluxControlNetImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMi
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,15 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
# torch_device, # {{ edit_1 }} Removed unused import
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModel,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -14,7 +22,11 @@ from diffusers import (
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
floats_tensor,
|
||||
torch_device,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@@ -73,8 +85,7 @@ class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin)
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -96,10 +96,7 @@ class HunyuanDiTControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMix
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,14 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -35,7 +28,10 @@ from diffusers import (
|
||||
from diffusers.models import SD3ControlNetModel
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
|
||||
@@ -107,8 +103,7 @@ class StableDiffusion3ControlInpaintNetPipelineFastTests(unittest.TestCase, Pipe
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -19,14 +19,7 @@ from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -125,8 +118,7 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCosmos, CosmosTextToWorldPipeline, CosmosTransformer3DModel, EDMEulerScheduler
|
||||
|
||||
@@ -107,8 +107,7 @@ class CosmosTextToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
rho=7.0,
|
||||
final_sigmas_type="sigma_min",
|
||||
)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -95,8 +95,7 @@ class Cosmos2TextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -21,7 +21,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -96,8 +96,7 @@ class Cosmos2VideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(use_karras_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -21,7 +21,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLCosmos, CosmosTransformer3DModel, CosmosVideoToWorldPipeline, EDMEulerScheduler
|
||||
|
||||
@@ -108,8 +108,7 @@ class CosmosVideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase
|
||||
rho=7.0,
|
||||
final_sigmas_type="sigma_min",
|
||||
)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -2,7 +2,7 @@ import tempfile
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import DDPMScheduler, UNet2DConditionModel
|
||||
from diffusers.models.attention_processor import AttnAddedKVProcessor
|
||||
@@ -18,8 +18,7 @@ from ..test_pipelines_common import to_np
|
||||
class IFPipelineTesterMixin:
|
||||
def _get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
@@ -76,8 +75,7 @@ class IFPipelineTesterMixin:
|
||||
|
||||
def _get_superresolution_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,7 +18,9 @@ import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import IFPipeline
|
||||
from diffusers import (
|
||||
IFPipeline,
|
||||
)
|
||||
from diffusers.models.attention_processor import AttnAddedKVProcessor
|
||||
from diffusers.utils.import_utils import is_xformers_available
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -91,8 +91,7 @@ class FluxPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -53,8 +53,7 @@ class FluxControlPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -57,8 +57,7 @@ class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -58,8 +58,7 @@ class FluxControlInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxFillPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -58,8 +58,7 @@ class FluxFillPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxImg2ImgPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,8 +55,7 @@ class FluxImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxInpaintPipeline, FluxTransformer2DModel
|
||||
|
||||
@@ -55,8 +55,7 @@ class FluxInpaintPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxI
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,8 +79,7 @@ class FluxKontextPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -3,7 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -79,8 +79,7 @@ class FluxKontextInpaintPipelineFastTests(
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, GlmImagePipeline, GlmImageTransformer2DModel
|
||||
from diffusers.utils import is_transformers_version
|
||||
@@ -57,8 +57,7 @@ class GlmImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
glm_config = GlmImageConfig(
|
||||
|
||||
@@ -18,7 +18,6 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
@@ -95,8 +94,7 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
|
||||
@@ -151,7 +149,7 @@ class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(generated_image.shape, (128, 128, 3))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = np.array([0.4501, 0.5256, 0.4207, 0.5783, 0.4842, 0.4833, 0.4441, 0.5112, 0.6587, 0.3169, 0.7308, 0.5927, 0.6251, 0.5509, 0.5355, 0.5969])
|
||||
expected_slice = np.array([0.4507, 0.5256, 0.4205, 0.5791, 0.4848, 0.4831, 0.4443, 0.5107, 0.6586, 0.3163, 0.7318, 0.5933, 0.6252, 0.5512, 0.5357, 0.5983])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -233,7 +233,7 @@ class HunyuanVideoImageToVideoPipelineFastTests(
|
||||
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.4441, 0.4790, 0.4485, 0.5748, 0.3539, 0.1553, 0.2707, 0.3594, 0.5331, 0.6645, 0.6799, 0.5257, 0.5092, 0.3450, 0.4276, 0.4127])
|
||||
expected_slice = torch.tensor([0.444, 0.479, 0.4485, 0.5752, 0.3539, 0.1548, 0.2706, 0.3593, 0.5323, 0.6635, 0.6795, 0.5255, 0.5091, 0.345, 0.4276, 0.4128])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_video.flatten()
|
||||
|
||||
@@ -15,14 +15,7 @@
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
ByT5Tokenizer,
|
||||
Qwen2_5_VLTextConfig,
|
||||
Qwen2_5_VLTextModel,
|
||||
Qwen2Tokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import ByT5Tokenizer, Qwen2_5_VLTextConfig, Qwen2_5_VLTextModel, Qwen2Tokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLHunyuanVideo15,
|
||||
@@ -121,8 +114,7 @@ class HunyuanVideo15PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
tokenizer = Qwen2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration")
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer_2 = ByT5Tokenizer()
|
||||
|
||||
guider = ClassifierFreeGuidance(guidance_scale=1.0)
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, DDPMScheduler, HunyuanDiT2DModel, HunyuanDiTPipeline
|
||||
|
||||
@@ -74,9 +74,7 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
@@ -108,8 +108,7 @@ class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
movq = self.dummy_movq
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoPipelineForImage2Image,
|
||||
@@ -119,8 +119,7 @@ class Kandinsky3Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
torch.manual_seed(0)
|
||||
movq = self.dummy_movq
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -20,7 +20,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -109,8 +109,7 @@ class LattePipelineFastTests(
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel
|
||||
|
||||
@@ -88,8 +88,7 @@ class LTXPipelineFastTests(PipelineTesterMixin, FirstBlockCacheTesterMixin, unit
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLLTXVideo,
|
||||
@@ -92,8 +92,7 @@ class LTXConditionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -17,7 +17,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLLTXVideo,
|
||||
@@ -91,8 +91,7 @@ class LTXImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
|
||||
|
||||
@@ -89,8 +89,7 @@ class MochiPipelineFastTests(
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, BertModel, T5EncoderModel
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -67,9 +67,7 @@ class HunyuanDiTPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
import diffusers
|
||||
from diffusers import (
|
||||
@@ -80,8 +80,7 @@ class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -3,14 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -80,9 +73,7 @@ class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixi
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -5,14 +5,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -91,9 +84,7 @@ class StableDiffusion3PAGImg2ImgPipelineFastTests(unittest.TestCase, PipelineTes
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -77,10 +77,7 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -83,10 +83,7 @@ class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDIMScheduler()
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
|
||||
@@ -160,7 +160,7 @@ class QwenImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.5646, 0.6369, 0.6019, 0.5640, 0.5830, 0.5520, 0.5717, 0.6315, 0.4167, 0.3563, 0.5640, 0.4849, 0.4961, 0.5237, 0.4084, 0.5014])
|
||||
expected_slice = torch.tensor([0.56331, 0.63677, 0.6015, 0.56369, 0.58166, 0.55277, 0.57176, 0.63261, 0.41466, 0.35561, 0.56229, 0.48334, 0.49714, 0.52622, 0.40872, 0.50208])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -163,7 +163,7 @@ class QwenImageEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.5640, 0.6350, 0.6003, 0.5606, 0.5801, 0.5502, 0.5757, 0.6388, 0.4174, 0.3590, 0.5647, 0.4891, 0.4975, 0.5256, 0.4088, 0.4991])
|
||||
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -164,7 +164,7 @@ class QwenImageEditPlusPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
self.assertEqual(generated_image.shape, (3, 32, 32))
|
||||
|
||||
# fmt: off
|
||||
expected_slice = torch.tensor([0.5640, 0.6339, 0.5997, 0.5607, 0.5799, 0.5496, 0.5760, 0.6393, 0.4172, 0.3595, 0.5655, 0.4896, 0.4971, 0.5255, 0.4088, 0.4987])
|
||||
expected_slice = torch.tensor([[0.5637, 0.6341, 0.6001, 0.5620, 0.5794, 0.5498, 0.5757, 0.6389, 0.4174, 0.3597, 0.5649, 0.4894, 0.4969, 0.5255, 0.4083, 0.4986]])
|
||||
# fmt: on
|
||||
|
||||
generated_slice = generated_image.flatten()
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -68,8 +68,7 @@ class SkyReelsV2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=8.0, use_flow_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -68,8 +68,7 @@ class SkyReelsV2DiffusionForcingPipelineFastTests(PipelineTesterMixin, unittest.
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=8.0, use_flow_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,6 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
@@ -69,8 +68,7 @@ class SkyReelsV2DiffusionForcingImageToVideoPipelineFastTests(PipelineTesterMixi
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -161,8 +159,7 @@ class SkyReelsV2DiffusionForcingImageToVideoPipelineFastTests(SkyReelsV2Diffusio
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -70,8 +70,7 @@ class SkyReelsV2DiffusionForcingVideoToVideoPipelineFastTests(PipelineTesterMixi
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,6 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -72,8 +71,7 @@ class SkyReelsV2ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.Test
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=5.0, use_flow_sigmas=True)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -19,7 +19,10 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, T5EncoderModel, T5Tokenizer
|
||||
from transformers import (
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
)
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderOobleck,
|
||||
@@ -108,8 +111,7 @@ class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration"
|
||||
config = AutoConfig.from_pretrained(t5_repo_id)
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id)
|
||||
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25)
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -3,14 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline
|
||||
|
||||
@@ -79,9 +72,7 @@ class StableDiffusion3PipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -4,14 +4,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -80,9 +73,7 @@ class StableDiffusion3Img2ImgPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -3,14 +3,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPTextConfig,
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
)
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
@@ -80,9 +73,7 @@ class StableDiffusion3InpaintPipelineFastTests(PipelineLatentTesterMixin, unitte
|
||||
torch.manual_seed(0)
|
||||
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_3 = T5EncoderModel(config)
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
|
||||
@@ -5,7 +5,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
import diffusers
|
||||
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, VisualClozePipeline
|
||||
@@ -77,8 +77,7 @@ class VisualClozePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -5,7 +5,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
||||
|
||||
import diffusers
|
||||
from diffusers import (
|
||||
@@ -79,8 +79,7 @@ class VisualClozeGenerationPipelineFastTests(unittest.TestCase, PipelineTesterMi
|
||||
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
||||
|
||||
torch.manual_seed(0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder_2 = T5EncoderModel(config)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel
|
||||
|
||||
@@ -68,8 +68,7 @@ class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -17,11 +17,14 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanPipeline, WanTransformer3DModel
|
||||
|
||||
from ...testing_utils import enable_full_determinism, torch_device
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
@@ -60,8 +63,7 @@ class Wan22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -233,8 +235,7 @@ class Wan225BPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanTransformer3DModel
|
||||
|
||||
@@ -64,8 +64,7 @@ class Wan22ImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -249,8 +248,7 @@ class Wan225BImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -19,7 +19,6 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -79,8 +78,7 @@ class WanAnimatePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -19,7 +19,6 @@ import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
CLIPImageProcessor,
|
||||
CLIPVisionConfig,
|
||||
@@ -69,8 +68,7 @@ class WanImageToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
@@ -241,8 +239,7 @@ class WanFLFToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
torch.manual_seed(0)
|
||||
# TODO: impl FlowDPMSolverMultistepScheduler
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -18,7 +18,7 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
@@ -67,8 +67,7 @@ class WanVACEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
@@ -16,7 +16,7 @@ import unittest
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoConfig, AutoTokenizer, T5EncoderModel
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanTransformer3DModel, WanVideoToVideoPipeline
|
||||
|
||||
@@ -62,8 +62,7 @@ class WanVideoToVideoPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
|
||||
torch.manual_seed(0)
|
||||
scheduler = UniPCMultistepScheduler(flow_shift=3.0)
|
||||
config = AutoConfig.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
text_encoder = T5EncoderModel(config)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
Reference in New Issue
Block a user