mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
Compare commits
2 Commits
torch-regr
...
test-backe
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
858dfd6411 | ||
|
|
6cb2178a91 |
@@ -446,9 +446,8 @@ def convert_ldm_unet_checkpoint(
|
||||
new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
|
||||
|
||||
# Relevant to StableDiffusionUpscalePipeline
|
||||
if "num_class_embeds" in config:
|
||||
if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
|
||||
new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]
|
||||
if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
|
||||
new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]
|
||||
|
||||
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
||||
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
||||
|
||||
0
tests/convert_kandinsky3_unet.py
Executable file
0
tests/convert_kandinsky3_unet.py
Executable file
@@ -164,7 +164,7 @@ class PriorTransformerIntegrationTests(unittest.TestCase):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
|
||||
@@ -869,7 +869,7 @@ class UNet2DConditionModelIntegrationTests(unittest.TestCase):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
|
||||
dtype = torch.float16 if fp16 else torch.float32
|
||||
|
||||
@@ -485,7 +485,7 @@ class AutoencoderTinyIntegrationTests(unittest.TestCase):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_file_format(self, seed, shape):
|
||||
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
|
||||
@@ -565,7 +565,7 @@ class AutoencoderKLIntegrationTests(unittest.TestCase):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
|
||||
dtype = torch.float16 if fp16 else torch.float32
|
||||
@@ -820,7 +820,7 @@ class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
|
||||
# clean up the VRAM after each test
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
|
||||
dtype = torch.float16 if fp16 else torch.float32
|
||||
|
||||
@@ -310,7 +310,7 @@ class StableDiffusion2PipelineSlowTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
||||
_generator_device = "cpu" if not generator_device.startswith("cuda") else "cuda"
|
||||
@@ -531,7 +531,7 @@ class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
backend_empty_cache()
|
||||
backend_empty_cache(torch_device)
|
||||
|
||||
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
||||
_generator_device = "cpu" if not generator_device.startswith("cuda") else "cuda"
|
||||
|
||||
Reference in New Issue
Block a user