Compare commits

...

834 Commits

Author SHA1 Message Date
Patrick von Platen
4719b8f5f9 Release: v0.23.1 2023-11-16 15:43:52 +01:00
Patrick von Platen
a53c17b698 correct installs 2023-11-16 15:41:23 +01:00
Patrick von Platen
41d6ca0058 correct peft 2023-11-16 15:23:45 +01:00
Patrick von Platen
a28a77bfe9 put peft in requirements 2023-11-16 15:20:08 +01:00
sayakpaul
fbb8b34716 Release: v0.23.0 2023-11-09 21:55:21 +05:30
Sayak Paul
bc2ba004c6 [LCM] add: locm docs. (#5723)
* add: locm docs.

* correct path

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* up

* add

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-09 17:21:26 +01:00
Patrick von Platen
3d7eaf83d7 LCM Add Tests (#5707)
* lcm add tests

* uP

* Fix all

* uP

* Add

* all

* uP

* uP

* uP

* uP

* uP

* uP

* uP
2023-11-09 15:45:11 +01:00
Patrick von Platen
bf406ea886 Correct consist dec (#5722)
* uP

* Update src/diffusers/models/consistency_decoder_vae.py

* uP

* uP
2023-11-09 13:10:24 +01:00
Will Berman
2fd46405cd consistency decoder (#5694)
* consistency decoder

* rename

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/consistency_models/pipeline_consistency_models.py

* uP

* Apply suggestions from code review

* uP

* uP

* uP

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-09 12:21:41 +01:00
Dhruv Nair
43346adc1f Install accelerate from PyPI in PR test runner (#5721)
install acclerate from pypi
2023-11-09 15:38:00 +05:30
takuoko
6110d7c95f [Bugfix] fix error of peft lora when xformers enabled (#5697)
* bugfix peft lor

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-08 22:55:36 +01:00
Dhruv Nair
65ef7a0c5c Fix prompt bug in AnimateDiff (#5702)
* fix prompt bug

* add test
2023-11-08 21:49:09 +01:00
apolinário
6e68c71503 Add adapter fusing + PEFT to the docs (#5662)
* Add adapter fusing + PEFT to the docs

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

* Update docs/source/en/tutorials/using_peft_for_inference.md

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-08 18:26:53 +01:00
Patrick von Platen
17528afcba Fix styling issues (#5699)
* up

* up

* up

* Empty-Commit

* fix keyword argument call.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-08 17:49:06 +05:30
Sayak Paul
78be400761 [PixArt-Alpha] fix mask feature condition. (#5695)
* fix mask feature condition.

* debug

* remove identical test

* set correct

* Empty-Commit
2023-11-08 17:42:46 +05:30
Patrick von Platen
c803a8f8c0 [LCM] Fix img2img (#5698)
* [LCM] Fix img2img

* make fix-copies

* make fix-copies

* make fix-copies

* up
2023-11-08 11:51:46 +01:00
Philipp Hasper
d384265df7 Fixed is_safetensors_compatible() handling of windows path separators (#5650)
Closes #4665
2023-11-08 11:51:15 +01:00
Kirill
11c125667b Fix the misaligned pipeline usage in dreamshaper docstrings (#5700)
Fix the misaligned pipeline usage
2023-11-08 11:49:03 +01:00
YiYi Xu
69996938cf speed up Shap-E fast test (#5686)
skip rendering

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-11-08 11:43:20 +01:00
Chi
9ae90593c0 Replacing the nn.Mish activation function with a get_activation function. (#5651)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I removed the dummy variable defined in both the encoder and decoder.

* Now, I run black package to reformat my file

* Remove the redundant line from the adapter.py file.

* Black package using to reformated my file

* Replacing the nn.Mish activation function with a get_activation function allows developers to more easily choose the right activation function for their task. Additionally, removing redundant variables can improve code readability and maintainability.

* I try to fix this: Fast tests for PRs / Fast PyTorch Models & Schedulers CPU tests (pull_request)

* Update src/diffusers/models/resnet.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-11-08 07:58:21 +05:30
M. Tolga Cangöz
7942bb8dc2 [Docs] Fix typos, improve, update at Using Diffusers' Task page (#5611)
* Fix typos, improve, update; kandinsky doesn't want fp16 due to deprecation; ogkalu and kohbanye don't have safetensor; add make_image_grid for better visualization

* Update inpaint.md

* Remove erronous Space

* Update docs/source/en/using-diffusers/conditional_image_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update img2img.md

* load_image() already converts to RGB

* Update depth2img.md

* Update img2img.md

* Update inpaint.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-07 15:42:20 -08:00
dg845
aab6de22c3 Improve LCMScheduler (#5681)
* Refactor LCMScheduler.step such that prev_sample == denoised at the last timestep in the schedule.

* Make timestep scaling when calculating boundary conditions configurable.

* Reparameterize timestep_scaling to be a multiplicative rather than division scaling.

* make style

* fix dtype conversion

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 18:48:18 +01:00
Sayak Paul
1dc231d14a [PixArt-Alpha] Support non-square images (#5672)
* debug

* support non-square images

* add: test

* fix: test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 18:21:33 +01:00
Sayak Paul
84cd9e8d01 Make sure DDPM and diffusers can be used without Transformers (#5668)
* fix: import bug

* fix

* fix

* fix import utils for lcm

* fix: pixart alpha init

* Fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 17:38:12 +01:00
Sayak Paul
a8523bffa8 [PixArt-Alpha] fix mask_feature so that precomputed embeddings work with a batch size > 1 (#5677)
* fix embeds

* remove todo

* add: test

* better name
2023-11-07 17:12:47 +01:00
Dhruv Nair
97c8199dbb Explicit torch/flax dependency check (#5673)
* explicit torch dependency check

* update

* update

* update
2023-11-07 16:38:20 +01:00
Dhruv Nair
414d7c4991 Fix Basic Transformer Block (#5683)
* fix

* Update src/diffusers/models/attention.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-07 16:36:49 +01:00
Dhruv Nair
8ca179a0a9 Update free model hooks (#5680)
update free model hooks
2023-11-07 20:50:57 +05:30
Dhruv Nair
71f56c771a Model tests xformers fixes (#5679)
* fix model xformers test

* update
2023-11-07 20:50:41 +05:30
Dhruv Nair
6a89a6c93a Update custom diffusion attn processor (#5663)
update custom diffusion attn processor
2023-11-07 12:46:38 +05:30
Beinsezii
9bafef34bd Add Pixart to AUTO_TEXT2IMAGE_PIPELINES_MAPPING (#5664) 2023-11-07 07:45:56 +05:30
Sayak Paul
64603389da post release (v0.22.0) (#5658)
post release
2023-11-06 16:23:38 +01:00
Patrick von Platen
f05d75c076 [Custom Pipelines] Make sure that community pipelines can use repo revision (#5659)
fix custom pipelines
2023-11-06 15:11:48 +01:00
Sayak Paul
aec3de8bdb correct pipeline class name (#5652) 2023-11-06 14:08:27 +05:30
Sayak Paul
d61889fc17 [Feat] PixArt-Alpha (#5642)
* init pixart alpha pipeline

* fix: import

* script

* script

* script

* add: vae to the pipeline

* add: vae_scale_factor

* add: checkpoint_path

* clean conversion script a bit.

* size embeddings.

* fix: size embedding

* update scrip

* support for interpolation of position embedding.

* support for conditioning.

* ..

* ..

* ..

* final layer

* final layer

* align if encode_prompt

* support for caption embedding

* refactor

* refactor

* refactor

* start cross attention

* start cross attention

* cross_attention_dim

* cross

* cross

* support for resolution and aspect_ratio

* support for caption projection

* refactor patch embeddings

* batch_size

* up

* commit

* commit

* commit.

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze

* squeeze.

* squeeze.

* fix final block./

* fix final block./

* fix final block./

* clean

* fix: interpolation scale.

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging'

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* make --checkpoint_path non-required.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* remove num_tokens

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* timesteps -> timestep

* debug

* debug

* update conversion script.

* update conversion script.

* update conversion script.

* debug

* debug

* debug

* clean

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* deug

* debug

* debug

* debug

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* clean

* fix

* fix

* boom

* boom

* some changes

* boom

* save

* up

* remove i

* fix more tests

* DPMSolverMultistepScheduler

* fix

* offloading

* fix conversion script

* fix conversion script

* remove print

* remove support for negative prompt embeds.

* typo.

* remove extra kwargs

* bring conversion script to where it was

* fix

* trying mu luck

* trying my luck again

* again

* again

* again

* clean up

* up

* up

* update example

* support for 512

* remove spacing

* finalize docs.

* test debug

* fix: assertion values.

* debug

* debug

* debug

* fix: repeat

* remove prints.

* Apply suggestions from code review

* Apply suggestions from code review

* Correct more

* Apply suggestions from code review

* Change all

* Clean more

* fix more

* Fix more

* Fix more

* Correct more

* address patrick's comments.

* remove unneeded args

* clean up pipeline.

* sty;e

* make the use of additional conditions better conditioned.

* None better

* dtype

* height and width validation

* add a note about size brackets.

* fix

* spit out slow test outputs.

* fix?

* fix optional test

* fix more

* remove unneeded comment

* debug

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-06 08:40:04 +01:00
YiYi Xu
2b23ec82e8 add callbacks to denoising step (#5427)
* draft1

* update

* style

* move to the end of loop

* update

* update callbak_on_step_end_inputs

* Revert "update"

This reverts commit 5f9b153183.

* Revert "update callbak_on_step_end_inputs"

This reverts commit 44889f4dab.

* update

* update test required_optional_params

* remove self.lora_scale

* img2img

* inpaint

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix

* apply feedbacks on img2img + inpaint: keep only important pipeline attributes

* depth

* pix2pix

* make _callback_tensor_inputs an class variable so that we can use it for testing

* add a basic tst for callback

* add a read-only tensor input timesteps + fix tests

* add second test for callback cfg

* sdxl

* sdxl img2img

* sdxl inpaint

* kandinsky prior

* kandinsky decoder

* kandinsky img2img + combined

* kandinsky inpaint

* fix copies

* fix

* consistent default inputs

* fix copies

* wuerstchen_prior prior

* test_wuerstchen_decoder + fix test for prior

* wuerstchen_combined pipeline + skip tests

* skip test for kandinsky combined

* lcm

* remove timesteps etc

* add doc string

* copies

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make style and improve tests

* up

* up

* fix more

* fix cfg test

* tests for callbacks

* fix for real

* update

* lcm img2img

* add doc

* add doc page to index

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-05 20:00:41 +01:00
Chi
080081bded Remove the redundant line from the adapter.py file. (#5618)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I removed the dummy variable defined in both the encoder and decoder.

* Now, I run black package to reformat my file

* Remove the redundant line from the adapter.py file.

* Black package using to reformated my file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-03 22:02:36 -10:00
Sayak Paul
dd9a5caf61 [Core] support for tiny autoencoder in img2img (#5636)
* support for tiny autoencoder in img2img

Co-authored-by: slep0v <37597789+slep0v@users.noreply.github.com>

* copy fix

* line space

* line space

* clean up

* spit out expected value

* spit out expected value

* assertion values.

* assertion values.

---------

Co-authored-by: slep0v <37597789+slep0v@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-11-03 15:31:53 +01:00
M. Tolga Cangöz
a35e72b032 [Docs] Fix typos, improve, update at Using Diffusers' Tecniques page (#5627)
Fix typos, improve, update; better visualization
2023-11-03 13:51:41 +01:00
dg845
beb8f216ed Clean up LCM Pipeline and Test Code. (#5641)
* Clean up LCM pipeline and pipeline test code.

* Add comment for LCM img2img sampling loop.
2023-11-03 13:50:48 +01:00
Ryan Dick
7ad70cee74 Model loading speed optimization (#5635)
Move unchanging operation out of loop for speed benefit.
2023-11-03 13:48:13 +01:00
Sayak Paul
60c5eb5877 [Easy] clean up the LCM docstrings. (#5637)
* clean up the LCM docstrings.

* clean up

* fix: examples

* Apply suggestions from code review
2023-11-03 12:14:48 +01:00
YiYi Xu
d122206466 fix a bug in AutoPipeline.from_pipe() when creating a controlnet pipeline from an existing controlnet (#5638)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-11-03 12:14:19 +01:00
Sayak Paul
c84982a804 [Easy] Minor AnimateDiff Doc nits (#5640)
minor
2023-11-03 16:27:54 +05:30
Dhruv Nair
84e7bb875d Update animatediff docs to include section on Motion LoRAs (#5639)
update animatediff docs
2023-11-03 15:53:59 +05:30
Patrick von Platen
072e00897a [LCM] Make sure img2img works (#5632)
* [LCM] Clean up implementations

* Add all

* correct more

* correct more

* finish

* up
2023-11-02 19:50:47 +01:00
M. Tolga Cangöz
b91d5ddd1a [Docs] Fix typos, improve, update at Using Diffusers' Loading & Hub page (#5584)
* Fix typos, improve, update

* Change to trending and apply some Grammarly fixes

* Grammarly fixes

* Update loading_adapters.md

* Update loading_adapters.md

* Update other-formats.md

* Update push_to_hub.md

* Update loading_adapters.md

* Update loading.md

* Update docs/source/en/using-diffusers/push_to_hub.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update schedulers.md

* Update docs/source/en/using-diffusers/loading.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/loading_adapters.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update A1111 LoRA files part

* Update other-formats.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-02 11:05:43 -07:00
Dhruv Nair
2a8cf8e39f Animatediff Proposal (#5413)
* draft design

* clean up

* clean up

* clean up

* clean up

* clean up

* clean  up

* clean up

* clean up

* clean up

* update pipeline

* clean up

* clean up

* clean up

* add tests

* change motion block

* clean up

* clean up

* clean up

* update

* update

* update

* update

* update

* update

* update

* update

* clean up

* update

* update

* update model test

* update

* update

* update

* update

* make style

* update

* fix embeddings

* update

* merge upstream

* max fix copies

* fix bug

* fix mistake

* add docs

* update

* clean up

* update

* clean up

* clean up

* fix docstrings

* fix docstrings

* update

* update

* clean  up

* update
2023-11-02 15:04:03 +01:00
M. Tolga Cangöz
9ced7844da [Docs] Fix typos, improve, update at Conceptual Guides page (#5585)
* Fix typos, improve, update

* Update docs/source/en/conceptual/contribution.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conceptual/contribution.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/conceptual/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update philosophy.md

* Update philosophy.md

* Update docs/source/en/conceptual/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/controlling_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/controlling_generation.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Remove e.g.; some Grammarly fixes

* Update docs/source/en/conceptual/philosophy.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update contribution.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-02 12:55:23 +01:00
Patrick von Platen
9723f8a557 [Tests] Fix cpu offload test (#5626)
* fix more

* fix more
2023-11-02 12:49:58 +01:00
Sayak Paul
b81f709fb6 [remote code] document trust remote code. (#5620)
document trust remote code.
2023-11-02 12:02:31 +01:00
Steven Liu
75ea54a151 [docs] Kandinsky guide (#4555)
* kandinsky 2.1 first draft

* add kandinsky 2.2

* fix identical section headers

* try hfoptions syntax

* add img2img

* add inpaint

* add interpolate

* fix tag

* more cleanups

* typo

* update hfoptions id

* align hfoptions tags
2023-11-01 15:36:22 -07:00
Patrick von Platen
c0f0582651 [SDXL Adapter] Revert load lora (#5615)
* fix

* fix
2023-11-01 22:18:58 +01:00
M. Tolga Cangöz
b81c69e489 [Docs] Fix typos, improve, update at Get Started page (#5587)
* Fix typos, improve, update

* Update _toctree.yml

* Update docs/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply Grammarly fixes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-01 22:11:57 +01:00
Younes Belkada
02ba50c610 [PEFT / LoRA] Fix civitai bug when network alpha is an empty dict (#5608)
* fix civitai bug

* add test

* up

* fix test

* added slow test.

* style

* Update src/diffusers/utils/peft_utils.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/utils/peft_utils.py

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-11-01 22:08:22 +01:00
Patrick von Platen
4f2bf67355 Revert "Fix the order of width and height of original size in SDXL training script" (#5614)
Revert "Fix the order of width and height of original size in SDXL training script (#5382)"

This reverts commit 45db049973.
2023-11-01 22:04:47 +01:00
Chi
29cf163b95 Remove Redundant Variables from Encoder and Decoder (#5569)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I removed the dummy variable defined in both the encoder and decoder.

* Now, I run black package to reformat my file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-11-01 21:50:33 +01:00
Patrick von Platen
839c2a5ece fix 2023-11-01 21:39:30 +01:00
ilisparrow
5712c3d2ef [Core] enable lora for sdxl adapters too and add slow tests. (#5555)
* Enable lora for sdxl adapters too.

Issue #5516

* fix: assertion values.

* Use numpy_cosine_similarity_distance on the arrays

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Use numpy_cosine_similarity_distance on the arrays

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Changed imports orders to pass tests

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

---------

Co-authored-by: Ilias A <iliasamri00@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-11-01 21:25:38 +01:00
clarencechen
151998e1c2 Update final CPU offloading code for more diffusion pipelines (#5589)
* Update final model offload for more pipelines

Add test to ensure all pipeline components are returned to CPU after
execution with model offloading

* Add comment to explain early UNet offload in Text-to-Video pipeline

* Style
2023-11-01 21:22:56 +01:00
Steven Liu
d1eb14bc35 [docs] Lu lambdas (#5602)
lu lambdas
2023-11-01 11:47:11 -07:00
M. Tolga Cangöz
5c75a5fbc4 [Docs] Fix typos, improve, update at Tutorials page (#5586)
* Fix typos, improve, update

* Update autopipeline.md

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-11-01 10:40:47 -07:00
M. Tolga Cangöz
442017ccc8 [Docs] Fix typos (#5583)
* Add Copyright info

* Fix typos, improve, update

* Update deepfloyd_if.md

* Update ldm3d_diffusion.md

* Update opt_overview.md
2023-10-31 10:04:08 -07:00
Dhruv Nair
f1d052c5b8 Update docker image for xformers (#5597)
update docker image for xformers
2023-10-31 15:02:10 +05:30
YiYi Xu
ce9484b139 fix a mistake in text2image training script for kandinsky2.2 (#5244)
fix

Co-authored-by: yiyixuxu <yixu@Yis-MacBook-Pro.local>
2023-10-30 23:06:16 -10:00
Jincheng Miao
ed00ead345 [Community Pipelines] add textual inversion support for stable_diffusion_ipex (#5571) 2023-10-31 11:54:16 +05:30
TimothyAlexisVass
f0b2f6ce05 Fix divide by zero RuntimeWarning (#5543) 2023-10-31 11:39:08 +05:30
Younes Belkada
32fea1cc9b [core / PEFT ]Bump transformers min version for PEFT integration (#5579)
Update constants.py
2023-10-30 19:35:46 +01:00
Aryan V S
bb46be2f18 Fix incorrect loading of custom pipeline (#5568)
* update

* update

* update

* update
2023-10-30 19:32:11 +01:00
Cheng Lu
ac7b1716b7 Stabilize DPM++, especially for SDXL and SDE-DPM++ (#5541)
* stabilize dpmpp for sdxl by using euler at the final step

* add lu's uniform logsnr time steps

* add test

* fix check_copies

* fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-30 06:36:53 -10:00
Peter @sHTiF Stefcek
3fc10ded00 add fix to be able use StableDiffusionXLAdapterPipeline.from_single_file (#5547) 2023-10-30 16:46:44 +01:00
Thuan H. Nguyen
5b087e82d1 Add realfill (#5456)
* Add realfill

* Move realfill folder

* Fix some format issues
2023-10-30 15:21:40 +01:00
Younes Belkada
8f3100db9f [PEFT / Tests] Add peft slow tests on push (#5419)
* add peft slow tests workflow

* Update .github/workflows/push_tests.yml

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-30 14:27:00 +01:00
Patrick von Platen
3ec828d6dd Fix moved _expand_mask function (#5581)
* finish

* finish
2023-10-30 14:25:31 +01:00
Gabriel de Souza
9135e54e76 docs: initial pt translation (#5549)
* docs: initial pt translation

* docs: add pt build to github workflow and fix some missing translations
2023-10-27 10:51:35 -07:00
jiaqiw09
e140c0562e fix error reported 'find_unused_parameters' running in mutiple GPUs (#5355)
* fix error reported 'find_unused_parameters' running in mutiple GPUs or NPUs

* fix code check of importing module by its alphabetic order

---------

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-27 22:49:14 +05:30
Steven Liu
595ba6f786 [docs] Internal classes API (#5513)
* internal classes api

* add internal class overview

* fix toctree
2023-10-27 09:48:41 -07:00
Sayak Paul
798591346d [Core] fix FreeU disable method (#5552)
* disable freeu debug

* debug

* potentially fix.

* finish

* manually remove the spaces

* remove tab
2023-10-27 21:29:11 +05:30
YiYi Xu
f912f39b50 correct checkpoint in kandinsky2.2 doc page (#5550)
update checkpoint

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-10-27 08:49:15 +05:30
nickkolok
0d4b459be6 Update train_dreambooth.py - fix typos (#5539) 2023-10-26 13:35:05 -07:00
Patrick von Platen
cee1cd6e9c [Remote code] Add functionality to run remote models, schedulers, pipelines (#5472)
* upload custom remote poc

* up

* make style

* finish

* better name

* Apply suggestions from code review

* Update tests/pipelines/test_pipelines.py

* more fixes

* remove ipdb

* more fixes

* fix more

* finish tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-26 17:11:49 +02:00
p1kit
5b448a5e5d [Tests] Optimize test configurations for faster execution (#5535)
Optimize test configurations for faster execution
2023-10-26 16:02:34 +05:30
Patrick von Platen
a69ebe5527 [Tests] Speed up expert of mixture tests (#5533)
* [Tests] Speed up expert of mixture tests

* make style
2023-10-26 09:42:27 +02:00
Chi
ce7f334472 Remove multiple if-else statement in the get_activation function. (#5446)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* I use a lower method in the activation function.

* Replace multiple if-else statements with a dictionary of activation functions, and call one if statement to retrieve the appropriate function.

* I am using black package to reforamted my file

* I defined the ACTIVATION_FUNCTIONS variable outside of the function

* activation function variable convert to lower case

* First, I resolved the conflict issue. Then, I ran the Black package to reformat my file.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-26 09:36:30 +05:30
Ran Ran
8959c5b9de Add from_pt flag to enable model from PT (#5501)
* Add from_pt flag to enable model from PT

* Format the file

* Reformat the file
2023-10-25 23:07:34 +02:00
Steven Liu
bc8a08f67c [docs] Loader docs (#5473)
* first draft

* make fix-copies

* add peft section

* manual fix

* make fix-copies again

* manually revert changes to other files
2023-10-25 09:45:05 -07:00
Yi-Xuan XU
dbce14da56 fix a bug on torch_dtype argument in from_single_file of ControlNetModel (#5528)
fix wrong parameter
2023-10-25 17:29:56 +02:00
RampagingSloth
71ad02607d Fix missing punctuation in PHILOSOPHY.md (#5530)
Fix missing punctuation.
2023-10-25 17:29:34 +02:00
Patrick von Platen
dd981256ad make fix-copies 2023-10-25 17:19:38 +02:00
Aryan V S
0c9f174d59 Improve typehints and docs in diffusers/models (#5391)
* improvement: add typehints and docs to src/diffusers/models/attention_processor.py

* improvement: add typehints and docs to src/diffusers/models/vae.py

* improvement: add missing docs in src/diffusers/models/vq_model.py

* improvement: add typehints and docs to src/diffusers/models/transformer_temporal.py

* improvement: add typehints and docs to src/diffusers/models/t5_film_transformer.py

* improvement: add type hints to src/diffusers/models/unet_1d_blocks.py

* improvement: add missing type hints to src/diffusers/models/unet_2d_blocks.py

* fix: CI error (make fix-copies required)

* fix: CI error (make fix-copies required again)

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-25 17:19:15 +02:00
Patrick von Platen
d420d71398 make style 2023-10-25 16:12:14 +02:00
Logan
a1fad8286f Add a new community pipeline (#5477)
* Add a new community pipeline

examples/community/latent_consistency_img2img.py

which can be called like this

import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
                "SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")

            # To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

img2img=LatentConsistencyModelPipeline_img2img(
    vae=pipe.vae,
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    unet=pipe.unet,
    #scheduler=pipe.scheduler,
    scheduler=None,
    safety_checker=None,
    feature_extractor=pipe.feature_extractor,
    requires_safety_checker=False,
)

img = Image.open("thisismyimage.png")

result = img2img(prompt,img,strength,num_inference_steps=4)

* Apply suggestions from code review

Fix name formatting for scheduler

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update readme (and run formatter on latent_consistency_img2img.py)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-25 16:11:56 +02:00
Patrick von Platen
dc943eb99d [Schedulers] Fix 2nd order other than heun (#5526)
* [Schedulers] Fix 2nd order other than heun

* Apply suggestions from code review
2023-10-25 14:39:56 +02:00
YiYi Xu
0fc25715a1 fix a bug in 2nd order schedulers when using in ensemble of experts config (#5511)
* fix

* fix copies

* remove heun from tests

* add back heun and fix the tests to include 2nd order

* fix the other test too

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* make style

* add more comments

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-25 12:34:05 +02:00
AnyISalIn
de71fa59f5 fix error of peft lora when xformers enabled (#5506)
Signed-off-by: AnyISalIn <anyisalin@gmail.com>
2023-10-25 10:58:15 +05:30
Chengxi Guo
dcbfe662ef fix typo (#5505)
Signed-off-by: mymusise <mymusise1@gmail.com>
2023-10-24 17:14:05 -07:00
dg845
958e17dada Add Latent Consistency Models Pipeline (#5448)
* initial commit for LatentConsistencyModelPipeline and LCMScheduler based on the community pipeline

* Add callback and freeu support.

* apply suggestions from review

* Clean up LCMScheduler

* Remove timeindex argument to LCMScheduler.step.

* Add support for clipping or thresholding the predicted original sample.

* Remove unused methods and arguments in LCMScheduler.

* Improve comment about (lack of) negative prompt support.

* Change input guidance_scale to match the StableDiffusionPipeline (Imagen) CFG formulation.

* Move lcm_origin_steps from pipeline __call__ to LCMScheduler.__init__/config (as origin_steps).

* Fix typo when clipping/thresholding in LCMScheduler.

* Add some initial LCMScheduler tests.

* add type annotations from review

* Fix type annotation bug.

* Override test_add_noise_device in LCMSchedulerTest since hardcoded timesteps doesn't work under default settings.

* Add generator argument pipeline prepare_latents call.

* Cast LCMScheduler.timesteps to long in set_timesteps.

* Add onestep and multistep full loop scheduler tests.

* Set default height/width to None and don't hardcode guidance scale embedding dim.

* Add initial LatentConsistencyPipeline fast and slow tests.

* Add initial documentation for LatentConsistencyModelPipeline and LCMScheduler.

* Make remaining failing fast tests pass.

* make style

* Make original_inference_steps configurable from pipeline __call__ again.

* make style

* Remove guidance_rescale arg from pipeline __call__ since LCM currently doesn't support CFG.

* Make LCMScheduler defaults match config of LCM_Dreamshaper_v7 checkpoint.

* Fix LatentConsistencyPipeline slow tests and add dummy expected slices.

* Add checks for original_steps in LCMScheduler.set_timesteps.

* make fix-copies

* Improve LatentConsistencyModelPipeline docs.

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* Update src/diffusers/schedulers/scheduling_lcm.py

* Apply suggestions from code review

Co-authored-by: Aryan V S <avs050602@gmail.com>

* finish

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Aryan V S <avs050602@gmail.com>
2023-10-24 21:06:02 +02:00
Steven Liu
7c3a75a1ce [docs] General updates (#5378)
* first draft

* feedback

* feedback
2023-10-24 11:51:55 -07:00
Isamu Isozaki
b8896a154a Japanese docs (#5478)
* Finished _toctree.yml and index.md

* Finished installation.md

* Properly finished installation.md and almost finished quicktour

* Finished quicktour

* Finished stable diffusion doc

* Fixed _toctree.yml

* Fixed requests

* Fix country code

* Properly push
2023-10-24 11:30:04 -07:00
Bowen Bao
c7617e482a Register BaseOutput subclasses as supported torch.utils._pytree nodes (#5459)
* Register BaseOutput subclasses as supported torch.utils._pytree nodes

* lint

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-24 15:01:47 +05:30
Sayak Paul
77241c48af [Core] Refactor activation and normalization layers (#5493)
* move out the activations.

* move normalization layers.

* add doc.

* add doc.

* fix: paths

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-24 08:49:43 +05:30
Abhishar Sinha
096f84b05f Fixed autoencoder typo (#5500) 2023-10-23 13:59:00 -07:00
YiYi Xu
9e1edfc1ad fix a few issues in controlnet inpaint pipelines (#5470)
* add

* Update docs/source/en/api/pipelines/controlnet_sdxl.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-23 09:24:51 -10:00
Steven Liu
6b06c30a65 [docs] Fix links (#5499)
fix links
2023-10-23 20:39:29 +02:00
zideliu
188d864fa3 [BUG] in transformer_temporal Fix Bugs (#5496)
Fix Bugs
2023-10-23 20:38:41 +02:00
Kyunghwan Kim
6e608d8a35 Fix typo in controlnet docs (#5486) 2023-10-23 20:36:35 +02:00
Dhruv Nair
33293ed504 Fix Slow Tests (#5469)
fix tests
2023-10-23 20:24:31 +02:00
Sayak Paul
48ce118d1c [torch.compile] fix graph break problems partially (#5453)
* fix: controlnet graph?

* fix: sample

* fix:

* remove print

* styling

* fix-copies

* prevent more graph breaks?

* prevent more graph breaks?

* see?

* revert.

* compilation.

* rpopagate changes to controlnet sdxl pipeline too.

* add: clean version checking.
2023-10-23 23:41:52 +05:30
Patrick von Platen
1ade42f729 make style 2023-10-23 19:43:54 +02:00
Shyam Marjit
677df5ac12 fixed SDXL text encoder training bug #5016 (#5078)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-23 19:43:43 +02:00
Andrei Filatov
16851efa0f Update README.md (#5497)
Right now, only "main" branch has this community pipeline code. So, adding it manually into pipeline
2023-10-23 18:57:43 +02:00
Ryan Dick
0eac9cd04e Make T2I-Adapter downscale padding match the UNet (#5435)
* Update get_dummy_inputs(...) in T2I-Adapter tests to take image height and width as params.

* Update the T2I-Adapter unit tests to run with the standard number of UNet down blocks so that all T2I-Adapter down blocks get exercised.

* Update the T2I-Adapter down blocks to better match the padding behavior of the UNet.

* Revert "Update the T2I-Adapter unit tests to run with the standard number of UNet down blocks so that all T2I-Adapter down blocks get exercised."

This reverts commit 6d4a060a34.

* Create  utility functions for testing the T2I-Adapter downscaling bahevior.

* (minor) Improve readability with an intermediate named variable.

* Statically parameterize  T2I-Adapter test dimensions rather than generating them dynamically.

* Fix static checks.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-23 18:52:31 +02:00
Younes Belkada
bc7a4d4917 [PEFT] Fix scale unscale with LoRA adapters (#5417)
* fix scale unscale v1

* final fixes + CI

* fix slow trst

* oops

* fix copies

* oops

* oops

* fix

* style

* fix copies

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-21 22:17:18 +05:30
Vishnu V Jaddipal
8dba180885 Added support to create asymmetrical U-Net structures (#5400)
* Added args, kwargs to ```U

* Add UNetMidBlock2D as a supported mid block type

* Fix extra init input for UNetMidBlock2D, change allowed types for Mid-block init

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_condition.py

* Update unet_2d_blocks.py

* Update unet_2d_blocks.py

* Update unet_2d_blocks.py

* Update unet_2d_condition.py

* Update unet_2d_blocks.py

* Updated docstring, increased check strictness

Updated the docstring for ```UNet2DConditionModel``` to include ```reverse_transformer_layers_per_block``` and updated checking for nested list type ```transformer_layers_per_block```

* Add basic shape-check test for asymmetrical unets

* Update src/diffusers/models/unet_2d_blocks.py

Removed blank line

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_condition.py

Remove blank space

* Update unet_2d_condition.py

Changed docstring for `mid_block_type`

* Fixed docstring and wrong default value

* Reformat with black

* Reformat with necessary commands

* Add UNetMidBlockFlat to versatile_diffusion/modeling_text_unet.py to ensure consistency

* Removed args, kwargs, use on mid-block type

* Make fix-copies

* Update src/diffusers/models/unet_2d_condition.py

Wrap into single line

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make fix-copies

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-20 11:42:28 +02:00
kesimeg
5366db5df1 fix une2td ignoring class_labels (#5401)
* fix une2td ignoring class_labels

* unet2.py error message updated

* style and quality changes

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-20 14:21:46 +05:30
Patrick von Platen
e516858886 make style 2023-10-18 22:48:49 +02:00
Chi
36a0bacc29 Beautiful Doc string added into the UNetMidBlock2D class. (#5389)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

* Update unet_2d_blocks.py

similar doc-string add to have in the original diffusion repository.

* Update unet_2d_blocks.py

Added Beutifull doc-string into the UNetMidBlock2D class.

* Update unet_2d_blocks.py

I replaced the definition in this parameter resnet_time_scale_shift and resnet_groups.

* Update unet_2d_blocks.py

I remove additional sentences into the resnet_groups argument.

* Update unet_2d_blocks.py

I replaced my definition with the maintainer definition in the attention_head_dim parameter.

* I am using black package for reformated my file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-10-18 22:48:36 +02:00
Patrick von Platen
9ad0530fea make style 2023-10-18 22:39:29 +02:00
linjiapro
45db049973 Fix the order of width and height of original size in SDXL training script (#5382)
* wip

* wip

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-18 22:38:52 +02:00
Liang Hou
a68f5062fb style(sdxl): remove identity assignments (#5418) 2023-10-18 22:38:20 +02:00
__mo_san__
b864d674a5 Update-DeepFloyd-IF-Pipelines-Docstrings (#5304)
* added TODOs

* Enhanced and reformatted the docstrings of IFPipeline methods.

* Enhanced and fixed the docstrings of IFImg2ImgSuperResolutionPipeline methods.

* Enhanced and fixed the docstrings of IFImg2ImgPipeline methods.

* Enhanced and fixed the docstrings of IFInpaintingSuperResolutionPipeline methods.

* Enhanced and fixed the docstrings of IFInpaintingPipeline  methods.

* Enhanced and fixed the docstrings of IFSuperResolutionPipeline methods.

* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* remove redundant code

* fix code style

* revert the ordering to not break backwards compatibility

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-18 21:40:41 +02:00
Patrick von Platen
85dccab7fd Add latent consistency (#5438)
* Add latent consistency

* Update examples/community/README.md

* Add latent consistency

* make fix copies

* Apply suggestions from code review
2023-10-18 14:18:31 +02:00
Sayak Paul
87fd3ce32b [from_single_file()]fix: local single file loading. (#5440)
fix: local single file loading.
2023-10-18 17:33:12 +05:30
Patrick von Platen
109d5bbe0d Merge branch 'main' of https://github.com/huggingface/diffusers 2023-10-18 09:27:46 +00:00
Patrick von Platen
f277d5e540 make fix copies 2023-10-18 09:27:35 +00:00
Dhruv Nair
28e8d1f6ec Fix pipe fetcher for slow tests (#5424)
* fix pipe fetcher

* filter out community pipelines
2023-10-18 00:42:56 +05:30
Dhruv Nair
98a0712d69 Update base image for slow CUDA tests (#5426)
update base image for tests
2023-10-17 23:18:53 +05:30
Susheel Thapa
324d18fba2 Chore: Typo fixed in multiple files (#5422) 2023-10-17 08:17:03 -07:00
Arka
ad8068e414 changed channel parameters for UNET and VAE. Changed configs parameters of CLIPText (#5370)
* changed channel parameters for UNET and VAE. Decreased hidden layers size with increased attention heads and intermediate size

* changed the assertion check range

* clean up

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-17 14:46:42 +05:30
Sayak Paul
b4cbbd5ed2 [Examples] Follow up of #5393 (#5420)
* fix: create_repo()

* Empty-Commit
2023-10-17 12:07:39 +05:30
Sayak Paul
8b3d2aeaf8 [Core] Fix/pipeline without text encoders for SDXL (#5301)
* fix: sdxl pipeline when unet is not available.

* fix moe

* account for text

* ifx more

* don't make unet optional.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* split conditionals.

* add optional components to sdxl pipeline

* propagate changes to the rest of the pipelines.

* add: test

* add to all

* fix: rest of the pipelines.

* use pipeline_class variable

* separate pipeline mixin

* use safe_serialization

* fix: test

* access actual output.

* add: optional test to adapter and ip2p sdxl pipeline tests/

* add optional test to controlnet sdxl.

* fix tests

* fix ip2p tests

* fix more

* fifx more.

* use np output type.

* fix for StableDiffusionXLMultiControlNetPipelineFastTests.

* fix: SDXLOptionalComponentsTesterMixin

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix tests

* Empty-Commit

* revert previous

* quality

* fix: test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-17 11:17:06 +05:30
Patrick von Platen
57239dacd0 make style 2023-10-16 16:29:50 +02:00
Gregg Helt
de12776b3a Add ability to mix usage of T2I-Adapter(s) and ControlNet(s). (#5362)
* Add ability to mix usage of T2I-Adapter(s) and ControlNet(s).
Previously, UNet2DConditional implemnetation onloy allowed use of one or the other.
Adds new forward() arg down_intrablock_additional_residuals specifically for T2I-Adapters. If down_intrablock_addtional_residuals is not used, maintains backward compatibility with prior usage of only T2I-Adapter or ControlNet but not both

* Improving forward() arg docs in src/diffusers/models/unet_2d_condition.py

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

* Add deprecation warning if down_block_additional_residues is used for T2I-Adapter (intrablock residuals)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Oops my bad, fixing last commit.

* Added import of diffusers utils.deprecate

* Conform to max line length

* Modifying T2I-Adapter pipelines to reflect change to UNet forward() arg for T2I-Adapter residuals.

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-16 16:29:05 +02:00
Sayak Paul
cc12f3ec92 [Examples] Update with HFApi (#5393)
* update training examples to use HFAPI.

* update training example.

* reflect the changes in the korean version too.

* Empty-Commit
2023-10-16 19:34:46 +05:30
Heinz-Alexander Fuetterer
0ea78f9707 chore: fix typos (#5386)
* chore: fix typos

* Update src/diffusers/pipelines/shap_e/renderer.py

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-10-16 15:23:37 +02:00
Sayak Paul
5495073faf [Docs] add docs on peft diffusers integration (#5359)
* add docs on peft diffusers integration/

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: pacman100 <13534540+pacman100@users.noreply.github.com>

* update URLs.

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* minor changes

* Update docs/source/en/tutorials/using_peft_for_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* reflect the latest changes.

* note about update.

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: pacman100 <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-16 18:41:37 +05:30
Kashif Rasul
d03c9099bc [Wuerstchen] text to image training script (#5052)
* initial script

* formatting

* prior trainer wip

* add efficient_net_encoder

* add CLIPTextModel

* add prior ema support

* optimizer

* fix typo

* add dataloader

* prompt_embeds and image_embeds

* intial training loop

* fix output_dir

* fix add_noise

* accelerator check

* make effnet_transforms dynamic

* fix training loop

* add validation logging

* use loaded text_encoder

* use PreTrainedTokenizerFast

* load weigth from pickle

* save_model_card

* remove unused file

* fix typos

* save prior pipeilne in its own folder

* fix imports

* fix pipe_t2i

* scale image_embeds

* remove snr_gamma

* format

* initial lora prior training

* log_validation and save

* initial gradient working

* remove save/load hooks

* set set_attn_processor on prior_prior

* add lora script

* typos

* use LoraLoaderMixin for prior pipeline

* fix usage

* make fix-copies

* yse repo_id

* write_lora_layers is a staitcmethod

* use defualts

* fix defaults

* undo

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add graident checkpoint support to prior

* gradient_checkpointing

* formatting

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/train_text_to_image_lora_prior.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update src/diffusers/loaders.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Update examples/wuerstchen/text_to_image/train_text_to_image_prior.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* use default unet and text_encoder

* fix test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-10-16 15:00:33 +02:00
Sayak Paul
93df5bb670 [Examples] fix unconditioning generation training example for mixed-precision training (#5407)
* fix: unconditional generation example

* fix: float in loss.

* apply styling.
2023-10-16 14:11:35 +05:30
Sayak Paul
07b297e7de [Bot] FIX stale.py uses timezone-aware datetime (#5396)
reflect stalebot change from https://github.com/huggingface/peft/pull/1016/
2023-10-16 00:54:50 +05:30
Younes Belkada
2bfa55f4ed [core / PEFT / LoRA] Integrate PEFT into Unet (#5151)
* v1

* add tests and fix previous failing tests

* fix CI

* add tests + v1 `PeftLayerScaler`

* style

* add scale retrieving mechanism system

* fix CI

* up

* up

* simple approach --> not same results for some reason

* fix issues

* fix copies

* remove unneeded method

* active adapters!

* fix merge conflicts

* up

* up

* kohya - test-1

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix scale

* fix copies

* add comment

* multi adapters

* fix tests

* oops

* v1 faster loading - in progress

* Revert "v1 faster loading - in progress"

This reverts commit ac925f8132.

* kohya same generation

* fix some slow tests

* peft integration features for unet lora

1. Support for Multiple ranks/alphas
2. Support for Multiple active adapters
3. Support for enabling/disabling LoRAs

* fix `get_peft_kwargs`

* Update loaders.py

* add some tests

* add unfuse tests

* fix tests

* up

* add set adapter from sourab and tests

* fix multi adapter tests

* style & quality

* style

* remove comment

* fix `adapter_name` issues

* fix unet adapter name for sdxl

* fix enabling/disabling adapters

* fix fuse / unfuse unet

* nit

* fix

* up

* fix cpu offloading

* fix another slow test

* fix another offload test

* add more tests

* all slow tests pass

* style

* fix alpha pattern for unet and text encoder

* Update src/diffusers/loaders.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/models/attention.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* up

* up

* clarify comment

* comments

* change comment order

* change comment order

* stylr & quality

* Update tests/lora/test_lora_layers_peft.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix bugs and add tests

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* refactor

* suggestion

* add break statemebt

* add compile tests

* move slow tests to peft tests as I modified them

* quality

* refactor a bit

* style

* change import

* style

* fix CI

* refactor slow tests one last time

* style

* oops

* oops

* oops

* final tweak tests

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/loaders.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* comments

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* remove comments

* more comments

* try

* revert

* add `safe_merge` tests

* add comment

* style, comments and run tests in fp16

* add warnings

* fix doc test

* replace with `adapter_weights`

* add `get_active_adapters()`

* expose `get_list_adapters` method

* better error message

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

* trigger slow lora tests

* fix tests

* maybe fix last test

* revert

* Update src/diffusers/loaders.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/loaders.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/loaders.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Update src/diffusers/loaders.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* move `MIN_PEFT_VERSION`

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* let's not use class variable

* fix few nits

* change a bit offloading logic

* check earlier

* rm unneeded block

* break long line

* return empty list

* change logic a bit and address comments

* add typehint

* remove parenthesis

* fix

* revert to fp16 in tests

* add to gpu

* revert to old test

* style

* Update src/diffusers/loaders.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* change indent

* Apply suggestions from code review

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-13 16:47:03 +02:00
Sayak Paul
9bc55e8b7f [Core] Add FreeU to all the core pipelines and their (mostly-used) derivatives (#5376)
* add: freeu to the core sdxl pipeline.

* add: freeu to video2video

* add: freeu to the core SD pipelines.

* add: freeu to image variation for sdxl.

* add: freeu to SD ControlNet pipelines.

* add: freeu to SDXL controlnet pipelines.

* add: freu to t2i adapter pipelines.

* make fix-copies.
2023-10-13 17:16:16 +05:30
Dhruv Nair
4d2c981d55 New xformers test runner (#5349)
* move xformers to dedicated runner

* fix

* remove ptl from test runner images
2023-10-13 00:32:39 +05:30
Steven Liu
cf03f5b718 [docs] Minor fixes (#5369)
minor fixes
2023-10-11 17:18:29 -07:00
Patrick von Platen
5313aa6231 make style 2023-10-11 11:19:35 +00:00
Chi
ea8364e581 I Added Doc-String Into The class. (#5293)
* I added a new doc string to the class. This is more flexible to understanding other developers what are doing and where it's using.

* Update src/diffusers/models/unet_2d_blocks.py

This changes suggest by maintener.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/unet_2d_blocks.py

Add suggested text

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update unet_2d_blocks.py

I changed the Parameter to Args text.

* Update unet_2d_blocks.py

proper indentation set in this file.

* Update unet_2d_blocks.py

a little bit of change in the act_fun argument line.

* I run the black command to reformat style in the code

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-11 13:19:06 +02:00
Soumik Rakshit
e00df25aee Fix StableDiffusionXLImg2ImgPipeline creation in sdxl tutorial (#5367)
fix: StableDiffusionXLImg2ImgPipeline creation in sdxl tutorial
2023-10-11 13:07:53 +02:00
Aryan V S
91fd181245 Improve typehints and docs in diffusers/models (#5312)
* improvement: add missing typehints and docs to diffusers/models/attention.py

* chore: convert doc strings to raw python strings

add missing typehints

* improvement: add missing typehints and docs to diffusers/models/adapter.py

* improvement: add missing typehints and docs to diffusers/models/lora.py

* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* docs: include suggestion by @sayakpaul in src/diffusers/models/adapter.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/models/lora.py

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-11 13:04:59 +02:00
Sayak Paul
0fa32bd674 [Examples] use loralinear instead of depecrecated lora attn procs. (#5331)
* use loralinear instead of depecrecated lora attn procs.

* fix parameters()

* fix saving

* add back support for add kv proj.

* fix: param accumul,ation.

* propagate the changes.
2023-10-11 13:02:42 +02:00
ssusie
aea73834f6 Adding PyTorch XLA support for sdxl inference (#5273)
* Added  mark_step for sdxl to run with pytorch xla. Also updated README with instructions for xla

* adding soft dependency on torch_xla

* fix some styling

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-10-11 12:35:37 +02:00
Steven Liu
a139213578 [docs] Create a mask for inpainting (#5322)
add mask making section
2023-10-10 08:29:27 -07:00
Humphrey009
9c82b68f07 fix problem of 'accelerator.is_main_process' to run in mutiple GPUs (#5340)
fix problem of 'accelerator.is_main_process' to run in mutiple GPUs or NPUs

Co-authored-by: jiaqiw <wangjiaqi50@huawei.com>
2023-10-10 15:39:22 +05:30
Julien Simon
d3e0750d5d Add missing dependency in requirements file (#5345)
Update requirements_sdxl.txt

Add missing 'datasets'

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-10 15:37:58 +05:30
Roy Hvaara
4ac205e32f [JAX] Replace uses of jnp.array in types with jnp.ndarray. (#4719)
`jnp.array` is a function, not a type:
https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.array.html
so it never makes sense to use `jnp.array` in a type annotation.

Presumably the intent was to write `jnp.ndarray` aka `jax.Array`. Change uses of `jnp.array` to `jnp.ndarray`.

Co-authored-by: Peter Hawkins <phawkins@google.com>
2023-10-09 22:04:40 +02:00
Patrick von Platen
ed2f956072 Fix loading broken LoRAs that could give NaN (#5316)
* Fix fuse Lora

* improve a bit

* make style

* Update src/diffusers/models/lora.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* ciao C file

* ciao C file

* test & make style

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-10-09 18:01:55 +02:00
Jake Vanderplas
a844065384 replace references to deprecated KeyArray & PRNGKeyArray (#5324) 2023-10-09 17:31:50 +02:00
Jonathan Whitaker
35952e61c1 Fix links in docs to adapter code (#5323)
Update adapter.md to fix links to adapter pipelines
2023-10-09 17:20:12 +02:00
Patrick von Platen
d199bc62ec make style 2023-10-09 17:12:12 +02:00
Aryan V S
8d314c96ee [HacktoberFest] Add missing docstrings to diffusers/models (#5248)
* add missing docstrings

* chore: run make quality

* improvement: include docs suggestion by @yiyixuxu

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-09 17:09:16 +02:00
Brian Yarbrough
e2c0208c86 Add py.typed for PEP 561 compliance (#5326)
See #5325
2023-10-09 17:08:55 +02:00
Aryan V S
bd72927c63 Improve typehints and docs in diffusers/models (#5299)
* improvement: add typehints and docs to diffusers/models/activations.py

* improvement: add typehints and docs to diffusers/models/resnet.py
2023-10-09 16:29:23 +02:00
__mo_san__
c4d66200b7 make-fast-test-for-StableDiffusionControlNetPipeline-faster (#5292)
* decrease UNet2DConditionModel & ControlNetModel blocks

* decrease UNet2DConditionModel & ControlNetModel blocks

* decrease even more blocks & number of norm groups

* decrease vae block out channels and n of norm goups

* fix code style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-09 14:56:27 +05:30
Sebastian
2ed7e05fc2 Improve performance of fast test by reducing down blocks (#5290)
* Reduce number of down block channels

* Remove debug code

* Set new excepted image slice values for sdxl euler test
2023-10-09 14:49:56 +05:30
Pu Cao
cc2c4ae759 fix inference in custom diffusion (#5329)
* Update train_custom_diffusion.py

* make style

* Empty-Commit

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-09 10:08:01 +02:00
chuzh
6bd55b54bc Fix [core/GLIGEN]: TypeError when iterating over 0-d tensor with In-painting mode when EulerAncestralDiscreteScheduler is used (#5305)
* fix(gligen_inpaint_pipeline): 🐛 Wrap the timestep() 0-d tensor in a list to convert to 1-d tensor. This avoids the TypeError caused by trying to directly iterate over a 0-dimensional tensor in the denoising stage

* test(gligen/gligen_text_image): unit test using the EulerAncestralDiscreteScheduler

---------

Co-authored-by: zhen-hao.chu <zhen-hao.chu@vitrox.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-09 09:54:01 +02:00
Zeng Xian
0513a8cfd8 fix typo in train dreambooth lora description (#5332) 2023-10-08 14:54:33 +02:00
Shubham S Jagtap
306dc6e751 Update README.md (#5267)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-10-06 14:50:18 -07:00
vedant2003
dd25ef5679 [Hacktoberfest]Fixing issues #5241 (#5255)
* Update pipeline_wuerstchen_prior.py

* prior_num_inference_steps updated

* height, width, num_inference_steps, and guidance_scale synced

* parameters synced

* latent_mean, latent_std, and resolution_multiple synced

* prior_num_inference_steps changed

* Formatted pipeline_wuerstchen_prior.py

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2023-10-06 14:19:38 -07:00
TimothyAlexisVass
016866792d Minor fixes (#5309)
tiny fixes
2023-10-06 11:20:06 -07:00
Steven Liu
f0a2c63753 [docs] Improved inpaint docs (#5210)
* start

* finish draft

* add section

* edits

* feedback

* make fix-copies

* rebase
2023-10-06 09:44:24 -07:00
Sayak Paul
7eaae83f16 [LoRA] fix: torch.compile() for lora conv (#5298)
fix: torch.compile() for lora conv
2023-10-06 17:14:47 +02:00
Dhruv Nair
872ae1dd12 Add from single file to StableDiffusionUpscalePipeline and StableDiffusionLatentUpscalePipeline (#5194)
* add from single file

* clean up

* make style

* add single file loading for upscaling
2023-10-06 13:18:13 +02:00
Dhruv Nair
6ce01bd647 Bump tolerance on shape test (#5289)
bump tolerance on shape test
2023-10-06 10:25:18 +02:00
Patrick von Platen
0922210c5c Update bug-report.yml 2023-10-06 09:42:20 +02:00
Bagheera
02a8d664a2 Min-SNR Gamma: correct the fix for SNR weighted loss in v-prediction … (#5238)
Min-SNR Gamma: correct the fix for SNR weighted loss in v-prediction by adding 1 to SNR rather than the resulting loss weights

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-10-05 20:52:27 +02:00
Sayak Paul
e6faf607f7 add: entry for DDPO support. (#5250)
* add: entry for DDPO support.

* move to training

* address steven's comments./
2023-10-05 14:29:00 +02:00
Dhruv Nair
d8d8b2ae77 pin torch version (#5297) 2023-10-05 13:00:30 +02:00
Kadir Nar
84b82a6cb7 [Core] Add FreeU mechanism (#5164)
*  Added Fourier filter function to upsample blocks

* 🔧 Update Fourier_filter for float16 support

*  Added UNetFreeUConfig to UNet model for FreeU adaptation 🛠️

* move unet to its original form and add fourier_filter to torch_utils.

* implement freeU enable mechanism

* implement disable mechanism

* resolution index.

* correct resolution idx condition.

* fix copies.

* no need to use resolution_idx in vae.

* spell out the kwargs

* proper config property

* fix attribution setting

* place unet hasattr properly.

* fix: attribute access.

* proper disable

* remove validation method.

* debug

* debug

* debug

* debug

* debug

* debug

* potential fix.

* add: doc.

* fix copies

* add: tests.

* add: support freeU in SDXL.

* set default value of resolution idx.

* set default values for resolution_idx.

* fix copies

* fix rest.

* fix copies

* address PR comments.

* run fix-copies

* move apply_free_u to utils and other minors.

* introduce support for video (unet3D)

* minor ups

* consistent fix-copies.

* consistent stuff

* fix-copies

* add: rest

* add: docs.

* fix: tests

* fix: doc path

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style up

* move to techniques.

* add: slow test for sd freeu.

* add: slow test for sd freeu.

* add: slow test for sd freeu.

* add: slow test for sd freeu.

* add: slow test for sd freeu.

* add: slow test for sd freeu.

* add: slow test for video with freeu

* add: slow test for video with freeu

* add: slow test for video with freeu

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-05 10:37:04 +02:00
1toTree
e46ec5f88f Zh doc (#4807)
* Update _toctree.yml

* Add files via upload

* Update docs/source/zh/stable_diffusion.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-10-04 08:54:13 -07:00
Patrick von Platen
25c177aace make style 2023-10-04 11:46:34 +02:00
Anatoly Belikov
c7e08958b8 handle case when controlnet is list or tuple (#5179)
* handle case when controlnet is list

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* typecheck comment

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-04 11:46:10 +02:00
Dhruv Nair
dd5a36291f New Pipeline Slow Test runners (#5131)
* pipline fetcher

* update script

* clean up

* clean up

* clean up

* new pipeline runner

* rename tests to match modules

* test actions in pr

* change runner to gpu

* clean up

* clean up

* clean up

* fix report

* fix reporting

* clean up

* show test stats in failure reports

* give names to jobs

* add lora tests

* split torch cuda tests and add compile tests

* clean up

* fix tests

* change push to run only on main

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-04 11:42:17 +02:00
Patrick von Platen
7271f8b717 Fix UniPC scheduler for 1D (#5276) 2023-10-03 11:49:27 +02:00
Patrick von Platen
dfcce3ca6e [Research folder] Add SDXL example (#5275)
* [SDXL Flax] Add research folder

* Add co-author

Co-authored-by: Juan Acevedo <jfacevedo@google.com>

---------

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
2023-10-03 07:51:46 +02:00
Patrick von Platen
2457599114 make fix copies 2023-10-02 17:53:17 +00:00
Patrick von Platen
bdd16116f3 [Schedulers] Fix callback steps (#5261)
* fix all

* make fix copies

* make fix copies
2023-10-02 19:52:53 +02:00
Leng Yue
c8b0f0eb21 Update UniPC to support 1D diffusion. (#5199)
* Update Unipc einsum to support 1D and 3D diffusion.

* Add unittest

* Update unittest & edge case

* Fix unittest

* Fix testing_utils.py

* Fix unittest file

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-02 19:17:46 +02:00
stano
7a4324cce3 Add a docstring for the AutoencoderKL's encode (#5239)
* Add docstring for the AutoencoderKL's encode

#5229

* Support Python 3.8 syntax in AutoencoderKL.decode type hints

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Follow the style guidelines in AutoencoderKL's encode

#5230

---------

Co-authored-by: stano <>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-02 19:17:34 +02:00
stano
37a787a106 Add docstring for the AutoencoderKL's decode (#5242)
* Add docstring for the AutoencoderKL's decode

#5230

* Follow the style guidelines in AutoencoderKL's decode

#5230

---------

Co-authored-by: stano <>
2023-10-02 18:42:32 +02:00
Sayak Paul
d56825e4b4 fix: how print training resume logs. (#5117)
* fix: how print training resume logs.

* propagate changes to text-to-image scripts.

* propagate changes to instructpix2pix.

* propagate changes to dreambooth

* propagate changes to custom diffusion and instructpix2pix

* propagate changes to kandinsky

* propagate changes to textual inv.

* debug

* fix: checkpointing.

* debug

* debug

* debug

* back to the square

* debug

* debug

* change condition order.

* debug

* debug

* debug

* debug

* revert to original

* clean

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-02 18:29:52 +02:00
dg845
cd1b8d7ca8 [WIP] Refactor UniDiffuser Pipeline and Tests (#4948)
* Add VAE slicing and tiling methods.

* Switch to using VaeImageProcessing for preprocessing and postprocessing of images.

* Rename the VaeImageProcessor to vae_image_processor to avoid a name clash with the CLIPImageProcessor (image_processor).

* Remove the postprocess() function because we're using a VaeImageProcessor instead.

* Remove UniDiffuserPipeline.decode_image_latents because we're using VaeImageProcessor instead.

* Refactor generating text from text latents into a decode_text_latents method.

* Add enable_full_determinism() to UniDiffuser tests.

* make style

* Add PipelineLatentTesterMixin to UniDiffuserPipelineFastTests.

* Remove enable_model_cpu_offload since it is now part of DiffusionPipeline.

* Rename the VaeImageProcessor instance to self.image_processor for consistency with other pipelines and rename the CLIPImageProcessor instance to clip_image_processor to avoid a name clash.

* Update UniDiffuser conversion script.

* Make safe_serialization configurable in UniDiffuser conversion script.

* Rename image_processor to clip_image_processor in UniDiffuser tests.

* Add PipelineKarrasSchedulerTesterMixin to UniDiffuserPipelineFastTests.

* Add initial test for compiling the UniDiffuser model (not tested yet).

* Update encode_prompt and _encode_prompt to match that of StableDiffusionPipeline.

* Turn off standard classifier-free guidance for now.

* make style

* make fix-copies

* apply suggestions from review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-10-02 18:24:55 +02:00
Patrick von Platen
db91e710da make style 2023-10-02 16:14:53 +00:00
Nandika-A
2a62aadcff Add docstrings in forward methods of adapter model (#5253)
* added docstrings in forward methods of T2IAdapter model and FullAdapter model

* added docstrings in forward methods of FullAdapterXL and AdapterBlock models

* Added docstrings in forward methods of adapter models
2023-10-02 18:14:41 +02:00
Patrick von Platen
4f74a5e1f7 [PEFT warnings] Only sure deprecation warnings in the future (#5240)
* [PEFT warnings] Only sure deprecation warnings in the future

* make style
2023-10-02 17:33:32 +02:00
Dhruv Nair
bbe8d3ae13 Compile test fixes (#5235)
compile test fixes
2023-10-02 17:06:10 +02:00
Zanz2
907fd91ce9 Fixed constants.py not using hugging face hub environment variable (#5222) 2023-10-02 15:51:24 +02:00
Pedro Cuenca
0c7cb9a613 Flax: Ignore PyTorch, ONNX files when they coexist with Flax weights (#5237)
Ignore PyTorch, ONNX files when they coexist with Flax weights
2023-10-02 12:17:23 +02:00
Mishig
84e5cc596c Fix doc KO unconditional_image_generation.md (#5236)
Fix indent issue
2023-09-29 18:49:40 +02:00
Younes Belkada
cc92332096 [PEFT / LoRA ] Fix text encoder scaling (#5204)
* move text encoder changes

* fix

* add comment.

* fix tests

* Update src/diffusers/utils/peft_utils.py

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-29 18:30:53 +02:00
Charles Bensimon
9cfd4ef074 Make BaseOutput dataclasses picklable (#5234)
* Make BaseOutput dataclasses picklable

* make style

* Test

* Empty commit

* Simpler and safer
2023-09-29 16:35:16 +02:00
Patrick von Platen
78a78515d6 make style 2023-09-29 08:55:26 +02:00
Seunghyeon Kim
9c03a7da43 Fix DDIMInverseScheduler (#5145)
* fix ddim inverse scheduler

* update test of ddim inverse scheduler

* update test of pix2pix_zero

* update test of diffedit

* fix typo

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-29 08:55:00 +02:00
Steven Liu
1d3120fbaa [docs] Quicktour fixes (#5211)
* fix

* feedback
2023-09-29 08:43:58 +02:00
Dhruv Nair
c78ee143e9 Move more slow tests to nightly (#5220)
* move to nightly

* fix mistake
2023-09-28 19:00:41 +05:30
Ömer Veysel Çağatan
622f35b1d0 fixed vae scaling (#5213) 2023-09-28 15:13:27 +02:00
Younes Belkada
39baf0b41b [PEFT / LoRA ] Kohya checkpoints support (#5202)
kohya support
2023-09-28 15:07:23 +02:00
Nicholas Bardy
1c4c4c48d9 Correct file name in t2i adapter training readme (#5207)
Update README_sdxl.md
2023-09-28 14:51:02 +02:00
Younes Belkada
d840253f6a [PEFT] Fix typo for import (#5217)
Update loaders.py
2023-09-28 17:33:25 +05:30
Pedro Cuenca
536c297a14 Trickle down split_head_dim (#5208) 2023-09-28 01:03:36 +02:00
Benjamin Paine
693a0d08e4 Remove Offensive Language from Community Pipelines (#5206)
* Update run_onnx_controlnet.py

* Update run_tensorrt_controlnet.py
2023-09-27 22:02:25 +02:00
Patrick von Platen
cac7adab11 [Flax SDXL] fix zero out sdxl (#5203) 2023-09-27 18:29:07 +02:00
Patrick von Platen
a584d42ce5 [LoRA, Xformers] Fix xformers lora (#5201)
* fix xformers lora

* improve

* fix
2023-09-27 21:46:32 +05:30
Sayak Paul
cdcc01be0e [Examples] add compute_snr() to training utils. (#5188)
add compute_snr() to training utils.
2023-09-27 21:42:20 +05:30
Dhruv Nair
ba59e92fb0 Fix memory issues in tests (#5183)
* fix memory issues

* set _offload_gpu_id

* set gpu offload id
2023-09-27 14:04:57 +02:00
Sourab Mangrulkar
02247d9ce1 PEFT Integration for Text Encoder to handle multiple alphas/ranks, disable/enable adapters and support for multiple adapters (#5147)
* more fixes

* up

* up

* style

* add in setup

* oops

* more changes

* v1 rzfactor CI

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* few todos

* protect torch import

* style

* fix fuse text encoder

* Update src/diffusers/loaders.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* replace with `recurse_replace_peft_layers`

* keep old modules for BC

* adjustments on `adjust_lora_scale_text_encoder`

* nit

* move tests

* add conversion utils

* remove unneeded methods

* use class method instead

* oops

* use `base_version`

* fix examples

* fix CI

* fix weird error with python 3.8

* fix

* better fix

* style

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add comment

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* conv2d support for recurse remove

* added docstrings

* more docstring

* add deprecate

* revert

* try to fix merge conflicts

* peft integration features for text encoder

1. support multiple rank/alpha values
2. support multiple active adapters
3. support disabling and enabling adapters

* fix bug

* fix code quality

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* fix bugs

* Apply suggestions from code review

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* address comments

Co-Authored-By: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-Authored-By: Patrick von Platen <patrick.v.platen@gmail.com>

* fix code quality

* address comments

* address comments

* Apply suggestions from code review

* find and replace

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-09-27 13:21:54 +02:00
YiYi Xu
940f9410cb Add test_full_loop_with_noise tests to all scheduler with add_nosie function (#5184)
* add fast tests for dpm-multi

* add more tests

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-27 13:08:37 +02:00
Patrick von Platen
ad06e5106e [Docs] Improve xformers page (#5196)
[Docs] Improve
2023-09-27 16:02:15 +05:30
Pedro Cuenca
ae2fc01a91 Wrap lines in docstring (#5190) 2023-09-26 20:10:40 +02:00
Juan Acevedo
16d56c4b4f F/flax split head dim (#5181)
* split_head_dim flax attn

* Make split_head_dim non default

* make style and make quality

* add description for split_head_dim flag

* Update src/diffusers/models/attention_flax.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-26 20:08:30 +02:00
Patrick von Platen
c82f7bafba [SDXL Flax] fix SDXL flax init (#5187)
* fix SDXL flax init

* finish

* Fix
2023-09-26 19:55:05 +02:00
Pedro Cuenca
d9e7857af3 timestep_spacing for FlaxDPMSolverMultistepScheduler (#5189)
* timestep_spacing for FlaxDPMSolverMultistepScheduler

* Style
2023-09-26 19:54:53 +02:00
Steven Liu
fd1c54abf2 [docs] Improved text-to-image guide (#4938)
* first draft

* edits

* feedback
2023-09-26 09:20:19 -07:00
Dhruv Nair
9946dcf8db Test Fixes for CUDA Tests and Fast Tests (#5172)
* fix other tests

* fix tests

* fix tests

* Update tests/pipelines/shap_e/test_shap_e_img2img.py

* Update tests/pipelines/shap_e/test_shap_e_img2img.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix upstream merge mistake

* fix tests:

* test fix

* Update tests/lora/test_lora_layers_old_backend.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/lora/test_lora_layers_old_backend.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-26 19:08:02 +05:30
Ernie Chu
21e402faa0 fix-VaeImageProcessor-docstring (#5182)
```
do_binarize (`bool`, *optional*, defaults to `True`)
|
v
do_binarize (`bool`, *optional*, defaults to `False`)
```
2023-09-26 15:06:45 +02:00
Bagheera
4a06c74547 Min-SNR Gamma: follow-up fix for zero-terminal SNR models on v-prediction or epsilon (#5177)
* merge with main

* fix flax example

* fix onnx example

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-26 18:14:52 +05:30
Bagheera
89d8f84893 Timestep bias for fine-tuning SDXL (#5094)
* Timestep bias for fine-tuning SDXL

* Adjust parameter choices to include "range" and reword the help statements

* Condition our use of weighted timesteps on the value of timestep_bias_strategy

* style

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-26 13:45:37 +05:30
Dhruv Nair
bdd2544673 Tests compile fixes (#5148)
* test fix

* fix tests

* fix report name

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-26 11:36:46 +05:30
Patrick von Platen
a91a273d0b [Docs] Try to fix doc builder (#5180)
* try to fix docs

* try to fix docs
2023-09-25 20:24:50 +02:00
Patrick von Platen
bed8aceca1 make style 2023-09-25 20:24:03 +02:00
Ryan Dick
415093335b Fix the total_downscale_factor returned by FullAdapterXL T2IAdapters (#5134)
* Fix FullAdapterXL.total_downscale_factor.

* Fix incorrect error message in T2IAdapter.__init__(...).

* Move IP-Adapter test_total_downscale_factor(...) to pipeline test file (requested in code review).

* Add more info to error message about an unsupported T2I-Adapter adapter_type.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-25 20:23:14 +02:00
Hengwen Tong
dfdf85d32c [pipeline utils] sanitize pretrained_model_name_or_path (#5173)
Make sure the repo_id is valid before sending it to huggingface_hub to get a more understandable error message.

Re #5110

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-25 20:22:41 +02:00
Bagheera
539846a7d5 SDXL microconditioning documentation should indicate the correct default order of parameters, so that developers know (#5155)
* SDXL microconditioning documentation should indicate the correct default order of parameters, so that developers know

* SDXL microconditioning documentation should indicate the correct default order of parameters, so that developers know

* empty

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-25 20:22:09 +02:00
Patrick von Platen
d70944bf7f fix docs 2023-09-25 19:55:49 +02:00
Patrick von Platen
589cd8100b make style 2023-09-25 19:27:20 +02:00
Carson Katri
6281d2066b Add callbacks to WuerstchenDecoderPipeline and WuerstchenCombinedPipeline (#5154) 2023-09-25 19:26:53 +02:00
Anh71me
28254c79b6 Fix type annotation (#5146)
* Fix type annotation on Scheduler.from_pretrained

* Fix type annotation on PIL.Image
2023-09-25 19:26:39 +02:00
MLRichter
0bc6be6960 Update wuerstchen.md (#5156) 2023-09-25 18:43:08 +02:00
Patrick von Platen
144c3a8b7c [Imports] Fix many import bugs and make sure that doc builder CI test works correctly (#5176)
* [Doc builder] Ensure slow import for doc builder

* Apply suggestions from code review

* env for doc builder

* fix more

* [Diffusers] Set import to slow as env variable

* fix docs

* fix docs

* Apply suggestions from code review

* Apply suggestions from code review

* fix docs

* fix docs
2023-09-25 18:06:51 +02:00
Patrick von Platen
30a512ea69 [Core] Improve .to(...) method, fix offloads multi-gpu, add docstring, add dtype (#5132)
* fix cpu offload

* fix

* fix

* Update src/diffusers/pipelines/pipeline_utils.py

* make style

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* fix more

* fix more

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-09-25 14:10:18 +02:00
Dhruv Nair
92f15f5bd4 Model CPU offload fix for BLIPDiffusion (#5174)
cpu offload fix for blip diffusion
2023-09-25 17:07:32 +05:30
Patrick von Platen
22b19d578e [Tests] Add is flaky decorator (#5139)
* add is flaky decorator

* fix more
2023-09-25 13:24:44 +02:00
Sayak Paul
787195fe20 Fix/controlnet lora (#5157)
* print

* print

* print

* print

* print

* debugging

* debugging

* debugging

* debugging

* safer condition.

* remove prints and try excepts.

* Empty-Commit

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-25 12:08:05 +02:00
Mishig
48664d62b8 Delete duplicatd doc file (#5169) 2023-09-24 19:58:13 +02:00
YiYi Xu
5b11c5dc77 fix the add_noise function for dpm-multi et al (#5158)
* remove to _device() for sigmas

* update add_noise to use simgas

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-23 09:07:50 -10:00
Sayak Paul
310cf32801 add: note on whom to tag for issues related to community pipelines. (#5083) 2023-09-23 17:01:37 +01:00
Steven Liu
06b316ef5c [docs] Improved image-to-image guide (#5020)
* finish first draft

* feedback

* feedback
2023-09-22 13:20:30 -07:00
Pedro Cuenca
3651b14cf4 SDXL flax (#4254)
* support transformer_layers_per block in flax UNet

* add support for text_time additional embeddings to Flax UNet

* rename attention layers for VAE

* add shape asserts when renaming attention layers

* transpose VAE attention layers

* add pipeline flax SDXL code [WIP]

* continue add pipeline flax SDXL code [WIP]

* cleanup

* Working on JIT support

Fixed prompt embedding shapes so they work in parallel mode. Assuming we
always have both text encoders for now, for simplicity.

* Fixing embeddings (untested)

* Remove spurious line

* Shard guidance_scale when jitting.

* Decode images

* Fix sharding

* style

* Refiner UNet can be loaded.

* Refiner / img2img pipeline

* Allow latent outputs from base and latent inputs in refiner

This makes it possible to chain base + refiner without having to use the
vae decoder in the base model, the vae encoder in the refiner, skipping
conversions to/from PIL, and avoiding TPU <-> CPU memory copies.

* Adapt to FlaxCLIPTextModelOutput

* Update Flax XL pipeline to FlaxCLIPTextModelOutput

* make fix-copies

* make style

* add euler scheduler

* Fix import

* Fix copies, comment unused code.

* Fix SDXL Flax imports

* Fix euler discrete begin

* improve init import

* finish

* put discrete euler in init

* fix flax euler

* Fix more

* make style

* correct init

* correct init

* Temporarily remove FlaxStableDiffusionXLImg2ImgPipeline

* correct pipelines

* finish

---------

Co-authored-by: Martin Müller <martin.muller.me@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-22 18:34:04 +02:00
Pedro Cuenca
2e860e89eb SDXL: update links to refine docs (#5101)
* SDXL: update links to refine docs

* make style
2023-09-22 13:17:17 +02:00
Younes Belkada
493f9529d7 [PEFT / LoRA] PEFT integration - text encoder (#5058)
* more fixes

* up

* up

* style

* add in setup

* oops

* more changes

* v1 rzfactor CI

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* few todos

* protect torch import

* style

* fix fuse text encoder

* Update src/diffusers/loaders.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* replace with `recurse_replace_peft_layers`

* keep old modules for BC

* adjustments on `adjust_lora_scale_text_encoder`

* nit

* move tests

* add conversion utils

* remove unneeded methods

* use class method instead

* oops

* use `base_version`

* fix examples

* fix CI

* fix weird error with python 3.8

* fix

* better fix

* style

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add comment

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* conv2d support for recurse remove

* added docstrings

* more docstring

* add deprecate

* revert

* try to fix merge conflicts

* v1 tests

* add new decorator

* add saving utilities test

* adapt tests a bit

* add save / from_pretrained tests

* add saving tests

* add scale tests

* fix deps tests

* fix lora CI

* fix tests

* add comment

* fix

* style

* add slow tests

* slow tests pass

* style

* Update src/diffusers/utils/import_utils.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* circumvents pattern finding issue

* left a todo

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update hub path

* add lora workflow

* fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2023-09-22 13:03:39 +02:00
hysts
b32555a2da [docs] Add missing parenthesis in the sample code of BLIP Diffusion (#5144)
Add missing parenthesis in the sample code of BLIP Diffusion
2023-09-22 09:38:17 +01:00
YiYi Xu
80c00e5451 add use_karras_sigmas to KDPM2DiscreteScheduler and KDPM2AncestralDiscreteScheduler (#5111)
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-21 13:50:41 -10:00
YiYi Xu
2badddfdb6 add multi adapter support to StableDiffusionXLAdapterPipeline (#5127)
fix and add tests

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-21 12:54:59 -10:00
Bagheera
d558811b26 Min-SNR gamma support for Dreambooth training (#5107)
* min-SNR gamma for Dreambooth training

* Align the mse_loss_weights style with SDXL training example

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-21 22:53:06 +01:00
Ayush Mangal
157c9011d8 Add BLIP Diffusion (#4388)
* Add BLIP Diffusion skeleton

* Add other model components

* Add BLIP2, need to change it for now

* Fix pipeline imports

* Load pretrained ViT

* Make qformer fwd pass same

* Replicate fwd passes

* Fix device bug

* Add accelerate functions

* Remove extra functions from Blip2

* Minor bug

* Integrate initial review changes

* Refactoring

* Refactoring

* Refactor

* Add controlnet

* Refactor

* Update conversion script

* Add image processor

* Shift postprocessing to ImageProcessor

* Refactor

* Fix device

* Add fast tests

* Update conversion script

* Fix checkpoint conversion script

* Integrate review changes

* Integrate reivew changes

* Remove unused functions from test

* Reuse HF image processor in Cond image

* Create new BlipImageProcessor based on transfomers

* Fix image preprocessor

* Minor

* Minor

* Add canny preprocessing

* Fix controlnet preprocessing

* Fix blip diffusion test

* Add controlnet test

* Add initial doc strings

* Integrate review changes

* Refactor

* Update examples

* Remove DDIM comments

* Add copied from for prepare_latents

* Add type anotations

* Add docstrings

* Do black formatting

* Add batch support

* Make tests pass

* Make controlnet tests pass

* Black formatting

* Fix progress bar

* Fix some licensing comments

* Fix imports

* Refactor controlnet

* Make tests faster

* Edit examples

* Black formatting/Ruff

* Add doc

* Minor

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Move controlnet pipeline

* Make tests faster

* Fix imports

* Fix formatting

* Fix make errors

* Fix make errors

* Minor

* Add suggested doc changes

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Edit docs

* Fix 16 bit loading

* Update examples

* Edit toctree

* Update docs/source/en/api/pipelines/blip_diffusion.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Minor

* Add tips

* Edit examples

* Update model paths

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-21 17:05:35 +01:00
Bagheera
24563ca654 SNR gamma fixes for v_prediction training (#5106)
Co-authored-by: bghira <bghira@users.github.com>
2023-09-20 21:18:56 +01:00
Younes Belkada
914586f5b6 [core] Use python 3.8 in workflow and setup file (#5122)
* use python 3.7 instead

* Update setup.py
2023-09-20 20:57:06 +02:00
김태민
5b78141fd3 [FIX BUG] add config_files parser #5114 (#5115)
* add config_files parser #5114

* add config_files parser_fix #5114
2023-09-20 16:17:47 +02:00
Sayak Paul
e312b2302b [LoRA] support LyCORIS (#5102)
* better condition.

* debugging

* how about now?

* how about now?

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* support for lycoris.

* style

* add: lycoris test

* fix from_pretrained call.

* fix assertion values.
2023-09-20 10:30:18 +01:00
YiYi Xu
8263cf00f8 refactor DPMSolverMultistepScheduler using sigmas (#4986)
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-19 11:21:49 -10:00
Bagheera
74e43a4fbd Resolve v_prediction issue for min-SNR gamma weighted loss function (#5096)
* Resolve v_prediction issue for min-SNR gamma weighted loss function

* Combine MSE loss calculation of epsilon and velocity, with a note about the application of the epsilon code to sample prediction

* style

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-19 17:31:27 +01:00
Bagheera
81331f3b7d Add x-prediction / prediction_type=sample support for SDXL fine-tuning (#5095)
Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-19 16:57:44 +01:00
Dhruv Nair
29970757de Fast Tests on PR improvements: Batch Tests fixes (#5080)
* fix test

* initial commit

* change test

* updates:

* fix tests

* test fix

* test fix

* fix tests

* make test faster

* clean up

* fix precision in test

* fix precision

* Fix tests

* Fix logging test

* fix test

* fix test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-19 18:31:21 +05:30
Dhruv Nair
c2787c11c2 Fixes for Float16 inference Fast CUDA Tests (#5097)
* wip

* fix tests
2023-09-19 17:25:48 +05:30
Dhruv Nair
79a3f39eb5 Move to slow tests to nightly (#5093)
* move slow tests to nightly

* move slow tests to nightly
2023-09-19 16:04:26 +05:30
Dhruv Nair
431dd2f4d6 Fix precision related issues in Kandinsky Pipelines (#5098)
* fix failing tests

* make style
2023-09-19 16:02:21 +05:30
Sayak Paul
edcbb6f42e [WIP] core: add support for clip skip to SDXL (#5057)
* core: add support for clip ckip to SDXL

* add clip_skip support to the rest of the pipeline.

* Empty-Commit
2023-09-19 10:51:36 +01:00
Patrick von Platen
5a287d3f23 [SDXL] Make sure multi batch prompt embeds works (#5073)
* [SDXL] Make sure multi batch prompt embeds works

* [SDXL] Make sure multi batch prompt embeds works

* improve more

* improve more

* Apply suggestions from code review
2023-09-19 11:49:49 +02:00
maksymbekuzarovSC
65c162a5b3 Fixed get_word_inds mistake/typo in P2P community pipeline (breaking code examples) (#5089)
Fixed `get_word_inds` mistake/typo in P2P community pipeline

The function `get_word_inds` was taking a string of text and either a word (str) or a word index (int) and returned the indices of token(s) the word would be encoded to.

However, there was a typo, in which in the second `if` branch the word was checked to be a `str` **again**, not `int`, which resulted in an [example code from the docs](https://github.com/huggingface/diffusers/tree/main/examples/community#prompt2prompt-pipeline) to result in an error
2023-09-19 11:34:49 +02:00
Sayak Paul
04d696d650 [Core] Add support for CLIP-skip (#4901)
* add support for clip skip

* fix condition

* fix

* add clip_output_layer_to_default

* expose

* remove the previous functions.

* correct condition.

* apply final layer norm

* address feedback

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* refactor clip_skip.

* port to the other pipelines.

* fix copies one more time

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-19 10:30:53 +01:00
Sayak Paul
ed507680e3 [LoRA] don't break offloading for incompatible lora ckpts. (#5085)
* don't break offloading for incompatible lora ckpts.

* debugging

* better condition.

* fix

* fix

* fix

* fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-18 23:46:28 +02:00
Will Berman
7974fad13b remove unused adapter weights in constructor (#5088)
remove adapter weights in MultiAdapter constructor
2023-09-18 22:36:55 +02:00
Will Berman
6d7279adad t2i Adapter community member fix (#5090)
* convert tensorrt controlnet

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix number controlnet condition

* Add convert SD XL to onnx

* Add convert SD XL to tensorrt

* Add convert SD XL to tensorrt

* Add examples in comments

* Add examples in comments

* Add test onnx controlnet

* Add tensorrt test

* Remove copied

* Move file test to examples/community

* Remove script

* Remove script

* Remove text

* Fix import

* Fix T2I MultiAdapter

* fix tests

---------

Co-authored-by: dotieuthien <thien.do@mservice.com.vn>
Co-authored-by: dotieuthien <dotieuthien9997@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: dotieuthien <hades@cinnamon.is>
2023-09-18 22:35:49 +02:00
Patrick von Platen
119ad2c3dc [LoRA] Centralize LoRA tests (#5086)
* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests

* [LoRA] Centralize LoRA tests
2023-09-18 17:54:33 +02:00
Ruoxi
16b9a57d29 Implement CustomDiffusionAttnProcessor2_0. (#4604)
* Implement `CustomDiffusionAttnProcessor2_0`

* Doc-strings and type annotations for `CustomDiffusionAttnProcessor2_0`. (#1)

* Update attnprocessor.md

* Update attention_processor.py

* Interops for `CustomDiffusionAttnProcessor2_0`.

* Formatted `attention_processor.py`.

* Formatted doc-string in `attention_processor.py`

* Conditional CustomDiffusion2_0 for training example.

* Remove unnecessary reference impl in comments.

* Fix `save_attn_procs`.
2023-09-18 14:49:00 +02:00
Patrick von Platen
7b39f43c06 [Textual inversion] Refactor textual inversion to make it cleaner (#5076)
* [Textual inversion] Clean loading

* [Textual inversion] Clean loading

* [Textual inversion] Clean up

* [Textual inversion] Clean up

* [Textual inversion] Clean up

* [Textual inversion] Clean up
2023-09-18 14:30:34 +02:00
Sayak Paul
bfc606301f add doc around fusing multiple loras. (#5056)
* add doc around fusing multiple loras.

* Apply suggestions from code review

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>

* address poli's comments.

---------

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
2023-09-18 12:42:58 +01:00
YiYi Xu
6886e28fd8 fix a bug in inpaint pipeline when use regular text2image unet (#5033)
* fix

* fix num_images_per_prompt >1

* other pipelines

* add fast tests for inpaint pipelines

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-18 13:40:11 +02:00
Lee Dong Joo
b089102a8e fix guidance_rescale docstring (#5063) 2023-09-18 13:39:12 +02:00
Kashif Rasul
73bb97adfc [LoRA] fix typo in attention_processor.py (#5066)
* [LoRA] fix typo in attention_processor.py

fixes #5062

* make style

* make fix-copies, logger comented for torch compile
2023-09-16 14:43:18 +02:00
Sayak Paul
38a664a3d6 fix: validation_image arg (#5053) 2023-09-15 12:20:50 +01:00
Kashif Rasul
427feb5359 [Wuerstchen] fix typos in docs (#5051)
* fix typos in docs

* fix for issue  #5023
2023-09-15 12:53:25 +02:00
Gang Wu
9f40d7970e [FIX BUG] type of args in train_instruct_pix2pix_sdxl.py (#4955) 2023-09-15 12:53:07 +02:00
Bagheera
a0198676d7 Remove logger.info statement from Unet2DCondition code to ensure torch compile reliably succeeds (#4982)
* Remove logger.info statement from Unet2DCondition code to ensure torch compile reliably succeeds

* Convert logging statement to a comment for future archaeologists

* Update src/diffusers/models/unet_2d_condition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-15 12:52:46 +02:00
Patrick von Platen
abc47dece6 [SDXL, Docs] Textual inversion (#5039)
* [SDXL, Docs] Textual inversion

* Update docs/source/en/using-diffusers/sdxl.md

* finish

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-15 12:51:36 +02:00
dotieuthien
941473a12f Fix import in examples (#5048)
* convert tensorrt controlnet

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix number controlnet condition

* Add convert SD XL to onnx

* Add convert SD XL to tensorrt

* Add convert SD XL to tensorrt

* Add examples in comments

* Add examples in comments

* Add test onnx controlnet

* Add tensorrt test

* Remove copied

* Move file test to examples/community

* Remove script

* Remove script

* Remove text

* Fix import

---------

Co-authored-by: dotieuthien <thien.do@mservice.com.vn>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-15 12:48:06 +02:00
dg845
4c8a05f115 Fix Consistency Models UNet2DMidBlock2D Attention GroupNorm Bug (#4863)
* Add attn_groups argument to UNet2DMidBlock2D to control theinternal Attention block's GroupNorm.

* Add docstring for attn_norm_num_groups in UNet2DModel.

* Since the test UNet config uses resnet_time_scale_shift == 'scale_shift', also set attn_norm_num_groups to 32.

* Add test for attn_norm_num_groups to UNet2DModelTests.

* Fix expected slices for slow tests.

* Also fix tolerances for slow tests.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-15 11:27:51 +01:00
Dhruv Nair
5fd42e5d61 Add SDXL refiner only tests (#5041)
* add refiner only tests

* make style
2023-09-15 12:58:03 +05:30
YiYi Xu
e70cb1243f [WIP] adding Kandinsky training scripts (#4890)
* Add files via upload

Co-authored-by: Shahmatov Arseniy <62886550+cene555@users.noreply.github.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-14 06:58:20 -10:00
YiYi Xu
fe4837a96e add step_index and clear noise_sampler at begining of each loop (#5024)
Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-14 06:48:35 -10:00
Patrick von Platen
342c5c02c0 [Release 0.21] Bump version (#5018)
* [Release 0.21] Bump version

* fix & remove

* fix more

* fix all, upload
2023-09-14 18:28:57 +02:00
UmerHA
169fc4add5 Add Prompt2Prompt pipeline (#4563)
* Initial commit P2P

* Replaced CrossAttention, added test skeleton

* bug fixes

* Updated docstring

* Removed unused function

* Created tests

* improved tests

- made fast inference tests faster
- corrected image shape assertions

* Corrected expected output shape in tests

* small fix: test inputs

* Update tests

- used conditional unet2d
- set expected image slices
- edit_kwargs are now not popped, so pipe can be run multiple times

* Fixed bug in int tests

* Fixed tests

* Linting

* Create prompt2prompt.md

* Added to docs toc

* Ran make fix-copies

* Fixed code blocks in docs

* Using same interface as StableDiffusionPipeline

* Fixed small test bug

* Added all options SDPipeline.__call_ has

* Fixed docstring; made __call__ like in SD

* Linting

* Added test for multiple prompts

* Improved docs

* Incorporated feedback

* Reverted formatting on unrelated files

* Moved prompt2prompt to community

- Moved prompt2prompt pipeline from main to community
- Deleted tests
- Moved documentation to community and shorted it

* Update src/diffusers/utils/dummy_torch_and_transformers_objects.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-14 16:39:59 +02:00
bonlime
566bdf4c44 Allow disabling from_pretrained tqdm (#5007) 2023-09-14 16:36:19 +02:00
Younes Belkada
0eb715d715 [LoRA] Make optional arguments explicit (#5038)
make optional arguments explciit
2023-09-14 15:58:54 +02:00
Patrick von Platen
3aa641289c [Import] Add missing settings / Correct some dummy imports (#5036)
* [Import] Add missing settings

* up

* up

* up
2023-09-14 12:42:54 +02:00
Vladimir Mandic
ef29b24fda allow loading of sd models from safetensors without online lookups using local config files (#5019)
finish config_files implementation
2023-09-14 12:30:15 +02:00
Patrick von Platen
8dc93ad3e4 [Import] Don't force transformers to be installed (#5035)
* [Import] Don't force transformers to be installed

* make style
2023-09-14 11:42:10 +02:00
Dhruv Nair
e2033d2dff Fix model offload bug when key isn't present (#5030)
* fix model offload bug when key isn't present

* make style
2023-09-14 11:02:06 +02:00
Steven Liu
19edca82f1 [docs] Create clearer optimization sections (#4870)
* refactor

* update general optim sections

* update more sections

* few more updates

* benchmark code
2023-09-13 15:21:15 -07:00
Lucain
b954c22a44 Fix broken link in docs (#5015)
fix broken link
2023-09-13 15:40:25 +02:00
Kashif Rasul
77373c5eb1 [Wuerstchen] fix compel usage (#4999)
* fix compel usage

* minor changes in documentation

* fix tests

* fix more

* fix more

* typos

* fix tests

* formatting

---------

Co-authored-by: Dominic Rampas <d6582533@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-13 14:54:59 +02:00
Sayak Paul
0ea51627f1 [Core] Fix dtype in InstructPix2Pix SDXL while computing image_latents (#5013)
* check out dtypes.

* check out dtypes.

* check out dtypes.

* check out dtypes.

* check out dtypes.

* check out dtypes.

* check out dtypes.

* potential fix

* check out dtypes.

* check out dtypes.

* working?
2023-09-13 10:50:24 +01:00
Patrick von Platen
6d6a08f1f1 [Flax->PT] Fix flaky testing (#5011)
fix flaky flax class name
2023-09-13 11:29:13 +02:00
Dhruv Nair
34bfe98eaf Gligen Text to Image fix (#5010)
* fix gligen clip import issue

* fix dtype issue with gligen text to image pipeline

* make fix copies
2023-09-13 10:23:59 +01:00
Patrick von Platen
b47f5115da [Lora] fix lora fuse unfuse (#5003)
* fix lora fuse unfuse

* add same changes to loaders.py

* add test

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
2023-09-13 11:21:04 +02:00
Patrick von Platen
324aef6d14 [SDXL] Add LoRA to all pipelines (#4896)
* [SDXL] Add LoRA to all pipelines

* fix all

* fix all

* fix all

* fix more docs

* make style
2023-09-13 11:05:20 +02:00
Sayak Paul
8009272f48 [Tests and Docs] Add a test on serializing pipelines with components containing fused LoRA modules (#4962)
* add: test to ensure pipelines can be saved with fused lora modules.

* add docs about serialization with fused lora.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Empty-Commit

* Update docs/source/en/training/lora.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-13 10:01:37 +01:00
Patrick von Platen
1037287e2b examples fix t2i training (#5001)
* examples fix t2i training

* make style
2023-09-12 23:52:41 +02:00
Steven Liu
6ea95b7a90 Fix PR template (#4984)
fix template
2023-09-12 19:36:38 +02:00
Patrick von Platen
0e0db625d0 Fix safety checker seq offload (#4998)
* fix safety checker

* fix safety checker

* fix safety checker
2023-09-12 18:56:35 +02:00
dg845
1f948109b8 [docs] Fix DiffusionPipeline.enable_sequential_cpu_offload docstring (#4952)
* Fix an unmatched backtick and make description more general for DiffusionPipeline.enable_sequential_cpu_offload.

* make style

* _exclude_from_cpu_offload -> self._exclude_from_cpu_offload

* make style

* apply suggestions from review

* make style
2023-09-12 08:58:47 -07:00
Patrick von Platen
37cb819df5 [Lora] Speed up lora loading (#4994)
* speed up lora loading

* Apply suggestions from code review

* up

* up

* Fix more

* Correct more

* Apply suggestions from code review

* up

* Fix more

* Fix more -

* up

* up
2023-09-12 17:51:15 +02:00
Dhruv Nair
f64d52dbca fix custom diffusion tests (#4996) 2023-09-12 17:50:47 +02:00
Dhruv Nair
4d897aaff5 fix image variation slow test (#4995)
fix image variation tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-12 17:45:47 +02:00
Patrick von Platen
b1105269b7 make style 2023-09-12 14:55:27 +00:00
Kashif Rasul
5d28d2217f [Wuerstchen] fix combined pipeline's num_images_per_prompt (#4989)
* fix encode_prompt

* added prompt_embeds and negative_prompt_embeds

* prompt_embeds for the prior only
2023-09-12 16:55:13 +02:00
Kashif Rasul
73bf620dec fix E721 Do not compare types, use isinstance() (#4992) 2023-09-12 16:52:25 +02:00
Dhruv Nair
c806f2fad6 remove extra gligen in import (#4987) 2023-09-12 18:35:29 +05:30
Patrick von Platen
18b7264bd0 [Utils] Correct custom init sort (#4967)
* [Utils] Correct custom init sort

* [Utils] Correct custom init sort

* [Utils] Correct custom init sort

* add type checking

* fix custom init sort

* fix test

* fix tests

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-09-12 11:05:53 +02:00
zhiqiang
d82157b3ce [Bug Fix] Should pass the dtype instead of torch_dtype (#4917)
.
2023-09-11 19:45:58 +02:00
Patrick von Platen
93579650f8 Refactor model offload (#4514)
* [Draft] Refactor model offload

* [Draft] Refactor model offload

* Apply suggestions from code review

* cpu offlaod updates

* remove model cpu offload from individual pipelines

* add hook to offload models to cpu

* clean up

* model offload

* add model cpu offload string

* make style

* clean up

* fixes for offload issues

* fix tests issues

* resolve merge conflicts

* update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* Update src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-09-11 19:39:26 +02:00
Kashif Rasul
16a056a7b5 Wuerstchen fixes (#4942)
* fix arguments and make example code work

* change arguments in combined test

* Add default timesteps

* style

* fixed test

* fix broken test

* formatting

* fix docstrings

* fix  num_images_per_prompt

* fix doc styles

* please dont change this

* fix tests

* rename to DEFAULT_STAGE_C_TIMESTEPS

---------

Co-authored-by: Dominic Rampas <d6582533@gmail.com>
2023-09-11 15:47:53 +02:00
Patrick von Platen
6c6a246461 Update README.md (#4973)
Add monthly pip installs
2023-09-11 15:45:19 +02:00
Patrick von Platen
6bbee1048b Make sure Flax pipelines can be loaded into PyTorch (#4971)
* Make sure Flax pipelines can be loaded into PyTorch

* add test

* Update src/diffusers/pipelines/pipeline_utils.py
2023-09-11 12:03:49 +02:00
Patrick von Platen
2c60f7d14e [Core] Remove TF import checks (#4968)
[TF] Remove tf
2023-09-11 11:22:40 +02:00
Dhruv Nair
b6e0b016ce Lazy Import for Diffusers (#4829)
* initial commit

* move modules to import struct

* add dummy objects and _LazyModule

* add lazy import to schedulers

* clean up unused imports

* lazy import on models module

* lazy import for schedulers module

* add lazy import to pipelines module

* lazy import altdiffusion

* lazy import audio diffusion

* lazy import audioldm

* lazy import consistency model

* lazy import controlnet

* lazy import dance diffusion ddim ddpm

* lazy import deepfloyd

* lazy import kandinksy

* lazy imports

* lazy import semantic diffusion

* lazy imports

* lazy import stable diffusion

* move sd output to its own module

* clean up

* lazy import t2iadapter

* lazy import unclip

* lazy import versatile and vq diffsuion

* lazy import vq diffusion

* helper to fetch objects from modules

* lazy import sdxl

* lazy import txt2vid

* lazy import stochastic karras

* fix model imports

* fix bug

* lazy import

* clean up

* clean up

* fixes for tests

* fixes for tests

* clean up

* remove import of torch_utils from utils module

* clean up

* clean up

* fix mistake import statement

* dedicated modules for exporting and loading

* remove testing utils from utils module

* fixes from  merge conflicts

* Update src/diffusers/pipelines/kandinsky2_2/__init__.py

* fix docs

* fix alt diffusion copied from

* fix check dummies

* fix more docs

* remove accelerate import from utils module

* add type checking

* make style

* fix check dummies

* remove torch import from xformers check

* clean up error message

* fixes after upstream merges

* dummy objects fix

* fix tests

* remove unused module import

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-11 09:56:22 +02:00
Sayak Paul
88735249da [Docs] fix: minor formatting in the Würstchen docs (#4965)
fix: minor formatting in the docs
2023-09-11 09:12:53 +02:00
Will Berman
4191ddee11 Revert revert and install accelerate main (#4963)
* Revert "Temp Revert "[Core] better support offloading when side loading is enabled… (#4927)"

This reverts commit 2ab170499e.

* tests: install accelerate from main
2023-09-11 08:49:46 +02:00
Will Berman
2ab170499e Temp Revert "[Core] better support offloading when side loading is enabled… (#4927)
Revert "[Core] better support offloading when side loading is enabled. (#4855)"

This reverts commit e4b8e7928b.
2023-09-08 19:54:59 -07:00
Sayak Paul
914c513ee0 [Docs] add t2i adapter entry to overview of training scripts. (#4946)
add t2i adapter entry to overview of training scripts.
2023-09-09 06:52:11 +05:30
Will Berman
d73e6ad050 guard save model hooks to only execute on main process (#4929) 2023-09-08 10:30:06 -07:00
Sayak Paul
d0cf681a1f [Tests] add: tests for t2i adapter training. (#4947)
add: tests for t2i adapter training.
2023-09-08 19:45:39 +05:30
Suraj Patil
dfec61f4b3 [examples] T2IAdapter training script (#4934)
* add t2i_example script

* remove in channels logic

* remove comments

* remove use_euler arg

* add requirements

* only use canny example

* use datasets

* comments

* make log_validation consistent with other scripts

* add readme

* fix title in readme

* update check_min_version

* change a few minor things.

* add doc entry

* add: test for t2i adapter training

* remove use_auth_token

* fix: logged info.

* remove tests for now.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-08 10:03:02 +05:30
Suraj Patil
0ec7a02b6a [StableDiffusionXLAdapterPipeline] allow negative micro conds (#4941)
* allow negative micro conds in t2i pipeline

* Empty-Commit

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-09-08 07:59:42 +05:30
Suraj Patil
626284f8d1 [StableDiffusionXLAdapterPipeline] add adapter_conditioning_factor (#4937)
add adapter_conditioning_factor
2023-09-07 19:05:28 +02:00
Sayak Paul
9800cc5ece [InstructPix2Pix] Fix pipeline implementation and add docs (#4844)
* initial evident fixes.

* instructpix2pix fixes.

* add: entry to doc.

* address PR feedback.

* make fix-copies
2023-09-07 15:34:19 +05:30
Kashif Rasul
541bb6ee63 Würstchen model (#3849)
* initial

* initial

* added initial convert script for paella vqmodel

* initial wuerstchen pipeline

* add LayerNorm2d

* added modules

* fix typo

* use model_v2

* embed clip caption amd negative_caption

* fixed name of var

* initial modules in one place

* WuerstchenPriorPipeline

* inital shape

* initial denoising prior loop

* fix output

* add WuerstchenPriorPipeline to __init__.py

* use the noise ratio in the Prior

* try to save pipeline

* save_pretrained working

* Few additions

* add _execution_device

* shape is int

* fix batch size

* fix shape of ratio

* fix shape of ratio

* fix output dataclass

* tests folder

* fix formatting

* fix float16 + started with generator

* Update pipeline_wuerstchen.py

* removed vqgan code

* add WuerstchenGeneratorPipeline

* fix WuerstchenGeneratorPipeline

* fix docstrings

* fix imports

* convert generator pipeline

* fix convert

* Work on Generator Pipeline. WIP

* Pipeline works with our diffuzz code

* apply scale factor

* removed vqgan.py

* use cosine schedule

* redo the denoising loop

* Update src/diffusers/models/resnet.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* use torch.lerp

* use warp-diffusion org

* clip_sample=False,

* some refactoring

* use model_v3_stage_c

* c_cond size

* use clip-bigG

* allow stage b clip to be None

* add dummy

* würstchen scheduler

* minor changes

* set clip=None in the pipeline

* fix attention mask

* add attention_masks to text_encoder

* make fix-copies

* add back clip

* add text_encoder

* gen_text_encoder and tokenizer

* fix import

* updated pipeline test

* undo changes to pipeline test

* nip

* fix typo

* fix output name

* set guidance_scale=0 and remove diffuze

* fix doc strings

* make style

* nip

* removed unused

* initial docs

* rename

* toc

* cleanup

* remvoe test script

* fix-copies

* fix multi images

* remove dup

* remove unused modules

* undo changes for debugging

* no  new line

* remove dup conversion script

* fix doc string

* cleanup

* pass default args

* dup permute

* fix some tests

* fix prepare_latents

* move Prior class to modules

* offload only the text encoder and vqgan

* fix resolution calculation for prior

* nip

* removed testing script

* fix shape

* fix argument to set_timesteps

* do not change .gitignore

* fix resolution calculations + readme

* resolution calculation fix + readme

* small fixes

* Add combined pipeline

* rename generator -> decoder

* Update .gitignore

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* removed efficient_net

* create combined WuerstchenPipeline

* make arguments consistent with VQ model

* fix var names

* no need to return text_encoder_hidden_states

* add latent_dim_scale to config

* split model into its own file

* add WuerschenPipeline to docs

* remove unused latent_size

* register latent_dim_scale

* update script

* update docstring

* use Attention preprocessor

* concat with normed input

* fix-copies

* add docs

* fix test

* fix style

* add to cpu_offloaded_model

* updated type

* remove 1-line func

* updated type

* initial decoder test

* formatting

* formatting

* fix autodoc link

* num_inference_steps is int

* remove comments

* fix example in docs

* Update src/diffusers/pipelines/wuerstchen/diffnext.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* rename layernorm to WuerstchenLayerNorm

* rename DiffNext to WuerstchenDiffNeXt

* added comment about MixingResidualBlock

* move paella vq-vae to pipelines' folder

* initial decoder test

* increased test_float16_inference expected diff

* self_attn is always true

* more passing decoder tests

* batch image_embeds

* fix failing tests

* set the correct dtype

* relax inference test

* update prior

* added combined pipeline test

* faster test

* faster test

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix issues from review

* update wuerstchen.md + change generator name

* resolve issues

* fix copied from usage and add back batch_size

* fix API

* fix arguments

* fix combined test

* Added timesteps argument + fixes

* Update tests/pipelines/test_pipelines_common.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/pipelines/wuerstchen/test_wuerstchen_prior.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py

* up

* Fix more

* failing tests

* up

* up

* correct naming

* correct docs

* correct docs

* fix test params

* correct docs

* fix classifier free guidance

* fix classifier free guidance

* fix more

* fix all

* make tests faster

---------

Co-authored-by: Dominic Rampas <d6582533@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Dominic Rampas <61938694+dome272@users.noreply.github.com>
2023-09-06 16:15:51 +02:00
dg845
b76274cb53 [docs] Fix typo in Inpainting force unmasked area unchanged example (#4910)
Fix typo by replacing init_image_arr and repainted_image_arr with init_image and repainted_image, respectively.
2023-09-06 10:49:01 +02:00
Patrick von Platen
dc3e0ca59b [Textual inversion] Relax loading textual inversion (#4903)
* [Textual inversion] Relax loading textual inversion

* up
2023-09-06 10:39:44 +02:00
Sayak Paul
6c314ad0ce [Docs] add doc entry to explain lora fusion and use of different scales. (#4893)
* add doc entry to explain lora fusion and use of different scales.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-09-06 07:38:13 +05:30
Steven Liu
946bb53c56 [docs] Add stronger warning for SDXL height/width (#4867)
* add size warning

* feedback
2023-09-05 10:50:42 -07:00
YiYi Xu
ea311e6989 remove latent input for kandinsky prior_emb2emb pipeline (#4887)
* remove latent input

* fix test

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-04 22:19:49 -10:00
YiYi Xu
4c5718a09c fix a bug in StableDiffusionUpscalePipeline.run_safety_checker (#4886)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-04 22:18:59 -10:00
Patrick von Platen
2340ed629e [Test] Reduce CPU memory (#4897)
* [Test] Reduce CPU memory

* [Test] Reduce CPU memory
2023-09-05 13:18:35 +05:30
Bagheera
cfdfcf2018 Add --vae_precision option to the SDXL pix2pix script so that we have… (#4881)
* Add --vae_precision option to the SDXL pix2pix script so that we have the option of avoiding float32 overhead

* style

---------

Co-authored-by: bghira <bghira@users.github.com>
2023-09-05 09:04:06 +02:00
Sayak Paul
e4b8e7928b [Core] better support offloading when side loading is enabled. (#4855)
* better support offloading when side loading is enabled.

* load_textual_inversion

* better messaging for textual inversion.

* fixes

* address PR feedback.

* sdxl support.

* improve messaging

* recursive removal when cpu sequential offloading is enabled.

* add: lora tests

* recruse.

* add: offload tests for textual inversion.
2023-09-05 06:55:13 +05:30
dg845
55e17907f9 Add dropout parameter to UNet2DModel/UNet2DConditionModel (#4882)
* Add dropout param to get_down_block/get_up_block and UNet2DModel/UNet2DConditionModel.

* Add dropout param to Versatile Diffusion modeling, which has a copy of UNet2DConditionModel and its own get_down_block/get_up_block functions.
2023-09-05 00:02:21 +02:00
Sayak Paul
c81a88b239 [Core] LoRA improvements pt. 3 (#4842)
* throw warning when more than one lora is attempted to be fused.

* introduce support of lora scale during fusion.

* change test name

* changes

* change to _lora_scale

* lora_scale to call whenever applicable.

* debugging

* lora_scale additional.

* cross_attention_kwargs

* lora_scale -> scale.

* lora_scale fix

* lora_scale in patched projection.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* styling.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* remove unneeded prints.

* remove unneeded prints.

* assign cross_attention_kwargs.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* clean up.

* refactor scale retrieval logic a bit.

* fix nonetypw

* fix: tests

* add more tests

* more fixes.

* figure out a way to pass lora_scale.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* unify the retrieval logic of lora_scale.

* move adjust_lora_scale_text_encoder to lora.py.

* introduce dynamic adjustment lora scale support to sd

* fix up copies

* Empty-Commit

* add: test to check fusion equivalence on different scales.

* handle lora fusion warning.

* make lora smaller

* make lora smaller

* make lora smaller

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-04 23:52:31 +02:00
YiYi Xu
2c1677eefe allow passing components to connected pipelines when use the combined pipeline (#4883)
* fix

* add test

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-04 06:21:36 -10:00
dg845
c73e609aae Fix get_dummy_inputs for Stable Diffusion Inpaint Tests (#4845)
* Change StableDiffusionInpaintPipelineFastTests.get_dummy_inputs to produce a random image and a white mask_image.

* Add dummy expected slices for the test_stable_diffusion_inpaint tests.

* Remove print statement

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-04 12:04:59 +02:00
Erwann Millon
2fa4b3ffb0 check for unet_lora_layers in sdxl pipeline's save_lora_weights method (#4821)
run make fix-copies and make style
2023-09-04 09:59:59 +02:00
Isamu Isozaki
3201903d94 Retrieval Augmented Diffusion Models (#3297)
* Resetting rdm pr

* Fixed styles

* Fixed style

* Moved to rdm folder+fixed slight errors

* Removed config diff

* Started adding tests

* Adding retrieved images

* Fixed faiss import

* Fixed import errors

* Fixing tests

* Added require_faiss

* Updated dependency table

* Attempt solving consistency test

* Fixed truncation and vocab size issue

* Passed common tests

* Finished up cpu testing on pipeline

* Passed all tests locally

* Removed some slow tests

* Removed diffs from test_pipeline_common

* Remove logs

* Removed diffs from test_pipelines_common

* Fixed style

* Fully fixed styles on diffs

* Fixed name

* Proper rename

* Fixed dummies

* Fixed issue with dummyonnx

* Fixed black style

* Fixed dummies

* Changed ordering

* Fixed logging

* Fixing

* Fixing

* quality

* Debugging regex

* Fix dummies with guess

* Fixed typo

* Attempt fix dummies

* black

* ruff

* fixed ordering

* Logging

* Attempt fix

* Attempt fix dummy

* Attempt fixing styles

* Fixed faiss dependency

* Removed unnecessary deprecations

* Finished up main changes

* Added doc

* Passed tests

* Fixed tests

* Remove invisible watermark

* Fixed ruff errors

* Added prompt embed to tests

* Added tests and made retriever an optional component

* Fixed styles

* Made faiss a dependency of pipeline

* Logging

* Fixed dummies

* Make pipeline test work

* Fixed style

* Moved to research projects

* Remove diff

* Fixed style error

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-04 09:42:04 +02:00
Patrick von Platen
705c592ea9 [Tests] Add combined pipeline tests (#4869)
* [Tests] Add combined pipeline tests

* Update tests/pipelines/kandinsky_v22/test_kandinsky.py
2023-09-02 21:36:20 +02:00
Harutatsu Akiyama
c52acaaf17 [ControlNet SDXL Inpainting] Support inpainting of ControlNet SDXL (#4694)
* [ControlNet SDXL Inpainting] Support inpainting of ControlNet SDXL

Co-authored-by: Jiabin Bai 1355864570@qq.com


---------

Co-authored-by: Harutatsu Akiyama <kf.zy.qin@gmail.com>
2023-09-02 08:04:22 -10:00
Steven Liu
2c45a53aef [docs] Shap-E guide (#4700)
* first draft

* fixes

* more fixes

* fix toctree
2023-09-01 19:52:41 -07:00
Steven Liu
22ea35cf23 [docs] DiffEdit guide (#4722)
* first draft

* minor edits
2023-09-01 14:18:41 -07:00
YiYi Xu
5c404f20f4 [WIP] masked_latent_inputs for inpainting pipeline (#4819)
* add

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-01 06:55:31 -10:00
YiYi Xu
d8b6f5d09e support AutoPipeline.from_pipe between a pipeline and its ControlNet pipeline counterpart (#4861)
add
2023-09-01 06:53:03 -10:00
YiYi Xu
30a5acc39f fix a bug in sdxl-controlnet-img2img when using MultiControlNetModel (#4862)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-09-01 06:51:59 -10:00
Seongsu Park
0c775544dd [Docs] Korean translation update (#4684)
* Docs kr update 3

controlnet, reproducibility 업로드

generator 그대로 사용
seamless multi-GPU 그대로 사용

create_dataset 번역 1차

stable_diffusion_jax

new translation

Add coreml, tome

kr docs minor fix

translate training/instructpix2pix

fix training/instructpix2pix.mdx

using-diffusers/weighting_prompts 번역 1차

add SDXL docs

Translate using-diffuers/loading_overview.md

translate using-diffusers/textual_inversion_inference.md

Conditional image generation (#37)

* stable_diffusion_jax

* index_update

* index_update

* condition_image_generation

---------

Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

jihwan/stable_diffusion.mdx

custom_diffusion 작업 완료

quicktour 작업 완료

distributed inference & control brightness (#40)

* distributed_inference.mdx

* control_brightness

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

using_safetensors (#41)

* distributed_inference.mdx

* control_brightness

* using_safetensors.mdx

---------

Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>

delete safetensor short

* Repace mdx to md

* toctree update

* Add controlling_generation

* toctree fix

* colab link, minor fix

* docs name typo fix

* frontmatter fix

* translation fix
2023-09-01 09:23:45 -07:00
Pedro Cuenca
60d259add1 Fix link from API to using-diffusers (#4856)
* Fix link from API to using-diffusers

* Fix link
2023-09-01 15:05:01 +02:00
Dhruv Nair
189e9f01b3 Test Cleanup Precision issues (#4812)
* proposal for flaky tests

* more precision fixes

* move more tests to use cosine distance

* more test fixes

* clean up

* use default attn

* clean up

* update expected value

* make style

* make style

* Apply suggestions from code review

* Update src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py

* make style

* fix failing tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-09-01 17:58:37 +05:30
Nguyễn Công Tú Anh
38466c369f Add GLIGEN Text Image implementation (#4777)
* Add GLIGEN Text Image implementation

* add style transfer from image

* fix check_repository_consistency

* add convert script GLIGEN model to Diffusers

* rename attention type

* fix style code

* remove PositionNetTextImage

* Revert "fix check_repository_consistency"

This reverts commit 15f098c96e.

* change attention type name

* update docs for GLIGEN

* change examples with hf-document-image

* fix style

* add CLIPImageProjection for GLIGEN

* Add new encode_prompt, load project matrix in pipe init

* move CLIPImageProjection to stable_diffusion

* add comment
2023-09-01 15:48:01 +05:30
dg845
5f740d0f55 [docs] Add inpainting example for forcing the unmasked area to remain unchanged to the docs (#4536)
* Initial code to add force_unmasked_unchanged argument to StableDiffusionInpaintPipeline.__call__.

* Try to improve StableDiffusionInpaintPipelineFastTests.get_dummy_inputs.

* Use original mask to preserve unmasked pixels in pixel space rather than latent space.

* make style

* start working on note in docs to force unmasked area to be unchanged

* Add example of forcing the unmasked area to remain unchanged.

* Revert "make style"

This reverts commit fa7759293a.

* Revert "Use original mask to preserve unmasked pixels in pixel space rather than latent space."

This reverts commit 092bd0e9e9.

* Revert "Try to improve StableDiffusionInpaintPipelineFastTests.get_dummy_inputs."

This reverts commit ff41cf43c5.

* Revert "Initial code to add force_unmasked_unchanged argument to StableDiffusionInpaintPipeline.__call__."

This reverts commit 989979752a.

---------

Co-authored-by: Will Berman <wlbberman@gmail.com>
2023-08-31 21:29:16 -07:00
YiYi Xu
75f81c25d1 fix sdxl-inpaint fast test (#4859)
fix inpaint test

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-31 15:42:58 -10:00
Patrick von Platen
bbf733ab70 [SDXL Inpaint] Correct strength default (#4858) 2023-08-31 20:34:33 +02:00
Steven Liu
aedd78767c [docs] ControlNet guide (#4640)
* first draft

* finish first draft

* feedback and remove sections from API pages

* clean docstrings

* add full code example
2023-08-31 10:02:02 -04:00
Patrick von Platen
7caa3682e4 Remove warn with deprecate (#4850)
* Remove warn with deprecate

* Fix typo with 1.0,0
2023-08-31 15:08:41 +02:00
Ella Charlaix
0edb4cac78 Fix image processor inputs width (#4853)
fix width for np array inputs
2023-08-31 14:50:55 +02:00
Yukun Huang
85b3f08c26 Fix potential type mismatch errors in SDXL pipelines (#4796)
* Fix potential type conversion errors in SDXL pipelines

* make sure vae stays in fp16

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-31 09:22:18 +02:00
Sayak Paul
19f3161d94 [Docs] improve the LoRA doc. (#4838)
* improve the LoRA doc.

* include fuse_lora and unfuse_lora

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-31 00:13:15 +05:30
Steven Liu
a1fdfca36f [docs] SDXL (#4428)
* first draft

* reorg toctree

* note about minsdxl

* feedback

* fix

* micro-conditionings

* add tip

* fix section levels

* d'oh fix pipeline names

* feedback

* remove old section
2023-08-30 11:34:55 -04:00
Patrick von Platen
d1e20be664 make style 2023-08-30 14:13:14 +02:00
Anatoly Belikov
af3854d6ad sketch inpaint from a1111 for non-inpaint models (#4824)
* Create masked_stable_diffusion_img2img.py

* add MaskedIm2ImPipeline to readme

* Update README.md
2023-08-30 09:51:28 +02:00
Patrick von Platen
9f1936d2fc Fix Unfuse Lora (#4833)
* Fix Unfuse Lora

* add tests

* Fix more

* Fix more

* Fix all

* make style

* make style
2023-08-30 09:32:25 +05:30
Eugene Antropov
fbca2e0a7a Add loading ckpt from file for SDXL controlNet (#4683)
* Add load ckpt from file for ControlNet SDXL

* Reformat code

* Resort imports

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-30 09:00:53 +05:30
Sayak Paul
3768d4d77c [Core] refactor encode_prompt (#4617)
* refactoring of encode_prompt()

* better handling of device.

* fix: device determination

* fix: device determination 2

* handle num_images_per_prompt

* revert changes in loaders.py and give birth to encode_prompt().

* minor refactoring for encode_prompt()/

* make backward compatible.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix: concatenation of the neg and pos embeddings.

* incorporate encode_prompt() in test_stable_diffusion.py

* turn it into big PR.

* make it bigger

* gligen fixes.

* more fixes to fligen

* _encode_prompt -> encode_prompt in tests

* first batch

* second batch

* fix blasphemous mistake

* fix

* fix: hopefully for the final time.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-30 08:57:26 +05:30
Nikhil Gajendrakumar
8ccb619416 VaeImageProcessor: Allow image resizing also for torch and numpy inputs (#4832)
Co-authored-by: Nikhil Gajendrakumar <nikhilkatte@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-29 22:45:05 +02:00
zideliu
0699ac62f0 fix typo (#4822) 2023-08-29 20:54:36 +02:00
Patrick von Platen
a76f2ad538 make style 2023-08-29 09:25:09 +02:00
VitjanZ
7200daa412 Support saving multiple t2i adapter models under one checkpoint (#4798)
* adding save and load for MultiAdapter, adding test

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding changes from review test_stable_diffusion_adapter

* import sorting fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-29 09:24:40 +02:00
Alexsey Shestacov
3eeaf4e041 Fix convert_original_stable_diffusion_to_diffusers script (#4817)
Fix stable diffusion conversion script
2023-08-29 09:14:45 +02:00
Patrick von Platen
c583f3b452 Fuse loras (#4473)
* Fuse loras

* initial implementation.

* add slow test one.

* styling

* add: test for checking efficiency

* print

* position

* place model offload correctly

* style

* style.

* unfuse test.

* final checks

* remove warning test

* remove warnings altogether

* debugging

* tighten up tests.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* denugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debuging

* debugging

* debugging

* debugging

* suit up the generator initialization a bit.

* remove print

* update assertion.

* debugging

* remove print.

* fix: assertions.

* style

* can generator be a problem?

* generator

* correct tests.

* support text encoder lora fusion.

* tighten up tests.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-29 09:14:24 +02:00
Chong Mou
12358b986f add models for T2I-Adapter-XL (#4696)
* T2I-Adapter-XL

* update

* update

* add pipeline

* modify pipeline

* modify pipeline

* modify pipeline

* modify pipeline

* modify pipeline

* modify modeling_text_unet

* fix styling.

* fix: copies.

* adapter settings

* new test case

* new test case

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* revert prints.

* new test case

* remove print

* org test case

* add test_pipeline

* styling.

* fix copies.

* modify test parameter

* style.

* add adapter-xl doc

* double quotes in docs

* Fix potential type mismatch

* style.

---------

Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2023-08-29 10:34:07 +05:30
YiYi Xu
5eeedd9e33 add StableDiffusionXLControlNetImg2ImgPipeline (#4592)
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-28 08:16:27 -10:00
YiYi Xu
a971c598b5 fix auto_pipeline: pass kwargs to load_config (#4793)
* fix

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-28 07:42:16 -10:00
YiYi Xu
934d439a42 fix bug in StableDiffusionXLControlNetPipeline when use guess_mode (#4799)
* fix



---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-28 06:51:17 -10:00
Dhruv Nair
e3f3672f46 Fix Disentangle ONNX and non-ONNX pipeline (#4656)
* initial commit to fix inheritance issue

* clean up sd onnx upscale

* clean up
2023-08-28 21:14:49 +05:30
Mario Namtao Shianti Larcher
87ae330056 [Examples] Save SDXL LoRA weights with chosen precision (#4791)
* Increase min accelerate ver to avoid OOM when mixed precision

* Rm re-instantiation of VAE

* Rm casting to float32

* Del unused models and free GPU

* Fix style
2023-08-28 13:57:40 +05:30
Patrick von Platen
1b46c66132 make style 2023-08-28 07:17:21 +00:00
Yead
031358988b Fix save_path bug in textual inversion training script (#4710)
* Update textual_inversion.py

fixed safe_path bug in textual inversion training

* Update test_examples.py

update test_textual_inversion for updating saved file's name

* Update textual_inversion.py

fixed some formatting issues

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-28 09:17:08 +02:00
Shauray Singh
fd35689f25 [WIP] Add Fabric (#4201)
* empty PR

* init

* changes

* starting with the pipeline

* stable diff

* prev

* more things, getting started

* more functions

* makeing it more readable

* almost done testing

* var changes

* testing

* device

* device support

* maybe

* device malfunctions

* new new

* register

* testing

* exec does not work

* float

* change info

* change of architecture

* might work

* testing with colab

* more attn atuff

* stupid additions

* documenting and testing

* writing tests

* more docs

* tests and docs

* remove test

* empty PR

* init

* changes

* starting with the pipeline

* stable diff

* prev

* more things, getting started

* more functions

* makeing it more readable

* almost done testing

* var changes

* testing

* device

* device support

* maybe

* device malfunctions

* new new

* register

* testing

* exec does not work

* float

* change info

* change of architecture

* might work

* testing with colab

* more attn atuff

* stupid additions

* documenting and testing

* writing tests

* more docs

* tests and docs

* remove test

* change cross attention

* revert back

* tests

* reverting back to orig

* changes

* test passing

* pipeline changes

* before quality

* quality checks pass

* remove print statements

* doc fixes

* __init__ error something

* update docs, working on dim

* working on encoding

* doc fix

* more fixes

* no more dependent on 512*512

* update docs

* fixes

* test passing

* remove comment

* fixes and migration

* simpler tests

* doc changes

* green CI

* changes

* more docs

* changes

* new images

* to community examples

* selete

* more fixes

* changes

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-28 09:10:55 +02:00
chillpixel
e8c9069d6f Update loaders.py (#4805)
* Update loaders.py

Solves an error sometimes thrown while iterating over state_dict.keys() caused by using the .pop() method within the loop.

* Update loaders.py
2023-08-28 11:23:25 +05:30
Patrick von Platen
766aa50f70 [LoRA Attn Processors] Refactor LoRA Attn Processors (#4765)
* [LoRA Attn] Refactor LoRA attn

* correct for network alphas

* fix more

* fix more tests

* fix more tests

* Move below

* Finish

* better version

* correct serialization format

* fix

* fix more

* fix more

* fix more

* Apply suggestions from code review

* Update src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py

* deprecation

* relax atol for slow test slighly

* Finish tests

* make style

* make style
2023-08-28 10:38:09 +05:30
Patrick von Platen
c4d2823601 [SDXL Lora] Fix last ben sdxl lora (#4797)
* Fix last ben sdxl lora

* Correct typo

* make style
2023-08-26 23:31:56 +02:00
Patrick von Platen
4f8853e481 [Torch compile] Fix torch compile for controlnet (#4795)
Fix torch compile for controlnete
2023-08-26 22:30:02 +02:00
Steven Liu
fed88195e3 [docs] Fix syntax for compel (#4794)
* fix syntax

* update image
2023-08-26 11:33:10 -07:00
Sayak Paul
0de35e4a52 [Tests] Tighten up LoRA loading relaxation (#4787)
* debugging

* better logic for filtering.

* Update src/diffusers/loaders.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-26 15:01:16 +05:30
Canberk Kandemir
0d81e543a2 Unet fix (#4769)
* Optional images variable train_custom_diffusion.py

* Fixed train_custom_diffusion.py

* Revert accidental changes to unet_2d_condition.py

* "Format code with black"
2023-08-26 11:01:24 +02:00
Sayak Paul
3be0ff9056 [Core] Support negative conditions in SDXL (#4774)
* add: support negative conditions.

* fix: key

* add: tests

* address PR feedback.

* add documentation

* add img2img support.

* add inpainting support.

* ad controlnet support

* Apply suggestions from code review

* modify wording in the doc.
2023-08-26 09:13:44 +05:30
Patrick von Platen
2764db3194 [SDXL] Add docs about forcing passed embeddings to be 0 (#4783)
* make style

* make style

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* make style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-25 20:52:45 +02:00
Patrick von Platen
048d901993 make style 2023-08-25 18:51:03 +00:00
cmdr2
cb432c4ebc Allow passing a checkpoint state_dict to convert_from_ckpt (instead of just a string path) (#4653)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-25 20:50:39 +02:00
YiYi Xu
b7b1a30bc4 refactor prepare_mask_and_masked_image with VaeImageProcessor (#4444)
* refactor image processor for mask
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-25 08:18:48 -10:00
Will Berman
7e5587a5ac instance_prompt->class_prompt (#4784) 2023-08-25 20:06:55 +02:00
Mayank Khanduja
dc8da1d449 Fixed broken link of CLIP doc in evaluation doc (#4760) 2023-08-25 20:04:50 +02:00
Zijian He
3dd540171d fix bug of progress bar in clip guided images mixing (#4729) 2023-08-25 18:54:03 +02:00
YiYi Xu
b3b2d30cd8 fix a bug in from_pretrained when load optional components (#4745)
* fix
---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-25 06:25:48 -10:00
Dhruv Nair
3bba44d74e [WIP ] Proposal to address precision issues in CI (#4775)
* proposal for flaky tests

* clean up
2023-08-25 19:12:09 +05:30
Sanchit Gandhi
b1290d3fb8 Convert MusicLDM (#4579)
* from audioldm

* fix vae

* move to new pipeline

* copied from audioldm

* remove redundant control flow

* iterate

* fix docstring

* finish pipeline

* tests: from audioldm2

* iterate

* finish fast tests

* finish slow integration tests

* add docs

* remove dtype test

* update toctree

* "copied from" in conversion (where possible)

* Update docs/source/en/api/pipelines/musicldm.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix docstring

* make nightly

* style

* fix dtype test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-25 13:31:00 +01:00
Sanchit Gandhi
29a11c2a94 [AudioLDM 2] Pipeline fixes (#4738)
* fix docs

* fix unet docs

* use image output for latents

* fix hub checkpoints

* fix pipeline example

* update example

* return_dict = False

* revert image pipeline output

* revert doc changes

* remove dtype test

* make style

* remove docstring updates

* remove unet docstring update

* Empty commit to re-trigger CI

* fix cpu offload

* fix dtype test

* add offload test
2023-08-25 11:38:10 +01:00
Patrick von Platen
cdacd8f1dd Torch device (#4755) 2023-08-25 11:13:32 +02:00
Sayak Paul
470d51c8ed improve setup.py (#4748) 2023-08-25 13:44:20 +05:30
Andrew Zhu
d6141205cd fix sdxl_lwp empty neg_prompt error issue (#4743)
* fix sdxl_lwp empty neg_prompt error issue

* fix sdxl_lwp empty neg_prompt error issue, update code format

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-25 09:55:56 +05:30
Sayak Paul
4447547eda [Examples] fix sdxl dreambooth lora checkpointing. (#4749)
* fix sdxl dreambooth lora checkpointing.

* style
2023-08-25 09:50:02 +05:30
Sayak Paul
5222294748 [LoRA] relax lora loading logic (#4610)
* relax lora loading logic.

* cater to the other cases too.

* fix: variable name

* bring the chaos down.

* check

* deal with checkpointed files.

* Apply suggestions from code review

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>

* style

---------

Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
2023-08-25 09:35:51 +05:30
Mario Namtao Shianti Larcher
c25c46137d [Examples] Add madebyollin VAE to SDXL LoRA example, along with an explanation (#4762)
Add madebyollin VAE to LoRA example, along with an explenation
2023-08-25 09:34:32 +05:30
Will Berman
3105c710ba [fix] multi t2i adapter set total_downscale_factor (#4621)
* [fix] multi t2i adapter set total_downscale_factor

* move image checks into check inputs

* remove copied from
2023-08-24 12:01:23 -07:00
Patrick von Platen
58f5f748f4 [Tests] Fix paint by example (#4761)
* [Tests] Fix paint by example

* Update src/diffusers/pipelines/paint_by_example/image_encoder.py
2023-08-24 16:03:10 +02:00
Dhruv Nair
4f05058bb7 Clean up flaky behaviour on Slow CUDA Pytorch Push Tests (#4759)
use max diff to compare model outputs
2023-08-24 18:58:02 +05:30
Patrick von Platen
5d4413001b make style 2023-08-24 10:19:47 +00:00
Symbiomatrix
863e741614 Bugfix for SDXL model loading in low ram system. (#4628)
Update convert_from_ckpt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-24 12:19:16 +02:00
Sanchit Gandhi
24c5e7708b [AudioLDM2] Doc fixes (#4739)
* [AudioLDM2] Doc fixes

* update docstrings

* fix unet docstring

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-24 07:20:27 +05:30
YiYi Xu
cd21b965d1 add a step_index counter (#4347)
add self.step_index

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-23 10:49:54 -10:00
Yinzhen Wang
d185b5ed5f change validation scheduler for train_dreambooth.py when training IF (#4333)
* dreambooth training

* train_dreambooth validation scheduler

* set a particular scheduler via a string

* modify readme after setting a particular scheduler via a string

* modify readme after setting a particular scheduler

* use importlib to set a particular scheduler

* import with correct sort
2023-08-23 22:18:17 +02:00
Suraj Patil
709a642827 fix dummy import for AudioLDM2 (#4741)
* fix import

* style
2023-08-23 22:07:47 +02:00
Sanchit Gandhi
0a0fe69aa6 [AudioLDM Docs] Update docstring (#4744) 2023-08-23 11:04:54 -07:00
realliujiaxu
124e76ddc6 [docs] add variant="fp16" flag (#4678) 2023-08-23 10:00:34 -07:00
Sanchit Gandhi
05b0ec63bc [AudioLDM Docs] Fix docs for output (#4737) 2023-08-23 18:02:11 +02:00
Sayak Paul
4909b1e3ac [Examples] fix checkpointing and casting bugs in train_text_to_image_lora_sdxl.py (#4632)
* fix: casting issues.

* fix checkpointing.

* tests

* fix: bugs
2023-08-23 10:58:54 +05:30
Ollin Boer Bohan
052bf3280b Fix AutoencoderTiny encoder scaling convention (#4682)
* Fix AutoencoderTiny encoder scaling convention

  * Add [-1, 1] -> [0, 1] rescaling to EncoderTiny

  * Move [0, 1] -> [-1, 1] rescaling from AutoencoderTiny.decode to DecoderTiny
    (i.e. immediately after the final conv, as early as possible)

  * Fix missing [0, 255] -> [0, 1] rescaling in AutoencoderTiny.forward

  * Update AutoencoderTinyIntegrationTests to protect against scaling issues.
    The new test constructs a simple image, round-trips it through AutoencoderTiny,
    and confirms the decoded result is approximately equal to the source image.
    This test checks behavior with and without tiling enabled.
    This test will fail if new AutoencoderTiny scaling issues are introduced.

  * Context: Raw TAESD weights expect images in [0, 1], but diffusers'
    convention represents images with zero-centered values in [-1, 1],
    so AutoencoderTiny needs to scale / unscale images at the start of
    encoding and at the end of decoding in order to work with diffusers.

* Re-add existing AutoencoderTiny test, update golden values

* Add comments to AutoencoderTiny.forward
2023-08-23 08:38:37 +05:30
Patrick von Platen
80871ac597 fix bad error message when transformers is missing (#4714) 2023-08-22 21:25:01 +02:00
Patrick von Platen
6abc66ef28 Fix all docs (#4721)
* [Docs] Fix all

* fix
2023-08-22 21:00:21 +02:00
Patrick von Platen
38efac9f61 Revert "Move controlnet load local tests to nightly (#4543)" (#4713)
This reverts commit 7b07f9812a.
2023-08-22 19:55:15 +02:00
Patrick von Platen
4f6399bedd rename test file to run, so that examples tests do not fail (#4715)
* rename test file to run, so that examples tests do not fail

* [Tests] Rename community tests
2023-08-22 19:54:46 +02:00
Patrick von Platen
6e1af3a777 [Docs] Fix docs controlnet missing /Tip (#4717) 2023-08-22 18:40:26 +02:00
zideliu
f22aad6e3a Add reference_attn & reference_adain support for sdxl (#4502)
* ADD SDXL reference & reference adain

* Update README.md

* Update README.md

* format stable_diffusion_xl_reference.py

* format file

* Format file

* format file

* fix format

* fix format with ruff

* fix format

* Update examples/community/README.md

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update examples/community/README.md

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update README.md

* Update README.md & fix typo

* Update README.md

* fix format

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-22 20:22:01 +05:30
realliujiaxu
ecded50ad5 add convert diffuser pipeline of XL to original stable diffusion (#4596)
convert diffuser pipeline of XL to original stable diffusion

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-22 19:11:06 +05:30
Alex McKinney
e34d9aa681 Replaces DIFFUSERS_TEST_DEVICE backend list with trying device (#4673)
This is a better method than comparing against a list of supported backends as it allows for supporting any number of backends provided they are installed on the user's system.
This should have no effect on the behaviour of tests in Huggingface's CI workers.
See transformers#25506 where this approach has already been added.
2023-08-22 11:48:12 +05:30
Sayak Paul
8d30d25794 [LoRA] default to None when fc alphas are not available. (#4706)
default to None when fc alphas are not available.
2023-08-22 08:47:08 +05:30
Sayak Paul
1e0395e791 [LoRA] ensure different LoRA ranks for text encoders can be properly handled (#4669)
* debugging starts

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging ends, but does it?

* more robustness.
2023-08-22 08:21:13 +05:30
Sayak Paul
9141c1f9d5 [Core] enable lora for sdxl controlnets too and add slow tests. (#4666)
* enable lora for sdxl controlnets too.

* add: tests

* fix: assertion values.
2023-08-22 07:13:23 +05:30
dg845
f75b8aa9dd [docs] Add note in UniDiffusers Doc about PyTorch 1.X numerical stability issue (#4703)
* Add note regarding UniDiffuser pipeline numerical stability issues on PyTorch 1.X

* Use the doc-builder warning tag.
2023-08-22 07:12:06 +05:30
Sanchit Gandhi
7a24977ce3 Add AudioLDM 2 (#4549)
* from audioldm

* unet down + mid

* vae, clap, flan-t5

* start sequence audio mae

* iterate on audioldm encoder

* finish encoder

* finish weight conversion

* text pre-processing

* gpt2 pre-processing

* fix projection model

* working

* unet equivalence

* finish in base

* add unet cond

* finish unet

* finish custom unet

* start clean-up

* revert base unet changes

* refactor pre-processing

* tests: from audioldm

* fix some tests

* more fixes

* iterate on tests

* make fix copies

* harden fast tests

* slow integration tests

* finish tests

* update checkpoint

* update copyright

* docs

* remove outdated method

* add docstring

* make style

* remove decode latents

* enable cpu offload

* (text_encoder_1, tokenizer_1) -> (text_encoder, tokenizer)

* more clean up

* more refactor

* build pr docs

* Update docs/source/en/api/pipelines/audioldm2.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* small clean

* tidy conversion

* update for large checkpoint

* generate -> generate_language_model

* full clap model

* shrink clap-audio in tests

* fix large integration test

* fix fast tests

* use generation config

* make style

* update docs

* finish docs

* finish doc

* update tests

* fix last test

* syntax

* finalise tests

* refactor projection model in prep for TTS

* fix fast tests

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-21 12:34:21 +01:00
zuojianghua
74d902eb59 add config_file to from_single_file (#4614)
* Update loaders.py

add config_file to from_single_file, 
when the download_from_original_stable_diffusion_ckpt use

* Update loaders.py

add config_file to from_single_file,
when the download_from_original_stable_diffusion_ckpt use

* change config_file to original_config_file

* make style && make quality

---------

Co-authored-by: jianghua.zuo <jianghua.zuo@weimob.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-18 19:33:12 +05:30
Andrew Zhu
d7c4ae619d Add SDXL long weighted prompt pipeline (replace pr:4629) (#4661)
* Add SDXL long weighted prompt pipeline

* Add SDXL long weighted prompt pipeline usage sample in the readme document

* Add SDXL long weighted prompt pipeline usage sample in the readme document, add result image
2023-08-18 11:30:10 +05:30
Isotr0py
67ea2b7afa Support tiled encode/decode for AutoencoderTiny (#4627)
* Impl tae slicing and tiling

* add tae tiling test

* add parameterized test

* formatted code

* fix failed test

* style docs
2023-08-18 09:12:55 +05:30
Sayak Paul
a10107f92b fix: lora sdxl tests (#4652) 2023-08-17 15:59:50 +05:30
Sayak Paul
d0c30cfd37 make post-release (#4650) 2023-08-17 14:16:25 +05:30
Jacqui Wei
7c3e7fedcd Fix use_onnx parameter usage in from_pretrained func and update test_download_no_onnx_by_default test (#4508)
* add missing use_onnx in from_pretrained func

* fix test_download_no_onnx_by_default test func

* address comments

* split test cases
2023-08-17 11:49:32 +05:30
Patrick von Platen
029fb41695 [Safetensors] Make safetensors the default way of saving weights (#4235)
* make safetensors default

* set default save method as safetensors

* update tests

* update to support saving safetensors

* update test to account for safetensors default

* update example tests to use safetensors

* update example to support safetensors

* update unet tests for safetensors

* fix failing loader tests

* fix qc issues

* fix pipeline tests

* fix example test

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-17 10:54:28 +05:30
Batuhan Taskaya
852dc76d6d Support higher dimension LoRAs (#4625)
* Support higher dimension LoRAs

* add: tests

* fix: assertion values.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-17 10:07:07 +05:30
Scott Lessans
064f150813 Fix UnboundLocalError during LoRA loading (#4523)
* fixed

* add: tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-17 09:33:35 +05:30
Sayak Paul
5333f4c0ec make things clear in the controlnet sdxl doc. (#4644) 2023-08-17 09:04:28 +05:30
Dhruv Nair
3d08d8dc4e fix loading custom text encoder when using from_single_file (#4571)
fix loading custom text encoder when using from_single_file
2023-08-17 08:41:09 +05:30
Steven Liu
bdc4c3265f [docs] MultiControlNet (#4635)
multicontrolnet docs
2023-08-17 08:14:20 +05:30
Steven Liu
4ff7264d9b [docs] PushToHubMixin (#4622)
* push to hub docs

* fix typo

* feedback

* make style
2023-08-16 13:20:59 -06:00
Sayak Paul
5049599143 [Core] feat: MultiControlNet support for SDXL ControlNet pipeline (#4597)
* core: add multicontrolnet support to sdxl controlnet

* modify checks.

* fix: original_size determination

* add: tests for multi controlnet sdxl.

* remove unnecessary prints.
2023-08-16 20:30:39 +05:30
Suraj Patil
7b93c2a882 [research_projects] SDXL controlnet script (#4633)
add controlent script,
2023-08-16 18:27:08 +05:30
Dirk Morris
a7de96505b Fix unipc use_karras_sigmas exception - fixes huggingface/diffusers#4580 (#4581)
* Fix unipc karras sigmas exception - fixes huggingface/diffusers#4580

* Add unipc scheduler tests for karras sigmas
2023-08-16 10:01:53 +05:30
Sayak Paul
351aab60e9 Update text2image.md to fix the links (#4626) 2023-08-16 09:53:10 +05:30
nikhil-masterful
da5ab51d54 Add GLIGEN implementation (#4441)
* Add GLIGEN implementation

* GLIGEN: Fix code quality check failures

* GLIGEN: Fix Import block un-sorted or un-formatted failures

* GLIGEN: Fix check_repository_consistency failures

* GLIGEN: Add 'PositionNet' to versatile_diffusion/modeling_text_unet.py

* GLIGEN: check_repository_consistency: fix 'copy does not match' error

* GLIGEN: Fix review comments (1)

* GLIGEN: Fix E721 Do not compare types, use `isinstance()` failures

* GLIGEN : Ensure _encode_prompt() copy matches to StableDiffusionPipeline

* GLIGEN: Fix ruff E721 failure in unidiffuser/test_unidiffuser.py

* GLIGEN: doc_builder: restyle pipeline_stable_diffusion_gligen.py

* GIGLEN: reset files unrelated to gligen

* GLIGEN: Fix documentation comments (1)

* GLIGEN: Fix review comments (2)

* GLIGEN: Added FastTest

* GLIGEN: Fix review comments (3)
2023-08-16 09:34:17 +05:30
Sayak Paul
5175d3d7a5 add: train to text image with sdxl script. (#4505)
* add: train to text image with sdxl script.

Co-authored-by: CaptnSeraph <s3raph1m@gmail.com>

* fix: partial func.

* fix: default value of output_dir.

* make style

* set num inference steps to 25.

* remove mentions of LoRA.

* up min version

* add: ema cli arg

* run device placement while running step.

* precompute vae encodings too.

* fix

* debug

* should work now.

* debug

* debug

* goes alright?

* style

* debugging

* debugging

* debugging

* debugging

* fix

* reinit scheduler if prediction_type was passed.

* akways cast vae in float32

* better handling of snr.

Co-authored-by: bghira <bghira@users.github.com>

* the vae should be also passed

* add: docs.

* add: sdlx t2i tests

* save the pipeline

* autocast.

* fix: save_model_card

* fix: save_model_card.

---------

Co-authored-by: CaptnSeraph <s3raph1m@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: bghira <bghira@users.github.com>
2023-08-16 09:02:49 +05:30
Sayak Paul
a7508a76f0 add: pushtohubmixin to pipelines and schedulers docs overview. (#4607)
* add: pushtohubmixin to pipelines and schedulers docs overview.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-15 22:23:17 +05:30
Sayak Paul
aaef41b5fe [Docs] fix links in the controlling generation doc. (#4612)
* fix links in the controlling generation doc.

* more fixes.
2023-08-15 20:27:13 +05:30
Wang Qiang
078df46bc9 An invalid clerical error in sdxl finetune (#4608) 2023-08-15 10:41:51 +05:30
Sayak Paul
15782fd506 [Pipeline utils] feat: implement push_to_hub for standalone models, schedulers as well as pipelines (#4128)
* feat: implement push_to_hub for standalone models.

* address PR feedback.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* remove max_shard_size.

* add: support for scheduler push_to_hub

* enable push_to_hub support for flax schedulers.

* enable push_to_hub for pipelines.

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* reflect pr feedback.

* address another round of deedback.

* better handling of kwargs.

* add: tests

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

* setting hub staging to False for now.

* incorporate staging test as a separate job.

Co-authored-by: ydshieh <2521628+ydshieh@users.noreply.github.com>

* fix: tokenizer loading.

* fix: json dumping.

* move is_staging_test to a better location.

* better treatment to tokens.

* define repo_id to better handle concurrency

* style

* explicitly set token

* Empty-Commit

* move SUER, TOKEN to test

* collate org_repo_id

* delete repo

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: ydshieh <2521628+ydshieh@users.noreply.github.com>
2023-08-15 07:39:22 +05:30
Sayak Paul
d93ca26893 [Examples] Update InstructPix2Pix README_sdxl.md to fix mentions (#4574)
* Update README_sdxl.md to fix mentions

* add --push_to_hub

* add --push_to_hub

* fix: mention
2023-08-14 17:48:13 +05:30
Claire Froelich
32963c24c5 Fix git-lfs command typo in docs (#4586)
fix typo in git-lfs command

added missing hyphen. "git lfs" is not a command
2023-08-14 17:21:45 +05:30
AisingioroHao
1b739e7344 Fixed invalid pipeline_class_name parameter. (#4590)
* Fixed invalid pipeline_class_name parameter.

* Fix the format
2023-08-14 17:21:17 +05:30
Sayak Paul
d67eba0f31 [Utility] adds an image grid utility (#4576)
* add: utility for image grid.

* add: return type.

* change necessary places.

* add to utility page.
2023-08-12 10:34:51 +05:30
Steven Liu
714bfed859 [docs] Fix ControlNet SDXL docstring (#4582)
fix
2023-08-11 10:43:40 -07:00
Sayak Paul
d5983a6779 [Examples] fix: network_alpha -> network_alphas (#4572)
network_alpha
2023-08-11 14:18:49 +05:30
Mystfit
796c01534d Fixing repo_id regex validation error on windows platforms (#4358)
* Fixing repo_id regex validation error on windows platforms

* Validating correct URL with prefix is provided

If we are loading a URL then we don't need to use os.path.join and array slicing to split out a repo_id and file path from an absolute filepath. 

Checking if the URL prefix is valid first before doing any URL splitting otherwise we raise a ValueError since neither a valid filepath or URL was provided.

* Style fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-11 11:11:43 +05:30
Abhipsha Das
c8d86e9f0a Remove code snippets containing is_safetensors_available() (#4521)
* [WIP] Remove code snippets containing `is_safetensors_available()`

* Modifying `import_utils.py`

* update pipeline tests for safetensor default

* fix test related to cached requests

* address import nits

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2023-08-11 11:05:22 +05:30
dotieuthien
b28cd3fba0 Convert Stable Diffusion ControlNet to TensorRT (#4465)
* convert tensorrt controlnet

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix code quality

* Fix number controlnet condition

* Add convert SD XL to onnx

* Add convert SD XL to tensorrt

* Add convert SD XL to tensorrt

* Add examples in comments

* Add examples in comments

* Add test onnx controlnet

* Add tensorrt test

* Remove copied

* Move file test to examples/community

* Remove script

* Remove script

* Remove text

---------

Co-authored-by: dotieuthien <thien.do@mservice.com.vn>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-11 08:12:26 +05:30
Steven Liu
cd7071e750 [docs] Add safetensors flag (#4245)
* add safetensors flag

* apply review
2023-08-10 12:37:23 -07:00
Steven Liu
e31f38b5d6 [docs] Remove attention slicing (#4518)
* remove attention slicing

* apply feedback
2023-08-10 11:00:03 -07:00
Steven Liu
3bd5e073cb [docs] Expand prompt weighting (#4516)
* add more weighting/blend/conjunction

* finish blend/conjunction

* add textual inversion example

* add dreambooth
2023-08-10 10:56:53 -07:00
YiYi Xu
3df52ba8dc [Doc] update sdxl-controlnet repo name (#4564)
* rename

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-10 22:02:32 +05:30
Sayak Paul
c697c5ab57 improve controlnet sdxl docs now that we have a good checkpoint. (#4556) 2023-08-10 08:21:36 +05:30
VV-A-VV
3fd45eb10f fix some typo error (#4546)
* fix some typo error

* Undo changes to capitalization
2023-08-10 06:49:25 +05:30
Patrick von Platen
5cbcbe3c63 Revert "introduce minimalistic reimplementation of SDXL on the SDXL doc" (#4548)
Revert "introduce minimalistic reimplementation of SDXL on the SDXL doc (#4532)"

This reverts commit e7e3749498.
2023-08-10 06:49:06 +05:30
Dhruv Nair
7b07f9812a Move controlnet load local tests to nightly (#4543)
move controlnet load local tests to nihghtly
2023-08-09 23:00:42 +05:30
Steven Liu
16ad13b61d [docs] Clean scheduler api (#4204)
* clean scheduler mixin

* up to dpmsolvermultistep

* finish cleaning

* first draft

* fix overview table

* apply feedback

* update reference code
2023-08-09 09:00:35 -07:00
Dhruv Nair
da0e2fce38 pin ruff version for quality checks (#4539)
* pin ruff version for quality checks

* update dependency versions table

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-09 16:46:45 +05:30
Dhruv Nair
a67ff32301 Move slow tests to nightly (#4526)
* move slow pix2pixzero tests to nightly

* move slow panorama tests to nightly

* move txt2video full test to nightly

* clean up

* remove nightly test from text to video pipeline
2023-08-09 12:38:15 +02:00
jere357
3c1b4933bd Changed code that converts tensors to PIL images in the write_your_own_pipeline notebook (#4489)
changed code that converts tensors to PIL images
2023-08-09 15:00:51 +05:30
Sayak Paul
e731ae0ec8 Update README_sdxl.md to include the free-tier Colab Notebook (#4540)
Update README_sdxl.md
2023-08-09 14:32:14 +05:30
Rastislav Švarba
6c5b5b260e Fix push_to_hub in train_text_to_image_lora_sdxl.py example (#4535)
fix: push_to_hub in train text2image lora sdxl
2023-08-09 11:48:24 +05:30
Simo Ryu
e7e3749498 introduce minimalistic reimplementation of SDXL on the SDXL doc (#4532)
minsdxl
2023-08-09 07:33:07 +05:30
Wooyeol Baek
c7c0b57541 Copy lora functions to XLPipelines (#4512)
* add load_lora_weights and save_lora_weights to StableDiffusionXLImg2ImgPipeline

* add load_lora_weights and save_lora_weights to StableDiffusionXLInpaintPipeline

* apply black format

* apply black format

* add copy statement

* fix statements

* fix statements

* fix statements

* run `make fix-copies`
2023-08-08 18:53:22 +05:30
Dhruv Nair
c91272d631 fix indexing issue in sd reference pipeline (#4531) 2023-08-08 15:14:19 +02:00
George He
f0725c5845 Fix misc typos (#4479)
Fix typos
2023-08-07 17:21:19 -07:00
YiYi Xu
aef11cbf66 add pipeline_class_name argument to Stable Diffusion conversion script (#4461)
* add pipeline class

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-07 06:44:31 -10:00
Dhruv Nair
71c8224159 Moving certain pipelines slow tests to nightly (#4469)
* move audioldm tests to nightly

* move kandinsky im2img ddpm test to nightly

* move flax dpm test to nightly

* move diffedit dpm test to nightly

* move fp16 slow tests to nightly
2023-08-07 17:28:56 +02:00
Patrick von Platen
4367b8a300 move pipeline only when running validation (#4515) 2023-08-07 17:20:18 +02:00
ethansmith2000
f4f854138d grad checkpointing (#4474)
* grad checkpointing

* fix make fix-copies

* fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-07 15:26:54 +02:00
Patrick von Platen
e1b5b8ba13 Make sure fp16-fix is used as default (#4510)
* Make sue fp16-fix is used as default

* fix vae

* finish

* fix
2023-08-07 15:16:37 +02:00
Patrick von Platen
dff5ff35a9 [SDXL LoRA] fix batch size lora (#4509)
fix batch size lora
2023-08-07 13:27:13 +02:00
Sayak Paul
b2456717e6 Update lora.md to clarify SDXL support (#4503)
* Update lora.md

* Update lora.md
2023-08-07 11:06:30 +05:30
Vladislav Artemyev
2e69cf16fe Log global_step instead of epoch to tensorboard (#4493)
Co-authored-by: mrlzla <noname@noname.com>
2023-08-07 07:49:39 +05:30
takuoko
9c29bc2df8 [Examples] Support train_text_to_image_lora_sdxl.py (#4365)
* add train_text_to_image_lora_sdxl.py

* add train_text_to_image_lora_sdxl.py

* add test and minor fix

* Update examples/text_to_image/README_sdxl.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix unwrap_model rule

* add invisible-watermark in requirements

* del invisible-watermark

* Update examples/text_to_image/README_sdxl.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/text_to_image/README_sdxl.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/text_to_image/train_text_to_image_lora_sdxl.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* del comment & update readme

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-06 13:47:20 +05:30
AisingioroHao
70d098540d Add a data_dir parameter to the load_dataset method. (#4482)
Co-authored-by: AisingioroHao0 <1286098622@qq.com>
2023-08-06 08:45:48 +05:30
Patrick von Platen
ea1fcc28a4 [SDXL] Allow SDXL LoRA to be run with less than 16GB of VRAM (#4470)
* correct

* correct blocks

* finish

* finish

* finish

* Apply suggestions from code review

* fix

* up

* up

* up

* Update examples/dreambooth/README_sdxl.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-08-04 20:06:38 +02:00
Patrick von Platen
66de221409 Update README_sdxl.md (#4472) 2023-08-04 16:23:35 +02:00
Sayak Paul
06f73bd6d1 [Tests] Adds integration tests for SDXL LoRAs (#4462)
* add: integration tests for SDXL LoRAs.

* change pipeline class.

* fix assertion values.

* print values again.

* let's see.

* let's see.

* let's see.

* finish
2023-08-04 16:25:53 +05:30
asfiyab-nvidia
c14c141b86 TensorRT Inpaint pipeline: minor fixes (#4457)
Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
2023-08-04 12:28:28 +02:00
manosplitsis
79ef9e528c Fixed multi-token textual inversion training (#4452)
* added placeholder token concatenation during training

* Update examples/textual_inversion/textual_inversion.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-04 12:21:31 +02:00
Dhruv Nair
801a5e2199 Cleanup Pass on flaky slow tests for Stable Diffusion (#4455)
* lower num inference steps and precision checkk

* fix flaky inpaint tests

* remove unsued imports

* set unet default attn processor
2023-08-04 10:24:56 +02:00
YiYi Xu
1edd0debaa fix-format (#4458)
make style

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-03 20:34:37 -07:00
YiYi Xu
29ece0db79 a few fix for kandinsky combined pipeline (#4352)
* add xformer

* enable_sequential_cpu_offload

* style

* Update src/diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-03 15:10:41 -10:00
Patrick von Platen
1a8843f93e add sdxl to prompt weighting (#4439)
* add sdxl to prompt weighting

* Update docs/source/en/using-diffusers/weighted_prompts.md

* Update docs/source/en/using-diffusers/weighted_prompts.md

* add sdxl to prompt weighting

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

* Update docs/source/en/using-diffusers/weighted_prompts.md

* Apply suggestions from code review

* correct

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-03 21:41:48 +02:00
JinK
e391b789ac Support different strength for Stable Diffusion TensorRT Inpainting pipeline (#4216)
* Support different strength

* run make style
2023-08-03 21:32:44 +02:00
VV-A-VV
d0b8de1262 Delete the duplicate code for the contolnet img 2 img (#4411)
delete the duplicated code from the controlnet-img-2-img pipelines
2023-08-03 20:32:03 +02:00
Yuyang Zhao
b9058754c5 Fix bug caused by typo (#4357)
Fix the typo that causes `omegaconf.errors.ConfigAttributeError: Missing key parms`
2023-08-03 20:27:42 +02:00
Alan Ji
777becda6b fix typo to ensure make test-examples work correctly (#4329)
fix typo to ensure `make test-examples` work correctly
2023-08-03 20:17:48 +02:00
cmdr2
380bfd82c1 Allow controlnets to be loaded (from ckpt) in a parallel thread with a SD model (ckpt), and speed it up slightly (#4298)
Faster controlnet model instantiation, and allow controlnets to be loaded (from ckpt) in a parallel thread with a SD model (ckpt) without  tensor errors (race condition)
2023-08-03 20:11:13 +02:00
Steven Liu
5989a85edb [docs] Distilled SD (#4442)
* first draft

* add blog link
2023-08-03 11:03:42 -07:00
Levi McCallum
4188f3063a Add rank argument to train_dreambooth_lora_sdxl.py (#4343)
* Add rank argument to train_dreambooth_lora_sdxl.py

* Update train_dreambooth_lora_sdxl.py
2023-08-03 23:27:30 +05:30
George He
0b4430e840 Fix typerror in pipeline handling for MultiControlNets which only contain a single ControlNet (#4454)
* Handle single controlnet in multicontrolnet

* Fix formatting
2023-08-03 17:37:07 +02:00
Patrick von Platen
a74c995e7d make style 2023-08-03 14:45:06 +00:00
Neil Wang
85aa673bec auto type conversion (#4270)
* type conversion

Default value of `control_guidance_start` and `control_guidance_end` in `StableDiffusionControlNetPipeline.check_inputs` causes `TypeError: object of type 'float' has no len()`

Proposed fix: 
Convert `control_guidance_start` and `control_guidance_end` to list if float

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/controlnet/pipeline_controlnet.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-03 16:44:48 +02:00
Dhruv Nair
1d2587bb34 move tests to nightly (#4451)
* move tests to nightly

* clean up code quality issues

* more clean up
2023-08-03 15:25:28 +02:00
Patrick von Platen
372b58108e fix make style 2023-08-03 10:17:00 +00:00
w4ffl35
45171174b8 Prevent online access when desired when using download_from_original_stable_diffusion_ckpt (#4271)
Prevent online access when desired

- Bypass requests with config files option added to download_from_original_stable_diffusion_ckpt
- Adds local_files_only flags to all from_pretrained requests
2023-08-03 12:16:41 +02:00
cmdr2
4c4fe042a7 Accept pooled_prompt_embeds in the SDXL Controlnet pipeline. Fixes an error if prompt_embeds are passed. (#4309)
* Accept pooled_prompt_embeds in the SDXL Controlnet pipeline. Fixes an error if prompt_embeds are passed.

* Add a test for pooled prompt embeds
2023-08-03 13:05:19 +05:30
Will Berman
47bf8e566c can call encode_prompt with out setting a text encoder instance variable (#4396)
* can call encode_prompt with out setting a text encoder instance variable

* fix
2023-08-02 21:25:30 -07:00
Sayak Paul
18fc40c169 [Feat] add tiny Autoencoder for (almost) instant decoding (#4384)
* add: model implementation of tiny autoencoder.

* add: inits.

* push the latest devs.

* add: conversion script and finish.

* add: scaling factor args.

* debugging

* fix denormalization.

* fix: positional argument.

* handle use_torch_2_0_or_xformers.

* handle post_quant_conv

* handle dtype

* fix: sdxl image processor for tiny ae.

* fix: sdxl image processor for tiny ae.

* unify upcasting logic.

* copied from madness.

* remove trailing whitespace.

* set is_tiny_vae = False

* address PR comments.

* change to AutoencoderTiny

* make act_fn an str throughout

* fix: apply_forward_hook decorator call

* get rid of the special is_tiny_vae flag.

* directly scale the output.

* fix dummies?

* fix: act_fn.

* get rid of the Clamp() layer.

* bring back copied from.

* movement of the blocks to appropriate modules.

* add: docstrings to AutoencoderTiny

* add: documentation.

* changes to the conversion script.

* add doc entry.

* settle tests.

* style

* add one slow test.

* fix

* fix 2

* fix 2

* fix: 4

* fix: 5

* finish integration tests

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-08-02 23:58:05 +05:30
Xin Kong
615c04db15 [Pipelines] Add community pipeline for Zero123 (#4295)
* add zero123 pipeline to community

* add community doc

* reformat

* update zero123 pipeline, including cc_projection within diffusers; add convert ckpt scripts; support diffusers weights
2023-08-02 19:36:49 +02:00
Steven Liu
ae82a3eb34 [docs] AutoPipeline tutorial (#4273)
* first draft

* tidy api

* apply feedback

* mdx to md

* apply feedback

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-02 10:32:02 -07:00
Sayak Paul
816ca0048f [LoRA] Fix SDXL text encoder LoRAs (#4371)
* temporarily disable text encoder loras.

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debbuging.

* modify doc.

* rename tests.

* print slices.

* fix: assertions

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-08-02 17:00:56 +05:30
Sayak Paul
fef8d2f726 remove mentions of textual inversion from sdxl. (#4404) 2023-08-02 15:29:46 +05:30
Ella Charlaix
579b4b2020 Update documentation (#4422)
* update documentation

* minor
2023-08-02 11:49:22 +02:00
Steven Liu
6c5bd2a38d [docs] Fix SDXL docstring (#4397)
fix guidance scale value
2023-08-01 16:40:15 -07:00
Will Berman
160474ac61 train dreambooth fix pre encode class prompt (#4395) 2023-08-01 12:00:05 -07:00
YiYi Xu
c10861ee1b fix test_float16_inference (#4412)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-01 07:49:50 -10:00
YiYi Xu
94b332c476 support from_single_file for SDXL inpainting (#4408)
fix

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-08-01 07:47:22 -10:00
Dhruv Nair
6f4355f89f Cleanup pass for flaky Slow Tests for Stable diffusion (#4415)
* update expected slice so img2img compile tests pass

* use default attn processor

* use default attn processor and update expected slice value to pass test

* use default attn processor

* set default attn processor and update expected slice

* set default attn processor and change precision for check

* set unet to use default attn processor
2023-08-01 18:21:14 +02:00
estelleafl
05a1cb902c [ldm3d] documentation fixing typos (#4284)
* fixed typo

* updated doc to be consistent in naming

* make style/quality

* preprocessing for 4 channels and not 6

* make style

* test for 4c

* make style/quality

* fixed test on cpu

* fixed doc typo

* changed default ckpt to 4c

* Update pipeline_stable_diffusion_ldm3d.py

---------

Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
2023-08-01 09:03:29 -07:00
Patrick von Platen
c69526a3d5 [AutoPipeline] Correct naming (#4420) 2023-08-01 14:56:27 +02:00
Nishant Rajadhyaksha
6c49d542a3 Update docs of unet_1d.py (#4394)
Update unet_1d.py

highlighting the way the modules are actually fed in the main code as the order matters because no skip block attaches time embeds whilst others do not
2023-07-31 11:04:47 -07:00
Sayak Paul
ba43ce3476 minor doc fixes. (#4380) 2023-07-31 12:15:56 +05:30
Andrey Voroshilov
ea5b0575f8 Clean up duplicate lines in encode_prompt (#4369)
* Clean up duplicate line

* Clean up duplicate lines

* Clean up duplicate line
2023-07-30 15:49:46 +05:30
Patrick von Platen
4f986fb28a [SDXL] Fix dummy imports incorrect naming (#4370)
[SDXL] Fix dummy imports
2023-07-30 12:17:38 +02:00
Harutatsu Akiyama
aae27262f4 [SDXL-IP2P] Add gif for demonstrating training processes (#4342)
* [SDXL-IP2P] Add gif for demonstrating training processes

* [SDXL-IP2P] Add gif for demonstrating training processes

* [SDXL-IP2P] Change gif to URLs

* [SDXL-IP2P] Add URLs in case gif now show

---------

Co-authored-by: Harutatsu Akiyama <kf.zy.qin@gmail.com>
2023-07-30 10:07:10 +05:30
Sayak Paul
34b5b63bb8 Update README.md to have PyPI-friendly path (#4351) 2023-07-29 08:59:18 +05:30
Will Berman
2b1786735e fix fp type in t2i adapter docs (#4350) 2023-07-28 13:01:52 -07:00
Sayak Paul
4a4cdd6b07 [Feat] Support SDXL Kohya-style LoRA (#4287)
* sdxl lora changes.

* better name replacement.

* better replacement.

* debugging

* debugging

* debugging

* debugging

* debugging

* remove print.

* print state dict keys.

* print

* distingisuih better

* debuggable.

* fxi: tyests

* fix: arg from training script.

* access from class.

* run style

* debug

* save intermediate

* some simplifications for SDXL LoRA

* styling

* unet config is not needed in diffusers format.

* fix: dynamic SGM block mapping for SDXL kohya loras (#4322)

* Use lora compatible layers for linear proj_in/proj_out (#4323)

* improve condition for using the sgm_diffusers mapping

* informative comment.

* load compatible keys and embedding layer maaping.

* Get SDXL 1.0 example lora to load

* simplify

* specif ranks and hidden sizes.

* better handling of k rank and hidden

* debug

* debug

* debug

* debug

* debug

* fix: alpha keys

* add check for handling LoRAAttnAddedKVProcessor

* sanity comment

* modifications for text encoder SDXL

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* denugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* up

* up

* up

* up

* up

* up

* unneeded comments.

* unneeded comments.

* kwargs for the other attention processors.

* kwargs for the other attention processors.

* debugging

* debugging

* debugging

* debugging

* improve

* debugging

* debugging

* more print

* Fix alphas

* debugging

* debugging

* debugging

* debugging

* debugging

* debugging

* clean up

* clean up.

* debugging

* fix: text

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Batuhan Taskaya <batuhan@python.org>
2023-07-28 19:49:49 +02:00
Patrick von Platen
b7b6d6138d [SDXL] Make watermarker optional under certain circumstances to improve usability of SDXL 1.0 (#4346)
* improve sdxl

* more fixes

* improve sdxl

* improve sdxl

* improve sdxl

* finish
2023-07-28 19:29:22 +02:00
kathath
faa6cbc959 Fix repeat of negative prompt (#4335)
fix repeat of negative prompt
2023-07-28 18:14:22 +02:00
Patrick von Platen
306a7bd047 [ONNX] Don't download ONNX model by default (#4338)
* [Download] Don't download ONNX weights by default

* [Download] Don't download ONNX weights by default

* [Download] Don't download ONNX weights by default

* fix more

* finish

* finish

* finish
2023-07-28 14:02:48 +02:00
Tanupriya Singh
c7250f2b8a correct doc string for default value of guidance_scale (#4339) 2023-07-28 13:54:28 +02:00
Patrick von Platen
18b018c864 [SDXL Refiner] Fix refiner forward pass for batched input (#4327)
* fix_batch_xl

* Fix other pipelines as well

* up

* up

* Update tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_inpaint.py

* sort

* up

* Finish it all up Co-authored-by: Bagheera <bghira@users.github.com>

* Co-authored-by: Bagheera bghira@users.github.com

* Co-authored-by: Bagheera <bghira@users.github.com>

* Finish it all up Co-authored-by: Bagheera <bghira@users.github.com>
2023-07-28 12:34:18 +02:00
Sayak Paul
54fab2cd5f Update README_sdxl.md to correct the header (#4330)
Update README_sdxl.md
2023-07-28 09:22:14 +05:30
Sayak Paul
961173064d Honor the SDXL 1.0 licensing from the training scripts. (#4319)
* honor the original license.

* train_instruct_pix2pix_xl -> train_instruct_pix2pix_sdxl
2023-07-28 01:28:36 +05:30
Sayak Paul
7d0d073261 [Tests] add test for pipeline import. (#4276)
* add test for pipeline import.

* Update tests/others/test_dependencies.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address suggestions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-28 00:08:15 +05:30
Xinyang Li
01b6ec21fa fix validation option for dreambooth training example (#4317) 2023-07-27 09:58:52 -07:00
Ella Charlaix
92e5ddd295 Fix typo documentation (#4320)
fix typo documentation
2023-07-27 21:31:58 +05:30
Patrick von Platen
1926331eaf [Local loading] Correct bug with local files only (#4318)
* [Local loading] Correct bug with local files only

* file not found error

* fix

* finish
2023-07-27 16:16:46 +02:00
YiYi Xu
5fd3dca5f3 fix a bug in StableDiffusionUpscalePipeline when prompt is None (#4278)
* fix batch_size

* add test

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-07-27 15:07:50 +02:00
Duong A. Nguyen
a2091b7071 Fix SDXL conversion from original to diffusers (#4280)
* fix sdxl conversion

* convention
2023-07-27 15:05:43 +02:00
Patrick von Platen
d8bc1a4e51 [Torch.compile] Fixes torch compile graph break (#4315)
* fix torch compile

* Fix all

* make style
2023-07-27 13:53:36 +02:00
YiYi Xu
80c10d8245 update Kandinsky doc (#4301)
* update doc

* fix an error in autopipe doc

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-07-27 13:10:41 +02:00
Patrick von Platen
20e92586c1 0.20.0dev0 (#4299)
* 0.20.0dev0

* make style
2023-07-26 23:06:18 +02:00
Patrick von Platen
5623ea065a quick fix 2023-07-26 21:01:17 +02:00
Patrick von Platen
16049caf79 quick fix 2023-07-26 18:47:21 +00:00
Patrick von Platen
6a6dfe1cbd Rename (#4294)
* up

* Apply suggestions from code review

* Apply suggestions from code review

* up
2023-07-26 20:41:21 +02:00
Ella Charlaix
b83bdce42a add openvino and onnx runtime SD XL documentation (#4285)
* add openvino SD XL documentation

* add onnx SD XL integration

* rephrase

* update doc

* add images

* update model
2023-07-26 20:25:07 +02:00
camenduru
c6ae9b7df6 Where did this 'x' come from, Elon? (#4277)
* why mdx?

* why mdx?

* why mdx?

* no x for kandinksy either

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-26 18:18:14 +02:00
Patrick von Platen
b3e5cd6b4d [Kandinsky] Add combined pipelines / Fix cpu model offload / Fix inpainting (#4207)
* Add combined pipeline

* Download readme

* Upload

* up

* up

* fix final

* Add enable model cpu offload kandinsky

* finish

* finish

* Fix

* fix more

* make style

* fix kandinsky mask

* fix inpainting test

* add callbacks

* add tests

* fix tests

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* docs

* docs

* correct docs

* fix tests

* add warning

* correct docs

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-07-26 17:13:55 +02:00
Patrick von Platen
b37dc3b3cd Fix all missing optional import statements from pipeline folders (#4272)
* fix circular import

* fix imports when watermark not specified

* fix all pipelines
2023-07-26 01:46:05 +02:00
Batuhan Taskaya
ff8f58086b Load Kohya-ss style LoRAs with auxilary states (#4147)
* Support to load Kohya-ss style LoRA file format (without restrictions)

Co-Authored-By: Takuma Mori <takuma104@gmail.com>
Co-Authored-By: Sayak Paul <spsayakpaul@gmail.com>

* tmp: add sdxl to mlp_modules

---------

Co-authored-by: Takuma Mori <takuma104@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-26 00:24:19 +02:00
Sayak Paul
161449d51a [SDXL DreamBooth LoRA] multiple fixes (#4262)
* add automatic licensing.

* debugging

* debugging

* more debugging

* more debugging.

* run make fix-copies.

* change to default tracker.
2023-07-25 21:10:01 +02:00
Steven Liu
34abee0907 [docs] Fix image in SDXL docs (#4267)
fix image link
2023-07-25 09:41:11 -07:00
Harutatsu Akiyama
428dbfecd9 [SDXL and IP2P]: instruction pix2pix XL training and pipeline (#4079)
* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* [Community] Implementation of the IADB community pipeline (#3996)

* community pipeline: implementation of iadb

* iadb.py: reformat using black

* iadb.py: linting update

* add kandinsky to readme table (#4081)

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [From Single File] Force accelerate to be installed (#4078)

force accelerate to be installed

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Support instruction pix2pix sdxl

* Clean up IP2P SDXL code

* Clean up IP2P SDXL code

* [IP2P and SDXL] clean up code

* [IP2P and SDXL] clean up code

* [IP2P and SDXL] clean up code

* [IP2P SDXL] Address code reviews

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews, add docs, tests

* [IP2P SDXL] Address code reviews

* [IP2P SDXL] Address code reviews

* [IP2P SDXL] Add README_SDXL

* [IP2P SDXL] Address code reviews

* [IP2P SDXL] Address code reviews

* [IP2P SDXL] Fix the copy problems

* [IP2P SDXL] Add license

* [IP2P SDXL] Add license

* [IP2P SDXL] Add license

* [IP2P SDXL] Address code reivew for selecting VAE andd others

* [IP2P SDXL] Update README_sdxl

* [IP2P SDXL] Update __init__

* [IP2P SDXL] Update dummy_torch_and_transformers_and_invisible_watermark_objects

* address patrick's comments and some additions to readmes.

---------

Co-authored-by: Harutatsu Akiyama <kf.zy.qin@gmail.com>
Co-authored-by: Thomas Chambon <36728882+tchambon@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-25 18:19:35 +05:30
Ragnar Rova
4e2a021829 Model path for sdxl wrong in dreambooth README (#4261) 2023-07-25 18:06:50 +05:30
Patrick von Platen
ebfe343149 [from_single_file] Fix circular import (#4259)
* up

* finish

* fix final
2023-07-25 14:30:39 +02:00
Sayak Paul
5ef6b8fa53 Update README_sdxl.md to change the note on default hyperparameters (#4258) 2023-07-25 16:57:48 +05:30
YiYi Xu
c11d11d63d [draft v2] AutoPipeline (#4138)
* initial

* style

* from ...pipelines -> from ..pipeline_util

* make style

* fix-copies

* fix value_guided_sampling oops

* style

* add test

* Show failing test

* update from_pipe

* fix

* add controlnet, additional test and register unused original config

* update for controlnet

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* store unused config as private attribute and pass if can

* add doc

* kandinsky inpaint pipeline does not work with decoder checkpoint

* update doc

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* style

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix

* Apply suggestions from code review

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-25 13:20:35 +02:00
Patrick von Platen
d74561da2c [SDXL] Improve docs (#4196)
* Improve docs

* Correct docs

* Add better example inpaint

* make style

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-07-25 12:48:25 +02:00
Patrick von Platen
a0422ed0c9 [From Single File] Allow vae to be loaded (#4242)
* Allow vae to be loaded

* up
2023-07-25 12:16:43 +02:00
Will Berman
3dd339379d do not pass list to accelerator.init_trackers (#4248) 2023-07-24 21:10:37 -07:00
nupurkmr9
5652c43f83 Resolve bf16 error as mentioned in this [issue](https://github.com/huggingface/diffusers/issues/4139#issuecomment-1639977304) (#4214)
* resolve bf16 error

* resolve bf16 error

* resolve bf16 error

* resolve bf16 error

* resolve bf16 error

* resolve bf16 error

* resolve bf16 error
2023-07-25 05:41:19 +05:30
Sayak Paul
365e8461ac [SDXL DreamBooth LoRA] add support for text encoder fine-tuning (#4097)
* Allow low precision sd xl

* finish

* finish

* feat: initial draft for supporting text encoder lora finetuning for SDXL DreamBooth

* fix: variable assignments.

* add: autocast block.

* add debugging

* vae dtype hell

* fix: vae dtype hell.

* fix: vae dtype hell 3.

* clean up

* lora text encoder loader.

* fix: unwrapping models.

* add: tests.

* docs.

* handle unexpected keys.

* fix vae dtype in the final inference.

* fix scope problem.

* fix: save_model_card args.

* initialize: prefix to None.

* fix: dtype issues.

* apply gixes.

* debgging.

* debugging

* debugging

* debugging

* debugging

* debugging

* add: fast tests.

* pre-tokenize.

* address: will's comments.

* fix: loader and tests.

* fix: dataloader.

* simplify dataloader.

* length.

* simplification.

* make style && make quality

* simplify state_dict munging

* fix: tests.

* fix: state_dict packing.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-25 05:35:48 +05:30
Sayak Paul
fed12376c5 [ControlNet SDXL training] fixes in the training script (#4223)
* fix: #4206

* add: sdxl controlnet training smoketest.

* remove unnecessary token inits.

* add: licensing to model card.

* include SDXL licensing in the model card and make public visibility default

* debugging

* debugging

* disable local file download.

* fix: training test.

* fix: ckpt prefix.
2023-07-25 05:31:48 +05:30
Patrick von Platen
95b7de88fd [Docs] Fix from pretrained docs (#4240)
* [Docs] Fix from pretrained docs

* [Docs] Fix from pretrained docs
2023-07-24 20:24:29 +02:00
Apoorva Kulkarni
cbb1ead60b docs: Add missing import statement in textual_inversion inference example (#4227)
docs: Add missing import statement in textual_inversion inference instructions
2023-07-24 11:07:53 -07:00
Steven Liu
5470a4fce3 [docs] Other modalities (#4205)
remove coming soon, rl pipeline
2023-07-24 10:51:24 -07:00
39th president of the United States, probably
e98fabc550 Allow specifying denoising_start and denoising_end as integers representing the discrete timesteps, fixing the XL ensemble not working for many schedulers (#4115)
* Fix the XL ensemble not working for any kerras scheduler sigmas and having an off by one bug

* Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py

* make sytle

---------

Co-authored-by: Jimmy <39@🇺🇸.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-24 19:44:35 +02:00
Cris
fa356bd4da [docs] Changed path for ControlNet in docs (#4215)
docs: changed path for control net
2023-07-24 10:13:10 -07:00
Patrick von Platen
3ba36f97b8 [SD-XL] Fix sdxl controlnet inference (#4238)
* Fix controlnet xl inference

* correct some sd xl control inference
2023-07-24 18:43:35 +02:00
Patrick von Platen
b288684d25 [SDXL] Fix sd xl encode prompt (#4237)
* [SDXL] Fix sd xl encode prompt

* add tests
2023-07-24 18:37:07 +02:00
Lucain
06eda5b232 Raise initial HTTPError if pipeline is not cached locally (#4230)
* Raise initial HTTPError if pipeline is not cached locally

* make style
2023-07-24 15:35:16 +02:00
Hu Ye
8e5921cac1 fix a bug of prompt embeds in sdxl (#4099)
* fix bug in sdxl

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_xl.py

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_xl_inpaint.py

* Update pipeline_stable_diffusion_xl.py

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_xl_inpaint.py

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_controlnet_sd_xl.py

* Update pipeline_controlnet_sd_xl.py

* Update pipeline_stable_diffusion_xl.py

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_xl_inpaint.py

* Update test_stable_diffusion_xl.py

* Update test_stable_diffusion_xl.py

* Update test_stable_diffusion_xl.py

add test on prompt_embeds

* add test on prompt_embeds

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-24 10:14:20 +02:00
YiYi Xu
8e8954bd15 fix no CFG for kandinsky pipelines (#4193)
* fix bug when no cfg

* style

* fix no cfg for shap-e and cycle

* style

* fix no cfg for sdxl

* fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-07-24 10:10:14 +02:00
Jackmin801
09fab5610e [fix] network_alpha when loading unet lora from old format (#4221)
fix: missed network_alpha when loading lora from old format
2023-07-24 06:13:32 +05:30
Apoorva Kulkarni
2e53936c97 docs: Typo in dreambooth example README.md (#4203)
fix: Typo in dreambooth example README.md
2023-07-21 15:16:38 -07:00
Steven Liu
a69754bb87 [docs] Clean up pipeline apis (#3905)
* start with stable diffusion

* fix

* finish stable diffusion pipelines

* fix path to pipeline output

* fix flax paths

* fix copies

* add up to score sde ve

* finish first pass of pipelines

* fix copies

* second review

* align doc titles

* more review fixes

* final review
2023-07-21 11:01:34 -07:00
Kadir Nar
bcc570b910 📄 Renamed File for Better Understanding (#4056)
* 📄 Renamed File for Better Understanding

Renamed the 'rl' file to 'run_locomotion'. This change was made to improve the clarity and readability of the codebase. The 'rl' name was ambiguous, and 'run_locomotion' provides a more clear description of the file's purpose.

Thanks 🙌

* 📁 [Docs] Renamed Directory for Better Clarity

Renamed the 'rl' directory to 'reinforcement_learning'. This change provides a clearer understanding of the directory's purpose and its contents.

* Update examples/reinforcement_learning/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* 📝 Update README

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-21 09:08:27 -07:00
Sayak Paul
4dcab9227a [SDXL ControlNet Training] Follow-up fixes (#4188)
* hash computation. thanks to @lhoestq

* disable dtype casting.

* remove comments.
2023-07-21 20:55:33 +05:30
apolinário
aed30dff6b Allow passing different prompts to each text_encoder on stable_diffusion_xl pipelines (#4156)
* sdxl prompt2

* Improve checks

* doc linting

* whoops

* remove cat

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add other pipelines and tests

* Add multi-prompting to docs

* doc and copies check

* Fix copied froms

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Bring back the original code for unrelated files

* Fix tests

* Fix img2img

* Fix all

* fix

---------

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-21 14:50:22 +02:00
statelesshz
e2bbaa4f54 make enable_sequential_cpu_offload more generic for third-party devices (#4191)
* make enable_sequential_cpu_offload more generic for third-party devices

* make style
2023-07-21 17:15:09 +05:30
Patrick von Platen
1e853e240e [Safetensors] make safetensors a required dep (#4177) 2023-07-21 12:57:30 +02:00
Batuhan Taskaya
ad787082e2 Fix unloading of LoRAs when xformers attention procs are in use (#4179) 2023-07-21 14:29:20 +05:30
Will Berman
7a47df22a5 remove bentoml doc in favor of blogpost (#4182) 2023-07-21 08:23:36 +05:30
Patrick von Platen
d620070bb3 [ControlNet Training] Remove safety from controlnet (#4180)
Remove safety from controlnet
2023-07-21 08:03:59 +05:30
Patrick von Platen
b7a6e34cc6 [From single file] Make sure that controlnet stays False for from_single_file (#4181)
* fix from signle file

* Make sure converison always works with safetensors
2023-07-21 02:09:11 +02:00
YiYi Xu
47b3346422 Shap-E: add support for mesh output (#4062)
* add output_type=mesh

* update img2img

* make style

* add doc

* make style

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add docstring for output_type

* add a section in doc about hub mesh visualization/ rotation

* update conversion script so default background is white

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* renderer -> shap_e_renderer

* img2img renderer -> shap_e_renderer

* fix tests

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-20 18:05:13 +02:00
Ruslan Vorovchenko
07f1fbb18e Asymmetric vqgan (#3956)
* added AsymmetricAutoencoderKL

* fixed copies+dummy

* added script to convert original asymmetric vqgan

* added docs

* updated docs

* fixed style

* fixes, added tests

* update doc

* fixed doc

* fixed tests

* naming

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* naming

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* udpated code example

* updated doc

* comments fixes

* added docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* comments fixes

* added inpaint pipeline tests

* comment suggestion: delete method

* yet another fixes

---------

Co-authored-by: Ruslan Vorovchenko <r.vorovchenko@prequelapp.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-20 17:51:06 +02:00
Lim Swee Kiat
2551b73670 Fix bug in ControlNetPipelines with MultiControlNetModel of length 1 (#4032)
* Fix bug in ControlNetPipelines with MultiControlNetModel of length 1

* Add tests for varying number of ControlNet models

* Fix missing indexing for control_guidance_start and control_guidance_end

* Fix code quality

* Separate test for MultiControlNet with one model

* Revert formatting of earlier test
2023-07-20 17:45:08 +02:00
Allen Zhang
930c8fdcb7 fix incorrect attention head dimension in AttnProcessor2_0 (#4154)
fix inner_dim
2023-07-20 17:40:50 +02:00
Patrick von Platen
6b1abba18d Add controlnet and vae from single file (#4084)
* Add controlnet from single file

* Updates

* make style

* finish

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-19 14:50:27 +02:00
Saurav Maheshkar
470f51cd26 feat: add act_fn param to OutValueFunctionBlock (#3994)
* feat: add act_fn param to OutValueFunctionBlock

* feat: update unet1d tests to not use mish

* feat: add `mish` as the default activation function

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* feat: drop mish tests from unet1d

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-19 14:44:44 +02:00
Patrick von Platen
b7e35dc782 make style 2023-07-19 14:28:35 +02:00
Byron Mallett
c77ac246c1 Fixed SDXL single file loading to use the correct requested pipeline class (#4142)
Using pipeline_class argument to instantiate the correct pipeline when loading SDXL models from single files
2023-07-19 14:40:13 +02:00
Zhao Shenyang
ed2a3584ab Docs/bentoml integration (#4090)
* docs: first draft of BentoML integration

* Update the diffusers doc

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add BentoML integration guide under Optimization section

* restyle codes

---------

Co-authored-by: Sherlock113 <sherlockxu07@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-07-18 11:56:13 -07:00
Sayak Paul
3eb498e7b4 [Core] add: controlnet support for SDXL (#4038)
* add: controlnet sdxl.

* modifications to controlnet.

* run styling.

* add: __init__.pys

* incorporate https://github.com/huggingface/diffusers/pull/4019 changes.

* run make fix-copies.

* resize the conditioning images.

* remove autocast.

* run styling.

* disable autocast.

* debugging

* device placement.

* back to autocast.

* remove comment.

* save some memory by reusing the vae and unet in the pipeline.

* apply styling.

* Allow low precision sd xl

* finish

* finish

* changes to accommodate the improved VAE.

* modifications to how we handle vae encoding in the training.

* make style

* make existing controlnet fast tests pass.

* change vae checkpoint cli arg.

* fix: vae pretrained paths.

* fix: steps in get_scheduler().

* debugging.

* debugging./

* fix: weight conversion.

* add: docs.

* add: limited tests./

* add: datasets to the requirements.

* update docstrings and incorporate the usage of watermarking.

* incorporate fix from #4083

* fix watermarking dependency handling.

* run make-fix-copies.

* Empty-Commit

* Update requirements_sdxl.txt

* remove vae upcasting part.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* run make style

* run make fix-copies.

* disable suppot for multicontrolnet.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* run make fix-copies.

* dtyle/.

* fix-copies.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-18 18:25:34 +05:30
clarencechen
c6e56e92ed Add Recent Timestep Scheduling Improvements to DDIM Inverse Scheduler (#3865)
* Add Recent Timestep Scheduling Improvements to DDIM Inverse Scheduler

Roll timesteps by one to reflect origin-destination semantic discrepancy

Restore `set_alpha_to_one` option to handle negative initial timesteps

Remove `set_alpha_to_zero` option not used due to previous truncation

* Bugfix

* Remove unnecessary calls to `detach()`

Use `self.image_processor.preprocess` in DiffEdit pipeline functions

* Preprocess list input for inverted image latents in diffedit pipeline

* Add `timestep_spacing` and `steps_offset` to `DPMSolverMultistepInverseScheduler`

* Update expected test results to account for inverting last forward diffusion step

* Fix inversion progress bar bug

* Add first draft for proper fast tests for DDIMInverseScheduler

* Add deprecated DDIMInverseScheduler kwarg to ConfigMixer registry

* Fix test failure in DPMMultistepInverseScheduler

Invert step specification leads to negative noise variance in SDE-based algs

Add first draft for proper fast tests for DPMMultistepInverseScheduler

* Update expected test results to account for inverting last forward diffusion step

Clean up diffedit fast test
2023-07-18 11:35:16 +02:00
Patrick von Platen
27062c3631 Refactor execution device & cpu offload (#4114)
* create general cpu offload & execution device

* Remove boiler plate

* finish

* kp

* Correct offload more pipelines

* up

* Update src/diffusers/pipelines/pipeline_utils.py

* make style

* up
2023-07-18 11:04:40 +02:00
takuoko
6427aa995e [Enhance] Add rank in dreambooth (#4112)
add rank in dreambooth
2023-07-18 11:30:06 +05:30
Seongsu Park
8b18cd8e7f [Docs] Korean translation update (#4022)
* feat) optimization kr translation

* fix) typo, italic setting

* feat) dreambooth, text2image kr

* feat) lora kr

* fix) LoRA

* fix) fp16 fix

* fix) doc-builder style

* fix) fp16 일부 단어 수정

* fix) fp16 style fix

* fix) opt, training docs update

* merge conflict

* Fix community pipelines (#3266)

* Allow disabling torch 2_0 attention (#3273)

* Allow disabling torch 2_0 attention

* make style

* Update src/diffusers/models/attention.py

* Release: v0.16.1

* feat) toctree update

* feat) toctree update

* Fix custom releases (#3708)

* Fix custom releases

* make style

* Fix loading if unexpected keys are present (#3720)

* Fix loading

* make style

* Release: v0.17.0

* opt_overview

* commit

* Create pipeline_overview.mdx

* unconditional_image_generatoin_1stDraft

*  Add translation for write_own_pipeline.mdx

* conditional-직역, 언컨디셔널

* unconditional_image_generation first draft

* reviese

* Update pipeline_overview.mdx

* revise-2

* ♻️ translation fixed for write_own_pipeline.mdx

* complete translate basic_training.mdx

* other-formats.mdx 번역 완료

* fix tutorials/basic_training.mdx

* other-formats 수정

* inpaint 한국어 번역

* depth2img translation

* translate training/adapt-a-model.mdx

* revised_all

* feedback taken

* using_safetensors.mdx_first_draft

* custom_pipeline_examples.mdx_first_draft

* img2img 한글번역 완료

* tutorial_overview edit

* reusing_seeds

* torch2.0

* translate complete

* fix) 용어 통일 규약 반영

* [fix] 피드백을 반영해서 번역 보정

* 오탈자 정정 + 컨벤션 위배된 부분 정정

* typo, style fix

* toctree update

* copyright fix

* toctree fix

* Update _toctree.yml

---------

Co-authored-by: Chanran Kim <seriousran@gmail.com>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lee, Hongkyu <75282888+howsmyanimeprofilepicture@users.noreply.github.com>
Co-authored-by: hyeminan <adios9709@gmail.com>
Co-authored-by: movie5 <oyh5800@naver.com>
Co-authored-by: idra79haza <idra79haza@github.com>
Co-authored-by: Jihwan Kim <cuchoco@naver.com>
Co-authored-by: jungwoo <boonkoonheart@gmail.com>
Co-authored-by: jjuun0 <jh061993@gmail.com>
Co-authored-by: szjung-test <93111772+szjung-test@users.noreply.github.com>
Co-authored-by: idra79haza <37795618+idra79haza@users.noreply.github.com>
Co-authored-by: howsmyanimeprofilepicture <howsmyanimeprofilepicture@gmail.com>
Co-authored-by: hoswmyanimeprofilepicture <hoswmyanimeprofilepicture@gmail.com>
2023-07-17 18:28:08 -07:00
Will Berman
a0597f33ac t2i pipeline (#3932)
* Quick implementation of t2i-adapter

Load adapter module with from_pretrained

Prototyping generalized adapter framework

Writeup doc string for sideload framework(WIP) + some minor update on implementation

Update adapter models

Remove old adapter optional args in UNet

Add StableDiffusionAdapterPipeline unit test

Handle cpu offload in StableDiffusionAdapterPipeline

Auto correct coding style

Update model repo name to "RzZ/sd-v1-4-adapter-pipeline"

Refactor MultiAdapter to better compatible with config system

Export MultiAdapter

Create pipeline document template from controlnet

Create dummy objects

Supproting new AdapterLight model

Fix StableDiffusionAdapterPipeline common pipeline test

[WIP] Update adapter pipeline document

Handle num_inference_steps in StableDiffusionAdapterPipeline

Update definition of Adapter "channels_in"

Update documents

Apply code style

Fix doc typo and merge error

Update doc string and example

Quality of life improvement

Remove redundant code and file from prototyping

Remove unused pageage

Remove comments

Fix title

Fix typo

Add conditioning scale arg

Bring back old implmentation

Offload sideload

Add supply info on document

Update src/diffusers/models/adapter.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

Update MultiAdapter constructor

Swap out custom checkpoint and update pipeline constructor

Update docment

Apply suggestions from code review

Co-authored-by: Will Berman <wlbberman@gmail.com>

Correcting style

Following single-file policy

Update auto size in image preprocess func

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_adapter.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

fix copies

Update adapter pipeline behavior

Add adapter_conditioning_scale doc string

Add the missing doc string

Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Fix few bugs from suggestion

Handle L-mode PIL image as control image

Rename to differentiate adapter resblock

Update src/diffusers/models/adapter.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

Fix typo

Update adapter parameter name

Update test case and code style

Fix copies

Fix typo

Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_adapter.py

Co-authored-by: Will Berman <wlbberman@gmail.com>

Update Adapter class name

Add checkpoint converting script

Fix style

Fix-copies

Remove dev script

Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Updates for parameter rename

Fix convert_adapter

remove main

fix diff

more

refactoring

more

more

small fixes

refactor

tests

more slow tests

more tests

Update docs/source/en/api/pipelines/overview.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

add community contributor to docs

Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

Update docs/source/en/api/pipelines/stable_diffusion/adapter.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

fix

remove from_adapters

license

paper link

docs

more url fixes

more docs

fix

fixes

fix

fix

* fix sample inplace add

* additional_kwargs -> additional_residuals

* move t2i adapter pipeline to own module

* preprocess -> _preprocess_adapter_image

* add TencentArc to license

* fix example code links

* add image converter and fix example doc string

* fix links

* clearer additional residual application

---------

Co-authored-by: HimariO <dsfhe49854@gmail.com>
2023-07-17 12:55:44 -07:00
Kadir Nar
3929954613 📝 Update doc with more descriptive title and filename for "IF" section (#4049)
* 📝 Update doc with more descriptive title and filename for "IF" section

Updated the documentation to provide a more descriptive title and filename for the "IF" section. Previously, having only "IF" as the title was not conveying a clear meaning. By renaming the section to "DeepFloyd IF," we provide users with a more informative and context-specific heading.

Thanks! 🙌

* 📝 Update name for "IF" section in 📝 Update name for "IF" section in README

Updated the link and name for the "IF" section in the README file to reflect the new heading "DeepFloyd IF."

* 📝 Fix broken link for "Instruct Pix2Pix" section in README

Fixed the broken link for the "Instruct Pix2Pix" section in the README file. Previously, the link was pointing to an incorrect location due to the presence of "stable_diffusion" in the URL. By removing "stable_diffusion" from the URL, I have corrected the error and ensured that users are directed to the correct section.

* 🔧💼 Updated parameters in _toctree.yml file

- ✏️ Updated 'local' parameter to 'api/pipelines/deepfloyd_if'.
- ✏️ Updated 'title' parameter to 'DeepFloyd IF'.

🎯 These changes aim to improve visibility and accessibility in the documentation of the DeepFloyd IF pipeline. 🚀📚
2023-07-17 09:25:37 -07:00
Apoorva Pandey
f6ce323633 Make setup.py compatible with pipenv (#4121) 2023-07-17 17:31:04 +02:00
edward zhu
6b33c11c5b add noise_sampler_seed to StableDiffusionKDiffusionPipeline.__call__ (#3911)
* add noise_sampler to StableDiffusionKDiffusionPipeline

* fix/docs: Fix the broken doc links (#3897)

* fix/docs: Fix the broken doc links

Signed-off-by: GitHub <noreply@github.com>

* Update docs/source/en/using-diffusers/write_own_pipeline.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Add video img2img (#3900)

* Add image to image video

* Improve

* better naming

* make fix copies

* add docs

* finish tests

* trigger tests

* make style

* correct

* finish

* Fix more

* make style

* finish

* fix/doc-code: Updating to the latest version parameters (#3924)

fix/doc-code: update to use the new parameter

Signed-off-by: GitHub <noreply@github.com>

* fix/doc: no import torch issue (#3923)

Ffix/doc: no import torch issue

Signed-off-by: GitHub <noreply@github.com>

* Correct controlnet out of list error (#3928)

* Correct controlnet out of list error

* Apply suggestions from code review

* correct tests

* correct tests

* fix

* test all

* Apply suggestions from code review

* test all

* test all

* Apply suggestions from code review

* Apply suggestions from code review

* fix more tests

* Fix more

* Apply suggestions from code review

* finish

* Apply suggestions from code review

* Update src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py

* finish

* Adding better way to define multiple concepts and also validation capabilities. (#3807)

* - Added validation parameters
- Changed some parameter descriptions to better explain their use.
- Fixed a few typos.
- Added concept_list parameter for better management of multiple subjects
- changed logic for image validation

* - Fixed bad logic for class data root directories

* Defaulting validation_steps to None for an easier logic

* Fixed multiple validation prompts

* Fixed bug on validation negative prompt

* Changed validation logic for tracker.

* Added uuid for validation image labeling

* Fix error when comparing validation prompts and validation negative prompts

* Improved error message when negative prompts for validation are more than the number of prompts

* - Changed image tracking number from epoch to global_step
- Added Typing for functions

* Added some validations more when using concept_list parameter and the regular ones.

* Fixed error message

* Added more validations for validation parameters

* Improved messaging for errors

* Fixed validation error for parameters with default values

* - Added train step to image name for validation
- reformatted code

* - Added train step to image's name for validation
- reformatted code

* Updated README.md file.

* reverted back original script of train_dreambooth.py

* reverted back original script of train_dreambooth.py

* left one blank line at the eof

* reverted back setup.py

* reverted back setup.py

* added same logic for when parameters for prior preservation are used without enabling the flag while using concept_list parameter.

* Ran black formatter.

* fixed a few strings

* fixed import sort with isort and removed fstrings without placeholder

* fixed import order with ruff (since with isort wasn't ok)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [ldm3d] Update code to be functional with the new checkpoints (#3875)

* fixed typo

* updated doc to be consistent in naming

* make style/quality

* preprocessing for 4 channels and not 6

* make style

* test for 4c

* make style/quality

* fixed test on cpu

---------

Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>

* Improve memory text to video (#3930)

* Improve memory text to video

* Apply suggestions from code review

* add test

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* finish test setup

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* revert automatic chunking (#3934)

* revert automatic chunking

* Apply suggestions from code review

* revert automatic chunking

* avoid upcasting by assigning dtype to noise tensor (#3713)

* avoid upcasting by assigning dtype to noise tensor

* make style

* Update train_unconditional.py

* Update train_unconditional.py

* make style

* add unit test for pickle

* revert change

---------

Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>

* Fix failing np tests (#3942)

* Fix failing np tests

* Apply suggestions from code review

* Update tests/pipelines/test_pipelines_common.py

* Add `timestep_spacing` and `steps_offset` to schedulers (#3947)

* Add timestep_spacing to DDPM, LMSDiscrete, PNDM.

* Remove spurious line.

* More easy schedulers.

* Add `linspace` to DDIM

* Noise sigma for `trailing`.

* Add timestep_spacing to DEISMultistepScheduler.

Not sure the range is the way it was intended.

* Fix: remove line used to debug.

* Support timestep_spacing in DPMSolverMultistep, DPMSolverSDE, UniPC

* Fix: convert to numpy.

* Use sched. defaults when instantiating from_config

For params not present in the original configuration.

This makes it possible to switch pipeline schedulers even if they use
different timestep_spacing (or any other param).

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Missing args in DPMSolverMultistep

* Test: default args not in config

* Style

* Fix scheduler name in test

* Remove duplicated entries

* Add test for solver_type

This test currently fails in main. When switching from DEIS to UniPC,
solver_type is "logrho" (the default value from DEIS), which gets
translated to "bh1" by UniPC. This is different to the default value for
UniPC: "bh2". This is where the translation happens: 36d22d0709/src/diffusers/schedulers/scheduling_unipc_multistep.py (L171)

* UniPC: use same default for solver_type

Fixes a bug when switching from UniPC from another scheduler (i.e.,
DEIS) that uses a different solver type. The solver is now the same as
if we had instantiated the scheduler directly.

* do not save use default values

* fix more

* fix all

* fix schedulers

* fix more

* finish for real

* finish for real

* flaky tests

* Update tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py

* Default steps_offset to 0.

* Add missing docstrings

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add Consistency Models Pipeline (#3492)

* initial commit

* Improve consistency models sampling implementation.

* Add CMStochasticIterativeScheduler, which implements the multi-step sampler (stochastic_iterative_sampler) in the original code, and make further improvements to sampling.

* Add Unet blocks for consistency models

* Add conversion script for Unet

* Fix bug in new unet blocks

* Fix attention weight loading

* Make design improvements to ConsistencyModelPipeline and CMStochasticIterativeScheduler and add initial version of tests.

* make style

* Make small random test UNet class conditional and set resnet_time_scale_shift to 'scale_shift' to better match consistency model checkpoints.

* Add support for converting a test UNet and non-class-conditional UNets to the consistency models conversion script.

* make style

* Change num_class_embeds to 1000 to better match the original consistency models implementation.

* Add support for distillation in pipeline_consistency_models.py.

* Improve consistency model tests:
	- Get small testing checkpoints from hub
	- Modify tests to take into account "distillation" parameter of ConsistencyModelPipeline
	- Add onestep, multistep tests for distillation and distillation + class conditional
	- Add expected image slices for onestep tests

* make style

* Improve ConsistencyModelPipeline:
	- Add initial support for class-conditional generation
	- Fix initial sigma for onestep generation
	- Fix some sigma shape issues

* make style

* Improve ConsistencyModelPipeline:
	- add latents __call__ argument and prepare_latents method
	- add check_inputs method
	- add initial docstrings for ConsistencyModelPipeline.__call__

* make style

* Fix bug when randomly generating class labels for class-conditional generation.

* Switch CMStochasticIterativeScheduler to configuring a sigma schedule and make related changes to the pipeline and tests.

* Remove some unused code and make style.

* Fix small bug in CMStochasticIterativeScheduler.

* Add expected slices for multistep sampling tests and make them pass.

* Work on consistency model fast tests:
	- in pipeline, call self.scheduler.scale_model_input before denoising
	- get expected slices for Euler and Heun scheduler tests
	- make Euler test pass
	- mark Heun test as expected fail because it doesn't support prediction_type "sample" yet
	- remove DPM and Euler Ancestral tests because they don't support use_karras_sigmas

* make style

* Refactor conversion script to make it easier to add more model architectures to convert in the future.

* Work on ConsistencyModelPipeline tests:
	- Fix device bug when handling class labels in ConsistencyModelPipeline.__call__
	- Add slow tests for onestep and multistep sampling and make them pass
	- Refactor fast tests
	- Refactor ConsistencyModelPipeline.__init__

* make style

* Remove the add_noise and add_noise_to_input methods from CMStochasticIterativeScheduler for now.

* Run python utils/check_copies.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite to make dummy objects for new pipeline and scheduler.

* Make fast tests from PipelineTesterMixin pass.

* make style

* Refactor consistency models pipeline and scheduler:
	- Remove support for Karras schedulers (only support CMStochasticIterativeScheduler)
	- Move sigma manipulation, input scaling, denoising from pipeline to scheduler
	- Make corresponding changes to tests and ensure they pass

* make style

* Add docstrings and further refactor pipeline and scheduler.

* make style

* Add initial version of the consistency models documentation.

* Refactor custom timesteps logic following DDPMScheduler/IFPipeline and temporarily add torch 2.0 SDPA kernel selection logic for debugging.

* make style

* Convert current slow tests to use fp16 and flash attention.

* make style

* Add slow tests for normal attention on cuda device.

* make style

* Fix attention weights loading

* Update consistency model fast tests for new test checkpoints with attention fix.

* make style

* apply suggestions

* Add add_noise method to CMStochasticIterativeScheduler (copied from EulerDiscreteScheduler).

* Conversion script now outputs pipeline instead of UNet and add support for LSUN-256 models and different schedulers.

* When both timesteps and num_inference_steps are supplied, raise warning instead of error (timesteps take precedence).

* make style

* Add remaining diffusers model checkpoints for models in the original consistency model release and update usage example.

* apply suggestions from review

* make style

* fix attention naming

* Add tests for CMStochasticIterativeScheduler.

* make style

* Make CMStochasticIterativeScheduler tests pass.

* make style

* Override test_step_shape in CMStochasticIterativeSchedulerTest instead of modifying it in SchedulerCommonTest.

* make style

* rename some models

* Improve API

* rename some models

* Remove duplicated block

* Add docstring and make torch compile work

* More fixes

* Fixes

* Apply suggestions from code review

* Apply suggestions from code review

* add more docstring

* update consistency conversion script

---------

Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add test case for StableDiffusionKDiffusionPipeline noise_sampler

---------

Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Aisuko <urakiny@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Andrés Mauricio Repetto Ferrero <amd.repetto@gmail.com>
Co-authored-by: estelleafl <estelle.aflalo@intel.com>
Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
Co-authored-by: Prathik Rao <prathikr@usc.edu>
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: dg845 <58458699+dg845@users.noreply.github.com>
Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
2023-07-17 17:10:17 +02:00
Patrick von Platen
5729829cd8 [From single file] Make accelerate optional (#4132)
* Make accelerate optional

* make accelerate optional
2023-07-17 15:56:21 +02:00
Patrick von Platen
e27500b72c [From ckpt] replace with os path join (#3746)
replace with os path join
2023-07-17 11:39:06 +02:00
Patrick von Platen
fe5911bf3d [Stable Diffusion Inpaint ]Fix dtype inpaint (#4113)
Fix dtype inpaint
2023-07-15 16:10:40 +02:00
Patrick von Platen
b024ebb965 [SD-XL] Add inpainting (#4098)
* Add more

* more

* up

* Get ensemble of expert denoisers working

* Fix code

* add tests

* up
2023-07-14 17:05:44 +02:00
Patrick von Platen
ad8f985e81 Allow low precision vae sd xl (#4083)
* Allow low precision sd xl

* finish

* finish

* make style
2023-07-14 14:51:16 +02:00
Patrick von Platen
ee2f2775b2 [tests] use parent class for monkey patching to not break other tests (#4088)
* [tests] use parent class for monkey patching to not break other tests

* fix
2023-07-14 13:44:44 +02:00
Sayak Paul
692b7a907d [Feat] add: utility for unloading lora. (#4034)
* add: test for testing unloading lora.

* add :reason to skipif.

* initial implementation of lora unload().

* apply styling.

* add: doc.

* change checkpoints.

* reinit generator

* finalize slow test.

* add fast test for unloading lora.
2023-07-14 16:30:18 +05:30
Patrick von Platen
71c918b848 [Invisible watermark] Correct version (#4087) 2023-07-14 09:30:43 +05:30
Sayak Paul
83ca21f539 fix: minor things in the SDXL docs. (#4070) 2023-07-14 09:01:20 +05:30
Gabriel Birnbaum
f3802eb805 fix requirement in SDXL (#4082) 2023-07-14 02:58:20 +02:00
Patrick von Platen
bfe8b41315 [From Single File] Force accelerate to be installed (#4078)
force accelerate to be installed
2023-07-13 23:16:43 +02:00
YiYi Xu
4535088cec add kandinsky to readme table (#4081)
Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-07-13 22:26:51 +02:00
Thomas Chambon
2eceaaef0f [Community] Implementation of the IADB community pipeline (#3996)
* community pipeline: implementation of iadb

* iadb.py: reformat using black

* iadb.py: linting update
2023-07-13 16:49:41 +02:00
Ruoxi
ece55227ff Multiply lr scheduler steps by num_processes. (#3983)
* Multiply lr scheduler steps by `num_processes`.

* Stop multiplying steps by gradient accumulation.
2023-07-13 17:50:25 +05:30
Patrick von Platen
92a57a8e84 Fix kandinsky remove safety (#4065)
* Finish

* make style
2023-07-12 21:42:29 +02:00
Lucain
d7280b7436 Trigger CI on ci-* branches (#3635) 2023-07-12 19:31:36 +02:00
Patrick von Platen
e9eb0938f4 make style 2023-07-12 19:24:47 +02:00
junming huang
a29ea36d62 Update train_unconditional.py (#3899)
increase the time of timeout when using big dataset or high resolution
2023-07-12 19:24:28 +02:00
Evgenii Kashin
af48bf2008 Add circular padding for artifact-free StableDiffusionPanoramaPipeline (#4025)
* Add circular padding option

* Fix style with black

* Fix corner case with small image size

* Add circular padding test cases

* Fix docstring

* Improve docstring for circular padding, remove slow test case

* Update docs for circular padding argument

* Add images comparison for circular padding
2023-07-12 20:49:46 +05:30
Patrick von Platen
4b50ecceb0 Correct sdxl docs (#4058) 2023-07-12 16:02:31 +02:00
Bagheera
99b540b072 [SDXL] Partial diffusion support for Text2Img and Img2Img Pipelines (#4015)
* diffusers#4003 - initial implementation of max_inference_steps

* diffusers#4003 - initial implementation of max_inference_steps and first_inference_step for img2img

* diffusers#4003 - use first_inference_step as an input arg for get_timestamps in img2img

* diffusers#4003 Do not add noise during img2img when we have a defined first timestep

* diffusers#4003 Mild updates after revert

* diffusers#4003 Missing change

* Show implementation with denoising_start and end

* Apply suggestions from code review

* Update src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* move to 0.19.0dev

* Apply suggestions from code review

* add exhaustive tests

* add docs

* finish

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make style

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-12 13:54:27 +02:00
Patrick von Platen
b9feed8795 move to 0.19.0dev (#4048) 2023-07-11 22:49:12 +02:00
Kadir Nar
f9cedfb75c 📝 Fix broken link to models documentation (#4026)
* 📝 Fix broken link to models documentation

Corrected the link to the models documentation in the README. Previously, the link was pointing to an incorrect URL. Now, the link directs users to the correct documentation page for more details on the models.

Thanks! 🙌

* Update src/diffusers/models/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2023-07-11 12:10:37 -07:00
Michael Monashev
fc7aa64ea8 Fixed pipeline parameter descriptions. (#3955)
Fixed parameter descriptions
2023-07-11 09:52:17 -07:00
Patrick von Platen
d0979f5274 quick fix to make sure sdxl conversion works 2023-07-11 16:51:56 +00:00
Vines
fcb0da7f00 Fix diffedit doc typo (#3977)
fix diffedit code mistake
2023-07-11 09:47:36 -07:00
manosplitsis
8e8b046d24 Typo fix in example docstring in audioldm pipeline (#4044)
typo fix in example docstring in audioldm pipeline
2023-07-11 09:35:11 -07:00
oOraph
5e704a2c71 keep _use_default_values as a list type (#4040)
Signed-off-by: Raphael <oOraph@users.noreply.github.com>
Co-authored-by: Raphael <oOraph@users.noreply.github.com>
2023-07-11 18:21:08 +02:00
Patrick von Platen
8bff782354 Improve single loading file (#4041)
* start improving single file load

* Fix more

* start improving single file load

* Fix sd 2.1

* further improve from_single_file
2023-07-11 17:01:25 +02:00
Lucain
6632823690 FIX force_download in download utility (#4036)
FIX force_download in download utils
2023-07-11 12:20:00 +02:00
Sayak Paul
f74d5e1c2f [diffusers-cli] Add a CLI command to run FP16 and safetensors conversions and opening PRs (#3982)
* feat: add a cli util for fp16 and safetensors format.

* fix: commit_description.

* add: usage example.
2023-07-11 08:30:09 +05:30
Sayak Paul
3d74dc2abd [Examples] Add a training script for SDXL DreamBooth LoRA (#4016)
* add dreambooth lora script for SDXL incorporating latest changes.

* remove use_auth_token=True.

* add: documentation

* remove unneeded cli.

* increase the number of training steps in the readme.

* add LoraLoaderMixin to the subclassing mix.

* add sdxl lora dreambooth test.

* add: inference code sample.

* add: refiner output.

* add LoraLoaderMixin to the mix of classes of StableDiffusionXLImg2ImgPipeline.

* change default resolution of DreamBoothDataset.

* better sdxl report path.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-11 07:38:41 +05:30
Susnato Dhar
dfd7eafbce Fixed wrong link in CONTRIBUTING.md (#4028)
Update CONTRIBUTING.md
2023-07-10 21:00:55 +02:00
Steven Liu
8dd0ddc3c4 [docs] Fix index page (#3997)
* fix

* correct link

* Fix typo

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-10 10:24:37 -07:00
Patrick von Platen
080ecf01b3 Improve loading pipe (#4009)
* improve loading subcomponents

* Add test for logging

* improve loading subcomponents

* make style

* make style

* fix

* finish
2023-07-10 18:05:40 +02:00
Pedro Cuenca
7a91ea6c2b Remove remaining not in upscale pipeline (#4020)
Remove remaining `not` in upscale pipeline.
2023-07-10 12:37:50 +02:00
Sayak Paul
e4559f48c1 minor improvements to the SDXL doc. (#3985)
* minor improvements to the SDXL doc.

* use_refiner variable.

* fix: typo.
2023-07-10 16:04:23 +05:30
Pedro Cuenca
d6b861401e Correctly keep vae in float16 when using PyTorch 2 or xFormers (#4019)
* Update pipeline_stable_diffusion_xl.py

fix a bug

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_upscale.py

* style

---------

Co-authored-by: Hu Ye <xiaohuzc@gmail.com>
2023-07-10 12:19:56 +02:00
Patrick von Platen
e4f6c3799d [DiffusionPipeline] Deprecate not throwing error when loading non-existant variant (#4011)
* Deprecate variant nicely

* make style

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-10 12:12:29 +02:00
Patrick von Platen
98c9aac1d5 [SDXL] Fix all sequential offload (#4010)
* Fix all sequential offload

* make style

* make style
2023-07-10 10:27:23 +02:00
Omar Sanseviero
e3d71ad89a Minor nits to Dance DIffusion (#4012)
Update pipeline_dance_diffusion.py
2023-07-10 02:53:06 +05:30
Patrick von Platen
68f61a07d6 Make sure torch compile doesn't access unet config (#4008) 2023-07-10 00:23:55 +05:30
Patrick von Platen
4a3e574807 make style 2023-07-09 16:02:59 +00:00
Will Berman
c2a28c346c Refactor LoRA (#3778)
* refactor to support patching LoRA into T5

instantiate the lora linear layer on the same device as the regular linear layer

get lora rank from state dict

tests

fmt

can create lora layer in float32 even when rest of model is float16

fix loading model hook

remove load_lora_weights_ and T5 dispatching

remove Unet#attn_processors_state_dict

docstrings

* text encoder monkeypatch class method

* fix test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-09 18:02:46 +02:00
Patrick von Platen
78922ed7c7 Add sdxl prompt embeddings (#3995)
* Add sdxl prompt embeddings

* Fix more

* fix some slow tests
2023-07-07 16:50:53 +02:00
Patrick von Platen
6fde5a6dd6 [Tests] Fix some slow tests (#3989)
fix some slow tests
2023-07-07 15:17:57 +02:00
Amiha
d1d0b8afce Don't use bare prints in a library (#3991) 2023-07-07 15:17:50 +02:00
Batuhan Taskaya
04ddad484e Add 'rank' parameter to Dreambooth LoRA training script (#3945) 2023-07-07 17:26:10 +05:30
Saurav Maheshkar
03d829d59e feat: add Dropout to Flax UNet (#3894)
* feat: add Dropout to Flax UNet

* feat: add @compact decorator

* fix: drop nn.compact
2023-07-07 11:38:16 +02:00
Omar Sanseviero
8d8b4311b9 Fix code snippet for Audio Diffusion (#3987) 2023-07-07 10:39:38 +02:00
Yorai Levi
1fbcc78d6e typo in safetensors (safetenstors) (#3976)
* Update pipeline_utils.py

typo in safetensors (safetenstors)

* Update loaders.py

typo in safetensors (safetenstors)

* Update modeling_utils.py

typo in safetensors (safetenstors)
2023-07-07 13:03:51 +05:30
Patrick von Platen
51593da25a fix main docs 2023-07-06 19:28:33 +02:00
Patrick von Platen
38e563d0c7 Fix SD XL Docs (#3971)
* finish sd xl docs

* make style

* Apply suggestions from code review

* uP

* uP

* Correct
2023-07-06 19:21:03 +02:00
Aisuko
b8f089c5a3 fix/doc-code: import torch and fix the broken document address (#3941)
Signed-off-by: GitHub <noreply@github.com>
2023-07-06 09:29:04 -07:00
Patrick von Platen
187ea539ae Improve SD XL (#3968)
* improve sd xl

* correct more

* finish

* make style

* fix more
2023-07-06 18:11:20 +02:00
Patrick von Platen
8bf80fc8d8 disable num attenion heads (#3969)
* disable num attenion heads

* finish
2023-07-06 17:51:40 +02:00
YiYi Xu
45f6d52b10 Add Shap-E (#3742)
* refactor prior_transformer

adding conversion script

add pipeline

add step_index from pipeline, + remove permute

add zero pad token

remove copy from statement for betas_for_alpha_bar function

* add

* add

* update conversion script for renderer model

* refactor camera a little bit

* clean up

* style

* fix copies

* Update src/diffusers/schedulers/scheduling_heun_discrete.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* alpha_transform_type

* remove step_index argument

* remove get_sigmas_karras

* remove _yiyi_sigma_to_t

* move the rescale prompt_embeds from prior_transformer to pipeline

* replace baddbmm with einsum to match origial repo

* Revert "replace baddbmm with einsum to match origial repo"

This reverts commit 3f6b435d65.

* add step_index to scale_model_input

* Revert "move the rescale prompt_embeds from prior_transformer to pipeline"

This reverts commit 5b5a8e6be9.

* move rescale from prior_transformer to pipeline

* correct step_index in scale_model_input

* remove print lines

* refactor prior - reduce arguments

* make style

* add prior_image

* arg embedding_proj_norm -> norm_embedding_proj

* add pre-norm for proj_embedding

* move rescale prompt from pipeline to _encode_prompt

* add img2img pipeline

* style

* copies

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

add arg: encoder_hid_proj

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

add new config: norm_in_type

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

add new config: added_emb_type

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

rename out_dim -> clip_embed_dim

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

rename config: out_dim -> clip_embed_dim

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/models/prior_transformer.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* finish refactor prior_tranformer

* make style

* refactor renderer

* fix

* make style

* refactor img2img

* remove params_proj

* add test

* add upcast_softmax to prior_transformer

* enable num_images_per_prompt, add save_gif utility

* add

* add fast test

* make style

* add slow test

* style

* add test for img2img

* refactor

* enable batching

* style

* refactor scheduler

* update test

* style

* attempt to solve batch related tests timeout

* add doc

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* hardcode rendering related config

* update betas_for_alpha_bar on ddpm_scheduler

* fix copies

* fix

* export_to_gif

* style

* second attempt to speed up batching tests

* add doc page to index

* Remove intermediate clipping

* 3rd attempt to speed up batching tests

* Remvoe time index

* simplify scheduler

* Fix more

* Fix more

* fix more

* make style

* fix schedulers

* fix some more tests

* finish

* add one more test

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

* apply feedbacks

* style

* fix copies

* add one example

* style

* add example for img2img

* fix doc

* fix more doc strings

* size -> frame_size

* style

* update doc

* style

* fix on doc

* update repo name

* improve the usage example in shap-e img2img

* add usage examples in the shap-e docs.

* consolidate examples.

* minor fix.

* update doc

* Apply suggestions from code review

* Apply suggestions from code review

* remove upcast

* Make sure background is white

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

* Apply suggestions from code review

* Finish

* Apply suggestions from code review

* Update src/diffusers/pipelines/shap_e/pipeline_shap_e.py

* Make style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-06 15:20:42 +02:00
YiYi Xu
746215670a Kandinsky_v22_yiyi (#3936)
* Kandinsky2_2

* fix init kandinsky2_2

* kandinsky2_2 fix inpainting

* rename pipelines: remove decoder + 2_2 -> V22

* Update scheduling_unclip.py

* remove text_encoder and tokenizer arguments from doc string

* add test for text2img

* add tests for text2img & img2img

* fix

* add test for inpaint

* add prior tests

* style

* copies

* add controlnet test

* style

* add a test for controlnet_img2img

* update prior_emb2emb api to accept image_embedding or image

* add a test for prior_emb2emb

* style

* remove try except

* example

* fix

* add doc string examples to all kandinsky pipelines

* style

* update doc

* style

* add a top about 2.2

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* vae -> movq

* vae -> movq

* style

* fix the #copied from

* remove decoder from file name

* update doc: add a section for kandinsky 2.2

* fix

* fix-copies

* add coped from

* add copies from for prior

* add copies from for prior emb2emb

* copy from for img2img

* copied from for inpaint

* more copied from

* more copies from

* more copies

* remove the yiyi comments

* Apply suggestions from code review

* Self-contained example, pipeline order

* Import prior output instead of redefining.

* Style

* Make VQModel compatible with model offload.

* Fix copies

---------

Co-authored-by: Shahmatov Arseniy <62886550+cene555@users.noreply.github.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-06 15:05:42 +02:00
Patrick von Platen
bc9a8cef6f [SD-XL] Add new pipelines (#3859)
* Add new text encoder

* add transformers depth

* More

* Correct conversion script

* Fix more

* Fix more

* Correct more

* correct text encoder

* Finish all

* proof that in works in run local xl

* clean up

* Get refiner to work

* Add red castle

* Fix batch size

* Improve pipelines more

* Finish text2image tests

* Add img2img test

* Fix more

* fix import

* Fix embeddings for classic models (#3888)

Fix embeddings for classic SD models.

* Allow multiple prompts to be passed to the refiner (#3895)

* finish more

* Apply suggestions from code review

* add watermarker

* Model offload (#3889)

* Model offload.

* Model offload for refiner / img2img

* Hardcode encoder offload on img2img vae encode

Saves some GPU RAM in img2img / refiner tasks so it remains below 8 GB.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* correct

* fix

* clean print

* Update install warning for `invisible-watermark`

* add: missing docstrings.

* fix and simplify the usage example in img2img.

* fix setup for watermarking.

* Revert "fix setup for watermarking."

This reverts commit 491bc9f5a6.

* fix: watermarking setup.

* fix: op.

* run make fix-copies.

* make sure tests pass

* improve convert

* make tests pass

* make tests pass

* better error message

* fiinsh

* finish

* Fix final test

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-07-06 13:37:27 +02:00
Sayak Paul
b62d9a1fdc [Text-to-video] Add torch.compile() compatibility (#3949)
* use sample directly instead of the dataclass.

* more usage of directly samples instead of dataclasses

* more usage of directly samples instead of dataclasses

* use direct sample in the pipeline.

* direct usage of sample in the img2img case.
2023-07-06 14:30:50 +05:30
Sayak Paul
46af98267d [Consistency Models] correct checkpoint url in the doc (#3962)
correct checkpoint url.
2023-07-06 14:22:43 +05:30
Prathik Rao
de1426119d Make UNet2DConditionOutput pickle-able (#3857)
* add default to unet output to prevent it from being a required arg

* add unit test

* make style

* adjust unit test

* mark as fast test

* adjust assert statement in test

---------

Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-07-06 13:12:41 +05:30
Sayak Paul
41ea88f38c Update consistency_models.mdx (#3961) 2023-07-06 10:55:24 +05:30
dg845
aed7499a8d Add Consistency Models Pipeline (#3492)
* initial commit

* Improve consistency models sampling implementation.

* Add CMStochasticIterativeScheduler, which implements the multi-step sampler (stochastic_iterative_sampler) in the original code, and make further improvements to sampling.

* Add Unet blocks for consistency models

* Add conversion script for Unet

* Fix bug in new unet blocks

* Fix attention weight loading

* Make design improvements to ConsistencyModelPipeline and CMStochasticIterativeScheduler and add initial version of tests.

* make style

* Make small random test UNet class conditional and set resnet_time_scale_shift to 'scale_shift' to better match consistency model checkpoints.

* Add support for converting a test UNet and non-class-conditional UNets to the consistency models conversion script.

* make style

* Change num_class_embeds to 1000 to better match the original consistency models implementation.

* Add support for distillation in pipeline_consistency_models.py.

* Improve consistency model tests:
	- Get small testing checkpoints from hub
	- Modify tests to take into account "distillation" parameter of ConsistencyModelPipeline
	- Add onestep, multistep tests for distillation and distillation + class conditional
	- Add expected image slices for onestep tests

* make style

* Improve ConsistencyModelPipeline:
	- Add initial support for class-conditional generation
	- Fix initial sigma for onestep generation
	- Fix some sigma shape issues

* make style

* Improve ConsistencyModelPipeline:
	- add latents __call__ argument and prepare_latents method
	- add check_inputs method
	- add initial docstrings for ConsistencyModelPipeline.__call__

* make style

* Fix bug when randomly generating class labels for class-conditional generation.

* Switch CMStochasticIterativeScheduler to configuring a sigma schedule and make related changes to the pipeline and tests.

* Remove some unused code and make style.

* Fix small bug in CMStochasticIterativeScheduler.

* Add expected slices for multistep sampling tests and make them pass.

* Work on consistency model fast tests:
	- in pipeline, call self.scheduler.scale_model_input before denoising
	- get expected slices for Euler and Heun scheduler tests
	- make Euler test pass
	- mark Heun test as expected fail because it doesn't support prediction_type "sample" yet
	- remove DPM and Euler Ancestral tests because they don't support use_karras_sigmas

* make style

* Refactor conversion script to make it easier to add more model architectures to convert in the future.

* Work on ConsistencyModelPipeline tests:
	- Fix device bug when handling class labels in ConsistencyModelPipeline.__call__
	- Add slow tests for onestep and multistep sampling and make them pass
	- Refactor fast tests
	- Refactor ConsistencyModelPipeline.__init__

* make style

* Remove the add_noise and add_noise_to_input methods from CMStochasticIterativeScheduler for now.

* Run python utils/check_copies.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite to make dummy objects for new pipeline and scheduler.

* Make fast tests from PipelineTesterMixin pass.

* make style

* Refactor consistency models pipeline and scheduler:
	- Remove support for Karras schedulers (only support CMStochasticIterativeScheduler)
	- Move sigma manipulation, input scaling, denoising from pipeline to scheduler
	- Make corresponding changes to tests and ensure they pass

* make style

* Add docstrings and further refactor pipeline and scheduler.

* make style

* Add initial version of the consistency models documentation.

* Refactor custom timesteps logic following DDPMScheduler/IFPipeline and temporarily add torch 2.0 SDPA kernel selection logic for debugging.

* make style

* Convert current slow tests to use fp16 and flash attention.

* make style

* Add slow tests for normal attention on cuda device.

* make style

* Fix attention weights loading

* Update consistency model fast tests for new test checkpoints with attention fix.

* make style

* apply suggestions

* Add add_noise method to CMStochasticIterativeScheduler (copied from EulerDiscreteScheduler).

* Conversion script now outputs pipeline instead of UNet and add support for LSUN-256 models and different schedulers.

* When both timesteps and num_inference_steps are supplied, raise warning instead of error (timesteps take precedence).

* make style

* Add remaining diffusers model checkpoints for models in the original consistency model release and update usage example.

* apply suggestions from review

* make style

* fix attention naming

* Add tests for CMStochasticIterativeScheduler.

* make style

* Make CMStochasticIterativeScheduler tests pass.

* make style

* Override test_step_shape in CMStochasticIterativeSchedulerTest instead of modifying it in SchedulerCommonTest.

* make style

* rename some models

* Improve API

* rename some models

* Remove duplicated block

* Add docstring and make torch compile work

* More fixes

* Fixes

* Apply suggestions from code review

* Apply suggestions from code review

* add more docstring

* update consistency conversion script

---------

Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-05 19:33:58 +02:00
Pedro Cuenca
07c9a08e67 Add timestep_spacing and steps_offset to schedulers (#3947)
* Add timestep_spacing to DDPM, LMSDiscrete, PNDM.

* Remove spurious line.

* More easy schedulers.

* Add `linspace` to DDIM

* Noise sigma for `trailing`.

* Add timestep_spacing to DEISMultistepScheduler.

Not sure the range is the way it was intended.

* Fix: remove line used to debug.

* Support timestep_spacing in DPMSolverMultistep, DPMSolverSDE, UniPC

* Fix: convert to numpy.

* Use sched. defaults when instantiating from_config

For params not present in the original configuration.

This makes it possible to switch pipeline schedulers even if they use
different timestep_spacing (or any other param).

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Missing args in DPMSolverMultistep

* Test: default args not in config

* Style

* Fix scheduler name in test

* Remove duplicated entries

* Add test for solver_type

This test currently fails in main. When switching from DEIS to UniPC,
solver_type is "logrho" (the default value from DEIS), which gets
translated to "bh1" by UniPC. This is different to the default value for
UniPC: "bh2". This is where the translation happens: 36d22d0709/src/diffusers/schedulers/scheduling_unipc_multistep.py (L171)

* UniPC: use same default for solver_type

Fixes a bug when switching from UniPC from another scheduler (i.e.,
DEIS) that uses a different solver type. The solver is now the same as
if we had instantiated the scheduler directly.

* do not save use default values

* fix more

* fix all

* fix schedulers

* fix more

* finish for real

* finish for real

* flaky tests

* Update tests/pipelines/stable_diffusion/test_stable_diffusion_pix2pix_zero.py

* Default steps_offset to 0.

* Add missing docstrings

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-05 15:49:30 +02:00
Patrick von Platen
2837d49079 Fix failing np tests (#3942)
* Fix failing np tests

* Apply suggestions from code review

* Update tests/pipelines/test_pipelines_common.py
2023-07-04 14:00:43 +02:00
Prathik Rao
1997614aa9 avoid upcasting by assigning dtype to noise tensor (#3713)
* avoid upcasting by assigning dtype to noise tensor

* make style

* Update train_unconditional.py

* Update train_unconditional.py

* make style

* add unit test for pickle

* revert change

---------

Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-07-04 07:19:49 +05:30
Patrick von Platen
4e898560ce revert automatic chunking (#3934)
* revert automatic chunking

* Apply suggestions from code review

* revert automatic chunking
2023-07-03 23:12:41 +02:00
Patrick von Platen
332d2bbea3 Improve memory text to video (#3930)
* Improve memory text to video

* Apply suggestions from code review

* add test

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* finish test setup

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-03 18:17:34 +02:00
estelleafl
b8a5dda56e [ldm3d] Update code to be functional with the new checkpoints (#3875)
* fixed typo

* updated doc to be consistent in naming

* make style/quality

* preprocessing for 4 channels and not 6

* make style

* test for 4c

* make style/quality

* fixed test on cpu

---------

Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu33.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu38.rr.intel.com>
2023-07-03 18:15:46 +02:00
Andrés Mauricio Repetto Ferrero
572d8e2002 Adding better way to define multiple concepts and also validation capabilities. (#3807)
* - Added validation parameters
- Changed some parameter descriptions to better explain their use.
- Fixed a few typos.
- Added concept_list parameter for better management of multiple subjects
- changed logic for image validation

* - Fixed bad logic for class data root directories

* Defaulting validation_steps to None for an easier logic

* Fixed multiple validation prompts

* Fixed bug on validation negative prompt

* Changed validation logic for tracker.

* Added uuid for validation image labeling

* Fix error when comparing validation prompts and validation negative prompts

* Improved error message when negative prompts for validation are more than the number of prompts

* - Changed image tracking number from epoch to global_step
- Added Typing for functions

* Added some validations more when using concept_list parameter and the regular ones.

* Fixed error message

* Added more validations for validation parameters

* Improved messaging for errors

* Fixed validation error for parameters with default values

* - Added train step to image name for validation
- reformatted code

* - Added train step to image's name for validation
- reformatted code

* Updated README.md file.

* reverted back original script of train_dreambooth.py

* reverted back original script of train_dreambooth.py

* left one blank line at the eof

* reverted back setup.py

* reverted back setup.py

* added same logic for when parameters for prior preservation are used without enabling the flag while using concept_list parameter.

* Ran black formatter.

* fixed a few strings

* fixed import sort with isort and removed fstrings without placeholder

* fixed import order with ruff (since with isort wasn't ok)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-07-03 17:55:45 +02:00
Patrick von Platen
2e8668f0af Correct controlnet out of list error (#3928)
* Correct controlnet out of list error

* Apply suggestions from code review

* correct tests

* correct tests

* fix

* test all

* Apply suggestions from code review

* test all

* test all

* Apply suggestions from code review

* Apply suggestions from code review

* fix more tests

* Fix more

* Apply suggestions from code review

* finish

* Apply suggestions from code review

* Update src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py

* finish
2023-07-03 15:10:07 +02:00
Aisuko
b298484fd0 fix/doc: no import torch issue (#3923)
Ffix/doc: no import torch issue

Signed-off-by: GitHub <noreply@github.com>
2023-07-03 12:28:42 +02:00
Aisuko
f911287cc9 fix/doc-code: Updating to the latest version parameters (#3924)
fix/doc-code: update to use the new parameter

Signed-off-by: GitHub <noreply@github.com>
2023-07-03 12:28:05 +02:00
Patrick von Platen
62825064bf Add video img2img (#3900)
* Add image to image video

* Improve

* better naming

* make fix copies

* add docs

* finish tests

* trigger tests

* make style

* correct

* finish

* Fix more

* make style

* finish
2023-07-02 13:19:27 +02:00
Aisuko
5439e917ca fix/docs: Fix the broken doc links (#3897)
* fix/docs: Fix the broken doc links

Signed-off-by: GitHub <noreply@github.com>

* Update docs/source/en/using-diffusers/write_own_pipeline.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Signed-off-by: GitHub <noreply@github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-01 08:07:59 +02:00
Steven Liu
174dcd697f [docs] Model API (#3562)
* add modelmixin and unets

* remove old model page

* minor fixes

* fix unet2dcondition

* add vqmodel and autoencoderkl

* add rest of models

* fix autoencoderkl path

* fix toctree

* fix toctree again

* apply feedback

* apply feedback

* fix copies

* fix controlnet copy

* fix copies
2023-06-29 17:24:39 -07:00
takuoko
cdf2ae8a84 [Enhance] Add LoRA rank args in train_text_to_image_lora (#3866)
* add rank args in lora finetune

* del network_alpha
2023-06-29 17:09:59 +05:30
Sayak Paul
49949f321d [Tests] add test for checking soft dependencies. (#3847)
* add test for checking soft dependencies.

* address patrick's comments.

* dependency tests should not run twice.

* debugging.

* up.
2023-06-28 22:05:25 +05:30
Uranus
c7469ebe74 fix sde add noise typo (#3839)
* fix sde typo

* fix code style
2023-06-28 15:44:29 +02:00
Wadim Korablin
150013060e Support for manual CLIP loading in StableDiffusionPipeline - txt2img. (#3832)
* Support for manual CLIP loading in StableDiffusionPipeline - txt2img.

* Update src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py

* Update variables & according docs to match previous style.

* Updated to match style & quality of 'diffusers'

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-28 15:29:48 +02:00
Patrick von Platen
219636f7e4 improve tolerance 2023-06-28 13:29:36 +00:00
Vincent Neemie
35bac5edec Fixing the global_step key not found (#3844)
* Fixing the global_step key not found

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-28 14:36:33 +02:00
Saurav Maheshkar
0bf6aeb885 feat: rename single-letter vars in resnet.py (#3868)
feat: rename single-letter vars
2023-06-28 13:31:32 +02:00
Joachim Blaafjell Holwech
9a45d7fb76 Add guidance start/stop (#3770)
* Add guidance start/stop

* Add guidance start/stop to inpaint class

* Black formatting

* Add support for guidance for multicontrolnet

* Add inclusive end

* Improve design

* correct imports

* Finish

* Finish all

* Correct more

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-27 01:04:11 +02:00
regisss
61916fefc4 Update Habana Gaudi doc (#3863)
* Update Habana Gaudi doc

* Fix typo
2023-06-24 21:17:11 +02:00
Sayak Paul
fc6acb6b97 [Docs] add: contributor note in the paradigms docs. (#3852)
add: contributor note in the paradigms docs.
2023-06-22 17:54:35 +05:30
Patrick von Platen
5e3f8fff40 Fix some audio tests (#3841)
* Fix some audio tests

* make style

* fix

* make style
2023-06-22 13:53:27 +02:00
Patrick von Platen
5df2acf7d2 [Conversion] Small fixes (#3848)
* [Conversion] Small fixes

* Update src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py
2023-06-22 13:52:59 +02:00
Patrick von Platen
88d269461c Correct bad attn naming (#3797)
* relax tolerance slightly

* correct incorrect naming

* correct namingc

* correct more

* Apply suggestions from code review

* Fix more

* Correct more

* correct incorrect naming

* Update src/diffusers/models/controlnet.py

* Correct flax

* Correct renaming

* Correct blocks

* Fix more

* Correct more

* mkae style

* mkae style

* mkae style

* mkae style

* mkae style

* Fix flax

* mkae style

* rename

* rename

* rename attn head dim to attention_head_dim

* correct flax

* make style

* improve

* Correct more

* make style

* fix more

* mkae style

* Update src/diffusers/models/controlnet_flax.py

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-06-22 13:52:48 +02:00
Robert Dargavel Smith
0c6d1bc985 fix audio_diffusion tests (#3850) 2023-06-22 12:27:39 +02:00
Sayak Paul
13e781f9a5 fix: random module seeding (#3846) 2023-06-22 12:26:55 +02:00
Will Berman
0bab447670 relax tol attention conversion test (#3842) 2023-06-21 12:35:38 -07:00
Steven Liu
1f02087607 [docs] More API stuff (#3835)
* clean up loaders

* clean up rest of main class apis

* apply feedback
2023-06-21 11:07:23 -07:00
YiYi Xu
95ea538c79 Add ddpm kandinsky (#3783)
* update doc

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-21 07:23:18 -10:00
Hans Brouwer
ef3844d3a8 Support ControlNet models with different number of channels in control images (#3815)
support ControlNet models with a different hint_channels value (e.g. TemporalNet2)
2023-06-21 13:11:45 +02:00
dqueue
3ebbaf7c96 Update control_brightness.mdx (#3825) 2023-06-20 14:09:51 +02:00
Andy Shih
73b125df68 [Pipeline] Add new pipeline for ParaDiGMS -- parallel sampling of diffusion models (#3716)
* add paradigms parallel sampling pipeline

* linting

* ran make fix-copies

* add paradigms parallel sampling pipeline

* linting

* ran make fix-copies

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* changes based on review

* add docs for paradigms

* update docs with paradigms abstract

* improve documentation, and add tests for ddim/ddpm batch_step_no_noise

* fix docs and run make fix-copies

* minor changes to docs.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move parallel scheduler to new classes for DDPMParallelScheduler and DDIMParallelScheduler

* remove changes for scheduling_ddim, adjust licenses, credits, and commented code

* fix tensor type that is breaking tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-20 15:04:26 +05:30
Sayak Paul
88eb04489d [Docs] add missing pipelines from the overview pages and minor fixes (#3795)
* add entry for safe stable diffusion to the sd overview page.

* add missing pipelines o the broader overview section in the pipelines.

* address PR feedback./
2023-06-20 11:15:21 +05:30
Sayak Paul
4870626728 [Examples] Improve the model card pushed from the train_text_to_image.py script (#3810)
* refactor: readme serialized from the example when push_to_hub is True.

* fix: batch size arg.

* a bit better formatting

* minor fixes.

* add note on env.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* condition wandb info better

* make mixed_precision assignment in cli args explicit.

* separate inference block for sample images.

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* address more comments.

* autocast mode.

* correct none image type problem.

* ifx: list assignment.

* minor fix.

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-06-20 08:59:41 +05:30
estelleafl
666743302f [ldm3d] Fixed small typo (#3820)
* fixed typo

* updated doc to be consistent in naming

* make style/quality

---------

Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
2023-06-19 17:38:02 +02:00
Steven Liu
f7cc9adc05 [docs] Zero SNR (#3776)
* add zero snr doc

* fix image link

* apply feedback

* separate page
2023-06-16 13:19:37 -07:00
Will Berman
59aefe9ea6 device map legacy attention block weight conversion (#3804) 2023-06-16 10:39:20 -07:00
Will Berman
3ddc2b7395 [train text to image] add note to loading from checkpoint (#3806)
add note to loading from checkpoint
2023-06-16 11:54:49 +05:30
Will Berman
d49e2dd54c manual check for checkpoints_total_limit instead of using accelerate (#3681)
* manual check for checkpoints_total_limit instead of using accelerate

* remove controlnet_conditioning_embedding_out_channels
2023-06-15 15:38:54 -07:00
Isotr0py
7bfd2375c7 fix typo (#3800) 2023-06-15 22:00:47 +05:30
Patrick von Platen
ea8ae8c639 Complete set_attn_processor for prior and vae (#3796)
* relax tolerance slightly

* Add more tests

* upload readme

* upload readme

* Apply suggestions from code review

* Improve API Autoencoder KL

* finalize

* finalize tests

* finalize tests

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* up

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-15 17:42:49 +02:00
estelleafl
958d9ec723 Ldm3d first PR (#3668)
* added ldm3d pipeline and updated image processor to support depth

* added description

* added paper reference

* added docs

* fixed bug

* added test

* Update tests/pipelines/stable_diffusion/test_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/pipelines/stable_diffusion/test_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* added reference in indexmdx

* reverted changes tto image processor'

* added LDM3DOutput

* Fixes with make style

* fix failing tests for make fix-copies

* aligned with our version

* Update pipeline_stable_diffusion_ldm3d.py

updated the guidance scale

* Fix for failing check_code_quality test

* Code review feedback

* Fix typo in ldm3d_diffusion.mdx

* updated the doc accordnlgy

* copyrights

* fixed test failure

* make style

* added image processor of LDM3D in the documentation:

* added ldm3d doc to toctree

* run make style && make quality

* run make fix-copies

* Update docs/source/en/api/image_processor.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update docs/source/en/api/pipelines/stable_diffusion/ldm3d_diffusion.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* updated the safety checker to accept tuple

* make style and make quality

* Update src/diffusers/pipelines/stable_diffusion/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_ldm3d.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* LDM3D output

* up

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Aflalo <estellea@isl-gpu27.rr.intel.com>
Co-authored-by: Anahita Bhiwandiwalla <anahita.bhiwandiwalla@intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu26.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-iam1.rr.intel.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aflalo <estellea@isl-gpu42.rr.intel.com>
Co-authored-by: Aflalo <estellea@isl-gpu43.rr.intel.com>
2023-06-15 17:36:52 +02:00
Sayak Paul
77f9137f10 feat: add PR template. (#3786)
* feat: add PR template.

* address pr comments.

* Update .github/PULL_REQUEST_TEMPLATE.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-15 19:41:54 +05:30
Naga Sai Abhinay
231bdf2e56 UnCLIP Image Interpolation -> Keep same initial noise across interpolation steps (#3782)
* Maintain same decoder start noise for all interp steps

* Correct comment

* use batch_size for consistency
2023-06-15 15:15:40 +02:00
Arpan Tripathi
75124fc91e Added LoRA loading to StableDiffusionKDiffusionPipeline (#3751)
Added `LoraLoaderMixin` to `StableDiffusionKDiffusionPipeline`
2023-06-15 15:09:44 +02:00
Patrick von Platen
908e5e9cc6 Fix some bad comment in training scripts (#3798)
* relax tolerance slightly

* correct incorrect naming
2023-06-15 15:07:51 +02:00
cmdr2
2715079344 Fix broken cpu-offloading in legacy inpainting SD pipeline (#3773) 2023-06-15 14:56:40 +02:00
takuoko
1ae15fa64c [Enhance] Update reference (#3723)
* update reference pipeline

* update reference pipeline

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-15 14:34:12 +02:00
Sayak Paul
027a365a62 [Bug Report template] modify the issue template to include core maintainers. (#3785)
* modify the issue template to include core maintainers.

* add: entry for audio.

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-15 07:43:07 +05:30
Steven Liu
f96b760658 [docs] Fix Colab notebook cells (#3777)
fix colab notebook cells
2023-06-14 10:21:39 -07:00
YiYi Xu
7761b89d7b update conversion script for Kandinsky unet (#3766)
* update kandinsky conversion script

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-14 06:57:53 -10:00
jfozard
ce5504934a Update pipeline_flax_stable_diffusion_controlnet.py (#3306)
Update pipeline_flax_controlnet.py

Change type of images array from jax.numpy.array to numpy.ndarray to permit in-place modification of the array when the safety checker detects a NSFW image.
2023-06-12 14:25:46 -10:00
Patrick von Platen
34d14d7848 [MultiControlNet] Allow save and load (#3747)
* [MultiControlNet] Allow save and load

* Correct more

* [MultiControlNet] Allow save and load

* make style

* Apply suggestions from code review
2023-06-12 18:29:58 +02:00
Patrick von Platen
ef9590712a [Tests] Relax tolerance of flaky failing test (#3755)
relax tolerance slightly
2023-06-12 18:28:30 +02:00
Andranik Movsisyan
a812fb6f5c Text2video zero refinements (#3733)
* fix docs typos. add frame_ids argument to text2video-zero pipeline call

* make style && make quality

* add support of pytorch 2.0 scaled_dot_product_attention for CrossFrameAttnProcessor

* add chunk-by-chunk processing to text2video-zero docs

* make style && make quality

* Update docs/source/en/api/pipelines/text_to_video_zero.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-12 18:03:18 +02:00
Liam Swayne
f46b22ba13 [documentation] grammatical fixes in installation.mdx (#3735)
Update installation.mdx
2023-06-12 17:42:01 +02:00
JeLuF
b2b13cd315 [Documentation] Replace dead link to Flax install guide (#3739)
Replace dead link to Flax documentation

Replace the dead link to the Flax installation guide by a working one: https://flax.readthedocs.io/en/latest/#installation
2023-06-12 17:40:48 +02:00
Patrick von Platen
38adcd21bd [Stable Diffusion Inpaint & ControlNet inpaint] Correct timestep inpaint (#3749)
* Correct timestep inpaint

* make style

* Fix

* Apply suggestions from code review

* make style
2023-06-12 13:59:38 +02:00
Patrick von Platen
790212f4d9 Correct another push token (#3745)
clean up more
2023-06-12 10:29:23 +02:00
Patrick von Platen
11aa105077 Correct Token to upload docs (#3744)
clean up more
2023-06-12 10:04:45 +02:00
Patrick von Platen
abbfe4b5b7 fix zh 2023-06-10 17:54:55 +02:00
Patrick von Platen
1d50f47a58 Merge branch 'main' of https://github.com/huggingface/diffusers 2023-06-10 17:04:59 +02:00
Patrick von Platen
e891b00dfc build docs 2023-06-10 16:58:59 +02:00
Patrick von Platen
27af55d1b4 build docs 2023-06-10 16:56:41 +02:00
YiYi Xu
05361960f2 remove seed (#3734)
* remove seed

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-09 08:27:02 -10:00
Patrick von Platen
c42f6ee43e Post 0.17.0 release (#3721)
* Post release

* Post release
2023-06-08 18:08:49 +02:00
Patrick von Platen
f523b11a10 Fix loading if unexpected keys are present (#3720)
* Fix loading

* make style
2023-06-08 16:48:06 +02:00
Zachary Mueller
79fa94ea8b Apply deprecations from Accelerate (#3714)
Apply deprecations
2023-06-08 16:44:22 +02:00
Patrick von Platen
a06317abea [Actions] Fix actions (#3712) 2023-06-07 18:57:28 +01:00
YiYi Xu
500a3ff9ef [docs] add image processor documentation (#3710)
add image processor

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
2023-06-07 18:35:07 +01:00
Mishig
8caa530069 [doc build] Use secrets (#3707)
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-07 18:21:16 +01:00
Kadir Nar
cd6186907c [Community] Support StableDiffusionCanvasPipeline (#3590)
* added StableDiffusionCanvasPipeline pipeline

* Added utils codes to pipe_utils file.

* make style

* delete mixture.py and Text2ImageRegion class

* make style

* Added the codes to the readme.md file.

* Moved functions from pipeline_utils to mix_canvas
2023-06-07 17:43:33 +01:00
Patrick von Platen
803d653748 Fix custom releases (#3708)
* Fix custom releases

* make style
2023-06-07 17:33:54 +01:00
Alex McKinney
cd9d0913d9 Fixes eval generator init in train_text_to_image_lora.py (#3678) 2023-06-07 15:37:13 +05:30
Pedro Cuenca
fdec23188a [Tests] Run slow matrix sequentially (#3500)
[tests] Run slow matrix sequentially.
2023-06-07 11:01:35 +01:00
Max-We
12a232efa9 Fix schedulers zero SNR and rescale classifier free guidance (#3664)
* Implement option for rescaling betas to zero terminal SNR

* Implement rescale classifier free guidance in pipeline_stable_diffusion.py

* focus on DDIM

* make style

* make style

* make style

* make style

* Apply suggestions from Peter Lin

* Apply suggestions from Peter Lin

* make style

* Apply suggestions from code review

* Apply suggestions from code review

* make style

* make style

---------

Co-authored-by: MaxWe00 <gitlab.9v1lq@slmail.me>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-07 10:57:10 +01:00
Patrick von Platen
74fd735eb0 Add draft for lora text encoder scale (#3626)
* Add draft for lora text encoder scale

* Improve naming

* fix: training dreambooth lora script.

* Apply suggestions from code review

* Update examples/dreambooth/train_dreambooth_lora.py

* Apply suggestions from code review

* Apply suggestions from code review

* add lora mixin when fit

* add lora mixin when fit

* add lora mixin when fit

* fix more

* fix more

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-06 22:47:46 +01:00
Jason C.H
2de9e2df36 Fix from_ckpt for Stable Diffusion 2.x (#3662) 2023-06-06 22:39:11 +01:00
Isotr0py
11b3002b48 Support views batch for panorama (#3632)
* support views batch for panorama

* add entry for the new argument

* format entry for the new argument

* add view_batch_size test

* fix batch test and a boundary condition

* add more docstrings

* fix a typos

* fix typos

* add: entry to the doc about view_batch_size.

* Revert "add: entry to the doc about view_batch_size."

This reverts commit a36aeaa9ed.

* add a tip on .

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-07 02:50:02 +05:30
stano
10f4ecd177 Fix the Kandinsky docstring examples (#3695)
- use the correct Prior hub model id
 - use the new names in KandinskyPriorPipelineOutput
2023-06-06 22:18:14 +01:00
Sayak Paul
de16f64667 feat: when using PT 2.0 use LoRAAttnProcessor2_0 for text enc LoRA. (#3691) 2023-06-06 21:20:53 +01:00
YiYi Xu
017ee1609b refactor Image processor for x4 upscaler (#3692)
* refactor x4 upscaler

* style

* copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-06 21:08:36 +01:00
Sayak Paul
8669e8313d [LoRA] feat: add lora attention processor for pt 2.0. (#3594)
* feat: add lora attention processor for pt 2.0.

* explicit context manager for SDPA.

* switch to flash attention

* make shapes compatible to work optimally with SDPA.

* fix: circular import problem.

* explicitly specify the flash attention kernel in sdpa

* fall back to efficient attention context manager.

* remove explicit dispatch.

* fix: removed processor.

* fix: remove optional from type annotation.

* feat: make changes regarding LoRAAttnProcessor2_0.

* remove confusing warning.

* formatting.

* relax tolerance for PT 2.0

* fix: loading message.

* remove unnecessary logging.

* add: entry to the docs.

* add: network_alpha argument.

* relax tolerance.
2023-06-06 14:56:05 +05:30
Takuma Mori
b45204ea5a Add function to remove monkey-patch for text encoder LoRA (#3649)
* merge undoable-monkeypatch

* remove TEXT_ENCODER_TARGET_MODULES, refactoring

* move create_lora_weight_file
2023-06-06 14:06:13 +05:30
Steven Liu
a8b0f42c38 [docs] Fix link to loader method (#3680)
fix link to load_lora_weights
2023-06-06 13:37:47 +05:30
Will Berman
41ae670828 move activation dispatches into helper function (#3656)
* move activation dispatches into helper function

* tests
2023-06-05 12:30:48 -07:00
Will Berman
462956be7b small tweaks for parsing thibaudz controlnet checkpoints (#3657) 2023-06-05 10:24:31 -07:00
YiYi Xu
5990014700 [WIP]Vae preprocessor refactor (PR1) (#3557)
VaeImageProcessor.preprocess refactor

* refactored VaeImageProcessor 
   -  allow passing optional height and width argument to resize()
   - add convert_to_rgb
* refactored prepare_latents method for img2img pipelines so that if we pass latents directly as image input, it will not encode it again
* added a test in test_pipelines_common.py to test latents as image inputs
* refactored img2img pipelines that accept latents as image: 
   - controlnet img2img, stable diffusion img2img , instruct_pix2pix

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-05 07:11:00 -10:00
Steven Liu
1a6a647e06 [docs] More API fixes (#3640)
* part 2 of api fixes

* move randn_tensor

* add to toctree

* apply feedback

* more feedback
2023-06-05 09:47:26 -07:00
Sayak Paul
995bbcb9aa [UniDiffuser test] fix one test so that it runs correctly on V100 (#3675)
* fix: assertion.

* assertion fix.
2023-06-05 17:42:31 +05:30
pdoane
d0416ab090 Update Compel documentation for textual inversions (#3663)
* Update Compel documentation for textual inversions

* Fix typo
2023-06-05 16:46:27 +05:30
Vladislav Lyubimov
1994dbcb5e Fix from_ckpt not working properly on windows (#3666) 2023-06-05 11:55:37 +01:00
Patrick von Platen
262d539a8a Correct multi gpu dreambooth (#3673)
Correct multi gpu
2023-06-05 11:03:11 +01:00
Will Berman
0fc2fb71c1 dreambooth upscaling fix added latents (#3659) 2023-06-05 10:32:16 +01:00
Steven Liu
523a50a8eb [docs] Load A1111 LoRA (#3629)
* load a1111 lora

* fix

* apply feedback

* fix
2023-06-05 11:05:42 +05:30
0x1355
de45af4a46 Allow setting num_cycles for cosine_with_restarts lr scheduler (#3606)
Expose num_cycles kwarg of get_schedule() through args.lr_num_cycles.
2023-06-05 10:18:29 +05:30
0x1355
b95cbdf6fc Set step_rules correctly for piecewise_constant scheduler (#3605)
So that schedule_func() calls get_piecewise_constant_schedule() with correctly named kwarg.
2023-06-05 10:16:26 +05:30
Will Berman
7a39691362 linting fix (#3653) 2023-06-02 13:33:19 -07:00
Will Berman
5911a3aa47 dreambooth if docs - stage II, more info (#3628)
* dreambooth if docs - stage II, more info

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/training/dreambooth.mdx

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* download instructions for downsized images

* update source README to match docs

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-02 10:37:13 -07:00
Will Berman
b7af946138 set config from original module but set compiled module on class (#3650)
* set config from original module but set compiled module on class

* add test
2023-06-02 10:26:41 -07:00
asfiyab-nvidia
d3717e6368 add Stable Diffusion TensorRT Inpainting pipeline (#3642)
* add tensorrt inpaint pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* run make style

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-06-02 18:14:31 +01:00
Kadir Nar
0dbdc0cbae [Community Doc] Updated the filename and readme file. (#3634)
* Updated the filename and readme file.

* reformatter

* reformetter
2023-06-02 17:53:09 +01:00
YiYi Xu
0e8688113a fix inpainting pipeline when providing initial latents (#3641)
* fix latents

* fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-06-02 17:03:15 +01:00
Kashif Rasul
f1d4743394 fixed typo in example train_text_to_image.py (#3608)
fixed typo
2023-06-02 20:54:54 +05:30
Lachlan Nicholson
a6c7b5b6b7 Iterate over unique tokens to avoid duplicate replacements for multivector embeddings (#3588)
* iterate over unique tokens to avoid duplicate replacements

* added test for multiple references to multi embedding

* adhere to black formatting

* reorder test post-rebase
2023-06-02 16:10:22 +01:00
Takuma Mori
8e552bb4fe Support Kohya-ss style LoRA file format (in a limited capacity) (#3437)
* add _convert_kohya_lora_to_diffusers

* make style

* add scaffold

* match result: unet attention only

* fix monkey-patch for text_encoder

* with CLIPAttention

While the terrible images are no longer produced,
the results do not match those from the hook ver.
This may be due to not setting the network_alpha value.

* add to support network_alpha

* generate diff image

* fix monkey-patch for text_encoder

* add test_text_encoder_lora_monkey_patch()

* verify that it's okay to release the attn_procs

* fix closure version

* add comment

* Revert "fix monkey-patch for text_encoder"

This reverts commit bb9c61e6fa.

* Fix to reuse utility functions

* make LoRAAttnProcessor targets to self_attn

* fix LoRAAttnProcessor target

* make style

* fix split key

* Update src/diffusers/loaders.py

* remove TEXT_ENCODER_TARGET_MODULES loop

* add print memory usage

* remove test_kohya_loras_scaffold.py

* add: doc on LoRA civitai

* remove print statement and refactor in the doc.

* fix state_dict test for kohya-ss style lora

* Apply suggestions from code review

Co-authored-by: Takuma Mori <takuma104@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-06-02 17:40:24 +05:30
Patrick von Platen
32ea2142c0 [Kandinsky] Improve kandinsky API a bit (#3636)
* Improve docs

* up

* Update docs/source/en/api/pipelines/kandinsky.mdx

* up

* up

* correct more

* further improve

* Update docs/source/en/api/pipelines/kandinsky.mdx

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2023-06-02 08:57:20 +01:00
Sayak Paul
55dbfa0229 [Docs] include the instruction-tuning blog link in the InstructPix2Pix docs (#3644)
include the instruction-tuning blog link.
2023-06-02 08:04:35 +05:30
Will Berman
4f14b36329 Full Dreambooth IF stage II upscaling (#3561)
* update dreambooth lora to work with IF stage II

* Update dreambooth script for IF stage II upscaler
2023-05-31 09:39:31 -07:00
Will Berman
f751b8844e update dreambooth lora to work with IF stage II (#3560) 2023-05-31 09:39:03 -07:00
Prathik Rao
abb89da4de update code to reflect latest changes as of May 30th (#3616)
* update code to reflect latest changes as of May 30th

* update text to image example

* reflect changes to textual inversion

* make style

* fix typo

* Revert unnecessary readme changes

---------

Co-authored-by: root <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
2023-05-31 11:29:04 +02:00
Will Berman
7d0ac4eeab goodbye frog (#3617) 2023-05-30 23:18:01 +01:00
Patrick von Platen
0cc3a7a123 Make sure we also change the config when setting encoder_hid_dim_type=="text_proj" and allow xformers (#3615)
* fix if

* make style

* make style

* add tests for xformers

* make style

* update
2023-05-30 20:47:14 +01:00
Patrick von Platen
9d3ff0794d fix tests (#3614) 2023-05-30 18:59:07 +01:00
Patrick von Platen
a359ab4e29 Update README.md 2023-05-30 18:26:32 +01:00
Patrick von Platen
160c377ddc Make style 2023-05-30 13:14:09 +01:00
Denis
bb22d546c0 [Community] CLIP Guided Images Mixing with Stable DIffusion Pipeline (#3587)
* added clip_guided_images_mixing_stable_diffusion file and readme description

* apply pre-commit

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-30 13:13:45 +01:00
Greg Hunkins
799f5b4e12 [Feat] Enable State Dict For Textual Inversion Loader (#3439)
* enable state dict for textual inversion loader

* Empty-Commit | restart CI

* Empty-Commit | restart CI

* Empty-Commit | restart CI

* Empty-Commit | restart CI

* add tests

* fix tests

* fix tests

* fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-30 13:13:34 +01:00
takuoko
07ef4855cd [Community, Enhancement] Add reference tricks in README (#3589)
add reference tricks
2023-05-30 12:38:16 +01:00
Kadir Nar
6cbddf558a [Community] Support StableDiffusionTilingPipeline (#3586)
* added mixture pipeline

* added docstring

* update docstring
2023-05-30 12:24:15 +01:00
Rupert Menneer
35a740427e #3487 Fix inpainting strength for various samplers (#3532)
* Throw error if strength adjusted num_inference_steps < 1

* Added new fast test to check ValueError raised when num_inference_steps < 1

when strength adjusts the num_inference_steps then the inpainting pipeline should fail

* fix #3487 initial latents are now only scaled by init_noise_sigma when pure noise

updated this commit w.r.t the latest merge here: https://github.com/huggingface/diffusers/pull/3533

* fix

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2023-05-30 12:17:42 +01:00
Sayak Paul
0612f48cd0 [UniDiffuser Tests] Fix some tests (#3609)
* fix: unidiffuser test failures.

* living room.
2023-05-30 12:07:18 +01:00
Kadir Nar
c059cc0992 [docs] update the broken links (#3577) 2023-05-30 11:44:53 +01:00
Patrick von Platen
c0f867afd1 Fix temb attention (#3607)
* Fix temb attention

* Apply suggestions from code review

* make style

* Add tests and fix docker

* Apply suggestions from code review
2023-05-30 11:26:23 +01:00
Sayak Paul
c6ae883751 remove print statements from attention processor. (#3592) 2023-05-29 09:20:31 +05:30
Steven Liu
5559d04237 [docs] Working with different formats (#3534)
* add ckpt

* fix format

* apply feedback

* fix

* include pb

* rename file
2023-05-26 14:37:51 -07:00
Brandon
9917c32916 [docs] update the broken links (#3568)
update the broken links

update the broken links for training folder doc
2023-05-26 12:10:32 -07:00
Steven Liu
ab986769f1 [docs] Maintenance (#3552)
* doc fixes

* fix latex

* parenthesis on inside
2023-05-26 12:04:15 -07:00
Will Berman
bdc75e753d [IF super res] correctly normalize PIL input (#3536)
* [IF super res] correctl normalize PIL input

* 175 -> 127.5
2023-05-26 10:59:44 -07:00
Leon Lin
1d1f648c6b fix dreambooth attention mask (#3541) 2023-05-26 10:58:50 -07:00
Takuma Mori
67cf0445ef Fix to apply LoRAXFormersAttnProcessor instead of LoRAAttnProcessor when xFormers is enabled (#3556)
* fix to use LoRAXFormersAttnProcessor

* add test

* using new LoraLoaderMixin.save_lora_weights

* add test_lora_save_load_with_xformers
2023-05-26 17:33:25 +05:30
dg845
352ca3198c [WIP] Add UniDiffuser model and pipeline (#2963)
* Fix a bug of pano when not doing CFG (#3030)

* Fix a bug of pano when not doing CFG

* enhance code quality

* apply formatting.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Text2video zero refinements (#3070)

* fix progress bar issue in pipeline_text_to_video_zero.py. Copy scheduler after first backward

* fix tensor loading in test_text_to_video_zero.py

* make style && make quality

* Release: v0.15.0

* [Tests] Speed up panorama tests (#3067)

* fix: norm group test for UNet3D.

* chore: speed up the panorama tests (fast).

* set default value of _test_inference_batch_single_identical.

* fix: batch_sizes default value.

* [Post release] v0.16.0dev (#3072)

* Adds profiling flags, computes train metrics average. (#3053)

* WIP controlnet training

- bugfix --streaming
- bugfix running report_to!='wandb'
- adds memory profile before validation

* Adds final logging statement.

* Sets train epochs to 11.

Looking at a longer ~16ep run, we see only good validation images
after ~11ep:

https://wandb.ai/andsteing/controlnet_fill50k/runs/3j2hx6n8

* Removes --logging_dir (it's not used).

* Adds --profile flags.

* Updates --output_dir=runs/fill-circle-{timestamp}.

* Compute mean of `train_metrics`.

Previously `train_metrics[-1]` was logged, resulting in very bumpy train
metrics.

* Improves logging a bit.

- adds l2_grads gradient norm logging
- adds steps_per_sec
- sets walltime as x coordinate of train/step
- logs controlnet_params config

* Adds --ccache (doesn't really help though).

* minor fix in controlnet flax example (#2986)

* fix the error when push_to_hub but not log validation

* contronet_from_pt & controlnet_revision

* add intermediate checkpointing to the guide

* Bugfix --profile_steps

* Sets `RACKER_PROJECT_NAME='controlnet_fill50k'`.

* Logs fractional epoch.

* Adds relative `walltime` metric.

* Adds `StepTraceAnnotation` and uses `global_step` insetad of `step`.

* Applied `black`.

* Streamlines commands in README a bit.

* Removes `--ccache`.

This makes only a very small difference (~1 min) with this model size, so removing
the option introduced in cdb3cc.

* Re-ran `black`.

* Update examples/controlnet/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Converts spaces to tab.

* Removes repeated args.

* Skips first step (compilation) in profiling

* Updates README with profiling instructions.

* Unifies tabs/spaces in README.

* Re-ran style & quality.

---------
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Pipelines] Make sure that None functions are correctly not saved (#3080)

* doc string example remove from_pt (#3083)

* [Tests] parallelize (#3078)

* [Tests] parallelize

* finish folder structuring

* Parallelize tests more

* Correct saving of pipelines

* make sure logging level is correct

* try again

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Throw deprecation warning for return_cached_folder (#3092)

Throw deprecation warning

* Allow SD attend and excite pipeline to work with any size output images (#2835)

Allow stable diffusion attend and excite pipeline to work with any size output image. Re: #2476, #2603

* [docs] Update community pipeline docs (#2989)

* update community pipeline docs

* fix formatting

* explain sharing workflows

* Add to support Guess Mode for StableDiffusionControlnetPipleline (#2998)

* add guess mode (WIP)

* fix uncond/cond order

* support guidance_scale=1.0 and batch != 1

* remove magic coeff

* add docstring

* add intergration test

* add document to controlnet.mdx

* made the comments a bit more explanatory

* fix table

* fix default value for attend-and-excite (#3099)

* fix default

* remvoe one line as requested by gc team  (#3077)

remvoe one line

* ddpm custom timesteps (#3007)

add custom timesteps test

add custom timesteps descending order check

docs

timesteps -> custom_timesteps

can only pass one of num_inference_steps and timesteps

* Fix breaking change in `pipeline_stable_diffusion_controlnet.py` (#3118)

fix breaking change

* Add global pooling to controlnet (#3121)

* [Bug fix] Fix img2img processor with safety checker (#3127)

Fix img2img processor with safety checker

* [Bug fix] Make sure correct timesteps are chosen for img2img (#3128)

Make sure correct timesteps are chosen for img2img

* Improve deprecation warnings (#3131)

* Fix config deprecation (#3129)

* Better deprecation message

* Better deprecation message

* Better doc string

* Fixes

* fix more

* fix more

* Improve __getattr__

* correct more

* fix more

* fix

* Improve more

* more improvements

* fix more

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* make style

* Fix all rest & add tests & remove old deprecation fns

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* feat: verfication of multi-gpu support for select examples. (#3126)

* feat: verfication of multi-gpu support for select examples.

* add: multi-gpu training sections to the relvant doc pages.

* speed up attend-and-excite fast tests (#3079)

* Optimize log_validation in train_controlnet_flax (#3110)

extract pipeline from log_validation

* make style

* Correct textual inversion readme (#3145)

* Update README.md

* Apply suggestions from code review

* Add unet act fn to other model components (#3136)

Adding act fn config to the unet timestep class embedding and conv
activation.

The custom activation defaults to silu which is the default
activation function for both the conv act and the timestep class
embeddings so default behavior is not changed.

The only unet which use the custom activation is the stable diffusion
latent upscaler https://huggingface.co/stabilityai/sd-x2-latent-upscaler/blob/main/unet/config.json
(I ran a script against the hub to confirm).
The latent upscaler does not use the conv activation nor the timestep
class embeddings so we don't change its behavior.

* class labels timestep embeddings projection dtype cast (#3137)

This mimics the dtype cast for the standard time embeddings

* [ckpt loader] Allow loading the Inpaint and Img2Img pipelines, while loading a ckpt model (#2705)

* [ckpt loader] Allow loading the Inpaint and Img2Img pipelines, while loading a ckpt model

* Address review comment from PR

* PyLint formatting

* Some more pylint fixes, unrelated to our change

* Another pylint fix

* Styling fix

* add from_ckpt method as Mixin (#2318)

* add mixin class for pipeline from original sd ckpt

* Improve

* make style

* merge main into

* Improve more

* fix more

* up

* Apply suggestions from code review

* finish docs

* rename

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add TensorRT SD/txt2img Community Pipeline to diffusers along with TensorRT utils (#2974)

* Add SD/txt2img Community Pipeline to diffusers along with TensorRT utils

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update installation command

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update tensorrt installation

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* changes
1. Update setting of cache directory
2. Address comments: merge utils and pipeline code.
3. Address comments: Add section in README

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* apply make style

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Correct `Transformer2DModel.forward` docstring (#3074)

⚙️chore(transformer_2d) update function signature for encoder_hidden_states

* Update pipeline_stable_diffusion_inpaint_legacy.py (#2903)

* Update pipeline_stable_diffusion_inpaint_legacy.py

* fix preprocessing of Pil images with adequate batch size

* revert map

* add tests

* reformat

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* next try to fix the style

* wth is this

* Update testing_utils.py

* Update testing_utils.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

* Update test_stable_diffusion_inpaint_legacy.py

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Modified altdiffusion pipline to support altdiffusion-m18 (#2993)

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

* Modified altdiffusion pipline to support altdiffusion-m18

---------

Co-authored-by: root <fulong_ye@163.com>

* controlnet training resize inputs to multiple of 8 (#3135)

controlnet training center crop input images to multiple of 8

The pipeline code resizes inputs to multiples of 8.
Not doing this resizing in the training script is causing
the encoded image to have different height/width dimensions
than the encoded conditioning image (which uses a separate
encoder that's part of the controlnet model).

We resize and center crop the inputs to make sure they're the
same size (as well as all other images in the batch). We also
check that the initial resolution is a multiple of 8.

* adding custom diffusion training to diffusers examples (#3031)

* diffusers==0.14.0 update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion update

* custom diffusion

* custom diffusion

* custom diffusion

* custom diffusion

* custom diffusion

* apply formatting and get rid of bare except.

* refactor readme and other minor changes.

* misc refactor.

* fix: repo_id issue and loaders logging bug.

* fix: save_model_card.

* fix: save_model_card.

* fix: save_model_card.

* add: doc entry.

* refactor doc,.

* custom diffusion

* custom diffusion

* custom diffusion

* apply style.

* remove tralining whitespace.

* fix: toctree entry.

* remove unnecessary print.

* custom diffusion

* custom diffusion

* custom diffusion test

* custom diffusion xformer update

* custom diffusion xformer update

* custom diffusion xformer update

---------

Co-authored-by: Nupur Kumari <nupurkumari@Nupurs-MacBook-Pro.local>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nupur Kumari <nupurkumari@nupurs-mbp.wifi.local.cmu.edu>

* make style

* Update custom_diffusion.mdx (#3165)

Add missing newlines for rendering the links correctly

* Added distillation for quantization example on textual inversion. (#2760)

* Added distillation for quantization example on textual inversion.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* refined readme and code style.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* Update text2images.py

* refined code of model load and added compatibility check.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* fixed code style.

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* fix C403 [*] Unnecessary `list` comprehension (rewrite as a `set` comprehension)

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

---------

Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>

* Update Noise Autocorrelation Loss Function for Pix2PixZero Pipeline (#2942)

* Update Pix2PixZero Auto-correlation Loss

* Add fast inversion tests

* Clarify purpose and mark as deprecated

Fix inversion prompt broadcasting

* Register modules set to `None` in config for `test_save_load_optional_components`

* Update new tests to coordinate with #2953

* [DreamBooth] add text encoder LoRA support in the DreamBooth training script (#3130)

* add: LoRA text encoder support for DreamBooth example.

* fix initialization.

* fix: modification call.

* add: entry in the readme.

* use dog dataset from hub.

* fix: params to clip.

* add entry to the LoRA doc.

* add: tests for lora.

* remove unnecessary list comprehension./

* Update Habana Gaudi documentation (#3169)

* Update Habana Gaudi doc

* Fix tables

* Add model offload to x4 upscaler (#3187)

* Add model offload to x4 upscaler

* fix

* [docs] Deterministic algorithms (#3172)

deterministic algos

* Update custom_diffusion.mdx to credit the author (#3163)

* Update custom_diffusion.mdx

* fix: unnecessary list comprehension.

* Fix TensorRT community pipeline device set function (#3157)

pass silence_dtype_warnings as kwarg

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make `from_flax` work for controlnet (#3161)

fix from_flax

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Clarify training args (#3146)

* clarify training arg

* apply feedback

* Multi Vector Textual Inversion (#3144)

* Multi Vector

* Improve

* fix multi token

* improve test

* make style

* Update examples/test_examples.py

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* update

* Finish

* Apply suggestions from code review

---------

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Add `Karras sigmas` to HeunDiscreteScheduler (#3160)

* Add karras pattern to discrete heun scheduler

* Add integration test

* Fix failing CI on pytorch test on M1 (mps)

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [AudioLDM] Fix dtype of returned waveform (#3189)

* Fix bug in train_dreambooth_lora (#3183)

* Update train_dreambooth_lora.py

fix bug

* Update train_dreambooth_lora.py

* [Community Pipelines] Update lpw_stable_diffusion pipeline (#3197)

* Update lpw_stable_diffusion.py

* fix cpu offload

* Make sure VAE attention works with Torch 2_0 (#3200)

* Make sure attention works with Torch 2_0

* make style

* Fix more

* Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)

Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline (#3197)"

This reverts commit 9965cb50ea.

* [Bug fix] Fix batch size attention head size mismatch (#3214)

* fix mixed precision training on train_dreambooth_inpaint_lora (#3138)

cast to weight dtype

* adding enable_vae_tiling and disable_vae_tiling functions (#3225)

adding enable_vae_tiling and disable_val_tiling functions

* Add ControlNet v1.1 docs (#3226)

Add v1.1 docs

* Fix issue in maybe_convert_prompt (#3188)

When the token used for textual inversion does not have any special symbols (e.g. it is not surrounded by <>), the tokenizer does not properly split the replacement tokens.  Adding a space for the padding tokens fixes this.

* Sync cache version check from transformers (#3179)

sync cache version check from transformers

* Fix docs text inversion (#3166)

* Fix docs text inversion

* Apply suggestions from code review

* add model (#3230)

* add

* clean

* up

* clean up more

* fix more tests

* Improve docs further

* improve

* more fixes docs

* Improve docs more

* Update src/diffusers/models/unet_2d_condition.py

* fix

* up

* update doc links

* make fix-copies

* add safety checker and watermarker to stage 3 doc page code snippets

* speed optimizations docs

* memory optimization docs

* make style

* add watermarking snippets to doc string examples

* make style

* use pt_to_pil helper functions in doc strings

* skip mps tests

* Improve safety

* make style

* new logic

* fix

* fix bad onnx design

* make new stable diffusion upscale pipeline model arguments optional

* define has_nsfw_concept when non-pil output type

* lowercase linked to notebook name

---------

Co-authored-by: William Berman <WLBberman@gmail.com>

* Allow return pt x4 (#3236)

* Add all files

* update

* Allow fp16 attn for x4 upscaler (#3239)

* Add all files

* update

* Make sure vae is memory efficient for PT 1

* make style

* fix fast test (#3241)

* Adds a document on token merging (#3208)

* add document on token merging.

* fix headline.

* fix: headline.

* add some samples for comparison.

* [AudioLDM] Update docs to use updated ckpt (#3240)

* [AudioLDM] Update docs to use updated ckpt

* make style

* Release: v0.16.0

* Post release for 0.16.0 (#3244)

* Post release

* fix more

* [docs] only mention one stage (#3246)

* [docs] only mention one stage

* add blurb on auto accepting

---------

Co-authored-by: William Berman <WLBberman@gmail.com>

* Write model card in controlnet training script (#3229)

Write model card in controlnet training script.

* [2064]: Add stochastic sampler (sample_dpmpp_sde) (#3020)

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* [2064]: Add stochastic sampler

* Review comments

* [Review comment]: Add is_torchsde_available()

* [Review comment]: Test and docs

* [Review comment]

* [Review comment]

* [Review comment]

* [Review comment]

* [Review comment]

---------

Co-authored-by: njindal <njindal@adobe.com>

* [Stochastic Sampler][Slow Test]: Cuda test fixes (#3257)

[Slow Test]: Cuda test fixes

Co-authored-by: njindal <njindal@adobe.com>

* Remove required from tracker_project_name (#3260)

Remove required from tracker_project_name.

As observed by https://github.com/off99555 in https://github.com/huggingface/diffusers/issues/2695#issuecomment-1470755050, it already has a default value.

* adding required parameters while calling the get_up_block and get_down_block  (#3210)

* removed unnecessary parameters from get_up_block and get_down_block functions

* adding resnet_skip_time_act, resnet_out_scale_factor and cross_attention_norm to get_up_block and get_down_block functions

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Update interface in repaint.mdx (#3119)

Update repaint.mdx

accomodate to #1701

* Update IF name to XL (#3262)

Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>

* fix typo in score sde pipeline (#3132)

* Fix typo in textual inversion JAX training script (#3123)

The pipeline is built as `pipe` but then used as `pipeline`.

* AudioDiffusionPipeline - fix encode method after config changes (#3114)

* config fixes

* deprecate get_input_dims

* Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline"" (#3265)

Revert "Revert "[Community Pipelines] Update lpw_stable_diffusion pipeline" (#3201)"

This reverts commit 91a2a80eb2.

* Fix community pipelines (#3266)

* update notebook (#3259)

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>

* [docs] add notes for stateful model changes (#3252)

* [docs] add notes for stateful model changes

* Update docs/source/en/optimization/fp16.mdx

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* link to accelerate docs for discarding hooks

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* [LoRA] quality of life improvements in the loading semantics and docs (#3180)

* 👽 qol improvements for LoRA.

* better function name?

* fix: LoRA weight loading with the new format.

* address Patrick's comments.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* change wording around encouraging the use of load_lora_weights().

* fix: function name.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Community Pipelines] EDICT pipeline implementation (#3153)

* EDICT pipeline initial commit

- Starting point taking from https://github.com/Joqsan/edict-diffusion

* refactor __init__() method

* minor refactoring

* refactor scheduler code

- remove scheduler and move its methods to the EDICTPipeline class

* make CFG optional
- refactor encode_prompt().
- include optional generator for sampling with vae.
- minor variable renaming

* add EDICT pipeline description to README.md

* replace preprocess() with VaeImageProcessor

* run make style and make quality commands

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs]zh translated docs update (#3245)

* zh translated docs update

* update _toctree

* Update logging.mdx (#2863)

Fix typos

* Add multiple conditions to StableDiffusionControlNetInpaintPipeline (#3125)

* try multi controlnet inpaint

* multi controlnet inpaint

* multi controlnet inpaint

* Let's make sure that dreambooth always uploads to the Hub (#3272)

* Update Dreambooth README

* Adapt all docs as well

* automatically write model card

* fix

* make style

* Diffedit Zero-Shot Inpainting Pipeline (#2837)

* Update Pix2PixZero Auto-correlation Loss

* Add Stable Diffusion DiffEdit pipeline

* Add draft documentation and import code

* Bugfixes and refactoring

* Add option to not decode latents in the inversion process

* Harmonize preprocessing

* Revert "Update Pix2PixZero Auto-correlation Loss"

This reverts commit b218062fed.

* Update annotations

* rename `compute_mask` to `generate_mask`

* Update documentation

* Update docs

* Update Docs

* Fix copy

* Change shape of output latents to batch first

* Update docs

* Add first draft for tests

* Bugfix and update tests

* Add `cross_attention_kwargs` support for all pipeline methods

* Fix Copies

* Add support for PIL image latents

Add support for mask broadcasting

Update docs and tests

Align `mask` argument to `mask_image`

Remove height and width arguments

* Enable MPS Tests

* Move example docstrings

* Fix test

* Fix test

* fix pipeline inheritance

* Harmonize `prepare_image_latents` with StableDiffusionPix2PixZeroPipeline

* Register modules set to `None` in config for `test_save_load_optional_components`

* Move fixed logic to specific test class

* Clean changes to other pipelines

* Update new tests to coordinate with #2953

* Update slow tests for better results

* Safety to avoid potential problems with torch.inference_mode

* Add reference in SD Pipeline Overview

* Fix tests again

* Enforce determinism in noise for generate_mask

* Fix copies

* Widen test tolerance for fp16 based on `test_stable_diffusion_upscale_pipeline_fp16`

* Add LoraLoaderMixin and update `prepare_image_latents`

* clean up repeat and reg

* bugfix

* Remove invalid args from docs

Suppress spurious warning by repeating image before latent to mask gen

* add constant learning rate with custom rule (#3133)

* add constant lr with rules

* add constant with rules in TYPE_TO_SCHEDULER_FUNCTION

* add constant lr rate with rule

* hotfix code quality

* fix doc style

* change name constant_with_rules to piecewise constant

* Allow disabling torch 2_0 attention (#3273)

* Allow disabling torch 2_0 attention

* make style

* Update src/diffusers/models/attention.py

* [doc] add link to training script (#3271)

add link to training script

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>

* temp disable spectogram diffusion tests (#3278)

The note-seq package throws an error on import because the default installed version of Ipython
is not compatible with python 3.8 which we run in the CI.
https://github.com/huggingface/diffusers/actions/runs/4830121056/jobs/8605954838#step:7:9

* Changed sample[0] to images[0] (#3304)

A pipeline object stores the results in `images` not in `sample`.
Current code blocks don't work.

* Typo in tutorial (#3295)

* Torch compile graph fix (#3286)

* fix more

* Fix more

* fix more

* Apply suggestions from code review

* fix

* make style

* make fix-copies

* fix

* make sure torch compile

* Clean

* fix test

* Postprocessing refactor img2img (#3268)

* refactor img2img VaeImageProcessor.postprocess

* remove copy from for init, run_safety_checker, decode_latents

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Torch 2.0 compile] Fix more torch compile breaks (#3313)

* Fix more torch compile breaks

* add tests

* Fix all

* fix controlnet

* fix more

* Add Horace He as co-author.
>
>
Co-authored-by: Horace He <horacehe2007@yahoo.com>

* Add Horace He as co-author.

Co-authored-by: Horace He <horacehe2007@yahoo.com>

---------

Co-authored-by: Horace He <horacehe2007@yahoo.com>

* fix: scale_lr and sync example readme and docs. (#3299)

* fix: scale_lr and sync example readme and docs.

* fix doc link.

* Update stable_diffusion.mdx (#3310)

fixed import statement

* Fix missing variable assign in DeepFloyd-IF-II (#3315)

Fix missing variable assign

lol

* Correct doc build for patch releases (#3316)

Update build_documentation.yml

* Add Stable Diffusion RePaint to community pipelines (#3320)

* Add Stable Diffsuion RePaint to community pipelines

- Adds Stable Diffsuion RePaint to community pipelines
- Add Readme enty for pipeline

* Fix: Remove wrong import

- Remove wrong import
- Minor change in comments

* Fix: Code formatting of stable_diffusion_repaint

* Fix: ruff errors in stable_diffusion_repaint

* Fix multistep dpmsolver for cosine schedule (suitable for deepfloyd-if) (#3314)

* fix multistep dpmsolver for cosine schedule (deepfloy-if)

* fix a typo

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update all dpmsolver (singlestep, multistep, dpm, dpm++) for cosine noise schedule

* add test, fix style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Improve LoRA docs (#3311)

* update docs

* add to toctree

* apply feedback

* Added input pretubation (#3292)

* Added input pretubation

* Fixed spelling

* Update write_own_pipeline.mdx (#3323)

* update controlling generation doc with latest goodies. (#3321)

* [Quality] Make style (#3341)

* Fix config dpm (#3343)

* Add the SDE variant of DPM-Solver and DPM-Solver++ (#3344)

* add SDE variant of DPM-Solver and DPM-Solver++

* add test

* fix typo

* fix typo

* Add upsample_size to AttnUpBlock2D, AttnDownBlock2D (#3275)

The argument `upsample_size` needs to be added to these modules to allow compatibility with other blocks that require this argument.

* Add UniDiffuser classes to __init__ files, modify transformer block to support pre- and post-LN, add fast default tests, fix some bugs.

* Update fast tests to use test checkpoints stored on the hub and to better match the reference UniDiffuser implementation.

* Fix code with make style.

* Revert "Fix code style with make style."

This reverts commit 10a174a12c.

* Add self.image_encoder, self.text_decoder to list of models to offload to CPU in the enable_sequential_cpu_offload(...)/enable_model_cpu_offload(...) methods to make test_cpu_offload_forward_pass pass.

* Fix code quality with make style.

* Support using a data type embedding for UniDiffuser-v1.

* Add fast test for checking UniDiffuser-v1 sampling.

* Make changes so that the repository consistency tests pass.

* Add UniDiffuser dummy objects via make fix-copies.

* Fix bugs and make improvements to the UniDiffuser pipeline:
	- Improve batch size inference and fix bugs when num_images_per_prompt or num_prompts_per_image > 1
	- Add tests for num_images_per_prompt, num_prompts_per_image > 1
	- Improve check_inputs, especially regarding checking supplied latents
	- Add reset_mode method so that mode inference can be re-enabled after mode is set manually
	- Fix some warnings related to accessing class members directly instead of through their config
	- Small amount of refactoring in pipeline_unidiffuser.py

* Fix code style with make style.

* Add/edit docstrings for added classes and public pipeline methods. Also do some light refactoring.

* Add documentation for UniDiffuser and fix some typos/formatting in docstrings.

* Fix code with make style.

* Refactor and improve the UniDiffuser convert_from_ckpt.py script.

* Move the UniDiffusers convert_from_ckpy.py script to diffusers/scripts/convert_unidiffuser_to_diffusers.py

* Fix code quality via make style.

* Improve UniDiffuser slow tests.

* make style

* Fix some typos in the UniDiffuser docs.

* Remove outdated logic based on transformers version in UniDiffuser pipeline __init__.py

* Remove dependency on einops by refactoring einops operations to pure torch operations.

* make style

* Add slow test on full checkpoint for joint mode and correct expected image slices/text prefixes.

* make style

* Fix mixed precision issue by wrapping the offending code with the torch.autocast context manager.

* Revert "Fix mixed precision issue by wrapping the offending code with the torch.autocast context manager."

This reverts commit 1a58958ab4.

* Add fast test for CUDA/fp16 model behavior (currently failing).

* Fix the mixed precision issue and add additional tests of the pipeline cuda/fp16 functionality.

* make style

* Use a CLIPVisionModelWithProjection instead of CLIPVisionModel for image_encoder to better match the original UniDiffuser implementation.

* Make style and remove some testing code.

* Fix shape errors for the 'joint' and 'img2text' modes.

* Fix tests and remove some testing code.

* Add option to use fixed latents for UniDiffuserPipelineSlowTests and fix issue in modeling_text_decoder.py.

* Improve UniDiffuser docs, particularly the usage examples, and improve slow tests with new expected outputs.

* make style

* Fix examples to load model in float16.

* In image-to-text mode, sample from the autoencoder moment distribution instead of always getting its mode.

* make style

* When encoding the image using the VAE, scale the image latents by the VAE's scaling factor.

* make style

* Clean up code and make slow tests pass.

* make fix-copies

* [docs] Fix docstring (#3334)

fix docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* if dreambooth lora (#3360)

* update IF stage I pipelines

add fixed variance schedulers and lora loading

* added kv lora attn processor

* allow loading into alternative lora attn processor

* make vae optional

* throw away predicted variance

* allow loading into added kv lora layer

* allow load T5

* allow pre compute text embeddings

* set new variance type in schedulers

* fix copies

* refactor all prompt embedding code

class prompts are now included in pre-encoding code
max tokenizer length is now configurable
embedding attention mask is now configurable

* fix for when variance type is not defined on scheduler

* do not pre compute validation prompt if not present

* add example test for if lora dreambooth

* add check for train text encoder and pre compute text embeddings

* Postprocessing refactor all others (#3337)

* add text2img

* fix-copies

* add

* add all other pipelines

* add

* add

* add

* add

* add

* make style

* style + fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [docs] Improve safetensors docstring (#3368)

* clarify safetensor docstring

* fix typo

* apply feedback

* add: a warning message when using xformers in a PT 2.0 env. (#3365)

* add: a warning message when using xformers in a PT 2.0 env.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* StableDiffusionInpaintingPipeline - resize image w.r.t height and width (#3322)

* StableDiffusionInpaintingPipeline now resizes input images and masks w.r.t to passed input height and width. Default is already set to 512. This addresses the common tensor mismatch error. Also moved type check into relevant funciton to keep main pipeline body tidy.

* Fixed StableDiffusionInpaintingPrepareMaskAndMaskedImageTests

Due to previous commit these tests were failing as height and width need to be passed into the prepare_mask_and_masked_image function, I have updated the code and added a height/width variable per unit test as it seemed more appropriate than the current hard coded solution

* Added a resolution test to StableDiffusionInpaintPipelineSlowTests

this unit test simply gets the input and resizes it into some that would fail (e.g. would throw a tensor mismatch error/not a mult of 8). Then passes it through the pipeline and verifies it produces output with correct dims w.r.t the passed height and width

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [docs] Adapt a model (#3326)

* first draft

* apply feedback

* conv_in.weight thrown away

* [docs] Load safetensors (#3333)

* safetensors

* apply feedback

* apply feedback

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [Docs] Fix stable_diffusion.mdx typo (#3398)

Fix typo in last code block. Correct "prommpts" to "prompt"

* Support ControlNet v1.1 shuffle properly (#3340)

* add inferring_controlnet_cond_batch

* Revert "add inferring_controlnet_cond_batch"

This reverts commit abe8d6311d.

* set guess_mode to True
whenever global_pool_conditions is True

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* nit

* add integration test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Tests] better determinism (#3374)

* enable deterministic pytorch and cuda operations.

* disable manual seeding.

* make style && make quality for unet_2d tests.

* enable determinism for the unet2dconditional model.

* add CUBLAS_WORKSPACE_CONFIG for better reproducibility.

* relax tolerance (very weird issue, though).

* revert to torch manual_seed() where needed.

* relax more tolerance.

* better placement of the cuda variable and relax more tolerance.

* enable determinism for 3d condition model.

* relax tolerance.

* add: determinism to alt_diffusion.

* relax tolerance for alt diffusion.

* dance diffusion.

* dance diffusion is flaky.

* test_dict_tuple_outputs_equivalent edit.

* fix two more tests.

* fix more ddim tests.

* fix: argument.

* change to diff in place of difference.

* fix: test_save_load call.

* test_save_load_float16 call.

* fix: expected_max_diff

* fix: paint by example.

* relax tolerance.

* add determinism to 1d unet model.

* torch 2.0 regressions seem to be brutal

* determinism to vae.

* add reason to skipping.

* up tolerance.

* determinism to vq.

* determinism to cuda.

* determinism to the generic test pipeline file.

* refactor general pipelines testing a bit.

* determinism to alt diffusion i2i

* up tolerance for alt diff i2i and audio diff

* up tolerance.

* determinism to audioldm

* increase tolerance for audioldm lms.

* increase tolerance for paint by paint.

* increase tolerance for repaint.

* determinism to cycle diffusion and sd 1.

* relax tol for cycle diffusion 🚲

* relax tol for sd 1.0

* relax tol for controlnet.

* determinism to img var.

* relax tol for img variation.

* tolerance to i2i sd

* make style

* determinism to inpaint.

* relax tolerance for inpaiting.

* determinism for inpainting legacy

* relax tolerance.

* determinism to instruct pix2pix

* determinism to model editing.

* model editing tolerance.

* panorama determinism

* determinism to pix2pix zero.

* determinism to sag.

* sd 2. determinism

* sd. tolerance

* disallow tf32 matmul.

* relax tolerance is all you need.

* make style and determinism to sd 2 depth

* relax tolerance for depth.

* tolerance to diffedit.

* tolerance to sd 2 inpaint.

* up tolerance.

* determinism in upscaling.

* tolerance in upscaler.

* more tolerance relaxation.

* determinism to v pred.

* up tol for v_pred

* unclip determinism

* determinism to unclip img2img

* determinism to text to video.

* determinism to last set of tests

* up tol.

* vq cumsum doesn't have a deterministic kernel

* relax tol

* relax tol

* [docs] Add transformers to install (#3388)

add transformers to install

* [deepspeed] partial ZeRO-3 support (#3076)

* [deepspeed] partial ZeRO-3 support

* cleanup

* improve deepspeed fixes

* Improve

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add omegaconf for tests (#3400)

Add omegaconfg

* Fix various bugs with LoRA Dreambooth and Dreambooth script (#3353)

* Improve checkpointing lora

* fix more

* Improve doc string

* Update src/diffusers/loaders.py

* make stytle

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Apply suggestions from code review

* better

* Fix all

* Fix multi-GPU dreambooth

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix all

* make style

* make style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix docker file (#3402)

* up

* up

* fix: deepseepd_plugin retrieval from accelerate state (#3410)

* [Docs] Add `sigmoid` beta_scheduler to docstrings of relevant Schedulers (#3399)

* Add `sigmoid` beta scheduler to `DDPMScheduler` docstring

* Add `sigmoid` beta scheduler to `RePaintScheduler` docstring

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Don't install accelerate and transformers from source (#3415)

* Don't install transformers and accelerate from source (#3414)

* Improve fast tests (#3416)

Update pr_tests.yml

* attention refactor: the trilogy  (#3387)

* Replace `AttentionBlock` with `Attention`

* use _from_deprecated_attn_block check re: @patrickvonplaten

* [Docs] update the PT 2.0 optimization doc with latest findings (#3370)

* add: benchmarking stats for A100 and V100.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address patrick's comments.

* add: rtx 4090 stats

* ⚔ benchmark reports done

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* 3313 pr link.

* add: plots.

Co-authored-by: Pedro <pedro@huggingface.co>

* fix formattimg

* update number percent.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix style rendering (#3433)

* Fix style rendering.

* Fix typo

* unCLIP scheduler do not use note (#3417)

* Replace deprecated command with environment file (#3409)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix warning message pipeline loading (#3446)

* add stable diffusion tensorrt img2img pipeline (#3419)

* add stable diffusion tensorrt img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update docstrings

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Refactor controlnet and add img2img and inpaint (#3386)

* refactor controlnet and add img2img and inpaint

* First draft to get pipelines to work

* make style

* Fix more

* Fix more

* More tests

* Fix more

* Make inpainting work

* make style and more tests

* Apply suggestions from code review

* up

* make style

* Fix imports

* Fix more

* Fix more

* Improve examples

* add test

* Make sure import is correctly deprecated

* Make sure everything works in compile mode

* make sure authorship is correctly attributed

* [Scheduler] DPM-Solver (++) Inverse Scheduler (#3335)

* Add DPM-Solver Multistep Inverse Scheduler

* Add draft tests for DiffEdit

* Add inverse sde-dpmsolver steps to tune image diversity from inverted latents

* Fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs] Fix incomplete docstring for resnet.py (#3438)

Fix incomplete docstrings for resnet.py

* fix tiled vae blend extent range (#3384)

fix tiled vae bleand extent range

* Small update to "Next steps" section (#3443)

Small update to "Next steps" section:

- PyTorch 2 is recommended.
- Updated improvement figures.

* Allow arbitrary aspect ratio in IFSuperResolutionPipeline (#3298)

* Update pipeline_if_superresolution.py

Allow arbitrary aspect ratio in IFSuperResolutionPipeline by using the input image shape

* IFSuperResolutionPipeline: allow the user to override the height and width through the arguments

* update IFSuperResolutionPipeline width/height doc string to match StableDiffusionInpaintPipeline conventions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding 'strength' parameter to StableDiffusionInpaintingPipeline  (#3424)

* Added explanation of 'strength' parameter

* Added get_timesteps function which relies on new strength parameter

* Added `strength` parameter which defaults to 1.

* Swapped ordering so `noise_timestep` can be calculated before masking the image

this is required when you aren't applying 100% noise to the masked region, e.g. strength < 1.

* Added strength to check_inputs, throws error if out of range

* Changed `prepare_latents` to initialise latents w.r.t strength

inspired from the stable diffusion img2img pipeline, init latents are initialised by converting the init image into a VAE latent and adding noise (based upon the strength parameter passed in), e.g. random when strength = 1, or the init image at strength = 0.

* WIP: Added a unit test for the new strength parameter in the StableDiffusionInpaintingPipeline

still need to add correct regression values

* Created a is_strength_max to initialise from pure random noise

* Updated unit tests w.r.t new strength parameter + fixed new strength unit test

* renamed parameter to avoid confusion with variable of same name

* Updated regression values for new strength test - now passes

* removed 'copied from' comment as this method is now different and divergent from the cpy

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Ensure backwards compatibility for prepare_mask_and_masked_image

created a return_image boolean and initialised to false

* Ensure backwards compatibility for prepare_latents

* Fixed copy check typo

* Fixes w.r.t backward compibility changes

* make style

* keep function argument ordering same for backwards compatibility in callees with copied from statements

* make fix-copies

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>

* [WIP] Bugfix - Pipeline.from_pretrained is broken when the pipeline is partially downloaded (#3448)

Added bugfix using f strings.

* Fix gradient checkpointing bugs in freezing part of models (requires_grad=False) (#3404)

* gradient checkpointing bug fix

* bug fix; changes for reviews

* reformat

* reformat

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Make dreambooth lora more robust to orig unet (#3462)

* Make dreambooth lora more robust to orig unet

* up

* Reduce peak VRAM by releasing large attention tensors (as soon as they're unnecessary) (#3463)

Release large tensors in attention (as soon as they're no longer required). Reduces peak VRAM by nearly 2 GB for 1024x1024 (even after slicing), and the savings scale up with image size.

* Add min snr to text2img lora training script (#3459)

add min snr to text2img lora training script

* Add inpaint lora scale support (#3460)

* add inpaint lora scale support

* add inpaint lora scale test

---------

Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [From ckpt] Fix from_ckpt (#3466)

* Correct from_ckpt

* make style

* Update full dreambooth script to work with IF (#3425)

* Add IF dreambooth docs (#3470)

* parameterize pass single args through tuple (#3477)

* attend and excite tests disable determinism on the class level (#3478)

* dreambooth docs torch.compile note (#3471)

* dreambooth docs torch.compile note

* Update examples/dreambooth/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add: if entry in the dreambooth training docs. (#3472)

* [docs] Textual inversion inference (#3473)

* add textual inversion inference to docs

* add to toctree

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Distributed inference (#3376)

* distributed inference

* move to inference section

* apply feedback

* update with split_between_processes

* apply feedback

* [{Up,Down}sample1d] explicit view kernel size as number elements in flattened indices (#3479)

explicit view kernel size as number elements in flattened indices

* mps & onnx tests rework (#3449)

* Remove ONNX tests from PR.

They are already a part of push_tests.yml.

* Remove mps tests from PRs.

They are already performed on push.

* Fix workflow name for fast push tests.

* Extract mps tests to a workflow.

For better control/filtering.

* Remove --extra-index-url from mps tests

* Increase tolerance of mps test

This test passes in my Mac (Ventura 13.3) but fails in the CI hardware
(Ventura 13.2). I ran the local tests following the same steps that
exist in the CI workflow.

* Temporarily run mps tests on pr

So we can test.

* Revert "Temporarily run mps tests on pr"

Tests passed, go back to running on push.

* [Attention processor] Better warning message when shifting to `AttnProcessor2_0` (#3457)

* add: debugging to enabling memory efficient processing

* add: better warning message.

* [Docs] add note on local directory path. (#3397)

add note on local directory path.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Refactor full determinism (#3485)

* up

* fix more

* Apply suggestions from code review

* fix more

* fix more

* Check it

* Remove 16:8

* fix more

* fix more

* fix more

* up

* up

* Test only stable diffusion

* Test only two files

* up

* Try out spinning up processes that can be killed

* up

* Apply suggestions from code review

* up

* up

* Fix DPM single (#3413)

* Fix DPM single

* add test

* fix one more bug

* Apply suggestions from code review

Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>

---------

Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>

* Add `use_Karras_sigmas` to DPMSolverSinglestepScheduler (#3476)

* add use_karras_sigmas

* add karras test

* add doc

* Adds local_files_only bool to prevent forced online connection (#3486)

* make style

* [Docs] Korean translation (optimization, training) (#3488)

* feat) optimization kr translation

* fix) typo, italic setting

* feat) dreambooth, text2image kr

* feat) lora kr

* fix) LoRA

* fix) fp16 fix

* fix) doc-builder style

* fix) fp16 일부 단어 수정

* fix) fp16 style fix

* fix) opt, training docs update

* feat) toctree update

* feat) toctree update

---------

Co-authored-by: Chanran Kim <seriousran@gmail.com>

* DataLoader respecting EXIF data in Training Images (#3465)

* DataLoader will now bake in any transforms or image manipulations contained in the EXIF

Images may have rotations stored in EXIF. Training using such images will cause those transforms to be ignored while training and thus produce unexpected results

* Fixed the Dataloading EXIF issue in main DreamBooth training as well

* Run make style (black & isort)

* make style

* feat: allow disk offload for diffuser models (#3285)

* allow disk offload for diffuser models

* sort import

* add max_memory argument

* Changed sample[0] to images[0] (#3304)

A pipeline object stores the results in `images` not in `sample`.
Current code blocks don't work.

* Typo in tutorial (#3295)

* Torch compile graph fix (#3286)

* fix more

* Fix more

* fix more

* Apply suggestions from code review

* fix

* make style

* make fix-copies

* fix

* make sure torch compile

* Clean

* fix test

* Postprocessing refactor img2img (#3268)

* refactor img2img VaeImageProcessor.postprocess

* remove copy from for init, run_safety_checker, decode_latents

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [Torch 2.0 compile] Fix more torch compile breaks (#3313)

* Fix more torch compile breaks

* add tests

* Fix all

* fix controlnet

* fix more

* Add Horace He as co-author.
>
>
Co-authored-by: Horace He <horacehe2007@yahoo.com>

* Add Horace He as co-author.

Co-authored-by: Horace He <horacehe2007@yahoo.com>

---------

Co-authored-by: Horace He <horacehe2007@yahoo.com>

* fix: scale_lr and sync example readme and docs. (#3299)

* fix: scale_lr and sync example readme and docs.

* fix doc link.

* Update stable_diffusion.mdx (#3310)

fixed import statement

* Fix missing variable assign in DeepFloyd-IF-II (#3315)

Fix missing variable assign

lol

* Correct doc build for patch releases (#3316)

Update build_documentation.yml

* Add Stable Diffusion RePaint to community pipelines (#3320)

* Add Stable Diffsuion RePaint to community pipelines

- Adds Stable Diffsuion RePaint to community pipelines
- Add Readme enty for pipeline

* Fix: Remove wrong import

- Remove wrong import
- Minor change in comments

* Fix: Code formatting of stable_diffusion_repaint

* Fix: ruff errors in stable_diffusion_repaint

* Fix multistep dpmsolver for cosine schedule (suitable for deepfloyd-if) (#3314)

* fix multistep dpmsolver for cosine schedule (deepfloy-if)

* fix a typo

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/diffusers/schedulers/scheduling_dpmsolver_multistep.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update all dpmsolver (singlestep, multistep, dpm, dpm++) for cosine noise schedule

* add test, fix style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [docs] Improve LoRA docs (#3311)

* update docs

* add to toctree

* apply feedback

* Added input pretubation (#3292)

* Added input pretubation

* Fixed spelling

* Update write_own_pipeline.mdx (#3323)

* update controlling generation doc with latest goodies. (#3321)

* [Quality] Make style (#3341)

* Fix config dpm (#3343)

* Add the SDE variant of DPM-Solver and DPM-Solver++ (#3344)

* add SDE variant of DPM-Solver and DPM-Solver++

* add test

* fix typo

* fix typo

* Add upsample_size to AttnUpBlock2D, AttnDownBlock2D (#3275)

The argument `upsample_size` needs to be added to these modules to allow compatibility with other blocks that require this argument.

* Rename --only_save_embeds to --save_as_full_pipeline (#3206)

* Set --only_save_embeds to False by default

Due to how the option is named, it makes more sense to behave like this.

* Refactor only_save_embeds to save_as_full_pipeline

* [AudioLDM] Generalise conversion script (#3328)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix TypeError when using prompt_embeds and negative_prompt (#2982)

* test: Added test case

* fix: fixed type checking issue on _encode_prompt

* fix: fixed copies consistency

* fix: one copy was not sufficient

* Fix pipeline class on README (#3345)

Update README.md

* Inpainting: typo in docs (#3331)

Typo in docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add `use_Karras_sigmas` to LMSDiscreteScheduler (#3351)

* add karras sigma to lms discrete scheduler

* add test for lms_scheduler karras

* reformat test lms

* Batched load of textual inversions (#3277)

* Batched load of textual inversions

- Only call resize_token_embeddings once per batch as it is the most expensive operation
- Allow pretrained_model_name_or_path and token to be an optional list
- Remove Dict from type annotation pretrained_model_name_or_path as it was not supported in this function
- Add comment that single files (e.g. .pt/.safetensors) are supported
- Add comment for token parameter
- Convert token override log message from warning to info

* Update src/diffusers/loaders.py

Check for duplicate tokens

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update condition for None tokens

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make fix-copies

* [docs] Fix docstring (#3334)

fix docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* if dreambooth lora (#3360)

* update IF stage I pipelines

add fixed variance schedulers and lora loading

* added kv lora attn processor

* allow loading into alternative lora attn processor

* make vae optional

* throw away predicted variance

* allow loading into added kv lora layer

* allow load T5

* allow pre compute text embeddings

* set new variance type in schedulers

* fix copies

* refactor all prompt embedding code

class prompts are now included in pre-encoding code
max tokenizer length is now configurable
embedding attention mask is now configurable

* fix for when variance type is not defined on scheduler

* do not pre compute validation prompt if not present

* add example test for if lora dreambooth

* add check for train text encoder and pre compute text embeddings

* Postprocessing refactor all others (#3337)

* add text2img

* fix-copies

* add

* add all other pipelines

* add

* add

* add

* add

* add

* make style

* style + fix copies

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>

* [docs] Improve safetensors docstring (#3368)

* clarify safetensor docstring

* fix typo

* apply feedback

* add: a warning message when using xformers in a PT 2.0 env. (#3365)

* add: a warning message when using xformers in a PT 2.0 env.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* StableDiffusionInpaintingPipeline - resize image w.r.t height and width (#3322)

* StableDiffusionInpaintingPipeline now resizes input images and masks w.r.t to passed input height and width. Default is already set to 512. This addresses the common tensor mismatch error. Also moved type check into relevant funciton to keep main pipeline body tidy.

* Fixed StableDiffusionInpaintingPrepareMaskAndMaskedImageTests

Due to previous commit these tests were failing as height and width need to be passed into the prepare_mask_and_masked_image function, I have updated the code and added a height/width variable per unit test as it seemed more appropriate than the current hard coded solution

* Added a resolution test to StableDiffusionInpaintPipelineSlowTests

this unit test simply gets the input and resizes it into some that would fail (e.g. would throw a tensor mismatch error/not a mult of 8). Then passes it through the pipeline and verifies it produces output with correct dims w.r.t the passed height and width

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [docs] Adapt a model (#3326)

* first draft

* apply feedback

* conv_in.weight thrown away

* [docs] Load safetensors (#3333)

* safetensors

* apply feedback

* apply feedback

* Apply suggestions from code review

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* [Docs] Fix stable_diffusion.mdx typo (#3398)

Fix typo in last code block. Correct "prommpts" to "prompt"

* Support ControlNet v1.1 shuffle properly (#3340)

* add inferring_controlnet_cond_batch

* Revert "add inferring_controlnet_cond_batch"

This reverts commit abe8d6311d.

* set guess_mode to True
whenever global_pool_conditions is True

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* nit

* add integration test

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Tests] better determinism (#3374)

* enable deterministic pytorch and cuda operations.

* disable manual seeding.

* make style && make quality for unet_2d tests.

* enable determinism for the unet2dconditional model.

* add CUBLAS_WORKSPACE_CONFIG for better reproducibility.

* relax tolerance (very weird issue, though).

* revert to torch manual_seed() where needed.

* relax more tolerance.

* better placement of the cuda variable and relax more tolerance.

* enable determinism for 3d condition model.

* relax tolerance.

* add: determinism to alt_diffusion.

* relax tolerance for alt diffusion.

* dance diffusion.

* dance diffusion is flaky.

* test_dict_tuple_outputs_equivalent edit.

* fix two more tests.

* fix more ddim tests.

* fix: argument.

* change to diff in place of difference.

* fix: test_save_load call.

* test_save_load_float16 call.

* fix: expected_max_diff

* fix: paint by example.

* relax tolerance.

* add determinism to 1d unet model.

* torch 2.0 regressions seem to be brutal

* determinism to vae.

* add reason to skipping.

* up tolerance.

* determinism to vq.

* determinism to cuda.

* determinism to the generic test pipeline file.

* refactor general pipelines testing a bit.

* determinism to alt diffusion i2i

* up tolerance for alt diff i2i and audio diff

* up tolerance.

* determinism to audioldm

* increase tolerance for audioldm lms.

* increase tolerance for paint by paint.

* increase tolerance for repaint.

* determinism to cycle diffusion and sd 1.

* relax tol for cycle diffusion 🚲

* relax tol for sd 1.0

* relax tol for controlnet.

* determinism to img var.

* relax tol for img variation.

* tolerance to i2i sd

* make style

* determinism to inpaint.

* relax tolerance for inpaiting.

* determinism for inpainting legacy

* relax tolerance.

* determinism to instruct pix2pix

* determinism to model editing.

* model editing tolerance.

* panorama determinism

* determinism to pix2pix zero.

* determinism to sag.

* sd 2. determinism

* sd. tolerance

* disallow tf32 matmul.

* relax tolerance is all you need.

* make style and determinism to sd 2 depth

* relax tolerance for depth.

* tolerance to diffedit.

* tolerance to sd 2 inpaint.

* up tolerance.

* determinism in upscaling.

* tolerance in upscaler.

* more tolerance relaxation.

* determinism to v pred.

* up tol for v_pred

* unclip determinism

* determinism to unclip img2img

* determinism to text to video.

* determinism to last set of tests

* up tol.

* vq cumsum doesn't have a deterministic kernel

* relax tol

* relax tol

* [docs] Add transformers to install (#3388)

add transformers to install

* [deepspeed] partial ZeRO-3 support (#3076)

* [deepspeed] partial ZeRO-3 support

* cleanup

* improve deepspeed fixes

* Improve

* make style

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add omegaconf for tests (#3400)

Add omegaconfg

* Fix various bugs with LoRA Dreambooth and Dreambooth script (#3353)

* Improve checkpointing lora

* fix more

* Improve doc string

* Update src/diffusers/loaders.py

* make stytle

* Apply suggestions from code review

* Update src/diffusers/loaders.py

* Apply suggestions from code review

* Apply suggestions from code review

* better

* Fix all

* Fix multi-GPU dreambooth

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix all

* make style

* make style

---------

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix docker file (#3402)

* up

* up

* fix: deepseepd_plugin retrieval from accelerate state (#3410)

* [Docs] Add `sigmoid` beta_scheduler to docstrings of relevant Schedulers (#3399)

* Add `sigmoid` beta scheduler to `DDPMScheduler` docstring

* Add `sigmoid` beta scheduler to `RePaintScheduler` docstring

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Don't install accelerate and transformers from source (#3415)

* Don't install transformers and accelerate from source (#3414)

* Improve fast tests (#3416)

Update pr_tests.yml

* attention refactor: the trilogy  (#3387)

* Replace `AttentionBlock` with `Attention`

* use _from_deprecated_attn_block check re: @patrickvonplaten

* [Docs] update the PT 2.0 optimization doc with latest findings (#3370)

* add: benchmarking stats for A100 and V100.

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address patrick's comments.

* add: rtx 4090 stats

* ⚔ benchmark reports done

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* 3313 pr link.

* add: plots.

Co-authored-by: Pedro <pedro@huggingface.co>

* fix formattimg

* update number percent.

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* Fix style rendering (#3433)

* Fix style rendering.

* Fix typo

* unCLIP scheduler do not use note (#3417)

* Replace deprecated command with environment file (#3409)

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix warning message pipeline loading (#3446)

* add stable diffusion tensorrt img2img pipeline (#3419)

* add stable diffusion tensorrt img2img pipeline

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* update docstrings

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>

* Refactor controlnet and add img2img and inpaint (#3386)

* refactor controlnet and add img2img and inpaint

* First draft to get pipelines to work

* make style

* Fix more

* Fix more

* More tests

* Fix more

* Make inpainting work

* make style and more tests

* Apply suggestions from code review

* up

* make style

* Fix imports

* Fix more

* Fix more

* Improve examples

* add test

* Make sure import is correctly deprecated

* Make sure everything works in compile mode

* make sure authorship is correctly attributed

* [Scheduler] DPM-Solver (++) Inverse Scheduler (#3335)

* Add DPM-Solver Multistep Inverse Scheduler

* Add draft tests for DiffEdit

* Add inverse sde-dpmsolver steps to tune image diversity from inverted latents

* Fix tests

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Docs] Fix incomplete docstring for resnet.py (#3438)

Fix incomplete docstrings for resnet.py

* fix tiled vae blend extent range (#3384)

fix tiled vae bleand extent range

* Small update to "Next steps" section (#3443)

Small update to "Next steps" section:

- PyTorch 2 is recommended.
- Updated improvement figures.

* Allow arbitrary aspect ratio in IFSuperResolutionPipeline (#3298)

* Update pipeline_if_superresolution.py

Allow arbitrary aspect ratio in IFSuperResolutionPipeline by using the input image shape

* IFSuperResolutionPipeline: allow the user to override the height and width through the arguments

* update IFSuperResolutionPipeline width/height doc string to match StableDiffusionInpaintPipeline conventions

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding 'strength' parameter to StableDiffusionInpaintingPipeline  (#3424)

* Added explanation of 'strength' parameter

* Added get_timesteps function which relies on new strength parameter

* Added `strength` parameter which defaults to 1.

* Swapped ordering so `noise_timestep` can be calculated before masking the image

this is required when you aren't applying 100% noise to the masked region, e.g. strength < 1.

* Added strength to check_inputs, throws error if out of range

* Changed `prepare_latents` to initialise latents w.r.t strength

inspired from the stable diffusion img2img pipeline, init latents are initialised by converting the init image into a VAE latent and adding noise (based upon the strength parameter passed in), e.g. random when strength = 1, or the init image at strength = 0.

* WIP: Added a unit test for the new strength parameter in the StableDiffusionInpaintingPipeline

still need to add correct regression values

* Created a is_strength_max to initialise from pure random noise

* Updated unit tests w.r.t new strength parameter + fixed new strength unit test

* renamed parameter to avoid confusion with variable of same name

* Updated regression values for new strength test - now passes

* removed 'copied from' comment as this method is now different and divergent from the cpy

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Ensure backwards compatibility for prepare_mask_and_masked_image

created a return_image boolean and initialised to false

* Ensure backwards compatibility for prepare_latents

* Fixed copy check typo

* Fixes w.r.t backward compibility changes

* make style

* keep function argument ordering same for backwards compatibility in callees with copied from statements

* make fix-copies

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: William Berman <WLBberman@gmail.com>

* [WIP] Bugfix - Pipeline.from_pretrained is broken when the pipeline is partially downloaded (#3448)

Added bugfix using f strings.

* Fix gradient checkpointing bugs in freezing part of models (requires_grad=False) (#3404)

* gradient checkpointing bug fix

* bug fix; changes for reviews

* reformat

* reformat

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Make dreambooth lora more robust to orig unet (#3462)

* Make dreambooth lora more robust to orig unet

* up

* Reduce peak VRAM by releasing large attention tensors (as soon as they're unnecessary) (#3463)

Release large tensors in attention (as soon as they're no longer required). Reduces peak VRAM by nearly 2 GB for 1024x1024 (even after slicing), and the savings scale up with image size.

* Add min snr to text2img lora training script (#3459)

add min snr to text2img lora training script

* Add inpaint lora scale support (#3460)

* add inpaint lora scale support

* add inpaint lora scale test

---------

Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [From ckpt] Fix from_ckpt (#3466)

* Correct from_ckpt

* make style

* Update full dreambooth script to work with IF (#3425)

* Add IF dreambooth docs (#3470)

* parameterize pass single args through tuple (#3477)

* attend and excite tests disable determinism on the class level (#3478)

* dreambooth docs torch.compile note (#3471)

* dreambooth docs torch.compile note

* Update examples/dreambooth/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/dreambooth/README.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* add: if entry in the dreambooth training docs. (#3472)

* [docs] Textual inversion inference (#3473)

* add textual inversion inference to docs

* add to toctree

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* [docs] Distributed inference (#3376)

* distributed inference

* move to inference section

* apply feedback

* update with split_between_processes

* apply feedback

* [{Up,Down}sample1d] explicit view kernel size as number elements in flattened indices (#3479)

explicit view kernel size as number elements in flattened indices

* mps & onnx tests rework (#3449)

* Remove ONNX tests from PR.

They are already a part of push_tests.yml.

* Remove mps tests from PRs.

They are already performed on push.

* Fix workflow name for fast push tests.

* Extract mps tests to a workflow.

For better control/filtering.

* Remove --extra-index-url from mps tests

* Increase tolerance of mps test

This test passes in my Mac (Ventura 13.3) but fails in the CI hardware
(Ventura 13.2). I ran the local tests following the same steps that
exist in the CI workflow.

* Temporarily run mps tests on pr

So we can test.

* Revert "Temporarily run mps tests on pr"

Tests passed, go back to running on push.

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Co-authored-by: Ilia Larchenko <41329713+IliaLarchenko@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Horace He <horacehe2007@yahoo.com>
Co-authored-by: Umar <55330742+mu94-csl@users.noreply.github.com>
Co-authored-by: Mylo <36931363+gitmylo@users.noreply.github.com>
Co-authored-by: Markus Pobitzer <markuspobitzer@gmail.com>
Co-authored-by: Cheng Lu <lucheng.lc15@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Isamu Isozaki <isamu.website@gmail.com>
Co-authored-by: Cesar Aybar <csaybar@gmail.com>
Co-authored-by: Will Rice <will@spokestack.io>
Co-authored-by: Adrià Arrufat <1671644+arrufat@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: At-sushi <dkahw210@kyoto.zaq.ne.jp>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com>
Co-authored-by: pdoane <pdoane2@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Rupert Menneer <71332436+rupertmenneer@users.noreply.github.com>
Co-authored-by: sudowind <wfpkueecs@163.com>
Co-authored-by: Takuma Mori <takuma104@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Laureηt <laurentfainsin@protonmail.com>
Co-authored-by: Jongwoo Han <jongwooo.han@gmail.com>
Co-authored-by: asfiyab-nvidia <117682710+asfiyab-nvidia@users.noreply.github.com>
Co-authored-by: clarencechen <clarencechenct@gmail.com>
Co-authored-by: Laureηt <laurent@fainsin.bzh>
Co-authored-by: superlabs-dev <133080491+superlabs-dev@users.noreply.github.com>
Co-authored-by: Dev Aggarwal <devxpy@gmail.com>
Co-authored-by: Vimarsh Chaturvedi <vimarsh.c@gmail.com>
Co-authored-by: 7eu7d7 <31194890+7eu7d7@users.noreply.github.com>
Co-authored-by: cmdr2 <shashank.shekhar.global@gmail.com>
Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
Co-authored-by: Glaceon-Hyy <ffheyy0017@gmail.com>
Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>

* [Community] reference only control (#3435)

* add reference only control

* add reference only control

* add reference only control

* fix lint

* fix lint

* reference adain

* bugfix EulerAncestralDiscreteScheduler

* fix style fidelity rule

* fix default output size

* del unused line

* fix deterministic

* Support for cross-attention bias / mask (#2634)

* Cross-attention masks

prefer qualified symbol, fix accidental Optional

prefer qualified symbol in AttentionProcessor

prefer qualified symbol in embeddings.py

qualified symbol in transformed_2d

qualify FloatTensor in unet_2d_blocks

move new transformer_2d params attention_mask, encoder_attention_mask to the end of the section which is assumed (e.g. by functions such as checkpoint()) to have a stable positional param interface. regard return_dict as a special-case which is assumed to be injected separately from positional params (e.g. by create_custom_forward()).

move new encoder_attention_mask param to end of CrossAttn block interfaces and Unet2DCondition interface, to maintain positional param interface.

regenerate modeling_text_unet.py

remove unused import

unet_2d_condition encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

versatile_diffusion/modeling_text_unet.py encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

transformer_2d encoder_attention_mask docs

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

unet_2d_blocks.py: add parameter name comments

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

revert description. bool-to-bias treatment happens in unet_2d_condition only.

comment parameter names

fix copies, style

* encoder_attention_mask for SimpleCrossAttnDownBlock2D, SimpleCrossAttnUpBlock2D

* encoder_attention_mask for UNetMidBlock2DSimpleCrossAttn

* support attention_mask, encoder_attention_mask in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D, KAttentionBlock. fix binding of attention_mask, cross_attention_kwargs params in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D checkpoint invocations.

* fix mistake made during merge conflict resolution

* regenerate versatile_diffusion

* pass time embedding into checkpointed attention invocation

* always assume encoder_attention_mask is a mask (i.e. not a bias).

* style, fix-copies

* add tests for cross-attention masks

* add test for padding of attention mask

* explain mask's query_tokens dim. fix explanation about broadcasting over channels; we actually broadcast over query tokens

* support both masks and biases in Transformer2DModel#forward. document behaviour

* fix-copies

* delete attention_mask docs on the basis I never tested self-attention masking myself. not comfortable explaining it, since I don't actually understand how a self-attn mask can work in its current form: the key length will be different in every ResBlock (we don't downsample the mask when we downsample the image).

* review feedback: the standard Unet blocks shouldn't pass temb to attn (only to resnet). remove from KCrossAttnDownBlock2D,KCrossAttnUpBlock2D#forward.

* remove encoder_attention_mask param from SimpleCrossAttn{Up,Down}Block2D,UNetMidBlock2DSimpleCrossAttn, and mask-choice in those blocks' #forward, on the basis that they only do one type of attention, so the consumer can pass whichever type of attention_mask is appropriate.

* put attention mask padding back to how it was (since the SD use-case it enabled wasn't important, and it breaks the original unclip use-case). disable the test which was added.

* fix-copies

* style

* fix-copies

* put encoder_attention_mask param back into Simple block forward interfaces, to ensure consistency of forward interface.

* restore passing of emb to KAttentionBlock#forward, on the basis that removal caused test failures. restore also the passing of emb to checkpointed calls to KAttentionBlock#forward.

* make simple unet2d blocks use encoder_attention_mask, but only when attention_mask is None. this should fix UnCLIP compatibility.

* fix copies

* do not scale the initial global step by gradient accumulation steps when loading from checkpoint (#3506)

* Remove CPU latents logic for UniDiffuserPipelineFastTests.

* make style

* Revert "Clean up code and make slow tests pass."

This reverts commit ec7fb8735b.

* Revert bad commit and clean up code.

* add: contributor note.

* Batched load of textual inversions (#3277)

* Batched load of textual inversions

- Only call resize_token_embeddings once per batch as it is the most expensive operation
- Allow pretrained_model_name_or_path and token to be an optional list
- Remove Dict from type annotation pretrained_model_name_or_path as it was not supported in this function
- Add comment that single files (e.g. .pt/.safetensors) are supported
- Add comment for token parameter
- Convert token override log message from warning to info

* Update src/diffusers/loaders.py

Check for duplicate tokens

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update condition for None tokens

---------

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Revert "add: contributor note."

This reverts commit 302fde9409.

* Re-add contributor note and refactored fast tests fixed latents code to remove CPU specific logic.

* make style

* Refactored the code:
	- Updated the checkpoint ids to the new ids where appropriate
	- Refactored the UniDiffuserTextDecoder methods to return only tensors (and made other changes to support this)
	- Cleaned up the code following suggestions by patrickvonplaten

* make style

* Remove padding logic from UniDiffuserTextDecoder.generate_beam since the inputs are already padded to a consistent length.

* Update checkpoint id for small test v1 checkpoint to hf-internal-testing/unidiffuser-test-v1.

* make style

* Make improvements to the documentation.

* Move ImageTextPipelineOutput documentation from /api/pipelines/unidiffuser.mdx to /api/diffusion_pipeline.mdx.

* Change order of arguments for UniDiffuserTextDecoder.generate_beam.

* make style

* Update docs/source/en/api/pipelines/unidiffuser.mdx

---------

Signed-off-by: Asfiya Baig <asfiyab@nvidia.com>
Signed-off-by: Ye, Xinyu <xinyu.ye@intel.com>
Co-authored-by: Ernie Chu <51432514+ernestchu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Andranik Movsisyan <48154088+19and99@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Andreas Steiner <andstein@google.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Joseph Coffland <github@joe.coffland.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Takuma Mori <takuma104@gmail.com>
Co-authored-by: Will Berman <wlbberman@gmail.com>
Co-authored-by: Tommaso De Rossi <beats.by.morse@gmail.com>
Co-authored-by: Cristian Garcia <cgarcia.e88@gmail.com>
Co-authored-by: cmdr2 <secondary.cmdr2@gmail.com>
Co-authored-by: 1lint <105617163+1lint@users.noreply.github.com>
Co-authored-by: asfiyab-nvidia <117682710+asfiyab-nvidia@users.noreply.github.com>
Co-authored-by: Chanchana Sornsoontorn <off9955555@gmail.com>
Co-authored-by: hwuebben <wbben123@yahoo.de>
Co-authored-by: superhero-7 <57797766+superhero-7@users.noreply.github.com>
Co-authored-by: root <fulong_ye@163.com>
Co-authored-by: nupurkmr9 <nupurkmr9@gmail.com>
Co-authored-by: Nupur Kumari <nupurkumari@Nupurs-MacBook-Pro.local>
Co-authored-by: Nupur Kumari <nupurkumari@nupurs-mbp.wifi.local.cmu.edu>
Co-authored-by: Mishig <mishig.davaadorj@coloradocollege.edu>
Co-authored-by: XinyuYe-Intel <xinyu.ye@intel.com>
Co-authored-by: clarencechen <clarencechenct@gmail.com>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Youssef Adarrab <104783077+youssefadr@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Chengrui Wang <80876977+crywang@users.noreply.github.com>
Co-authored-by: SkyTNT <SKYTNT@outlook.com>
Co-authored-by: Lucca Zenóbio <luccazen@gmail.com>
Co-authored-by: Isaac <34376531+init-22@users.noreply.github.com>
Co-authored-by: pdoane <pdoane2@gmail.com>
Co-authored-by: Yuchen Fan <fyc0624@gmail.com>
Co-authored-by: Nipun Jindal <jindal.nipun@gmail.com>
Co-authored-by: njindal <njindal@adobe.com>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
Co-authored-by: Xie Zejian <xiezej@gmail.com>
Co-authored-by: Jair Trejo <jairtrejo@gmail.com>
Co-authored-by: Robert Dargavel Smith <teticio@gmail.com>
Co-authored-by: yiyixuxu <yixu@yis-macbook-pro.lan>
Co-authored-by: Joqsan <6027118+Joqsan@users.noreply.github.com>
Co-authored-by: NimenDavid <312648004@qq.com>
Co-authored-by: M. Tolga Cangöz <46008593+standardAI@users.noreply.github.com>
Co-authored-by: timegate <timegate@kaist.ac.kr>
Co-authored-by: Jason Kuan <jason9075@users.noreply.github.com>
Co-authored-by: Ilia Larchenko <41329713+IliaLarchenko@users.noreply.github.com>
Co-authored-by: Horace He <horacehe2007@yahoo.com>
Co-authored-by: Umar <55330742+mu94-csl@users.noreply.github.com>
Co-authored-by: Mylo <36931363+gitmylo@users.noreply.github.com>
Co-authored-by: Markus Pobitzer <markuspobitzer@gmail.com>
Co-authored-by: Cheng Lu <lucheng.lc15@gmail.com>
Co-authored-by: Isamu Isozaki <isamu.website@gmail.com>
Co-authored-by: Cesar Aybar <csaybar@gmail.com>
Co-authored-by: Will Rice <will@spokestack.io>
Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Rupert Menneer <71332436+rupertmenneer@users.noreply.github.com>
Co-authored-by: sudowind <wfpkueecs@163.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Laureηt <laurentfainsin@protonmail.com>
Co-authored-by: Jongwoo Han <jongwooo.han@gmail.com>
Co-authored-by: Laureηt <laurent@fainsin.bzh>
Co-authored-by: superlabs-dev <133080491+superlabs-dev@users.noreply.github.com>
Co-authored-by: Dev Aggarwal <devxpy@gmail.com>
Co-authored-by: Vimarsh Chaturvedi <vimarsh.c@gmail.com>
Co-authored-by: 7eu7d7 <31194890+7eu7d7@users.noreply.github.com>
Co-authored-by: cmdr2 <shashank.shekhar.global@gmail.com>
Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
Co-authored-by: Glaceon-Hyy <ffheyy0017@gmail.com>
Co-authored-by: yueyang.hyy <yueyang.hyy@alibaba-inc.com>
Co-authored-by: StAlKeR7779 <stalkek7779@yandex.ru>
Co-authored-by: Isotr0py <41363108+Isotr0py@users.noreply.github.com>
Co-authored-by: w4ffl35 <w4ffl35@ml1.net>
Co-authored-by: Seongsu Park <tjdtnsu@gmail.com>
Co-authored-by: Chanran Kim <seriousran@gmail.com>
Co-authored-by: Ambrosiussen <paul@ambrosiussen.com>
Co-authored-by: Hari Krishna <37787894+hari10599@users.noreply.github.com>
Co-authored-by: Adrià Arrufat <1671644+arrufat@users.noreply.github.com>
Co-authored-by: At-sushi <dkahw210@kyoto.zaq.ne.jp>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: takuoko <to78314910@gmail.com>
Co-authored-by: Birch-san <Birch-san@users.noreply.github.com>
2023-05-26 17:27:30 +05:30
Steven Liu
7948db81c5 [docs] Add AttnProcessor to docs (#3474)
* add attnprocessor to docs

* fix path to class

* create separate page for attnprocessors

* fix path

* fix path for real

* fill in docstrings

* apply feedback

* apply feedback
2023-05-26 17:11:42 +05:30
Patrick von Platen
bf16a97018 Fix controlnet guess mode euler (#3571)
* Fix guess mode controlnet for euler-like schedulers

* make style

* Co-authored-by: Chanchana Sornsoontorn <off.chanchana@gmail.com>

* Add co author Co-authored-by: Chanchana Sornsoontorn <off.chanchana@gmail.com>

* 2nd try
Co-authored-by: Chanchana Sornsoontorn <off.chanchana@gmail.com>
2023-05-26 11:31:51 +01:00
Patrick von Platen
66356e7dd5 Correct inpainting controlnet docs (#3572) 2023-05-26 11:02:30 +01:00
vikasmech
ffa33d631a renamed variable to input_ and output_ (#3507)
* renamed variable to input_ and output_

* changed input
_ to intputs and output_ to outputs
2023-05-26 10:34:11 +01:00
Emin Demirci
d8ce53a8c4 Fix loaded_token reference before definition (#3523) 2023-05-26 10:31:02 +01:00
Patrick von Platen
d114d80fd2 [Stable Diffusion Inpainting] Allow standard text-to-img checkpoints to be useable for SD inpainting (#3533)
* Add default to inpaint

* Make sure controlnet also works with normal sd for inpaint

* Add tests

* improve

* Correct encode images function

* Correct inpaint controlnet

* Improve text2img inpanit

* make style

* up

* up

* up

* up

* fix more
2023-05-26 09:47:42 +01:00
YiYi Xu
e5215dee9a fix broken change for vq pipeline (#3563)
fix vq_model

Co-authored-by: yiyixuxu <yixu310@gmail,com>
2023-05-25 14:55:31 -10:00
YiYi Xu
03b7a84cbe Add Kandinsky 2.1 (#3308)
add kandinsky2.1

---------

Co-authored-by: yiyixuxu <yixu310@gmail,com>
Co-authored-by: Ayush Mangal <43698245+ayushtues@users.noreply.github.com>
Co-authored-by: ayushmangal <ayushmangal@microsoft.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2023-05-25 11:28:34 -10:00
Patrick von Platen
f19f128735 Add open parti prompts to docs (#3549)
* Add open parti prompts

* More changes
2023-05-25 11:11:20 +01:00
Isotr0py
a94977b8b3 Fix panorama to support all schedulers (#3546)
* refactor blocks init

* refactor blocks loop

* remove unused function and warnings

* fix scheduler update location

* reformat code

* reformat code again

* fix PNDM test case

* reformat pndm test case
2023-05-24 17:58:08 +05:30
Sayak Paul
8e69708b0d [Examples/DreamBooth] refactor save_model_card utility in dreambooth examples (#3543)
refactor save_model_card utility in dreambooth examples.
2023-05-24 16:16:28 +05:30
Will Berman
db56f8a4f5 explicit broadcasts for assignments (#3535) 2023-05-24 11:17:41 +01:00
958 changed files with 171190 additions and 22890 deletions

View File

@@ -13,8 +13,9 @@ body:
*Give your issue a fitting title. Assume that someone which very limited knowledge of diffusers can understand your issue. Add links to the source code, documentation other issues, pull requests etc...*
- 2. If your issue is about something not working, **always** provide a reproducible code snippet. The reader should be able to reproduce your issue by **only copy-pasting your code snippet into a Python shell**.
*The community cannot solve your issue if it cannot reproduce it. If your bug is related to training, add your training script and make everything needed to train public. Otherwise, just add a simple Python code snippet.*
- 3. Add the **minimum amount of code / context that is needed to understand, reproduce your issue**.
- 3. Add the **minimum** amount of code / context that is needed to understand, reproduce your issue.
*Make the life of maintainers easy. `diffusers` is getting many issues every day. Make sure your issue is about one bug and one bug only. Make sure you add only the context, code needed to understand your issues - nothing more. Generally, every issue is a way of documenting this library, try to make it a good documentation entry.*
- 4. For issues related to community pipelines (i.e., the pipelines located in the `examples/community` folder), please tag the author of the pipeline in your issue thread as those pipelines are not maintained.
- type: markdown
attributes:
value: |
@@ -49,3 +50,57 @@ body:
placeholder: diffusers version, platform, python version, ...
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
All issues are read by one of the core maintainers, so if you don't know who to tag, just leave this blank and
a core maintainer will ping the right person.
Please tag a maximum of 2 people.
Questions on DiffusionPipeline (Saving, Loading, From pretrained, ...):
Questions on pipelines:
- Stable Diffusion @yiyixuxu @DN6 @patrickvonplaten @sayakpaul @patrickvonplaten
- Stable Diffusion XL @yiyixuxu @sayakpaul @DN6 @patrickvonplaten
- Kandinsky @yiyixuxu @patrickvonplaten
- ControlNet @sayakpaul @yiyixuxu @DN6 @patrickvonplaten
- T2I Adapter @sayakpaul @yiyixuxu @DN6 @patrickvonplaten
- IF @DN6 @patrickvonplaten
- Text-to-Video / Video-to-Video @DN6 @sayakpaul @patrickvonplaten
- Wuerstchen @DN6 @patrickvonplaten
- Other: @yiyixuxu @DN6
Questions on models:
- UNet @DN6 @yiyixuxu @sayakpaul @patrickvonplaten
- VAE @sayakpaul @DN6 @yiyixuxu @patrickvonplaten
- Transformers/Attention @DN6 @yiyixuxu @sayakpaul @DN6 @patrickvonplaten
Questions on Schedulers: @yiyixuxu @patrickvonplaten
Questions on LoRA: @sayakpaul @patrickvonplaten
Questions on Textual Inversion: @sayakpaul @patrickvonplaten
Questions on Training:
- DreamBooth @sayakpaul @patrickvonplaten
- Text-to-Image Fine-tuning @sayakpaul @patrickvonplaten
- Textual Inversion @sayakpaul @patrickvonplaten
- ControlNet @sayakpaul @patrickvonplaten
Questions on Tests: @DN6 @sayakpaul @yiyixuxu
Questions on Documentation: @stevhliu
Questions on JAX- and MPS-related things: @pcuenca
Questions on audio pipelines: @DN6 @patrickvonplaten
placeholder: "@Username ..."

60
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,60 @@
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet though.
Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution.
Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change.
Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md)?
- [ ] Did you read our [philosophy doc](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) (important for complex PRs)?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/diffusers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.
Core library:
- Schedulers: @williamberman and @patrickvonplaten
- Pipelines: @patrickvonplaten and @sayakpaul
- Training examples: @sayakpaul and @patrickvonplaten
- Docs: @stevhliu and @yiyixuxu
- JAX and MPS: @pcuenca
- Audio: @sanchit-gandhi
- General functionalities: @patrickvonplaten and @sayakpaul
Integrations:
- deepspeed: HF Trainer/Accelerate: @pacman100
HF projects:
- accelerate: [different repo](https://github.com/huggingface/accelerate)
- datasets: [different repo](https://github.com/huggingface/datasets)
- transformers: [different repo](https://github.com/huggingface/transformers)
- safetensors: [different repo](https://github.com/huggingface/safetensors)
-->

View File

@@ -26,6 +26,8 @@ jobs:
image-name:
- diffusers-pytorch-cpu
- diffusers-pytorch-cuda
- diffusers-pytorch-compile-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-flax-cpu
- diffusers-flax-tpu
- diffusers-onnxruntime-cpu

View File

@@ -5,15 +5,19 @@ on:
branches:
- main
- doc-builder*
- v*-release
- v*-patch
jobs:
build:
build:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
install_libgl1: true
package: diffusers
notebook_folder: diffusers_doc
languages: en ko
languages: en ko zh ja pt
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@@ -13,5 +13,6 @@ jobs:
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
install_libgl1: true
package: diffusers
languages: en ko
languages: en ko zh ja pt

View File

@@ -1,13 +1,14 @@
name: Delete dev documentation
name: Delete doc comment
on:
pull_request:
types: [ closed ]
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
with:
pr_number: ${{ github.event.number }}
package: diffusers
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@@ -0,0 +1,12 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

View File

@@ -0,0 +1,32 @@
name: Run dependency tests
on:
pull_request:
branches:
- main
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_dependencies:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install pytest
- name: Check for soft dependencies
run: |
pytest tests/others/test_dependencies.py

View File

@@ -0,0 +1,34 @@
name: Run Flax dependency tests
on:
pull_request:
branches:
- main
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_flax_dependencies:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install "jax[cpu]>=0.2.16,!=0.3.2"
pip install "flax>=0.4.1"
pip install "jaxlib>=0.1.65"
pip install pytest
- name: Check for soft dependencies
run: |
pytest tests/others/test_dependencies.py

View File

@@ -20,7 +20,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
@@ -38,7 +38,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.7"
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip

View File

@@ -0,0 +1,67 @@
name: Fast tests for PRs - PEFT backend
on:
pull_request:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
run_fast_tests:
strategy:
fail-fast: false
matrix:
config:
- name: LoRA
framework: lora
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_lora
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m pip install -U git+https://github.com/huggingface/transformers.git
python -m pip install -U git+https://github.com/huggingface/peft.git
- name: Environment
run: |
python utils/print_env.py
- name: Run fast PyTorch LoRA CPU tests with PEFT backend
if: ${{ matrix.config.framework == 'lora' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora/test_lora_layers_peft.py

View File

@@ -4,6 +4,9 @@ on:
pull_request:
branches:
- main
push:
branches:
- ci-*
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@@ -31,6 +34,11 @@ jobs:
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_models_schedulers
- name: LoRA
framework: lora
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_lora
- name: Fast Flax CPU tests
framework: flax
runner: docker-cpu
@@ -62,8 +70,9 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev -y
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install accelerate
- name: Environment
run: |
@@ -81,10 +90,18 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_models' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
-s -v -k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/models tests/schedulers tests/others
- name: Run fast PyTorch LoRA CPU tests
if: ${{ matrix.config.framework == 'lora' }}
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and not Dependency" \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora
- name: Run fast Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
run: |
@@ -98,7 +115,64 @@ jobs:
run: |
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples/test_examples.py
examples/test_examples.py
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_staging_tests:
strategy:
fail-fast: false
matrix:
config:
- name: Hub tests for models, schedulers, and pipelines
framework: hub_tests_pytorch
runner: docker-cpu
image: diffusers/diffusers-pytorch-cpu
report: torch_hub
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Run Hub tests for models, schedulers, and pipelines on a staging env
if: ${{ matrix.config.framework == 'hub_tests_pytorch' }}
run: |
HUGGINGFACE_CO_STAGING=true python -m pytest \
-m "is_staging_test" \
--make-reports=tests_${{ matrix.config.report }} \
tests
- name: Failure short reports
if: ${{ failure() }}

View File

@@ -0,0 +1,32 @@
name: Run Torch dependency tests
on:
pull_request:
branches:
- main
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_torch_dependencies:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -e .
pip install torch torchvision torchaudio
pip install pytest
- name: Check for soft dependencies
run: |
pytest tests/others/test_dependencies.py

View File

@@ -1,10 +1,11 @@
name: Slow tests on main
name: Slow Tests on main
on:
push:
branches:
- main
env:
DIFFUSERS_IS_CI: yes
HF_HOME: /mnt/cache
@@ -12,40 +13,301 @@ env:
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 600
RUN_SLOW: yes
PIPELINE_USAGE_CUTOFF: 50000
jobs:
run_slow_tests:
setup_torch_cuda_pipeline_matrix:
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cpu # this is a CPU image, but we need it to fetch the matrix
options: --shm-size "16gb" --ipc host
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Slow Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 1
matrix:
config:
- name: Slow PyTorch CUDA tests on Ubuntu
framework: pytorch
runner: docker-gpu
image: diffusers/diffusers-pytorch-cuda
report: torch_cuda
- name: Slow Flax TPU tests on Ubuntu
framework: flax
runner: docker-tpu
image: diffusers/diffusers-flax-tpu
report: flax_tpu
- name: Slow ONNXRuntime CUDA tests on Ubuntu
framework: onnxruntime
runner: docker-gpu
image: diffusers/diffusers-onnxruntime-cuda
report: onnx_cuda
name: ${{ matrix.config.name }}
runs-on: ${{ matrix.config.runner }}
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on: docker-gpu
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ ${{ matrix.config.runner == 'docker-tpu' && '--privileged' || '--gpus 0'}}
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
strategy:
matrix:
module: [models, schedulers, lora, others]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow PyTorch CUDA tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_cuda \
tests/${{ matrix.module }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_stats.txt
cat reports/tests_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_cuda_test_reports
path: reports
peft_cuda_tests:
name: PEFT CUDA Tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
python -m pip install git+https://github.com/huggingface/peft.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow PEFT CUDA tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_peft_cuda \
tests/lora/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_peft_cuda_stats.txt
cat reports/tests_peft_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_peft_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --privileged
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_flax_tpu \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_flax_tpu_stats.txt
cat reports/tests_flax_tpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: flax_tpu_test_reports
path: reports
onnx_cuda_tests:
name: ONNX CUDA Tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
python -m pip install git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: onnx_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
steps:
- name: Checkout diffusers
@@ -54,60 +316,68 @@ jobs:
fetch-depth: 2
- name: NVIDIA-SMI
if : ${{ matrix.config.runner == 'docker-gpu' }}
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m pip install -e .[quality,test]
python -m pip install -e .[quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run slow PyTorch CUDA tests
if: ${{ matrix.config.framework == 'pytorch' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run slow Flax TPU tests
if: ${{ matrix.config.framework == 'flax' }}
- name: Run example tests on GPU
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 0 \
-s -v -k "Flax" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
- name: Run slow ONNXRuntime CUDA tests
if: ${{ matrix.config.framework == 'onnxruntime' }}
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
run: cat reports/tests_torch_compile_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.config.report }}_test_reports
name: torch_compile_test_reports
path: reports
run_xformers_tests:
name: PyTorch xformers CUDA tests
runs-on: docker-gpu
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m pip install -e .[quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run example tests on GPU
env:
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_xformers_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: torch_xformers_test_reports
path: reports
run_examples_tests:
@@ -145,11 +415,13 @@ jobs:
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/examples_torch_cuda_failures_short.txt
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: examples_test_reports
path: reports
path: reports

View File

@@ -60,7 +60,7 @@ jobs:
- name: Install dependencies
run: |
apt-get update && apt-get install libsndfile1-dev -y
apt-get update && apt-get install libsndfile1-dev libgl1 -y
python -m pip install -e .[quality,test]
- name: Environment

View File

@@ -40,7 +40,7 @@ jobs:
${CONDA_RUN} python -m pip install --upgrade pip
${CONDA_RUN} python -m pip install -e .[quality,test]
${CONDA_RUN} python -m pip install torch torchvision torchaudio
${CONDA_RUN} python -m pip install accelerate --upgrade
${CONDA_RUN} python -m pip install git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m pip install transformers --upgrade
- name: Environment

View File

@@ -17,7 +17,7 @@ jobs:
- name: Setup Python
uses: actions/setup-python@v1
with:
python-version: 3.7
python-version: 3.8
- name: Install requirements
run: |

View File

@@ -0,0 +1,16 @@
name: Upload PR Documentation
on:
workflow_run:
workflows: ["Build PR Documentation"]
types:
- completed
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: diffusers
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@@ -40,7 +40,7 @@ In the following, we give an overview of different ways to contribute, ranked by
As said before, **all contributions are valuable to the community**.
In the following, we will explain each contribution a bit more in detail.
For all contributions 4.-9. you will need to open a PR. It is explained in detail how to do so in [Opening a pull requst](#how-to-open-a-pr)
For all contributions 4.-9. you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr)
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
@@ -63,7 +63,7 @@ In the same spirit, you are of immense help to the community by answering such q
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accesible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formated/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
@@ -125,14 +125,14 @@ Awesome! Tell us what problem it solved for you.
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
#### 2.3 Feedback.
#### 2.3 Feedback.
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
#### 2.4 Technical questions.
#### 2.4 Technical questions.
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
why this part of the code is difficult to understand.
@@ -168,7 +168,7 @@ more precise, provide the link to a duplicated issue or redirect them to [the fo
If you have verified that the issued bug report is correct and requires a correction in the source code,
please have a look at the next sections.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull requst](#how-to-open-a-pr) section.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
### 4. Fixing a "Good first issue"
@@ -297,7 +297,7 @@ if you don't know yet what specific component you would like to add:
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
- [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) a read to better understand the design of any of the three components. Please be aware that
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
@@ -394,8 +394,8 @@ passes. You should run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
with this command:
```bash

View File

@@ -78,7 +78,7 @@ test:
# Run tests for examples
test-examples:
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/
python -m pytest -n auto --dist=loadfile -s -v ./examples/
# Release stuff

View File

@@ -27,18 +27,18 @@ In a nutshell, Diffusers is built to be a natural extension of PyTorch. Therefor
## Simple over easy
As PyTorch states, **explicit is better than implicit** and **simple is better than complex**. This design philosophy is reflected in multiple parts of the library:
As PyTorch states, **explicit is better than implicit** and **simple is better than complex**. This design philosophy is reflected in multiple parts of the library:
- We follow PyTorch's API with methods like [`DiffusionPipeline.to`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.to) to let the user handle device management.
- Raising concise error messages is preferred to silently correct erroneous input. Diffusers aims at teaching the user, rather than making the library as easy to use as possible.
- Complex model vs. scheduler logic is exposed instead of magically handled inside. Schedulers/Samplers are separated from diffusion models with minimal dependencies on each other. This forces the user to write the unrolled denoising loop. However, the separation allows for easier debugging and gives the user more control over adapting the denoising process or switching out diffusion models or schedulers.
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the unet, and the variational autoencoder, each have their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. Dreambooth or textual inversion training
- Separately trained components of the diffusion pipeline, *e.g.* the text encoder, the unet, and the variational autoencoder, each have their own model class. This forces the user to handle the interaction between the different model components, and the serialization format separates the model components into different files. However, this allows for easier debugging and customization. Dreambooth or textual inversion training
is very simple thanks to diffusers' ability to separate single components of the diffusion pipeline.
## Tweakable, contributor-friendly over abstraction
For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
For large parts of the library, Diffusers adopts an important design principle of the [Transformers library](https://github.com/huggingface/transformers), which is to prefer copy-pasted code over hasty abstractions. This design principle is very opinionated and stands in stark contrast to popular design principles such as [Don't repeat yourself (DRY)](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself).
In short, just like Transformers does for modeling files, diffusers prefers to keep an extremely low level of abstraction and very self-contained code for pipelines and schedulers.
Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
Functions, long code blocks, and even classes can be copied across multiple files which at first can look like a bad, sloppy design choice that makes the library unmaintainable.
**However**, this design has proven to be extremely successful for Transformers and makes a lot of sense for community-driven, open-source machine learning libraries because:
- Machine Learning is an extremely fast-moving field in which paradigms, model architectures, and algorithms are changing rapidly, which therefore makes it very difficult to define long-lasting code abstractions.
- Machine Learning practitioners like to be able to quickly tweak existing code for ideation and research and therefore prefer self-contained code over one that contains many abstractions.
@@ -47,10 +47,10 @@ Functions, long code blocks, and even classes can be copied across multiple file
At Hugging Face, we call this design the **single-file policy** which means that almost all of the code of a certain class should be written in a single, self-contained file. To read more about the philosophy, you can have a look
at [this blog post](https://huggingface.co/blog/transformers-design-philosophy).
In diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
In diffusers, we follow this philosophy for both pipelines and schedulers, but only partly for diffusion models. The reason we don't follow this design fully for diffusion models is because almost all diffusion pipelines, such
as [DDPM](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/ddpm), [Stable Diffusion](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines), [UnCLIP (Dalle-2)](https://huggingface.co/docs/diffusers/v0.12.0/en/api/pipelines/unclip#overview) and [Imagen](https://imagen.research.google/) all rely on the same diffusion model, the [UNet](https://huggingface.co/docs/diffusers/api/models#diffusers.UNet2DConditionModel).
Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
Great, now you should have generally understood why 🧨 Diffusers is designed the way it is 🤗.
We try to apply these design principles consistently across the library. Nevertheless, there are some minor exceptions to the philosophy or some unlucky design choices. If you have feedback regarding the design, we would ❤️ to hear it [directly on GitHub](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
## Design Philosophy in Details
@@ -70,7 +70,7 @@ The following design principles are followed:
- Pipelines should be used **only** for inference.
- Pipelines should be very readable, self-explanatory, and easy to tweak.
- Pipelines should be designed to build on top of each other and be easy to integrate into higher-level APIs.
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner)
- Pipelines are **not** intended to be feature-complete user interfaces. For future complete user interfaces one should rather have a look at [InvokeAI](https://github.com/invoke-ai/InvokeAI), [Diffuzers](https://github.com/abhishekkrthakur/diffuzers), and [lama-cleaner](https://github.com/Sanster/lama-cleaner).
- Every pipeline should have one and only one way to run it via a `__call__` method. The naming of the `__call__` arguments should be shared across all pipelines.
- Pipelines should be named after the task they are intended to solve.
- In almost all cases, novel diffusion pipelines shall be implemented in a new pipeline folder/file.
@@ -89,22 +89,22 @@ The following design principles are followed:
- Models should by default have the highest precision and lowest performance setting.
- To integrate new model checkpoints whose general architecture can be classified as an architecture that already exists in Diffusers, the existing model architecture shall be adapted to make it work with the new checkpoint. One should only create a new file if the model architecture is fundamentally different.
- Models should be designed to be easily extendable to future changes. This can be achieved by limiting public function arguments, configuration arguments, and "foreseeing" future changes, *e.g.* it is usually better to add `string` "...type" arguments that can easily be extended to new future types instead of boolean `is_..._type` arguments. Only the minimum amount of changes shall be made to existing architectures to make a new model checkpoint work.
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
- The model design is a difficult trade-off between keeping code readable and concise and supporting many model checkpoints. For most parts of the modeling code, classes shall be adapted for new model checkpoints, while there are some exceptions where it is preferred to add new classes to make sure the code is kept concise and
readable longterm, such as [UNet blocks](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py) and [Attention processors](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
### Schedulers
Schedulers are responsible to guide the denoising process for inference as well as to define a noise schedule for training. They are designed as individual classes with loadable configuration files and strongly follow the **single-file policy**.
The following design principles are followed:
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- All schedulers are found in [`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers).
- Schedulers are **not** allowed to import from large utils files and shall be kept very self-contained.
- One scheduler python file corresponds to one scheduler algorithm (as might be defined in a paper).
- If schedulers share similar functionalities, we can make use of the `#Copied from` mechanism.
- Schedulers all inherit from `SchedulerMixin` and `ConfigMixin`.
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.mdx).
- Schedulers can be easily swapped out with the [`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config) method as explained in detail [here](./using-diffusers/schedulers.md).
- Every scheduler has to have a `set_num_inference_steps`, and a `step` function. `set_num_inference_steps(...)` has to be called before every denoising process, *i.e.* before `step(...)` is called.
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon
- Every scheduler exposes the timesteps to be "looped over" via a `timesteps` attribute, which is an array of timesteps the model will be called upon.
- The `step(...)` function takes a predicted model output and the "current" sample (x_t) and returns the "previous", slightly more denoised sample (x_t-1).
- Given the complexity of diffusion schedulers, the `step` function does not expose all the complexity and can be a bit of a "black box".
- In almost all cases, novel schedulers shall be implemented in a new scheduling file.

View File

@@ -1,6 +1,6 @@
<p align="center">
<br>
<img src="./docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
@@ -10,6 +10,9 @@
<a href="https://github.com/huggingface/diffusers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
</a>
<a href="https://pepy.tech/project/diffusers">
<img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month">
</a>
<a href="CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg">
</a>
@@ -25,12 +28,12 @@
## Installation
We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/installation.html), please refer to their official documentation.
We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
### PyTorch
With `pip` (official package):
```bash
pip install --upgrade diffusers[torch]
```
@@ -107,7 +110,7 @@ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to l
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution
We ❤️ contributions from the open-source community!
We ❤️ contributions from the open-source community!
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
@@ -128,70 +131,75 @@ just hang out ☕.
</tr>
<tr style="border-top: 2px solid black">
<td>Unconditional Image Generation</td>
<td><a href="./api/pipelines/ddpm"> DDPM </a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td>
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="./api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="./api/pipelines/unclip">unclip</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unclip</a></td>
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="./api/pipelines/if">if</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/if">DeepFloyd IF</a></td>
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td>
<td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image-to-Image</td>
<td><a href="./api/pipelines/stable_diffusion/controlnet">Controlnet</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet">Controlnet</a></td>
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="./api/pipelines/stable_diffusion/pix2pix">Instruct Pix2Pix</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">Instruct Pix2Pix</a></td>
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="./api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="./api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpaint</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpaint</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>
<td><a href="./stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Super Resolution</td>
<td><a href="./stable_diffusion/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
</tr>
<tr>
<td>Super Resolution</td>
<td><a href="./stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
</tr>
</table>
## Popular libraries using 🧨 Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +3000 other amazing GitHub repositories 💪

View File

@@ -0,0 +1,46 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.9 \
python3.9-dev \
python3-pip \
python3.9-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.9 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.9 -m pip install --no-cache-dir --upgrade pip && \
python3.9 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.9 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy \
scipy \
tensorboard \
transformers \
omegaconf
CMD ["/bin/bash"]

View File

@@ -14,6 +14,7 @@ RUN apt update && \
libsndfile1-dev \
python3.8 \
python3-pip \
libgl1 \
python3.8-venv && \
rm -rf /var/lib/apt/lists
@@ -27,6 +28,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
torch \
torchvision \
torchaudio \
invisible_watermark \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m pip install --no-cache-dir \
accelerate \
@@ -40,4 +42,4 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip && \
tensorboard \
transformers
CMD ["/bin/bash"]
CMD ["/bin/bash"]

View File

@@ -1,4 +1,4 @@
FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
@@ -6,15 +6,16 @@ ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
python3.8 \
python3-pip \
python3.8-venv && \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
@@ -24,20 +25,22 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio && \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy \
scipy \
tensorboard \
transformers \
omegaconf
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy \
scipy \
tensorboard \
transformers \
omegaconf \
pytorch-lightning
CMD ["/bin/bash"]

View File

@@ -0,0 +1,46 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.8 \
python3-pip \
python3.8-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy \
scipy \
tensorboard \
transformers \
omegaconf \
xformers
CMD ["/bin/bash"]

View File

@@ -68,10 +68,10 @@ The `preview` command only works with existing doc files. When you add a complet
## Adding a new element to the navigation bar
Accepted files are Markdown (.md or .mdx).
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/diffusers/blob/main/docs/source/_toctree.yml) file.
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml) file.
## Renaming section headers and moving sections
@@ -81,14 +81,14 @@ Therefore, we simply keep a little map of moved sections at the end of the docum
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
```md
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
```md
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
@@ -96,7 +96,7 @@ Sections that were moved:
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved section set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx).
For an example of a rich moved section set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
## Writing Documentation - Specification
@@ -109,8 +109,8 @@ although we can write them directly in Markdown.
Adding a new tutorial or section is done in two steps:
- Add a new file under `docs/source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `docs/source/_toctree.yml` on the correct toc-tree.
- Add a new Markdown (.md) file under `docs/source/<languageCode>`.
- Link that file in `docs/source/<languageCode>/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four.
@@ -119,8 +119,8 @@ depending on the intended targets (beginners, more advanced users, or researcher
When adding a new pipeline:
- create a file `xxx.mdx` under `docs/source/api/pipelines` (don't hesitate to copy an existing file as template).
- Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.mdx`, along with the link to the paper, and a colab notebook (if available).
- Create a file `xxx.md` under `docs/source/<languageCode>/api/pipelines` (don't hesitate to copy an existing file as template).
- Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.md`, along with the link to the paper, and a colab notebook (if available).
- Write a short overview of the diffusion model:
- Overview with paper & authors
- Paper abstract
@@ -129,8 +129,6 @@ When adding a new pipeline:
- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows:
```
## XXXPipeline
[[autodoc]] XXXPipeline
- all
- __call__
@@ -148,7 +146,7 @@ This will include every public method of the pipeline that is documented, as wel
- disable_xformers_memory_efficient_attention
```
You can follow the same process to create a new scheduler under the `docs/source/api/schedulers` folder
You can follow the same process to create a new scheduler under the `docs/source/<languageCode>/api/schedulers` folder.
### Writing source documentation
@@ -164,7 +162,7 @@ provide its path. For instance: \[\`pipelines.ImagePipelineOutput\`\]. This will
`pipelines.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~pipelines.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\].
#### Defining arguments in a method
@@ -196,8 +194,8 @@ Here's an example showcasing everything so far:
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
following signature:
```
def my_function(x: str = None, a: float = 1):
```py
def my_function(x: str=None, a: float=3.14):
```
then its documentation should look like this:
@@ -206,7 +204,7 @@ then its documentation should look like this:
Args:
x (`str`, *optional*):
This argument controls ...
a (`float`, *optional*, defaults to 1):
a (`float`, *optional*, defaults to `3.14`):
This argument is used to ...
```
@@ -268,4 +266,3 @@ We have an automatic script running with the `make style` command that will make
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.

View File

@@ -6,4 +6,4 @@ INSTALL_CONTENT = """
# ! pip install git+https://github.com/huggingface/diffusers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]

View File

@@ -12,9 +12,13 @@
- local: tutorials/tutorial_overview
title: Overview
- local: using-diffusers/write_own_pipeline
title: Understanding models and schedulers
title: Understanding pipelines, models and schedulers
- local: tutorials/autopipeline
title: AutoPipeline
- local: tutorials/basic_training
title: Train a diffusion model
- local: tutorials/using_peft_for_inference
title: Inference with PEFT
title: Tutorials
- sections:
- sections:
@@ -25,11 +29,15 @@
- local: using-diffusers/schedulers
title: Load and compare different schedulers
- local: using-diffusers/custom_pipeline_overview
title: Load community pipelines
title: Load community pipelines and components
- local: using-diffusers/using_safetensors
title: Load safetensors
- local: using-diffusers/kerascv
title: Load KerasCV Stable Diffusion checkpoints
- local: using-diffusers/other-formats
title: Load different Stable Diffusion formats
- local: using-diffusers/loading_adapters
title: Load adapters
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Loading & Hub
- sections:
- local: using-diffusers/pipeline_overview
@@ -37,30 +45,54 @@
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation
- local: using-diffusers/conditional_image_generation
title: Text-to-image generation
title: Text-to-image
- local: using-diffusers/img2img
title: Text-guided image-to-image
title: Image-to-image
- local: using-diffusers/inpaint
title: Text-guided image-inpainting
title: Inpainting
- local: using-diffusers/depth2img
title: Text-guided depth-to-image
title: Depth-to-image
title: Tasks
- sections:
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
- local: using-diffusers/reusing_seeds
title: Improve image quality with deterministic generation
- local: using-diffusers/control_brightness
title: Control image brightness
- local: using-diffusers/weighted_prompts
title: Prompt weighting
- local: using-diffusers/freeu
title: Improve generation quality with FreeU
title: Techniques
- sections:
- local: using-diffusers/pipeline_overview
title: Overview
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/lcm
title: Latent Consistency Models
- local: using-diffusers/kandinsky
title: Kandinsky
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/callback
title: Callback
- local: using-diffusers/shap-e
title: Shap-E
- local: using-diffusers/diffedit
title: DiffEdit
- local: using-diffusers/distilled_sd
title: Distilled Stable Diffusion inference
- local: using-diffusers/reproducibility
title: Create reproducible pipelines
- local: using-diffusers/custom_pipeline_examples
title: Community pipelines
- local: using-diffusers/contribute_pipeline
title: How to contribute a community pipeline
- local: using-diffusers/stable_diffusion_jax_how_to
title: Stable Diffusion in JAX/Flax
- local: using-diffusers/weighted_prompts
title: Weighting Prompts
title: Pipelines for Inference
title: Contribute a community pipeline
title: Specific pipeline examples
- sections:
- local: training/overview
title: Overview
@@ -84,12 +116,12 @@
title: InstructPix2Pix Training
- local: training/custom_diffusion
title: Custom Diffusion
- local: training/t2i_adapters
title: T2I-Adapters
- local: training/ddpo
title: Reinforcement learning training with DDPO
title: Training
- sections:
- local: using-diffusers/rl
title: Reinforcement Learning
- local: using-diffusers/audio
title: Audio
- local: using-diffusers/other-modalities
title: Other Modalities
title: Taking Diffusers Beyond Images
@@ -97,25 +129,35 @@
- sections:
- local: optimization/opt_overview
title: Overview
- local: optimization/fp16
title: Memory and Speed
- local: optimization/torch2.0
title: Torch2.0 support
- local: optimization/xformers
title: xFormers
- local: optimization/onnx
title: ONNX
- local: optimization/open_vino
title: OpenVINO
- local: optimization/coreml
title: Core ML
- local: optimization/mps
title: MPS
- local: optimization/habana
title: Habana Gaudi
- local: optimization/tome
title: Token Merging
title: Optimization/Special Hardware
- sections:
- local: optimization/fp16
title: Speed up inference
- local: optimization/memory
title: Reduce memory usage
- local: optimization/torch2.0
title: Torch 2.0
- local: optimization/xformers
title: xFormers
- local: optimization/tome
title: Token merging
title: General optimizations
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax
- local: optimization/onnx
title: ONNX
- local: optimization/open_vino
title: OpenVINO
- local: optimization/coreml
title: Core ML
title: Optimized model types
- sections:
- local: optimization/mps
title: Metal Performance Shaders (MPS)
- local: optimization/habana
title: Habana Gaudi
title: Optimized hardware
title: Optimization
- sections:
- local: conceptual/philosophy
title: Philosophy
@@ -130,30 +172,72 @@
title: Conceptual Guides
- sections:
- sections:
- local: api/models
title: Models
- local: api/diffusion_pipeline
title: Diffusion Pipeline
- local: api/logging
title: Logging
- local: api/configuration
title: Configuration
- local: api/outputs
title: Outputs
- local: api/loaders
title: Loaders
- local: api/logging
title: Logging
- local: api/outputs
title: Outputs
title: Main Classes
- sections:
- local: api/models/overview
title: Overview
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
title: UNetMotionModel
- local: api/models/vq
title: VQModel
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_tiny
title: Tiny AutoEncoder
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/transformer2d
title: Transformer2D
- local: api/models/transformer_temporal
title: Transformer Temporal
- local: api/models/prior_transformer
title: Prior Transformer
- local: api/models/controlnet
title: ControlNet
title: Models
- sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/alt_diffusion
title: AltDiffusion
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite
title: Attend-and-Excite
- local: api/pipelines/audio_diffusion
title: Audio Diffusion
- local: api/pipelines/audioldm
title: AudioLDM
- local: api/pipelines/audioldm2
title: AudioLDM 2
- local: api/pipelines/auto_pipeline
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP Diffusion
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
title: ControlNet
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/cycle_diffusion
title: Cycle Diffusion
- local: api/pipelines/dance_diffusion
@@ -162,127 +246,169 @@
title: DDIM
- local: api/pipelines/ddpm
title: DDPM
- local: api/pipelines/deepfloyd_if
title: DeepFloyd IF
- local: api/pipelines/diffedit
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/if
title: IF
- local: api/pipelines/pix2pix
title: InstructPix2Pix
- local: api/pipelines/kandinsky
title: Kandinsky 2.1
- local: api/pipelines/kandinsky_v22
title: Kandinsky 2.2
- local: api/pipelines/latent_consistency_models
title: Latent Consistency Models
- local: api/pipelines/latent_diffusion
title: Latent Diffusion
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/musicldm
title: MusicLDM
- local: api/pipelines/paint_by_example
title: PaintByExample
title: Paint By Example
- local: api/pipelines/paradigms
title: Parallel Sampling of Diffusion Models
- local: api/pipelines/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/pixart
title: PixArt
- local: api/pipelines/pndm
title: PNDM
- local: api/pipelines/repaint
title: RePaint
- local: api/pipelines/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/score_sde_ve
title: Score SDE VE
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
title: Semantic Guidance
- local: api/pipelines/shap_e
title: Shap-E
- local: api/pipelines/spectrogram_diffusion
title: Spectrogram Diffusion
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-Image
title: Text-to-image
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-Image
title: Image-to-image
- local: api/pipelines/stable_diffusion/inpaint
title: Inpaint
title: Inpainting
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-Image
title: Depth-to-image
- local: api/pipelines/stable_diffusion/image_variation
title: Image-Variation
- local: api/pipelines/stable_diffusion/upscale
title: Super-Resolution
title: Image variation
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/stable_diffusion/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
title: Stable Diffusion XL
- local: api/pipelines/stable_diffusion/latent_upscale
title: Stable-Diffusion-Latent-Upscaler
- local: api/pipelines/stable_diffusion/pix2pix
title: InstructPix2Pix
- local: api/pipelines/stable_diffusion/attend_and_excite
title: Attend and Excite
- local: api/pipelines/stable_diffusion/pix2pix_zero
title: Pix2Pix Zero
- local: api/pipelines/stable_diffusion/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/stable_diffusion/panorama
title: MultiDiffusion Panorama
- local: api/pipelines/stable_diffusion/model_editing
title: Text-to-Image Model Editing
- local: api/pipelines/stable_diffusion/diffedit
title: DiffEdit
title: Latent upscaler
- local: api/pipelines/stable_diffusion/upscale
title: Super-resolution
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth)
- local: api/pipelines/stable_diffusion/adapter
title: Stable Diffusion T2I-Adapter
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
title: Stable Diffusion
- local: api/pipelines/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_unclip
title: Stable unCLIP
- local: api/pipelines/stochastic_karras_ve
title: Stochastic Karras VE
- local: api/pipelines/model_editing
title: Text-to-image model editing
- local: api/pipelines/text_to_video
title: Text-to-Video
title: Text-to-video
- local: api/pipelines/text_to_video_zero
title: Text-to-Video Zero
title: Text2Video-Zero
- local: api/pipelines/unclip
title: UnCLIP
title: unCLIP
- local: api/pipelines/latent_diffusion_uncond
title: Unconditional Latent Diffusion
- local: api/pipelines/unidiffuser
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/versatile_diffusion
title: Versatile Diffusion
- local: api/pipelines/vq_diffusion
title: VQ Diffusion
- local: api/pipelines/wuerstchen
title: Wuerstchen
title: Pipelines
- sections:
- local: api/schedulers/overview
title: Overview
- local: api/schedulers/ddim
title: DDIM
- local: api/schedulers/cm_stochastic_iterative
title: CMStochasticIterativeScheduler
- local: api/schedulers/consistency_decoder
title: ConsistencyDecoderScheduler
- local: api/schedulers/ddim_inverse
title: DDIMInverse
title: DDIMInverseScheduler
- local: api/schedulers/ddim
title: DDIMScheduler
- local: api/schedulers/ddpm
title: DDPM
title: DDPMScheduler
- local: api/schedulers/deis
title: DEIS
- local: api/schedulers/dpm_discrete
title: DPM Discrete Scheduler
- local: api/schedulers/dpm_discrete_ancestral
title: DPM Discrete Scheduler with ancestral sampling
title: DEISMultistepScheduler
- local: api/schedulers/multistep_dpm_solver_inverse
title: DPMSolverMultistepInverse
- local: api/schedulers/multistep_dpm_solver
title: DPMSolverMultistepScheduler
- local: api/schedulers/dpm_sde
title: DPMSolverSDEScheduler
- local: api/schedulers/euler_ancestral
title: Euler Ancestral Scheduler
- local: api/schedulers/euler
title: Euler scheduler
- local: api/schedulers/heun
title: Heun Scheduler
- local: api/schedulers/multistep_dpm_solver_inverse
title: Inverse Multistep DPM-Solver
- local: api/schedulers/ipndm
title: IPNDM
- local: api/schedulers/lms_discrete
title: Linear Multistep
- local: api/schedulers/multistep_dpm_solver
title: Multistep DPM-Solver
- local: api/schedulers/pndm
title: PNDM
- local: api/schedulers/repaint
title: RePaint Scheduler
- local: api/schedulers/singlestep_dpm_solver
title: Singlestep DPM-Solver
title: DPMSolverSinglestepScheduler
- local: api/schedulers/euler_ancestral
title: EulerAncestralDiscreteScheduler
- local: api/schedulers/euler
title: EulerDiscreteScheduler
- local: api/schedulers/heun
title: HeunDiscreteScheduler
- local: api/schedulers/ipndm
title: IPNDMScheduler
- local: api/schedulers/stochastic_karras_ve
title: Stochastic Kerras VE
title: KarrasVeScheduler
- local: api/schedulers/dpm_discrete_ancestral
title: KDPM2AncestralDiscreteScheduler
- local: api/schedulers/dpm_discrete
title: KDPM2DiscreteScheduler
- local: api/schedulers/lcm
title: LCMScheduler
- local: api/schedulers/lms_discrete
title: LMSDiscreteScheduler
- local: api/schedulers/pndm
title: PNDMScheduler
- local: api/schedulers/repaint
title: RePaintScheduler
- local: api/schedulers/score_sde_ve
title: ScoreSdeVeScheduler
- local: api/schedulers/score_sde_vp
title: ScoreSdeVpScheduler
- local: api/schedulers/unipc
title: UniPCMultistepScheduler
- local: api/schedulers/score_sde_ve
title: VE-SDE
- local: api/schedulers/score_sde_vp
title: VP-SDE
- local: api/schedulers/vq_diffusion
title: VQDiffusionScheduler
title: Schedulers
- sections:
- local: api/experimental/rl
title: RL Planning
title: Experimental Features
- local: api/internal_classes_overview
title: Overview
- local: api/attnprocessor
title: Attention Processor
- local: api/activations
title: Custom activation functions
- local: api/normalization
title: Custom normalization layers
- local: api/utilities
title: Utilities
- local: api/image_processor
title: VAE Image Processor
title: Internal classes
title: API

View File

@@ -0,0 +1,15 @@
# Activation functions
Customized activation functions for supporting various models in 🤗 Diffusers.
## GELU
[[autodoc]] models.activations.GELU
## GEGLU
[[autodoc]] models.activations.GEGLU
## ApproximateGELU
[[autodoc]] models.activations.ApproximateGELU

View File

@@ -0,0 +1,45 @@
# Attention Processor
An attention processor is a class for applying different types of attention mechanisms.
## AttnProcessor
[[autodoc]] models.attention_processor.AttnProcessor
## AttnProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessor2_0
## LoRAAttnProcessor
[[autodoc]] models.attention_processor.LoRAAttnProcessor
## LoRAAttnProcessor2_0
[[autodoc]] models.attention_processor.LoRAAttnProcessor2_0
## CustomDiffusionAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor
## CustomDiffusionAttnProcessor2_0
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor2_0
## AttnAddedKVProcessor
[[autodoc]] models.attention_processor.AttnAddedKVProcessor
## AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnAddedKVProcessor2_0
## LoRAAttnAddedKVProcessor
[[autodoc]] models.attention_processor.LoRAAttnAddedKVProcessor
## XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnProcessor
## LoRAXFormersAttnProcessor
[[autodoc]] models.attention_processor.LoRAXFormersAttnProcessor
## CustomDiffusionXFormersAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## SlicedAttnProcessor
[[autodoc]] models.attention_processor.SlicedAttnProcessor
## SlicedAttnAddedKVProcessor
[[autodoc]] models.attention_processor.SlicedAttnAddedKVProcessor

View File

@@ -12,8 +12,13 @@ specific language governing permissions and limitations under the License.
# Configuration
Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from [`ModelMixin`] inherit from [`ConfigMixin`] which conveniently takes care of storing all the parameters that are
passed to their respective `__init__` methods in a JSON-configuration file.
Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from [`ModelMixin`] inherit from [`ConfigMixin`] which stores all the parameters that are passed to their respective `__init__` methods in a JSON-configuration file.
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
</Tip>
## ConfigMixin

View File

@@ -1,47 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
The [`DiffusionPipeline`] is the easiest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) and to use it in inference.
<Tip>
One should not use the Diffusion Pipeline class for training or fine-tuning a diffusion model. Individual
components of diffusion pipelines are usually trained individually, so we suggest to directly work
with [`UNetModel`] and [`UNetConditionModel`].
</Tip>
Any diffusion pipeline that is loaded with [`~DiffusionPipeline.from_pretrained`] will automatically
detect the pipeline type, *e.g.* [`StableDiffusionPipeline`] and consequently load each component of the
pipeline and pass them into the `__init__` function of the pipeline, *e.g.* [`~StableDiffusionPipeline.__init__`].
Any pipeline object can be saved locally with [`~DiffusionPipeline.save_pretrained`].
## DiffusionPipeline
[[autodoc]] DiffusionPipeline
- all
- __call__
- device
- to
- components
## ImagePipelineOutput
By default diffusion pipelines return an object of class
[[autodoc]] pipelines.ImagePipelineOutput
## AudioPipelineOutput
By default diffusion pipelines return an object of class
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -1,15 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# TODO
Coming soon!

View File

@@ -0,0 +1,27 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# VAE Image Processor
The [`VaeImageProcessor`] provides a unified API for [`StableDiffusionPipeline`]'s to prepare image inputs for VAE encoding and post-processing outputs once they're decoded. This includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.
All pipelines with [`VaeImageProcessor`] accepts PIL Image, PyTorch tensor, or NumPy arrays as image inputs and returns outputs based on the `output_type` argument by the user. You can pass encoded image latents directly to the pipeline and return latents from the pipeline as a specific output with the `output_type` argument (for example `output_type="pt"`). This allows you to take the generated latents from one pipeline and pass it to another pipeline as input without leaving the latent space. It also makes it much easier to use multiple pipelines together by passing PyTorch tensors directly between different pipelines.
## VaeImageProcessor
[[autodoc]] image_processor.VaeImageProcessor
## VaeImageProcessorLDM3D
The [`VaeImageProcessorLDM3D`] accepts RGB and depth inputs and returns RGB and depth outputs.
[[autodoc]] image_processor.VaeImageProcessorLDM3D

View File

@@ -0,0 +1,3 @@
# Overview
The APIs in this section are more experimental and prone to breaking changes. Most of them are used internally for development, but they may also be useful to you if you're interested in building a diffusion model with some custom parts or if you're interested in some of our helper utilities for working with 🤗 Diffusers.

View File

@@ -0,0 +1,49 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Loaders
Adapters (textual inversion, LoRA, hypernetworks) allow you to modify a diffusion model to generate images in a specific style without training or finetuning the entire model. The adapter weights are typically only a tiny fraction of the pretrained model's which making them very portable. 🤗 Diffusers provides an easy-to-use `LoaderMixin` API to load adapter weights.
<Tip warning={true}>
🧪 The `LoaderMixins` are highly experimental and prone to future changes. To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
</Tip>
## UNet2DConditionLoadersMixin
[[autodoc]] loaders.UNet2DConditionLoadersMixin
## TextualInversionLoaderMixin
[[autodoc]] loaders.TextualInversionLoaderMixin
## StableDiffusionXLLoraLoaderMixin
[[autodoc]] loaders.StableDiffusionXLLoraLoaderMixin
## LoraLoaderMixin
[[autodoc]] loaders.LoraLoaderMixin
## FromSingleFileMixin
[[autodoc]] loaders.FromSingleFileMixin
## FromOriginalControlnetMixin
[[autodoc]] loaders.FromOriginalControlnetMixin
## FromOriginalVAEMixin
[[autodoc]] loaders.FromOriginalVAEMixin

View File

@@ -1,42 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Loaders
There are many ways to train adapter neural networks for diffusion models, such as
- [Textual Inversion](./training/text_inversion.mdx)
- [LoRA](https://github.com/cloneofsimo/lora)
- [Hypernetworks](https://arxiv.org/abs/1609.09106)
Such adapter neural networks often only consist of a fraction of the number of weights compared
to the pretrained model and as such are very portable. The Diffusers library offers an easy-to-use
API to load such adapter neural networks via the [`loaders.py` module](https://github.com/huggingface/diffusers/blob/main/src/diffusers/loaders.py).
**Note**: This module is still highly experimental and prone to future changes.
## LoaderMixins
### UNet2DConditionLoadersMixin
[[autodoc]] loaders.UNet2DConditionLoadersMixin
### TextualInversionLoaderMixin
[[autodoc]] loaders.TextualInversionLoaderMixin
### LoraLoaderMixin
[[autodoc]] loaders.LoraLoaderMixin
### FromCkptMixin
[[autodoc]] loaders.FromCkptMixin

View File

@@ -0,0 +1,96 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Logging
🤗 Diffusers has a centralized logging system to easily manage the verbosity of the library. The default verbosity is set to `WARNING`.
To change the verbosity level, use one of the direct setters. For instance, to change the verbosity to the `INFO` level.
```python
import diffusers
diffusers.logging.set_verbosity_info()
```
You can also use the environment variable `DIFFUSERS_VERBOSITY` to override the default verbosity. You can set it
to one of the following: `debug`, `info`, `warning`, `error`, `critical`. For example:
```bash
DIFFUSERS_VERBOSITY=error ./myprogram.py
```
Additionally, some `warnings` can be disabled by setting the environment variable
`DIFFUSERS_NO_ADVISORY_WARNINGS` to a true value, like `1`. This disables any warning logged by
[`logger.warning_advice`]. For example:
```bash
DIFFUSERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py
```
Here is an example of how to use the same logger as the library in your own module or script:
```python
from diffusers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("diffusers")
logger.info("INFO")
logger.warning("WARN")
```
All methods of the logging module are documented below. The main methods are
[`logging.get_verbosity`] to get the current level of verbosity in the logger and
[`logging.set_verbosity`] to set the verbosity to the level of your choice.
In order from the least verbose to the most verbose:
| Method | Integer value | Description |
|----------------------------------------------------------:|--------------:|----------------------------------------------------:|
| `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` | 50 | only report the most critical errors |
| `diffusers.logging.ERROR` | 40 | only report errors |
| `diffusers.logging.WARNING` or `diffusers.logging.WARN` | 30 | only report errors and warnings (default) |
| `diffusers.logging.INFO` | 20 | only report errors, warnings, and basic information |
| `diffusers.logging.DEBUG` | 10 | report all information |
By default, `tqdm` progress bars are displayed during model download. [`logging.disable_progress_bar`] and [`logging.enable_progress_bar`] are used to enable or disable this behavior.
## Base setters
[[autodoc]] utils.logging.set_verbosity_error
[[autodoc]] utils.logging.set_verbosity_warning
[[autodoc]] utils.logging.set_verbosity_info
[[autodoc]] utils.logging.set_verbosity_debug
## Other functions
[[autodoc]] utils.logging.get_verbosity
[[autodoc]] utils.logging.set_verbosity
[[autodoc]] utils.logging.get_logger
[[autodoc]] utils.logging.enable_default_handler
[[autodoc]] utils.logging.disable_default_handler
[[autodoc]] utils.logging.enable_explicit_format
[[autodoc]] utils.logging.reset_format
[[autodoc]] utils.logging.enable_progress_bar
[[autodoc]] utils.logging.disable_progress_bar

View File

@@ -1,98 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Logging
🧨 Diffusers has a centralized logging system, so that you can setup the verbosity of the library easily.
Currently the default verbosity of the library is `WARNING`.
To change the level of verbosity, just use one of the direct setters. For instance, here is how to change the verbosity
to the INFO level.
```python
import diffusers
diffusers.logging.set_verbosity_info()
```
You can also use the environment variable `DIFFUSERS_VERBOSITY` to override the default verbosity. You can set it
to one of the following: `debug`, `info`, `warning`, `error`, `critical`. For example:
```bash
DIFFUSERS_VERBOSITY=error ./myprogram.py
```
Additionally, some `warnings` can be disabled by setting the environment variable
`DIFFUSERS_NO_ADVISORY_WARNINGS` to a true value, like *1*. This will disable any warning that is logged using
[`logger.warning_advice`]. For example:
```bash
DIFFUSERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py
```
Here is an example of how to use the same logger as the library in your own module or script:
```python
from diffusers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("diffusers")
logger.info("INFO")
logger.warning("WARN")
```
All the methods of this logging module are documented below, the main ones are
[`logging.get_verbosity`] to get the current level of verbosity in the logger and
[`logging.set_verbosity`] to set the verbosity to the level of your choice. In order (from the least
verbose to the most verbose), those levels (with their corresponding int values in parenthesis) are:
- `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` (int value, 50): only report the most
critical errors.
- `diffusers.logging.ERROR` (int value, 40): only report errors.
- `diffusers.logging.WARNING` or `diffusers.logging.WARN` (int value, 30): only reports error and
warnings. This is the default level used by the library.
- `diffusers.logging.INFO` (int value, 20): reports error, warnings and basic information.
- `diffusers.logging.DEBUG` (int value, 10): report all information.
By default, `tqdm` progress bars will be displayed during model download. [`logging.disable_progress_bar`] and [`logging.enable_progress_bar`] can be used to suppress or unsuppress this behavior.
## Base setters
[[autodoc]] logging.set_verbosity_error
[[autodoc]] logging.set_verbosity_warning
[[autodoc]] logging.set_verbosity_info
[[autodoc]] logging.set_verbosity_debug
## Other functions
[[autodoc]] logging.get_verbosity
[[autodoc]] logging.set_verbosity
[[autodoc]] logging.get_logger
[[autodoc]] logging.enable_default_handler
[[autodoc]] logging.disable_default_handler
[[autodoc]] logging.enable_explicit_format
[[autodoc]] logging.reset_format
[[autodoc]] logging.enable_progress_bar
[[autodoc]] logging.disable_progress_bar

View File

@@ -1,107 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Models
Diffusers contains pretrained models for popular algorithms and modules for creating the next set of diffusion models.
The primary function of these models is to denoise an input sample, by modeling the distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t)$.
The models are built on the base class ['ModelMixin'] that is a `torch.nn.module` with basic functionality for saving and loading models both locally and from the HuggingFace hub.
## ModelMixin
[[autodoc]] ModelMixin
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput
## UNet2DModel
[[autodoc]] UNet2DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput
## UNet1DModel
[[autodoc]] UNet1DModel
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput
## UNet2DConditionModel
[[autodoc]] UNet2DConditionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput
## UNet3DConditionModel
[[autodoc]] UNet3DConditionModel
## DecoderOutput
[[autodoc]] models.vae.DecoderOutput
## VQEncoderOutput
[[autodoc]] models.vq_model.VQEncoderOutput
## VQModel
[[autodoc]] VQModel
## AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
## AutoencoderKL
[[autodoc]] AutoencoderKL
## Transformer2DModel
[[autodoc]] Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.transformer_2d.Transformer2DModelOutput
## TransformerTemporalModel
[[autodoc]] models.transformer_temporal.TransformerTemporalModel
## Transformer2DModelOutput
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput
## PriorTransformer
[[autodoc]] models.prior_transformer.PriorTransformer
## PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput
## ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
## ControlNetModel
[[autodoc]] ControlNetModel
## FlaxModelMixin
[[autodoc]] FlaxModelMixin
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] FlaxUNet2DConditionModel
## FlaxDecoderOutput
[[autodoc]] models.vae_flax.FlaxDecoderOutput
## FlaxAutoencoderKLOutput
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput
## FlaxAutoencoderKL
[[autodoc]] FlaxAutoencoderKL
## FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput
## FlaxControlNetModel
[[autodoc]] FlaxControlNetModel

View File

@@ -0,0 +1,55 @@
# AsymmetricAutoencoderKL
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
The abstract from the paper is:
*StableDiffusion is a revolutionary text-to-image generator that is causing a stir in the world of image generation and editing. Unlike traditional methods that learn a diffusion model in pixel space, StableDiffusion learns a diffusion model in the latent space via a VQGAN, ensuring both efficiency and quality. It not only supports image generation tasks, but also enables image editing for real images, such as image inpainting and local editing. However, we have observed that the vanilla VQGAN used in StableDiffusion leads to significant information loss, causing distortion artifacts even in non-edited image regions. To this end, we propose a new asymmetric VQGAN with two simple designs. Firstly, in addition to the input from the encoder, the decoder contains a conditional branch that incorporates information from task-specific priors, such as the unmasked image region in inpainting. Secondly, the decoder is much heavier than the encoder, allowing for more detailed recovery while only slightly increasing the total inference cost. The training cost of our asymmetric VQGAN is cheap, and we only need to retrain a new asymmetric decoder while keeping the vanilla VQGAN encoder and StableDiffusion unchanged. Our asymmetric VQGAN can be widely used in StableDiffusion-based inpainting and local editing methods. Extensive experiments demonstrate that it can significantly improve the inpainting and editing performance, while maintaining the original text-to-image capability. The code is available at https://github.com/buxiangzhiren/Asymmetric_VQGAN*
Evaluation results can be found in section 4.1 of the original paper.
## Available checkpoints
* [https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-1-5](https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-1-5)
* [https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-2](https://huggingface.co/cross-attention/asymmetric-autoencoder-kl-x-2)
## Example Usage
```python
from io import BytesIO
from PIL import Image
import requests
from diffusers import AsymmetricAutoencoderKL, StableDiffusionInpaintPipeline
def download_image(url: str) -> Image.Image:
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
prompt = "a photo of a person"
img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png"
mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
image = download_image(img_url).resize((256, 256))
mask_image = download_image(mask_url).resize((256, 256))
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe.vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe.to("cuda")
image = pipe(prompt=prompt, image=image, mask_image=mask_image).images[0]
image.save("image.jpeg")
```
## AsymmetricAutoencoderKL
[[autodoc]] models.autoencoder_asym_kl.AsymmetricAutoencoderKL
## AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.vae.DecoderOutput

View File

@@ -0,0 +1,45 @@
# Tiny AutoEncoder
Tiny AutoEncoder for Stable Diffusion (TAESD) was introduced in [madebyollin/taesd](https://github.com/madebyollin/taesd) by Ollin Boer Bohan. It is a tiny distilled version of Stable Diffusion's VAE that can quickly decode the latents in a [`StableDiffusionPipeline`] or [`StableDiffusionXLPipeline`] almost instantly.
To use with Stable Diffusion v-2.1:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake.png")
```
To use with Stable Diffusion XL 1.0
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake_sdxl.png")
```
## AutoencoderTiny
[[autodoc]] AutoencoderTiny
## AutoencoderTinyOutput
[[autodoc]] models.autoencoder_tiny.AutoencoderTinyOutput

View File

@@ -0,0 +1,43 @@
# AutoencoderKL
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
The abstract from the paper is:
*How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions are two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.*
## Loading from the original format
By default the [`AutoencoderKL`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
from the original format using [`FromOriginalVAEMixin.from_single_file`] as follows:
```py
from diffusers import AutoencoderKL
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
model = AutoencoderKL.from_single_file(url)
```
## AutoencoderKL
[[autodoc]] AutoencoderKL
## AutoencoderKLOutput
[[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.vae.DecoderOutput
## FlaxAutoencoderKL
[[autodoc]] FlaxAutoencoderKL
## FlaxAutoencoderKLOutput
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput
## FlaxDecoderOutput
[[autodoc]] models.vae_flax.FlaxDecoderOutput

View File

@@ -0,0 +1,18 @@
# Consistency Decoder
Consistency decoder can be used to decode the latents from the denoising UNet in the [`StableDiffusionPipeline`]. This decoder was introduced in the [DALL-E 3 technical report](https://openai.com/dall-e-3).
The original codebase can be found at [openai/consistencydecoder](https://github.com/openai/consistencydecoder).
<Tip warning={true}>
Inference is only supported for 2 iterations as of now.
</Tip>
The pipeline could not have been contributed without the help of [madebyollin](https://github.com/madebyollin) and [mrsteyk](https://github.com/mrsteyk) from [this issue](https://github.com/openai/consistencydecoder/issues/1).
## ConsistencyDecoderVAE
[[autodoc]] ConsistencyDecoderVAE
- all
- decode

View File

@@ -0,0 +1,38 @@
# ControlNet
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
## Loading from the original format
By default the [`ControlNetModel`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
from the original format using [`FromOriginalControlnetMixin.from_single_file`] as follows:
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
controlnet = ControlNetModel.from_single_file(url)
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
```
## ControlNetModel
[[autodoc]] ControlNetModel
## ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
## FlaxControlNetModel
[[autodoc]] FlaxControlNetModel
## FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput

View File

@@ -0,0 +1,16 @@
# Models
🤗 Diffusers provides pretrained models for popular algorithms and modules to create custom diffusion systems. The primary function of models is to denoise an input sample as modeled by the distribution \\(p_{\theta}(x_{t-1}|x_{t})\\).
All models are built from the base [`ModelMixin`] class which is a [`torch.nn.module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html) providing basic functionality for saving and loading models, locally and from the Hugging Face Hub.
## ModelMixin
[[autodoc]] ModelMixin
## FlaxModelMixin
[[autodoc]] FlaxModelMixin
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -0,0 +1,16 @@
# Prior Transformer
The Prior Transformer was originally introduced in [Hierarchical Text-Conditional Image Generation with CLIP Latents
](https://huggingface.co/papers/2204.06125) by Ramesh et al. It is used to predict CLIP image embeddings from CLIP text embeddings; image embeddings are predicted through a denoising diffusion process.
The abstract from the paper is:
*Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. Moreover, the joint embedding space of CLIP enables language-guided image manipulations in a zero-shot fashion. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.*
## PriorTransformer
[[autodoc]] PriorTransformer
## PriorTransformerOutput
[[autodoc]] models.prior_transformer.PriorTransformerOutput

View File

@@ -0,0 +1,29 @@
# Transformer2D
A Transformer model for image-like data from [CompVis](https://huggingface.co/CompVis) that is based on the [Vision Transformer](https://huggingface.co/papers/2010.11929) introduced by Dosovitskiy et al. The [`Transformer2DModel`] accepts discrete (classes of vector embeddings) or continuous (actual embeddings) inputs.
When the input is **continuous**:
1. Project the input and reshape it to `(batch_size, sequence_length, feature_dimension)`.
2. Apply the Transformer blocks in the standard way.
3. Reshape to image.
When the input is **discrete**:
<Tip>
It is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised image don't contain a prediction for the masked pixel because the unnoised image cannot be masked.
</Tip>
1. Convert input (classes of latent pixels) to embeddings and apply positional embeddings.
2. Apply the Transformer blocks in the standard way.
3. Predict classes of unnoised image.
## Transformer2DModel
[[autodoc]] Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.transformer_2d.Transformer2DModelOutput

View File

@@ -0,0 +1,11 @@
# Transformer Temporal
A Transformer model for video-like data.
## TransformerTemporalModel
[[autodoc]] models.transformer_temporal.TransformerTemporalModel
## TransformerTemporalModelOutput
[[autodoc]] models.transformer_temporal.TransformerTemporalModelOutput

View File

@@ -0,0 +1,13 @@
# UNetMotionModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
## UNetMotionModel
[[autodoc]] UNetMotionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput

View File

@@ -0,0 +1,13 @@
# UNet1DModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 1D UNet model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
## UNet1DModel
[[autodoc]] UNet1DModel
## UNet1DOutput
[[autodoc]] models.unet_1d.UNet1DOutput

View File

@@ -0,0 +1,19 @@
# UNet2DConditionModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet conditional model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
## UNet2DConditionModel
[[autodoc]] UNet2DConditionModel
## UNet2DConditionOutput
[[autodoc]] models.unet_2d_condition.UNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionModel
## FlaxUNet2DConditionOutput
[[autodoc]] models.unet_2d_condition_flax.FlaxUNet2DConditionOutput

View File

@@ -0,0 +1,13 @@
# UNet2DModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 2D UNet model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
## UNet2DModel
[[autodoc]] UNet2DModel
## UNet2DOutput
[[autodoc]] models.unet_2d.UNet2DOutput

View File

@@ -0,0 +1,13 @@
# UNet3DConditionModel
The [UNet](https://huggingface.co/papers/1505.04597) model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🤗 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🤗 Diffusers, depending on it's number of dimensions and whether it is a conditional model or not. This is a 3D UNet conditional model.
The abstract from the paper is:
*There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.*
## UNet3DConditionModel
[[autodoc]] UNet3DConditionModel
## UNet3DConditionOutput
[[autodoc]] models.unet_3d_condition.UNet3DConditionOutput

View File

@@ -0,0 +1,15 @@
# VQModel
The VQ-VAE model was introduced in [Neural Discrete Representation Learning](https://huggingface.co/papers/1711.00937) by Aaron van den Oord, Oriol Vinyals and Koray Kavukcuoglu. The model is used in 🤗 Diffusers to decode latent representations into images. Unlike [`AutoencoderKL`], the [`VQModel`] works in a quantized latent space.
The abstract from the paper is:
*Learning useful representations without supervision remains a key challenge in machine learning. In this paper, we propose a simple yet powerful generative model that learns such discrete representations. Our model, the Vector Quantised-Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt rather than static. In order to learn a discrete latent representation, we incorporate ideas from vector quantisation (VQ). Using the VQ method allows the model to circumvent issues of "posterior collapse" -- where the latents are ignored when they are paired with a powerful autoregressive decoder -- typically observed in the VAE framework. Pairing these representations with an autoregressive prior, the model can generate high quality images, videos, and speech as well as doing high quality speaker conversion and unsupervised learning of phonemes, providing further evidence of the utility of the learnt representations.*
## VQModel
[[autodoc]] VQModel
## VQEncoderOutput
[[autodoc]] models.vq_model.VQEncoderOutput

View File

@@ -0,0 +1,15 @@
# Normalization layers
Customized normalization layers for supporting various models in 🤗 Diffusers.
## AdaLayerNorm
[[autodoc]] models.normalization.AdaLayerNorm
## AdaLayerNormZero
[[autodoc]] models.normalization.AdaLayerNormZero
## AdaGroupNorm
[[autodoc]] models.normalization.AdaGroupNorm

View File

@@ -0,0 +1,67 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Outputs
All models outputs are subclasses of [`~utils.BaseOutput`], data structures containing all the information returned by the model. The outputs can also be used as tuples or dictionaries.
For example:
```python
from diffusers import DDIMPipeline
pipeline = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32")
outputs = pipeline()
```
The `outputs` object is a [`~pipelines.ImagePipelineOutput`] which means it has an image attribute.
You can access each attribute as you normally would or with a keyword lookup, and if that attribute is not returned by the model, you will get `None`:
```python
outputs.images
outputs["images"]
```
When considering the `outputs` object as a tuple, it only considers the attributes that don't have `None` values.
For instance, retrieving an image by indexing into it returns the tuple `(outputs.images)`:
```python
outputs[:1]
```
<Tip>
To check a specific pipeline or model output, refer to its corresponding API documentation.
</Tip>
## BaseOutput
[[autodoc]] utils.BaseOutput
- to_tuple
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
## FlaxImagePipelineOutput
[[autodoc]] pipelines.pipeline_flax_utils.FlaxImagePipelineOutput
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
## ImageTextPipelineOutput
[[autodoc]] ImageTextPipelineOutput

View File

@@ -1,55 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# BaseOutputs
All models have outputs that are instances of subclasses of [`~utils.BaseOutput`]. Those are
data structures containing all the information returned by the model, but that can also be used as tuples or
dictionaries.
Let's see how this looks in an example:
```python
from diffusers import DDIMPipeline
pipeline = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32")
outputs = pipeline()
```
The `outputs` object is a [`~pipelines.ImagePipelineOutput`], as we can see in the
documentation of that class below, it means it has an image attribute.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you will get `None`:
```python
outputs.images
```
or via keyword lookup
```python
outputs["images"]
```
When considering our `outputs` object as tuple, it only considers the attributes that don't have `None` values.
Here for instance, we could retrieve images via indexing:
```python
outputs[:1]
```
which will return the tuple `(outputs.images)` for instance.
## BaseOutput
[[autodoc]] utils.BaseOutput
- to_tuple

View File

@@ -0,0 +1,47 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AltDiffusion
AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://huggingface.co/papers/2211.06679) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu.
The abstract from the paper is:
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
## Tips
`AltDiffusion` is conceptually the same as [Stable Diffusion](./stable_diffusion/overview).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AltDiffusionPipeline
[[autodoc]] AltDiffusionPipeline
- all
- __call__
## AltDiffusionImg2ImgPipeline
[[autodoc]] AltDiffusionImg2ImgPipeline
- all
- __call__
## AltDiffusionPipelineOutput
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput
- all
- __call__

View File

@@ -1,83 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AltDiffusion
AltDiffusion was proposed in [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, Ledell Wu.
The abstract of the paper is the following:
*In this work, we present a conceptually simple and effective method to train a strong bilingual multimodal representation model. Starting from the pretrained multimodal representation model CLIP released by OpenAI, we switched its text encoder with a pretrained multilingual text encoder XLM-R, and aligned both languages and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. We validate our method through evaluations of a wide range of tasks. We set new state-of-the-art performances on a bunch of tasks including ImageNet-CN, Flicker30k- CN, and COCO-CN. Further, we obtain very close performances with CLIP on almost all tasks, suggesting that one can simply alter the text encoder in CLIP for extended capabilities such as multilingual understanding.*
*Overview*:
| Pipeline | Tasks | Colab | Demo
|---|---|:---:|:---:|
| [pipeline_alt_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py) | *Text-to-Image Generation* | - | -
| [pipeline_alt_diffusion_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py) | *Image-to-Image Text-Guided Generation* | - |-
## Tips
- AltDiffusion is conceptually exactly the same as [Stable Diffusion](./stable_diffusion/overview).
- *Run AltDiffusion*
AltDiffusion can be tested very easily with the [`AltDiffusionPipeline`], [`AltDiffusionImg2ImgPipeline`] and the `"BAAI/AltDiffusion-m9"` checkpoint exactly in the same way it is shown in the [Conditional Image Generation Guide](../../using-diffusers/conditional_image_generation) and the [Image-to-Image Generation Guide](../../using-diffusers/img2img).
- *How to load and use different schedulers.*
The alt diffusion pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers that can be used with the alt diffusion pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] etc.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`] method or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the [`EulerDiscreteScheduler`], you can do the following:
```python
>>> from diffusers import AltDiffusionPipeline, EulerDiscreteScheduler
>>> pipeline = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9")
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> euler_scheduler = EulerDiscreteScheduler.from_pretrained("BAAI/AltDiffusion-m9", subfolder="scheduler")
>>> pipeline = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9", scheduler=euler_scheduler)
```
- *How to convert all use cases with multiple or single pipeline*
If you want to use all possible use cases in a single `DiffusionPipeline` we recommend using the `components` functionality to instantiate all components in the most memory-efficient way:
```python
>>> from diffusers import (
... AltDiffusionPipeline,
... AltDiffusionImg2ImgPipeline,
... )
>>> text2img = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion-m9")
>>> img2img = AltDiffusionImg2ImgPipeline(**text2img.components)
>>> # now you can use text2img(...) and img2img(...) just like the call methods of each respective pipeline
```
## AltDiffusionPipelineOutput
[[autodoc]] pipelines.alt_diffusion.AltDiffusionPipelineOutput
- all
- __call__
## AltDiffusionPipeline
[[autodoc]] AltDiffusionPipeline
- all
- __call__
## AltDiffusionImg2ImgPipeline
[[autodoc]] AltDiffusionImg2ImgPipeline
- all
- __call__

View File

@@ -0,0 +1,230 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-Video Generation with AnimateDiff
## Overview
[AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725) by Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai
The abstract of the paper is the following:
With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at this https URL .
## Available Pipelines
| Pipeline | Tasks | Demo
|---|---|:---:|
| [AnimateDiffPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/animatediff/pipeline_animatediff.py) | *Text-to-Video Generation with AnimateDiff* |
## Available checkpoints
Motion Adapter checkpoints can be found under [guoyww](https://huggingface.co/guoyww/). These checkpoints are meant to work with any model based on Stable Diffusion 1.4/1.5
## Usage example
AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
The following example demonstrates how to use a *MotionAdapter* checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
Here are some sample outputs:
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-realistic-doc.gif"
alt="masterpiece, bestquality, sunset"
style="width: 300px;" />
</center></td>
</tr>
</table>
<Tip>
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting `clip_sample=False` in the scheduler as this can also have an adverse effect on generated samples.
</Tip>
## Using Motion LoRAs
Motion LoRAs are a collection of LoRAs that work with the `guoyww/animatediff-motion-adapter-v1-5-2` checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-zoom-out-lora.gif"
alt="masterpiece, bestquality, sunset"
style="width: 300px;" />
</center></td>
</tr>
</table>
## Using Motion LoRAs with PEFT
You can also leverage the [PEFT](https://github.com/huggingface/peft) backend to combine Motion LoRA's and create more complex animations.
First install PEFT with
```shell
pip install peft
```
Then you can use the following code to combine Motion LoRAs.
```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter)
pipe.load_lora_weights("diffusers/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe.load_lora_weights("diffusers/animatediff-motion-lora-pan-left", adapter_name="pan-left")
pipe.set_adapters(["zoom-out", "pan-left"], adapter_weights=[1.0, 1.0])
scheduler = DDIMScheduler.from_pretrained(
model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```
<table>
<tr>
<td><center>
masterpiece, bestquality, sunset.
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-zoom-out-pan-left-lora.gif"
alt="masterpiece, bestquality, sunset"
style="width: 300px;" />
</center></td>
</tr>
</table>
## AnimateDiffPipeline
[[autodoc]] AnimateDiffPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## AnimateDiffPipelineOutput
[[autodoc]] pipelines.animatediff.AnimateDiffPipelineOutput

View File

@@ -0,0 +1,37 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Attend-and-Excite
Attend-and-Excite for Stable Diffusion was proposed in [Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models](https://attendandexcite.github.io/Attend-and-Excite/) and provides textual attention control over image generation.
The abstract from the paper is:
*Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the user's intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGA's effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.*
You can find additional information about Attend-and-Excite on the [project page](https://attendandexcite.github.io/Attend-and-Excite/), the [original codebase](https://github.com/AttendAndExcite/Attend-and-Excite), or try it out in a [demo](https://huggingface.co/spaces/AttendAndExcite/Attend-and-Excite).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionAttendAndExcitePipeline
[[autodoc]] StableDiffusionAttendAndExcitePipeline
- all
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,37 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Audio Diffusion
[Audio Diffusion](https://github.com/teticio/audio-diffusion) is by Robert Dargavel Smith, and it leverages the recent advances in image generation from diffusion models by converting audio samples to and from Mel spectrogram images.
The original codebase, training scripts and example notebooks can be found at [teticio/audio-diffusion](https://github.com/teticio/audio-diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AudioDiffusionPipeline
[[autodoc]] AudioDiffusionPipeline
- all
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput
## Mel
[[autodoc]] Mel

View File

@@ -1,98 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Audio Diffusion
## Overview
[Audio Diffusion](https://github.com/teticio/audio-diffusion) by Robert Dargavel Smith.
Audio Diffusion leverages the recent advances in image generation using diffusion models by converting audio samples to
and from mel spectrogram images.
The original codebase of this implementation can be found [here](https://github.com/teticio/audio-diffusion), including
training scripts and example notebooks.
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_audio_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py) | *Unconditional Audio Generation* | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/audio_diffusion_pipeline.ipynb) |
## Examples:
### Audio Diffusion
```python
import torch
from IPython.display import Audio
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-256").to(device)
output = pipe()
display(output.images[0])
display(Audio(output.audios[0], rate=mel.get_sample_rate()))
```
### Latent Audio Diffusion
```python
import torch
from IPython.display import Audio
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("teticio/latent-audio-diffusion-256").to(device)
output = pipe()
display(output.images[0])
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate()))
```
### Audio Diffusion with DDIM (faster)
```python
import torch
from IPython.display import Audio
from diffusers import DiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256").to(device)
output = pipe()
display(output.images[0])
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate()))
```
### Variations, in-painting, out-painting etc.
```python
output = pipe(
raw_audio=output.audios[0, 0],
start_step=int(pipe.get_default_steps() / 2),
mask_start_secs=1,
mask_end_secs=1,
)
display(output.images[0])
display(Audio(output.audios[0], rate=pipe.mel.get_sample_rate()))
```
## AudioDiffusionPipeline
[[autodoc]] AudioDiffusionPipeline
- all
- __call__
## Mel
[[autodoc]] Mel

View File

@@ -0,0 +1,50 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AudioLDM
AudioLDM was proposed in [AudioLDM: Text-to-Audio Generation with Latent Diffusion Models](https://huggingface.co/papers/2301.12503) by Haohe Liu et al. Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional
sound effects, human speech and music.
The abstract from the paper is:
*Text-to-audio (TTA) system has recently gained attention for its ability to synthesize general audio based on text descriptions. However, previous studies in TTA have limited generation quality with high computational costs. In this study, we propose AudioLDM, a TTA system that is built on a latent space to learn the continuous audio representations from contrastive language-audio pretraining (CLAP) latents. The pretrained CLAP models enable us to train LDMs with audio embedding while providing text embedding as a condition during sampling. By learning the latent representations of audio signals and their compositions without modeling the cross-modal relationship, AudioLDM is advantageous in both generation quality and computational efficiency. Trained on AudioCaps with a single GPU, AudioLDM achieves state-of-the-art TTA performance measured by both objective and subjective metrics (e.g., frechet distance). Moreover, AudioLDM is the first TTA system that enables various text-guided audio manipulations (e.g., style transfer) in a zero-shot fashion. Our implementation and demos are available at https://audioldm.github.io.*
The original codebase can be found at [haoheliu/AudioLDM](https://github.com/haoheliu/AudioLDM).
## Tips
When constructing a prompt, keep in mind:
* Descriptive prompt inputs work best; you can use adjectives to describe the sound (for example, "high quality" or "clear") and make the prompt context specific (for example, "water stream in a forest" instead of "stream").
* It's best to use general terms like "cat" or "dog" instead of specific names or abstract objects the model may not be familiar with.
During inference:
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AudioLDMPipeline
[[autodoc]] AudioLDMPipeline
- all
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -1,84 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AudioLDM
## Overview
AudioLDM was proposed in [AudioLDM: Text-to-Audio Generation with Latent Diffusion Models](https://arxiv.org/abs/2301.12503) by Haohe Liu et al.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents. AudioLDM takes a text prompt as input and predicts the corresponding audio. It can generate text-conditional
sound effects, human speech and music.
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be found [here](https://github.com/haoheliu/AudioLDM).
## Text-to-Audio
The [`AudioLDMPipeline`] can be used to load pre-trained weights from [cvssp/audioldm-s-full-v2](https://huggingface.co/cvssp/audioldm-s-full-v2) and generate text-conditional audio outputs:
```python
from diffusers import AudioLDMPipeline
import torch
import scipy
repo_id = "cvssp/audioldm-s-full-v2"
pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"
audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]
# save the audio sample as a .wav file
scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)
```
### Tips
Prompts:
* Descriptive prompt inputs work best: you can use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g., "water stream in a forest" instead of "stream").
* It's best to use general terms like 'cat' or 'dog' instead of specific names or abstract objects that the model may not be familiar with.
Inference:
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument: higher steps give higher quality audio at the expense of slower inference.
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
### How to load and use different schedulers
The AudioLDM pipeline uses [`DDIMScheduler`] scheduler by default. But `diffusers` provides many other schedulers
that can be used with the AudioLDM pipeline such as [`PNDMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
[`EulerAncestralDiscreteScheduler`] etc. We recommend using the [`DPMSolverMultistepScheduler`] as it's currently the fastest
scheduler there is.
To use a different scheduler, you can either change it via the [`ConfigMixin.from_config`]
method, or pass the `scheduler` argument to the `from_pretrained` method of the pipeline. For example, to use the
[`DPMSolverMultistepScheduler`], you can do the following:
```python
>>> from diffusers import AudioLDMPipeline, DPMSolverMultistepScheduler
>>> import torch
>>> pipeline = AudioLDMPipeline.from_pretrained("cvssp/audioldm-s-full-v2", torch_dtype=torch.float16)
>>> pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
>>> # or
>>> dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained("cvssp/audioldm-s-full-v2", subfolder="scheduler")
>>> pipeline = AudioLDMPipeline.from_pretrained(
... "cvssp/audioldm-s-full-v2", scheduler=dpm_scheduler, torch_dtype=torch.float16
... )
```
## AudioLDMPipeline
[[autodoc]] AudioLDMPipeline
- all
- __call__

View File

@@ -0,0 +1,91 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AudioLDM 2
AudioLDM 2 was proposed in [AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining](https://arxiv.org/abs/2308.05734)
by Haohe Liu et al. AudioLDM 2 takes a text prompt as input and predicts the corresponding audio. It can generate
text-conditional sound effects, human speech and music.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview), AudioLDM 2
is a text-to-audio _latent diffusion model (LDM)_ that learns continuous audio representations from text embeddings. Two
text encoder models are used to compute the text embeddings from a prompt input: the text-branch of [CLAP](https://huggingface.co/docs/transformers/main/en/model_doc/clap)
and the encoder of [Flan-T5](https://huggingface.co/docs/transformers/main/en/model_doc/flan-t5). These text embeddings
are then projected to a shared embedding space by an [AudioLDM2ProjectionModel](https://huggingface.co/docs/diffusers/main/api/pipelines/audioldm2#diffusers.AudioLDM2ProjectionModel).
A [GPT2](https://huggingface.co/docs/transformers/main/en/model_doc/gpt2) _language model (LM)_ is used to auto-regressively
predict eight new embedding vectors, conditional on the projected CLAP and Flan-T5 embeddings. The generated embedding
vectors and Flan-T5 text embeddings are used as cross-attention conditioning in the LDM. The [UNet](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2UNet2DConditionModel)
of AudioLDM 2 is unique in the sense that it takes **two** cross-attention embeddings, as opposed to one cross-attention
conditioning, as in most other LDMs.
The abstract of the paper is the following:
*Although audio generation shares commonalities across different types of audio, such as speech, music, and sound effects, designing models for each type requires careful consideration of specific objectives and biases that can significantly differ from those of other types. To bring us closer to a unified perspective of audio generation, this paper proposes a framework that utilizes the same learning method for speech, music, and sound effect generation. Our framework introduces a general representation of audio, called language of audio (LOA). Any audio can be translated into LOA based on AudioMAE, a self-supervised pre-trained representation learning model. In the generation process, we translate any modalities into LOA by using a GPT-2 model, and we perform self-supervised audio generation learning with a latent diffusion model conditioned on LOA. The proposed framework naturally brings advantages such as in-context learning abilities and reusable self-supervised pretrained AudioMAE and latent diffusion models. Experiments on the major benchmarks of text-to-audio, text-to-music, and text-to-speech demonstrate new state-of-the-art or competitive performance to previous approaches.*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original codebase can be
found at [haoheliu/audioldm2](https://github.com/haoheliu/audioldm2).
## Tips
### Choosing a checkpoint
AudioLDM2 comes in three variants. Two of these checkpoints are applicable to the general task of text-to-audio
generation. The third checkpoint is trained exclusively on text-to-music generation.
All checkpoints share the same model size for the text encoders and VAE. They differ in the size and depth of the UNet.
See table below for details on the three checkpoints:
| Checkpoint | Task | UNet Model Size | Total Model Size | Training Data / h |
|-----------------------------------------------------------------|---------------|-----------------|------------------|-------------------|
| [audioldm2](https://huggingface.co/cvssp/audioldm2) | Text-to-audio | 350M | 1.1B | 1150k |
| [audioldm2-large](https://huggingface.co/cvssp/audioldm2-large) | Text-to-audio | 750M | 1.5B | 1150k |
| [audioldm2-music](https://huggingface.co/cvssp/audioldm2-music) | Text-to-music | 350M | 1.1B | 665k |
### Constructing a prompt
* Descriptive prompt inputs work best: use adjectives to describe the sound (e.g. "high quality" or "clear") and make the prompt context specific (e.g. "water stream in a forest" instead of "stream").
* It's best to use general terms like "cat" or "dog" instead of specific names or abstract objects the model may not be familiar with.
* Using a **negative prompt** can significantly improve the quality of the generated waveform, by guiding the generation away from terms that correspond to poor quality audio. Try using a negative prompt of "Low quality."
### Controlling inference
* The _quality_ of the predicted audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* The _length_ of the predicted audio sample can be controlled by varying the `audio_length_in_s` argument.
### Evaluating generated waveforms:
* The quality of the generated waveforms can vary significantly based on the seed. Try generating with different seeds until you find a satisfactory generation
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
The following example demonstrates how to construct good music generation using the aforementioned tips: [example](https://huggingface.co/docs/diffusers/main/en/api/pipelines/audioldm2#diffusers.AudioLDM2Pipeline.__call__.example).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AudioLDM2Pipeline
[[autodoc]] AudioLDM2Pipeline
- all
- __call__
## AudioLDM2ProjectionModel
[[autodoc]] AudioLDM2ProjectionModel
- forward
## AudioLDM2UNet2DConditionModel
[[autodoc]] AudioLDM2UNet2DConditionModel
- forward
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -0,0 +1,74 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoPipeline
`AutoPipeline` is designed to:
1. make it easy for you to load a checkpoint for a task without knowing the specific pipeline class to use
2. use multiple pipelines in your workflow
Based on the task, the `AutoPipeline` class automatically retrieves the relevant pipeline given the name or path to the pretrained weights with the `from_pretrained()` method.
To seamlessly switch between tasks with the same checkpoint without reallocating additional memory, use the `from_pipe()` method to transfer the components from the original pipeline to the new one.
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipeline(prompt, num_inference_steps=25).images[0]
```
<Tip>
Check out the [AutoPipeline](/tutorials/autopipeline) tutorial to learn how to use this API!
</Tip>
`AutoPipeline` supports text-to-image, image-to-image, and inpainting for the following diffusion models:
- [Stable Diffusion](./stable_diffusion)
- [ControlNet](./controlnet)
- [Stable Diffusion XL (SDXL)](./stable_diffusion/stable_diffusion_xl)
- [DeepFloyd IF](./if)
- [Kandinsky](./kandinsky)
- [Kandinsky 2.2](./kandinsky#kandinsky-22)
## AutoPipelineForText2Image
[[autodoc]] AutoPipelineForText2Image
- all
- from_pretrained
- from_pipe
## AutoPipelineForImage2Image
[[autodoc]] AutoPipelineForImage2Image
- all
- from_pretrained
- from_pipe
## AutoPipelineForInpainting
[[autodoc]] AutoPipelineForInpainting
- all
- from_pretrained
- from_pipe

View File

@@ -0,0 +1,29 @@
# Blip Diffusion
Blip Diffusion was proposed in [BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing](https://arxiv.org/abs/2305.14720). It enables zero-shot subject-driven generation and control-guided zero-shot generation.
The abstract from the paper is:
*Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications.*
The original codebase can be found at [salesforce/LAVIS](https://github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion). You can find the official BLIP Diffusion checkpoints under the [hf.co/SalesForce](https://hf.co/SalesForce) organization.
`BlipDiffusionPipeline` and `BlipDiffusionControlNetPipeline` were contributed by [`ayushtues`](https://github.com/ayushtues/).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## BlipDiffusionPipeline
[[autodoc]] BlipDiffusionPipeline
- all
- __call__
## BlipDiffusionControlNetPipeline
[[autodoc]] BlipDiffusionControlNetPipeline
- all
- __call__

View File

@@ -0,0 +1,43 @@
# Consistency Models
Consistency Models were proposed in [Consistency Models](https://huggingface.co/papers/2303.01469) by Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever.
The abstract from the paper is:
*Diffusion models have significantly advanced the fields of image, audio, and video generation, but they depend on an iterative sampling process that causes slow generation. To overcome this limitation, we propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data. They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality. They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained in isolation, consistency models become a new family of generative models that can outperform existing one-step, non-adversarial generative models on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256. *
The original codebase can be found at [openai/consistency_models](https://github.com/openai/consistency_models), and additional checkpoints are available at [openai](https://huggingface.co/openai).
The pipeline was contributed by [dg845](https://github.com/dg845) and [ayushtues](https://huggingface.co/ayushtues). ❤️
## Tips
For an additional speed-up, use `torch.compile` to generate multiple images in <1 second:
```diff
import torch
from diffusers import ConsistencyModelPipeline
device = "cuda"
# Load the cd_bedroom256_lpips checkpoint.
model_id_or_path = "openai/diffusers-cd_bedroom256_lpips"
pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
pipe.to(device)
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
# Multistep sampling
# Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
# https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L83
for _ in range(10):
image = pipe(timesteps=[17, 0]).images[0]
image.show()
```
## ConsistencyModelPipeline
[[autodoc]] ConsistencyModelPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -0,0 +1,80 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
This model was contributed by [takuma104](https://huggingface.co/takuma104). ❤️
The original codebase can be found at [lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet), and you can find official ControlNet checkpoints on [lllyasviel's](https://huggingface.co/lllyasviel) Hub profile.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionControlNetPipeline
[[autodoc]] StableDiffusionControlNetPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionControlNetImg2ImgPipeline
[[autodoc]] StableDiffusionControlNetImg2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionControlNetInpaintPipeline
[[autodoc]] StableDiffusionControlNetInpaintPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## FlaxStableDiffusionControlNetPipeline
[[autodoc]] FlaxStableDiffusionControlNetPipeline
- all
- __call__
## FlaxStableDiffusionControlNetPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -1,363 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Text-to-Image Generation with ControlNet Conditioning
## Overview
[Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
Using the pretrained models we can provide control images (for example, a depth map) to control Stable Diffusion text-to-image generation so that it follows the structure of the depth image and fills in the details.
The abstract of the paper is the following:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
This model was contributed by the community contributor [takuma104](https://huggingface.co/takuma104) ❤️ .
Resources:
* [Paper](https://arxiv.org/abs/2302.05543)
* [Original Code](https://github.com/lllyasviel/ControlNet)
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionControlNetPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/controlnet/pipeline_controlnet.py) | *Text-to-Image Generation with ControlNet Conditioning* | [Colab Example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [StableDiffusionControlNetImg2ImgPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py) | *Image-to-Image Generation with ControlNet Conditioning* |
| [StableDiffusionControlNetInpaintPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_controlnet_inpaint.py) | *Inpainting Generation with ControlNet Conditioning* |
## Usage example
In the following we give a simple example of how to use a *ControlNet* checkpoint with Diffusers for inference.
The inference pipeline is the same for all pipelines:
* 1. Take an image and run it through a pre-conditioning processor.
* 2. Run the pre-processed image through the [`StableDiffusionControlNetPipeline`].
Let's have a look at a simple example using the [Canny Edge ControlNet](https://huggingface.co/lllyasviel/sd-controlnet-canny).
```python
from diffusers import StableDiffusionControlNetPipeline
from diffusers.utils import load_image
# Let's load the popular vermeer image
image = load_image(
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
)
```
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)
Next, we process the image to get the canny image. This is step *1.* - running the pre-conditioning processor. The pre-conditioning processor is different for every ControlNet. Please see the model cards of the [official checkpoints](#controlnet-with-stable-diffusion-1.5) for more information about other models.
First, we need to install opencv:
```
pip install opencv-contrib-python
```
Next, let's also install all required Hugging Face libraries:
```
pip install diffusers transformers git+https://github.com/huggingface/accelerate.git
```
Then we can retrieve the canny edges of the image.
```python
import cv2
from PIL import Image
import numpy as np
image = np.array(image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
```
Let's take a look at the processed image.
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/vermeer_canny_edged.png)
Now, we load the official [Stable Diffusion 1.5 Model](runwayml/stable-diffusion-v1-5) as well as the ControlNet for canny edges.
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
```
To speed-up things and reduce memory, let's enable model offloading and use the fast [`UniPCMultistepScheduler`].
```py
from diffusers import UniPCMultistepScheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# this command loads the individual model components on GPU on-demand.
pipe.enable_model_cpu_offload()
```
Finally, we can run the pipeline:
```py
generator = torch.manual_seed(0)
out_image = pipe(
"disco dancer with colorful lights", num_inference_steps=20, generator=generator, image=canny_image
).images[0]
```
This should take only around 3-4 seconds on GPU (depending on hardware). The output image then looks as follows:
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/vermeer_disco_dancing.png)
**Note**: To see how to run all other ControlNet checkpoints, please have a look at [ControlNet with Stable Diffusion 1.5](#controlnet-with-stable-diffusion-1.5).
<!-- TODO: add space -->
## Combining multiple conditionings
Multiple ControlNet conditionings can be combined for a single image generation. Pass a list of ControlNets to the pipeline's constructor and a corresponding list of conditionings to `__call__`.
When combining conditionings, it is helpful to mask conditionings such that they do not overlap. In the example, we mask the middle of the canny map where the pose conditioning is located.
It can also be helpful to vary the `controlnet_conditioning_scales` to emphasize one conditioning over the other.
### Canny conditioning
The original image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png"/>
Prepare the conditioning:
```python
from diffusers.utils import load_image
from PIL import Image
import cv2
import numpy as np
from diffusers.utils import load_image
canny_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png"
)
canny_image = np.array(canny_image)
low_threshold = 100
high_threshold = 200
canny_image = cv2.Canny(canny_image, low_threshold, high_threshold)
# zero out middle columns of image where pose will be overlayed
zero_start = canny_image.shape[1] // 4
zero_end = zero_start + canny_image.shape[1] // 2
canny_image[:, zero_start:zero_end] = 0
canny_image = canny_image[:, :, None]
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
canny_image = Image.fromarray(canny_image)
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/controlnet/landscape_canny_masked.png"/>
### Openpose conditioning
The original image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png" width=600/>
Prepare the conditioning:
```python
from controlnet_aux import OpenposeDetector
from diffusers.utils import load_image
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
openpose_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/person.png"
)
openpose_image = openpose(openpose_image)
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/controlnet/person_pose.png" width=600/>
### Running ControlNet with multiple conditionings
```python
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
controlnet = [
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16),
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16),
]
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
prompt = "a giant standing in a fantasy landscape, best quality"
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
generator = torch.Generator(device="cpu").manual_seed(1)
images = [openpose_image, canny_image]
image = pipe(
prompt,
images,
num_inference_steps=20,
generator=generator,
negative_prompt=negative_prompt,
controlnet_conditioning_scale=[1.0, 0.8],
).images[0]
image.save("./multi_controlnet_output.png")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/controlnet/multi_controlnet_output.png" width=600/>
### Guess Mode
Guess Mode is [a ControlNet feature that was implemented](https://github.com/lllyasviel/ControlNet#guess-mode--non-prompt-mode) after the publication of [the paper](https://arxiv.org/abs/2302.05543). The description states:
>In this mode, the ControlNet encoder will try best to recognize the content of the input control map, like depth map, edge map, scribbles, etc, even if you remove all prompts.
#### The core implementation:
It adjusts the scale of the output residuals from ControlNet by a fixed ratio depending on the block depth. The shallowest DownBlock corresponds to `0.1`. As the blocks get deeper, the scale increases exponentially, and the scale for the output of the MidBlock becomes `1.0`.
Since the core implementation is just this, **it does not have any impact on prompt conditioning**. While it is common to use it without specifying any prompts, it is also possible to provide prompts if desired.
#### Usage:
Just specify `guess_mode=True` in the pipe() function. A `guidance_scale` between 3.0 and 5.0 is [recommended](https://github.com/lllyasviel/ControlNet#guess-mode--non-prompt-mode).
```py
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet).to(
"cuda"
)
image = pipe("", image=canny_image, guess_mode=True, guidance_scale=3.0).images[0]
image.save("guess_mode_generated.png")
```
#### Output image comparison:
Canny Control Example
|no guess_mode with prompt|guess_mode without prompt|
|---|---|
|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0.png"><img width="128" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0_gm.png"><img width="128" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare_guess_mode/output_images/diffusers/output_bird_canny_0_gm.png"/></a>|
## Available checkpoints
ControlNet requires a *control image* in addition to the text-to-image *prompt*.
Each pretrained model is trained using a different conditioning method that requires different images for conditioning the generated outputs. For example, Canny edge conditioning requires the control image to be the output of a Canny filter, while depth conditioning requires the control image to be a depth map. See the overview and image examples below to know more.
All checkpoints can be found under the authors' namespace [lllyasviel](https://huggingface.co/lllyasviel).
**13.04.2024 Update**: The author has released improved controlnet checkpoints v1.1 - see [here](#controlnet-v1.1).
### ControlNet v1.0
| Model Name | Control Image Overview| Control Image Example | Generated Image Example |
|---|---|---|---|
|[lllyasviel/sd-controlnet-canny](https://huggingface.co/lllyasviel/sd-controlnet-canny)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_canny.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_canny.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_canny_1.png"/></a>|
|[lllyasviel/sd-controlnet-depth](https://huggingface.co/lllyasviel/sd-controlnet-depth)<br/> *Trained with Midas depth estimation* |A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_depth.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_depth.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_depth_2.png"/></a>|
|[lllyasviel/sd-controlnet-hed](https://huggingface.co/lllyasviel/sd-controlnet-hed)<br/> *Trained with HED edge detection (soft edge)* |A monochrome image with white soft edges on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_bird_hed.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_bird_hed.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_bird_hed_1.png"/></a> |
|[lllyasviel/sd-controlnet-mlsd](https://huggingface.co/lllyasviel/sd-controlnet-mlsd)<br/> *Trained with M-LSD line detection* |A monochrome image composed only of white straight lines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_mlsd.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_mlsd.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_mlsd_0.png"/></a>|
|[lllyasviel/sd-controlnet-normal](https://huggingface.co/lllyasviel/sd-controlnet-normal)<br/> *Trained with normal map* |A [normal mapped](https://en.wikipedia.org/wiki/Normal_mapping) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_normal.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_normal.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_normal_1.png"/></a>|
|[lllyasviel/sd-controlnet-openpose](https://huggingface.co/lllyasviel/sd-controlnet_openpose)<br/> *Trained with OpenPose bone image* |A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_human_openpose.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_human_openpose.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_human_openpose_0.png"/></a>|
|[lllyasviel/sd-controlnet-scribble](https://huggingface.co/lllyasviel/sd-controlnet_scribble)<br/> *Trained with human scribbles* |A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_vermeer_scribble.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_vermeer_scribble.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_vermeer_scribble_0.png"/></a> |
|[lllyasviel/sd-controlnet-seg](https://huggingface.co/lllyasviel/sd-controlnet_seg)<br/>*Trained with semantic segmentation* |An [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/)'s segmentation protocol image.|<a href="https://huggingface.co/takuma104/controlnet_dev/blob/main/gen_compare/control_images/converted/control_room_seg.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/control_images/converted/control_room_seg.png"/></a>|<a href="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"><img width="64" src="https://huggingface.co/takuma104/controlnet_dev/resolve/main/gen_compare/output_images/diffusers/output_room_seg_1.png"/></a> |
### ControlNet v1.1
| Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example |
|---|---|---|---|---|
|[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>|
|[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>|
|[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>|
## StableDiffusionControlNetPipeline
[[autodoc]] StableDiffusionControlNetPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionControlNetImg2ImgPipeline
[[autodoc]] StableDiffusionControlNetImg2ImgPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## StableDiffusionControlNetInpaintPipeline
[[autodoc]] StableDiffusionControlNetInpaintPipeline
- all
- __call__
- enable_attention_slicing
- disable_attention_slicing
- enable_vae_slicing
- disable_vae_slicing
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention
- load_textual_inversion
## FlaxStableDiffusionControlNetPipeline
[[autodoc]] FlaxStableDiffusionControlNetPipeline
- all
- __call__

View File

@@ -0,0 +1,55 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet with Stable Diffusion XL
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
*We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.*
You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoints from the 🤗 [Diffusers](https://huggingface.co/diffusers) Hub organization, and browse [community-trained](https://huggingface.co/models?other=stable-diffusion-xl&other=controlnet) checkpoints on the Hub.
<Tip warning={true}>
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and leave us feedback on how we can improve!
</Tip>
If you don't see a checkpoint you're interested in, you can train your own SDXL ControlNet with our [training script](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionXLControlNetPipeline
[[autodoc]] StableDiffusionXLControlNetPipeline
- all
- __call__
## StableDiffusionXLControlNetImg2ImgPipeline
[[autodoc]] StableDiffusionXLControlNetImg2ImgPipeline
- all
- __call__
## StableDiffusionXLControlNetInpaintPipeline
[[autodoc]] StableDiffusionXLControlNetInpaintPipeline
- all
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,33 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Cycle Diffusion
Cycle Diffusion is a text guided image-to-image generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://huggingface.co/papers/2210.05559) by Chen Henry Wu, Fernando De la Torre.
The abstract from the paper is:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## CycleDiffusionPipeline
[[autodoc]] CycleDiffusionPipeline
- all
- __call__
## StableDiffusionPiplineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -1,100 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Cycle Diffusion
## Overview
Cycle Diffusion is a Text-Guided Image-to-Image Generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://arxiv.org/abs/2210.05559) by Chen Henry Wu, Fernando De la Torre.
The abstract of the paper is the following:
*Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
*Tips*:
- The Cycle Diffusion pipeline is fully compatible with any [Stable Diffusion](./stable_diffusion) checkpoints
- Currently Cycle Diffusion only works with the [`DDIMScheduler`].
*Example*:
In the following we should how to best use the [`CycleDiffusionPipeline`]
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import CycleDiffusionPipeline, DDIMScheduler
# load the pipeline
# make sure you're logged in with `huggingface-cli login`
model_id_or_path = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_pretrained(model_id_or_path, subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler).to("cuda")
# let's download an initial image
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/An%20astronaut%20riding%20a%20horse.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
init_image.save("horse.png")
# let's specify a prompt
source_prompt = "An astronaut riding a horse"
prompt = "An astronaut riding an elephant"
# call the pipeline
image = pipe(
prompt=prompt,
source_prompt=source_prompt,
image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.8,
guidance_scale=2,
source_guidance_scale=1,
).images[0]
image.save("horse_to_elephant.png")
# let's try another example
# See more samples at the original repo: https://github.com/ChenWu98/cycle-diffusion
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
init_image.save("black.png")
source_prompt = "A black colored car"
prompt = "A blue colored car"
# call the pipeline
torch.manual_seed(0)
image = pipe(
prompt=prompt,
source_prompt=source_prompt,
image=init_image,
num_inference_steps=100,
eta=0.1,
strength=0.85,
guidance_scale=3,
source_guidance_scale=1,
).images[0]
image.save("black_to_blue.png")
```
## CycleDiffusionPipeline
[[autodoc]] CycleDiffusionPipeline
- all
- __call__

View File

@@ -12,23 +12,22 @@ specific language governing permissions and limitations under the License.
# Dance Diffusion
## Overview
[Dance Diffusion](https://github.com/Harmonai-org/sample-generator) is by Zach Evans.
[Dance Diffusion](https://github.com/Harmonai-org/sample-generator) by Zach Evans.
Dance Diffusion is the first in a suite of generative audio tools for producers and musicians released by [Harmonai](https://github.com/Harmonai-org).
Dance Diffusion is the first in a suite of generative audio tools for producers and musicians to be released by Harmonai.
For more info or to get involved in the development of these tools, please visit https://harmonai.org and fill out the form on the front page.
The original codebase of this implementation can be found at [Harmonai-org](https://github.com/Harmonai-org/sample-generator).
The original codebase of this implementation can be found [here](https://github.com/Harmonai-org/sample-generator).
<Tip>
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_dance_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py) | *Unconditional Audio Generation* | - |
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## DanceDiffusionPipeline
[[autodoc]] DanceDiffusionPipeline
- all
- __call__
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -0,0 +1,29 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDIM
[Denoising Diffusion Implicit Models](https://huggingface.co/papers/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The abstract from the paper is:
*Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.*
The original codebase can be found at [ermongroup/ddim](https://github.com/ermongroup/ddim).
## DDIMPipeline
[[autodoc]] DDIMPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -1,36 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDIM
## Overview
[Denoising Diffusion Implicit Models](https://arxiv.org/abs/2010.02502) (DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.
The abstract of the paper is the following:
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.
The original codebase of this paper can be found here: [ermongroup/ddim](https://github.com/ermongroup/ddim).
For questions, feel free to contact the author on [tsong.me](https://tsong.me/).
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_ddim.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ddim/pipeline_ddim.py) | *Unconditional Image Generation* | - |
## DDIMPipeline
[[autodoc]] DDIMPipeline
- all
- __call__

View File

@@ -0,0 +1,35 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDPM
[Denoising Diffusion Probabilistic Models](https://huggingface.co/papers/2006.11239) (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the 🤗 Diffusers library, DDPM refers to the *discrete denoising scheduler* from the paper as well as the pipeline.
The abstract from the paper is:
*We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.*
The original codebase can be found at [hohonathanho/diffusion](https://github.com/hojonathanho/diffusion).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
# DDPMPipeline
[[autodoc]] DDPMPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -1,37 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DDPM
## Overview
[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
(DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes the diffusion based model of the same name, but in the context of the 🤗 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
The abstract of the paper is the following:
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.
The original codebase of this paper can be found [here](https://github.com/hojonathanho/diffusion).
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_ddpm.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/ddpm/pipeline_ddpm.py) | *Unconditional Image Generation* | - |
# DDPMPipeline
[[autodoc]] DDPMPipeline
- all
- __call__

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# IF
# DeepFloyd IF
## Overview

View File

@@ -0,0 +1,55 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DiffEdit
[DiffEdit: Diffusion-based semantic image editing with mask guidance](https://huggingface.co/papers/2210.11427) is by Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord.
The abstract from the paper is:
*Image generation has recently seen tremendous advances, with diffusion models allowing to synthesize convincing images for a large variety of text prompts. In this article, we propose DiffEdit, a method to take advantage of text-conditioned diffusion models for the task of semantic image editing, where the goal is to edit an image based on a text query. Semantic image editing is an extension of image generation, with the additional constraint that the generated image should be as similar as possible to a given input image. Current editing methods based on diffusion models usually require to provide a mask, making the task much easier by treating it as a conditional inpainting task. In contrast, our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited, by contrasting predictions of a diffusion model conditioned on different text prompts. Moreover, we rely on latent inference to preserve content in those regions of interest and show excellent synergies with mask-based diffusion. DiffEdit achieves state-of-the-art editing performance on ImageNet. In addition, we evaluate semantic image editing in more challenging settings, using images from the COCO dataset as well as text-based generated images.*
The original codebase can be found at [Xiang-cd/DiffEdit-stable-diffusion](https://github.com/Xiang-cd/DiffEdit-stable-diffusion), and you can try it out in this [demo](https://blog.problemsolversguild.com/technical/research/2022/11/02/DiffEdit-Implementation.html).
This pipeline was contributed by [clarencechen](https://github.com/clarencechen). ❤️
## Tips
* The pipeline can generate masks that can be fed into other inpainting pipelines.
* In order to generate an image using this pipeline, both an image mask (source and target prompts can be manually specified or generated, and passed to [`~StableDiffusionDiffEditPipeline.generate_mask`])
and a set of partially inverted latents (generated using [`~StableDiffusionDiffEditPipeline.invert`]) _must_ be provided as arguments when calling the pipeline to generate the final edited image.
* The function [`~StableDiffusionDiffEditPipeline.generate_mask`] exposes two prompt arguments, `source_prompt` and `target_prompt`
that let you control the locations of the semantic edits in the final image to be generated. Let's say,
you wanted to translate from "cat" to "dog". In this case, the edit direction will be "cat -> dog". To reflect
this in the generated mask, you simply have to set the embeddings related to the phrases including "cat" to
`source_prompt` and "dog" to `target_prompt`.
* When generating partially inverted latents using `invert`, assign a caption or text embedding describing the
overall image to the `prompt` argument to help guide the inverse latent sampling process. In most cases, the
source concept is sufficiently descriptive to yield good results, but feel free to explore alternatives.
* When calling the pipeline to generate the final edited image, assign the source concept to `negative_prompt`
and the target concept to `prompt`. Taking the above example, you simply have to set the embeddings related to
the phrases including "cat" to `negative_prompt` and "dog" to `prompt`.
* If you wanted to reverse the direction in the example above, i.e., "dog -> cat", then it's recommended to:
* Swap the `source_prompt` and `target_prompt` in the arguments to `generate_mask`.
* Change the input prompt in [`~StableDiffusionDiffEditPipeline.invert`] to include "dog".
* Swap the `prompt` and `negative_prompt` in the arguments to call the pipeline to generate the final edited image.
* The source and target prompts, or their corresponding embeddings, can also be automatically generated. Please refer to the [DiffEdit](/using-diffusers/diffedit) guide for more details.
## StableDiffusionDiffEditPipeline
[[autodoc]] StableDiffusionDiffEditPipeline
- all
- generate_mask
- invert
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -10,50 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Scalable Diffusion Models with Transformers (DiT)
# DiT
## Overview
[Scalable Diffusion Models with Transformers](https://huggingface.co/papers/2212.09748) (DiT) is by William Peebles and Saining Xie.
[Scalable Diffusion Models with Transformers](https://arxiv.org/abs/2212.09748) (DiT) by William Peebles and Saining Xie.
The abstract of the paper is the following:
The abstract from the paper is:
*We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.*
The original codebase of this paper can be found here: [facebookresearch/dit](https://github.com/facebookresearch/dit).
The original codebase can be found at [facebookresearch/dit](https://github.com/facebookresearch/dit).
## Available Pipelines:
<Tip>
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_dit.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/dit/pipeline_dit.py) | *Conditional Image Generation* | - |
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
## Usage example
```python
from diffusers import DiTPipeline, DPMSolverMultistepScheduler
import torch
pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
# pick words from Imagenet class labels
pipe.labels # to print all available words
# pick words that exist in ImageNet
words = ["white shark", "umbrella"]
class_ids = pipe.get_label_ids(words)
generator = torch.manual_seed(33)
output = pipe(class_labels=class_ids, num_inference_steps=25, generator=generator)
image = output.images[0] # label 'white shark'
```
</Tip>
## DiTPipeline
[[autodoc]] DiTPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -0,0 +1,67 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 2.1
Kandinsky 2.1 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov).
The description from it's GitHub page is:
*Kandinsky 2.1 inherits best practicies from Dall-E 2 and Latent diffusion, while introducing some new ideas. As text and image encoder it uses CLIP model and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.*
The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2).
<Tip>
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
</Tip>
## KandinskyPriorPipeline
[[autodoc]] KandinskyPriorPipeline
- all
- __call__
- interpolate
## KandinskyPipeline
[[autodoc]] KandinskyPipeline
- all
- __call__
## KandinskyCombinedPipeline
[[autodoc]] KandinskyCombinedPipeline
- all
- __call__
## KandinskyImg2ImgPipeline
[[autodoc]] KandinskyImg2ImgPipeline
- all
- __call__
## KandinskyImg2ImgCombinedPipeline
[[autodoc]] KandinskyImg2ImgCombinedPipeline
- all
- __call__
## KandinskyInpaintPipeline
[[autodoc]] KandinskyInpaintPipeline
- all
- __call__
## KandinskyInpaintCombinedPipeline
[[autodoc]] KandinskyInpaintCombinedPipeline
- all
- __call__

View File

@@ -0,0 +1,86 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Kandinsky 2.2
Kandinsky 2.1 is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov).
The description from it's GitHub page is:
*Kandinsky 2.2 brings substantial improvements upon its predecessor, Kandinsky 2.1, by introducing a new, more powerful image encoder - CLIP-ViT-G and the ControlNet support. The switch to CLIP-ViT-G as the image encoder significantly increases the model's capability to generate more aesthetic pictures and better understand text, thus enhancing the model's overall performance. The addition of the ControlNet mechanism allows the model to effectively control the process of generating images. This leads to more accurate and visually appealing outputs and opens new possibilities for text-guided image manipulation.*
The original codebase can be found at [ai-forever/Kandinsky-2](https://github.com/ai-forever/Kandinsky-2).
<Tip>
Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community) organization on the Hub for the official model checkpoints for tasks like text-to-image, image-to-image, and inpainting.
</Tip>
## KandinskyV22PriorPipeline
[[autodoc]] KandinskyV22PriorPipeline
- all
- __call__
- interpolate
## KandinskyV22Pipeline
[[autodoc]] KandinskyV22Pipeline
- all
- __call__
## KandinskyV22CombinedPipeline
[[autodoc]] KandinskyV22CombinedPipeline
- all
- __call__
## KandinskyV22ControlnetPipeline
[[autodoc]] KandinskyV22ControlnetPipeline
- all
- __call__
## KandinskyV22PriorEmb2EmbPipeline
[[autodoc]] KandinskyV22PriorEmb2EmbPipeline
- all
- __call__
- interpolate
## KandinskyV22Img2ImgPipeline
[[autodoc]] KandinskyV22Img2ImgPipeline
- all
- __call__
## KandinskyV22Img2ImgCombinedPipeline
[[autodoc]] KandinskyV22Img2ImgCombinedPipeline
- all
- __call__
## KandinskyV22ControlnetImg2ImgPipeline
[[autodoc]] KandinskyV22ControlnetImg2ImgPipeline
- all
- __call__
## KandinskyV22InpaintPipeline
[[autodoc]] KandinskyV22InpaintPipeline
- all
- __call__
## KandinskyV22InpaintCombinedPipeline
[[autodoc]] KandinskyV22InpaintCombinedPipeline
- all
- __call__

View File

@@ -0,0 +1,40 @@
# Latent Consistency Models
Latent Consistency Models (LCMs) were proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao.
The abstract of the [paper](https://arxiv.org/pdf/2310.04378.pdf) is as follows:
*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference.*
A demo for the [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) checkpoint can be found [here](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).
The pipelines were contributed by [luosiallen](https://luosiallen.github.io/), [nagolinc](https://github.com/nagolinc), and [dg845](https://github.com/dg845).
## LatentConsistencyModelPipeline
[[autodoc]] LatentConsistencyModelPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## LatentConsistencyModelImg2ImgPipeline
[[autodoc]] LatentConsistencyModelImg2ImgPipeline
- all
- __call__
- enable_freeu
- disable_freeu
- enable_vae_slicing
- disable_vae_slicing
- enable_vae_tiling
- disable_vae_tiling
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -12,31 +12,19 @@ specific language governing permissions and limitations under the License.
# Latent Diffusion
## Overview
Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
The abstract of the paper is the following:
The abstract from the paper is:
*By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
The original codebase can be found [here](https://github.com/CompVis/latent-diffusion).
The original codebase can be found at [Compvis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
## Tips:
<Tip>
-
-
-
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_latent_diffusion.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) | *Text-to-Image Generation* | - |
| [pipeline_latent_diffusion_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py) | *Super Resolution* | - |
## Examples:
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## LDMTextToImagePipeline
[[autodoc]] LDMTextToImagePipeline
@@ -47,3 +35,6 @@ The original codebase can be found [here](https://github.com/CompVis/latent-diff
[[autodoc]] LDMSuperResolutionPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -12,31 +12,24 @@ specific language governing permissions and limitations under the License.
# Unconditional Latent Diffusion
## Overview
Unconditional Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
Unconditional Latent Diffusion was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.
The abstract of the paper is the following:
The abstract from the paper is:
*By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs.*
The original codebase can be found [here](https://github.com/CompVis/latent-diffusion).
The original codebase can be found at [CompVis/latent-diffusion](https://github.com/CompVis/latent-diffusion).
## Tips:
<Tip>
-
-
-
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_latent_diffusion_uncond.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py) | *Unconditional Image Generation* | - |
## Examples:
</Tip>
## LDMPipeline
[[autodoc]] LDMPipeline
- all
- __call__
## ImagePipelineOutput
[[autodoc]] pipelines.ImagePipelineOutput

View File

@@ -10,52 +10,26 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Editing Implicit Assumptions in Text-to-Image Diffusion Models
# Text-to-image model editing
## Overview
[Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://huggingface.co/papers/2303.08084) is by Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov. This pipeline enables editing diffusion model weights, such that its assumptions of a given concept are changed. The resulting change is expected to take effect in all prompt generations related to the edited concept.
[Editing Implicit Assumptions in Text-to-Image Diffusion Models](https://arxiv.org/abs/2303.08084) by Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov.
The abstract of the paper is the following:
The abstract from the paper is:
*Text-to-image diffusion models often make implicit assumptions about the world when generating images. While some assumptions are useful (e.g., the sky is blue), they can also be outdated, incorrect, or reflective of social biases present in the training data. Thus, there is a need to control these assumptions without requiring explicit user input or costly re-training. In this work, we aim to edit a given implicit assumption in a pre-trained diffusion model. Our Text-to-Image Model Editing method, TIME for short, receives a pair of inputs: a "source" under-specified prompt for which the model makes an implicit assumption (e.g., "a pack of roses"), and a "destination" prompt that describes the same setting, but with a specified desired attribute (e.g., "a pack of blue roses"). TIME then updates the model's cross-attention layers, as these layers assign visual meaning to textual tokens. We edit the projection matrices in these layers such that the source prompt is projected close to the destination prompt. Our method is highly efficient, as it modifies a mere 2.2% of the model's parameters in under one second. To evaluate model editing approaches, we introduce TIMED (TIME Dataset), containing 147 source and destination prompt pairs from various domains. Our experiments (using Stable Diffusion) show that TIME is successful in model editing, generalizes well for related prompts unseen during editing, and imposes minimal effect on unrelated generations.*
Resources:
You can find additional information about model editing on the [project page](https://time-diffusion.github.io/), [original codebase](https://github.com/bahjat-kawar/time-diffusion), and try it out in a [demo](https://huggingface.co/spaces/bahjat-kawar/time-diffusion).
* [Project Page](https://time-diffusion.github.io/).
* [Paper](https://arxiv.org/abs/2303.08084).
* [Original Code](https://github.com/bahjat-kawar/time-diffusion).
* [Demo](https://huggingface.co/spaces/bahjat-kawar/time-diffusion).
<Tip>
## Available Pipelines:
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionModelEditingPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py) | *Text-to-Image Model Editing* | [🤗 Space](https://huggingface.co/spaces/bahjat-kawar/time-diffusion)) |
This pipeline enables editing the diffusion model weights, such that its assumptions on a given concept are changed. The resulting change is expected to take effect in all prompt generations pertaining to the edited concept.
## Usage example
```python
import torch
from diffusers import StableDiffusionModelEditingPipeline
model_ckpt = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionModelEditingPipeline.from_pretrained(model_ckpt)
pipe = pipe.to("cuda")
source_prompt = "A pack of roses"
destination_prompt = "A pack of blue roses"
pipe.edit_model(source_prompt, destination_prompt)
prompt = "A field of roses"
image = pipe(prompt).images[0]
image.save("field_of_roses.png")
```
</Tip>
## StableDiffusionModelEditingPipeline
[[autodoc]] StableDiffusionModelEditingPipeline
- __call__
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,55 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MusicLDM
MusicLDM was proposed in [MusicLDM: Enhancing Novelty in Text-to-Music Generation Using Beat-Synchronous Mixup Strategies](https://huggingface.co/papers/2308.01546) by Ke Chen, Yusong Wu, Haohe Liu, Marianna Nezhurina, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
MusicLDM takes a text prompt as input and predicts the corresponding music sample.
Inspired by [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview) and [AudioLDM](https://huggingface.co/docs/diffusers/api/pipelines/audioldm/overview),
MusicLDM is a text-to-music _latent diffusion model (LDM)_ that learns continuous audio representations from [CLAP](https://huggingface.co/docs/transformers/main/model_doc/clap)
latents.
MusicLDM is trained on a corpus of 466 hours of music data. Beat-synchronous data augmentation strategies are applied to
the music samples, both in the time domain and in the latent space. Using beat-synchronous data augmentation strategies
encourages the model to interpolate between the training samples, but stay within the domain of the training data. The
result is generated music that is more diverse while staying faithful to the corresponding style.
The abstract of the paper is the following:
*In this paper, we present MusicLDM, a state-of-the-art text-to-music model that adapts Stable Diffusion and AudioLDM architectures to the music domain. We achieve this by retraining the contrastive language-audio pretraining model (CLAP) and the Hifi-GAN vocoder, as components of MusicLDM, on a collection of music data samples. Then, we leverage a beat tracking model and propose two different mixup strategies for data augmentation: beat-synchronous audio mixup and beat-synchronous latent mixup, to encourage the model to generate music more diverse while still staying faithful to the corresponding style.*
This pipeline was contributed by [sanchit-gandhi](https://huggingface.co/sanchit-gandhi).
## Tips
When constructing a prompt, keep in mind:
* Descriptive prompt inputs work best; use adjectives to describe the sound (for example, "high quality" or "clear") and make the prompt context specific where possible (e.g. "melodic techno with a fast beat and synths" works better than "techno").
* Using a *negative prompt* can significantly improve the quality of the generated audio. Try using a negative prompt of "low quality, average quality".
During inference:
* The _quality_ of the generated audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1 to enable. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
* The _length_ of the generated audio sample can be controlled by varying the `audio_length_in_s` argument.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## MusicLDMPipeline
[[autodoc]] MusicLDMPipeline
- all
- __call__

View File

@@ -0,0 +1,98 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
Pipelines provide a simple way to run state-of-the-art diffusion models in inference by bundling all of the necessary components (multiple independently-trained models, schedulers, and processors) into a single end-to-end class. Pipelines are flexible and they can be adapted to use different schedulers or even model components.
All pipelines are built from the base [`DiffusionPipeline`] class which provides basic functionality for loading, downloading, and saving all the components. Specific pipeline types (for example [`StableDiffusionPipeline`]) loaded with [`~DiffusionPipeline.from_pretrained`] are automatically detected and the pipeline components are loaded and passed to the `__init__` function of the pipeline.
<Tip warning={true}>
You shouldn't use the [`DiffusionPipeline`] class for training. Individual components (for example, [`UNet2DModel`] and [`UNet2DConditionModel`]) of diffusion pipelines are usually trained individually, so we suggest directly working with them instead.
<br>
Pipelines do not offer any training functionality. You'll notice PyTorch's autograd is disabled by decorating the [`~DiffusionPipeline.__call__`] method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should not be used for training. If you're interested in training, please take a look at the [Training](../../training/overview) guides instead!
</Tip>
The table below lists all the pipelines currently available in 🤗 Diffusers and the tasks they support. Click on a pipeline to view its abstract and published paper.
| Pipeline | Tasks |
|---|---|
| [AltDiffusion](alt_diffusion) | image2image |
| [Attend-and-Excite](attend_and_excite) | text2image |
| [Audio Diffusion](audio_diffusion) | image2audio |
| [AudioLDM](audioldm) | text2audio |
| [AudioLDM2](audioldm2) | text2audio |
| [BLIP Diffusion](blip_diffusion) | text2image |
| [Consistency Models](consistency_models) | unconditional image generation |
| [ControlNet](controlnet) | text2image, image2image, inpainting |
| [ControlNet with Stable Diffusion XL](controlnet_sdxl) | text2image |
| [Cycle Diffusion](cycle_diffusion) | image2image |
| [Dance Diffusion](dance_diffusion) | unconditional audio generation |
| [DDIM](ddim) | unconditional image generation |
| [DDPM](ddpm) | unconditional image generation |
| [DeepFloyd IF](deepfloyd_if) | text2image, image2image, inpainting, super-resolution |
| [DiffEdit](diffedit) | inpainting |
| [DiT](dit) | text2image |
| [GLIGEN](gligen) | text2image |
| [InstructPix2Pix](pix2pix) | image editing |
| [Kandinsky](kandinsky) | text2image, image2image, inpainting, interpolation |
| [Kandinsky 2.2](kandinsky_v22) | text2image, image2image, inpainting |
| [Latent Diffusion](latent_diffusion) | text2image, super-resolution |
| [LDM3D](ldm3d_diffusion) | text2image, text-to-3D |
| [MultiDiffusion](panorama) | text2image |
| [MusicLDM](musicldm) | text2audio |
| [PaintByExample](paint_by_example) | inpainting |
| [ParaDiGMS](paradigms) | text2image |
| [Pix2Pix Zero](pix2pix_zero) | image editing |
| [PNDM](pndm) | unconditional image generation |
| [RePaint](repaint) | inpainting |
| [ScoreSdeVe](score_sde_ve) | unconditional image generation |
| [Self-Attention Guidance](self_attention_guidance) | text2image |
| [Semantic Guidance](semantic_stable_diffusion) | text2image |
| [Shap-E](shap_e) | text-to-3D, image-to-3D |
| [Spectrogram Diffusion](spectrogram_diffusion) | |
| [Stable Diffusion](stable_diffusion/overview) | text2image, image2image, depth2image, inpainting, image variation, latent upscaler, super-resolution |
| [Stable Diffusion Model Editing](model_editing) | model editing |
| [Stable Diffusion XL](stable_diffusion_xl) | text2image, image2image, inpainting |
| [Stable unCLIP](stable_unclip) | text2image, image variation |
| [KarrasVe](karras_ve) | unconditional image generation |
| [T2I Adapter](adapter) | text2image |
| [Text2Video](text_to_video) | text2video, video2video |
| [Text2Video Zero](text_to_video_zero) | text2video |
| [UnCLIP](unclip) | text2image, image variation |
| [Unconditional Latent Diffusion](latent_diffusion_uncond) | unconditional image generation |
| [UniDiffuser](unidiffuser) | text2image, image2text, image variation, text variation, unconditional image generation, unconditional audio generation |
| [Value-guided planning](value_guided_sampling) | value guided sampling |
| [Versatile Diffusion](versatile_diffusion) | text2image, image variation |
| [VQ Diffusion](vq_diffusion) | text2image |
| [Wuerstchen](wuerstchen) | text2image |
## DiffusionPipeline
[[autodoc]] DiffusionPipeline
- all
- __call__
- device
- to
- components
## FlaxDiffusionPipeline
[[autodoc]] pipelines.pipeline_flax_utils.FlaxDiffusionPipeline
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -1,217 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines
Pipelines provide a simple way to run state-of-the-art diffusion models in inference.
Most diffusion systems consist of multiple independently-trained models and highly adaptable scheduler
components - all of which are needed to have a functioning end-to-end diffusion system.
As an example, [Stable Diffusion](https://huggingface.co/blog/stable_diffusion) has three independently trained models:
- [Autoencoder](./api/models#vae)
- [Conditional Unet](./api/models#UNet2DConditionModel)
- [CLIP text encoder](https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/clip#transformers.CLIPTextModel)
- a scheduler component, [scheduler](./api/scheduler#pndm),
- a [CLIPImageProcessor](https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/clip#transformers.CLIPImageProcessor),
- as well as a [safety checker](./stable_diffusion#safety_checker).
All of these components are necessary to run stable diffusion in inference even though they were trained
or created independently from each other.
To that end, we strive to offer all open-sourced, state-of-the-art diffusion system under a unified API.
More specifically, we strive to provide pipelines that
- 1. can load the officially published weights and yield 1-to-1 the same outputs as the original implementation according to the corresponding paper (*e.g.* [LDMTextToImagePipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/latent_diffusion), uses the officially released weights of [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)),
- 2. have a simple user interface to run the model in inference (see the [Pipelines API](#pipelines-api) section),
- 3. are easy to understand with code that is self-explanatory and can be read along-side the official paper (see [Pipelines summary](#pipelines-summary)),
- 4. can easily be contributed by the community (see the [Contribution](#contribution) section).
**Note** that pipelines do not (and should not) offer any training functionality.
If you are looking for *official* training examples, please have a look at [examples](https://github.com/huggingface/diffusers/tree/main/examples).
## 🧨 Diffusers Summary
The following table summarizes all officially supported pipelines, their corresponding paper, and if
available a colab notebook to directly try them out.
| Pipeline | Paper | Tasks | Colab
|---|---|:---:|:---:|
| [alt_diffusion](./alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation | -
| [audio_diffusion](./audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio_diffusion.git) | Unconditional Audio Generation |
| [controlnet](./api/pipelines/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/controlnet.ipynb)
| [cycle_diffusion](./cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation |
| [dance_diffusion](./dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation |
| [ddpm](./ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation |
| [ddim](./ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation |
| [if](./if) | [**IF**](https://github.com/deep-floyd/IF) | Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
| [if_img2img](./if) | [**IF**](https://github.com/deep-floyd/IF) | Image-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
| [if_inpainting](./if) | [**IF**](https://github.com/deep-floyd/IF) | Image-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
| [latent_diffusion](./latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation |
| [latent_diffusion](./latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image |
| [latent_diffusion_uncond](./latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation |
| [paint_by_example](./paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting |
| [pndm](./pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation |
| [score_sde_ve](./score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [score_sde_vp](./score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation |
| [semantic_stable_diffusion](./semantic_stable_diffusion) | [**SEGA: Instructing Diffusion using Semantic Dimensions**](https://arxiv.org/abs/2301.12247) | Text-to-Image Generation |
| [stable_diffusion_text2img](./stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb)
| [stable_diffusion_img2img](./stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
| [stable_diffusion_inpaint](./stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)
| [stable_diffusion_panorama](./stable_diffusion/panorama) | [**MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation**](https://arxiv.org/abs/2302.08113) | Text-Guided Panorama View Generation |
| [stable_diffusion_pix2pix](./stable_diffusion/pix2pix) | [**InstructPix2Pix: Learning to Follow Image Editing Instructions**](https://arxiv.org/abs/2211.09800) | Text-Based Image Editing |
| [stable_diffusion_pix2pix_zero](./stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://arxiv.org/abs/2302.03027) | Text-Based Image Editing |
| [stable_diffusion_attend_and_excite](./stable_diffusion/attend_and_excite) | [**Attend and Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models**](https://arxiv.org/abs/2301.13826) | Text-to-Image Generation |
| [stable_diffusion_self_attention_guidance](./stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://arxiv.org/abs/2210.00939) | Text-to-Image Generation |
| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation |
| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_2](./stable_diffusion_2/) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation |
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting |
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Depth-to-Image Text-Guided Generation |
| [stable_diffusion_2](./stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image |
| [stable_diffusion_safe](./stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ml-research/safe-latent-diffusion/blob/main/examples/Safe%20Latent%20Diffusion.ipynb)
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation |
| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation |
| [stochastic_karras_ve](./stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation |
| [text_to_video_sd](./api/pipelines/text_to_video) | [Modelscope's Text-to-video-synthesis Model in Open Domain](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) | Text-to-Video Generation |
| [unclip](./unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation |
| [versatile_diffusion](./versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation |
| [versatile_diffusion](./versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation |
| [versatile_diffusion](./versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation |
| [vq_diffusion](./vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation |
| [text_to_video_zero](./text_to_video_zero) | [Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators](https://arxiv.org/abs/2303.13439) | Text-to-Video Generation |
**Note**: Pipelines are simple examples of how to play around with the diffusion systems as described in the corresponding papers.
However, most of them can be adapted to use different scheduler components or even different model components. Some pipeline examples are shown in the [Examples](#examples) below.
## Pipelines API
Diffusion models often consist of multiple independently-trained models or other previously existing components.
Each model has been trained independently on a different task and the scheduler can easily be swapped out and replaced with a different one.
During inference, we however want to be able to easily load all components and use them in inference - even if one component, *e.g.* CLIP's text encoder, originates from a different library, such as [Transformers](https://github.com/huggingface/transformers). To that end, all pipelines provide the following functionality:
- [`from_pretrained` method](../diffusion_pipeline) that accepts a Hugging Face Hub repository id, *e.g.* [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) or a path to a local directory, *e.g.*
"./stable-diffusion". To correctly retrieve which models and components should be loaded, one has to provide a `model_index.json` file, *e.g.* [runwayml/stable-diffusion-v1-5/model_index.json](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/model_index.json), which defines all components that should be
loaded into the pipelines. More specifically, for each model/component one needs to define the format `<name>: ["<library>", "<class name>"]`. `<name>` is the attribute name given to the loaded instance of `<class name>` which can be found in the library or pipeline folder called `"<library>"`.
- [`save_pretrained`](../diffusion_pipeline) that accepts a local path, *e.g.* `./stable-diffusion` under which all models/components of the pipeline will be saved. For each component/model a folder is created inside the local path that is named after the given attribute name, *e.g.* `./stable_diffusion/unet`.
In addition, a `model_index.json` file is created at the root of the local path, *e.g.* `./stable_diffusion/model_index.json` so that the complete pipeline can again be instantiated
from the local path.
- [`to`](../diffusion_pipeline) which accepts a `string` or `torch.device` to move all models that are of type `torch.nn.Module` to the passed device. The behavior is fully analogous to [PyTorch's `to` method](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.to).
- [`__call__`] method to use the pipeline in inference. `__call__` defines inference logic of the pipeline and should ideally encompass all aspects of it, from pre-processing to forwarding tensors to the different models and schedulers, as well as post-processing. The API of the `__call__` method can strongly vary from pipeline to pipeline. *E.g.* a text-to-image pipeline, such as [`StableDiffusionPipeline`](./stable_diffusion) should accept among other things the text prompt to generate the image. A pure image generation pipeline, such as [DDPMPipeline](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/ddpm) on the other hand can be run without providing any inputs. To better understand what inputs can be adapted for
each pipeline, one should look directly into the respective pipeline.
**Note**: All pipelines have PyTorch's autograd disabled by decorating the `__call__` method with a [`torch.no_grad`](https://pytorch.org/docs/stable/generated/torch.no_grad.html) decorator because pipelines should
not be used for training. If you want to store the gradients during the forward pass, we recommend writing your own pipeline, see also our [community-examples](https://github.com/huggingface/diffusers/tree/main/examples/community).
## Contribution
We are more than happy about any contribution to the officially supported pipelines 🤗. We aspire
all of our pipelines to be **self-contained**, **easy-to-tweak**, **beginner-friendly** and for **one-purpose-only**.
- **Self-contained**: A pipeline shall be as self-contained as possible. More specifically, this means that all functionality should be either directly defined in the pipeline file itself, should be inherited from (and only from) the [`DiffusionPipeline` class](.../diffusion_pipeline) or be directly attached to the model and scheduler components of the pipeline.
- **Easy-to-use**: Pipelines should be extremely easy to use - one should be able to load the pipeline and
use it for its designated task, *e.g.* text-to-image generation, in just a couple of lines of code. Most
logic including pre-processing, an unrolled diffusion loop, and post-processing should all happen inside the `__call__` method.
- **Easy-to-tweak**: Certain pipelines will not be able to handle all use cases and tasks that you might like them to. If you want to use a certain pipeline for a specific use case that is not yet supported, you might have to copy the pipeline file and tweak the code to your needs. We try to make the pipeline code as readable as possible so that each part from pre-processing to diffusing to post-processing can easily be adapted. If you would like the community to benefit from your customized pipeline, we would love to see a contribution to our [community-examples](https://github.com/huggingface/diffusers/tree/main/examples/community). If you feel that an important pipeline should be part of the official pipelines but isn't, a contribution to the [official pipelines](./overview) would be even better.
- **One-purpose-only**: Pipelines should be used for one task and one task only. Even if two tasks are very similar from a modeling point of view, *e.g.* image2image translation and in-painting, pipelines shall be used for one task only to keep them *easy-to-tweak* and *readable*.
## Examples
### Text-to-Image generation with Stable Diffusion
```python
# make sure you're logged in with `huggingface-cli login`
from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe = pipe.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
```
### Image-to-Image text-guided generation with Stable Diffusion
The `StableDiffusionImg2ImgPipeline` lets you pass a text prompt and an initial image to condition the generation of new images.
```python
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipeline
# load the pipeline
device = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to(
device
)
# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
prompt = "A fantasy landscape, trending on artstation"
images = pipe(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
images[0].save("fantasy_landscape.png")
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/image_2_image_using_diffusers.ipynb)
### Tweak prompts reusing seeds and latents
You can generate your own latents to reproduce results, or tweak your prompt on a specific result you liked. [This notebook](https://github.com/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb) shows how to do it step by step. You can also run it in Google Colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/pcuenca/diffusers-examples/blob/main/notebooks/stable-diffusion-seeds.ipynb)
### In-painting using Stable Diffusion
The `StableDiffusionInpaintPipeline` lets you edit specific parts of an image by providing a mask and text prompt.
```python
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```
You can also run this example on colab [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/in_painting_with_stable_diffusion_using_diffusers.ipynb)

View File

@@ -0,0 +1,39 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Paint By Example
[Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://huggingface.co/papers/2211.13227) is by Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen.
The abstract from the paper is:
*Language-guided image editing has achieved great success recently. In this paper, for the first time, we investigate exemplar-guided image editing for more precise control. We achieve this goal by leveraging self-supervised training to disentangle and re-organize the source image and the exemplar. However, the naive approach will cause obvious fusing artifacts. We carefully analyze it and propose an information bottleneck and strong augmentations to avoid the trivial solution of directly copying and pasting the exemplar image. Meanwhile, to ensure the controllability of the editing process, we design an arbitrary shape mask for the exemplar image and leverage the classifier-free guidance to increase the similarity to the exemplar image. The whole framework involves a single forward of the diffusion model without any iterative optimization. We demonstrate that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity.*
The original codebase can be found at [Fantasy-Studio/Paint-by-Example](https://github.com/Fantasy-Studio/Paint-by-Example), and you can try it out in a [demo](https://huggingface.co/spaces/Fantasy-Studio/Paint-by-Example).
## Tips
PaintByExample is supported by the official [Fantasy-Studio/Paint-by-Example](https://huggingface.co/Fantasy-Studio/Paint-by-Example) checkpoint. The checkpoint is warm-started from [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) to inpaint partly masked images conditioned on example and reference images.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## PaintByExamplePipeline
[[autodoc]] PaintByExamplePipeline
- all
- __call__
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -1,74 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PaintByExample
## Overview
[Paint by Example: Exemplar-based Image Editing with Diffusion Models](https://arxiv.org/abs/2211.13227) by Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen.
The abstract of the paper is the following:
*Language-guided image editing has achieved great success recently. In this paper, for the first time, we investigate exemplar-guided image editing for more precise control. We achieve this goal by leveraging self-supervised training to disentangle and re-organize the source image and the exemplar. However, the naive approach will cause obvious fusing artifacts. We carefully analyze it and propose an information bottleneck and strong augmentations to avoid the trivial solution of directly copying and pasting the exemplar image. Meanwhile, to ensure the controllability of the editing process, we design an arbitrary shape mask for the exemplar image and leverage the classifier-free guidance to increase the similarity to the exemplar image. The whole framework involves a single forward of the diffusion model without any iterative optimization. We demonstrate that our method achieves an impressive performance and enables controllable editing on in-the-wild images with high fidelity.*
The original codebase can be found [here](https://github.com/Fantasy-Studio/Paint-by-Example).
## Available Pipelines:
| Pipeline | Tasks | Colab
|---|---|:---:|
| [pipeline_paint_by_example.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py) | *Image-Guided Image Painting* | - |
## Tips
- PaintByExample is supported by the official [Fantasy-Studio/Paint-by-Example](https://huggingface.co/Fantasy-Studio/Paint-by-Example) checkpoint. The checkpoint has been warm-started from the [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) and with the objective to inpaint partly masked images conditioned on example / reference images
- To quickly demo *PaintByExample*, please have a look at [this demo](https://huggingface.co/spaces/Fantasy-Studio/Paint-by-Example)
- You can run the following code snippet as an example:
```python
# !pip install diffusers transformers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import DiffusionPipeline
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/image/example_1.png"
mask_url = "https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/mask/example_1.png"
example_url = "https://raw.githubusercontent.com/Fantasy-Studio/Paint-by-Example/main/examples/reference/example_1.jpg"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
example_image = download_image(example_url).resize((512, 512))
pipe = DiffusionPipeline.from_pretrained(
"Fantasy-Studio/Paint-by-Example",
torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
image = pipe(image=init_image, mask_image=mask_image, example_image=example_image).images[0]
image
```
## PaintByExamplePipeline
[[autodoc]] PaintByExamplePipeline
- all
- __call__

View File

@@ -0,0 +1,57 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MultiDiffusion
[MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation](https://huggingface.co/papers/2302.08113) is by Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
The abstract from the paper is:
*Recent advances in text-to-image generation with diffusion models present transformative capabilities in image quality. However, user controllability of the generated image, and fast adaptation to new tasks still remains an open challenge, currently mostly addressed by costly and long re-training and fine-tuning or ad-hoc adaptations to specific image generation tasks. In this work, we present MultiDiffusion, a unified framework that enables versatile and controllable image generation, using a pre-trained text-to-image diffusion model, without any further training or finetuning. At the center of our approach is a new generation process, based on an optimization task that binds together multiple diffusion generation processes with a shared set of parameters or constraints. We show that MultiDiffusion can be readily applied to generate high quality and diverse images that adhere to user-provided controls, such as desired aspect ratio (e.g., panorama), and spatial guiding signals, ranging from tight segmentation masks to bounding boxes.*
You can find additional information about MultiDiffusion on the [project page](https://multidiffusion.github.io/), [original codebase](https://github.com/omerbt/MultiDiffusion), and try it out in a [demo](https://huggingface.co/spaces/weizmannscience/MultiDiffusion).
## Tips
While calling [`StableDiffusionPanoramaPipeline`], it's possible to specify the `view_batch_size` parameter to be > 1.
For some GPUs with high performance, this can speedup the generation process and increase VRAM usage.
To generate panorama-like images make sure you pass the width parameter accordingly. We recommend a width value of 2048 which is the default.
Circular padding is applied to ensure there are no stitching artifacts when working with
panoramas to ensure a seamless transition from the rightmost part to the leftmost part.
By enabling circular padding (set `circular_padding=True`), the operation applies additional
crops after the rightmost point of the image, allowing the model to "see” the transition
from the rightmost part to the leftmost part. This helps maintain visual consistency in
a 360-degree sense and creates a proper “panorama” that can be viewed using 360-degree
panorama viewers. When decoding latents in Stable Diffusion, circular padding is applied
to ensure that the decoded latents match in the RGB space.
For example, without circular padding, there is a stitching artifact (default):
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/indoor_%20no_circular_padding.png)
But with circular padding, the right and the left parts are matching (`circular_padding=True`):
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/indoor_%20circular_padding.png)
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionPanoramaPipeline
[[autodoc]] StableDiffusionPanoramaPipeline
- __call__
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -0,0 +1,54 @@
<!--Copyright 2023 ParaDiGMS authors and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Parallel Sampling of Diffusion Models
[Parallel Sampling of Diffusion Models](https://huggingface.co/papers/2305.16317) is by Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, Nima Anari.
The abstract from the paper is:
*Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.*
The original codebase can be found at [AndyShih12/paradigms](https://github.com/AndyShih12/paradigms), and the pipeline was contributed by [AndyShih12](https://github.com/AndyShih12). ❤️
## Tips
This pipeline improves sampling speed by running denoising steps in parallel, at the cost of increased total FLOPs.
Therefore, it is better to call this pipeline when running on multiple GPUs. Otherwise, without enough GPU bandwidth
sampling may be even slower than sequential sampling.
The two parameters to play with are `parallel` (batch size) and `tolerance`.
- If it fits in memory, for a 1000-step DDPM you can aim for a batch size of around 100
(for example, 8 GPUs and `batch_per_device=12` to get `parallel=96`). A higher batch size
may not fit in memory, and lower batch size gives less parallelism.
- For tolerance, using a higher tolerance may get better speedups but can risk sample quality degradation.
If there is quality degradation with the default tolerance, then use a lower tolerance like `0.001`.
For a 1000-step DDPM on 8 A100 GPUs, you can expect around a 3x speedup from [`StableDiffusionParadigmsPipeline`] compared to the [`StableDiffusionPipeline`]
by setting `parallel=80` and `tolerance=0.1`.
🤗 Diffusers offers [distributed inference support](../training/distributed_inference) for generating multiple prompts
in parallel on multiple GPUs. But [`StableDiffusionParadigmsPipeline`] is designed for speeding up sampling of a single prompt by using multiple GPUs.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## StableDiffusionParadigmsPipeline
[[autodoc]] StableDiffusionParadigmsPipeline
- __call__
- all
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput

View File

@@ -10,59 +10,21 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# InstructPix2Pix: Learning to Follow Image Editing Instructions
# InstructPix2Pix
## Overview
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://huggingface.co/papers/2211.09800) is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
[InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800) by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract of the paper is the following:
The abstract from the paper is:
*We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models -- a language model (GPT-3) and a text-to-image model (Stable Diffusion) -- to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.*
Resources:
You can find additional information about InstructPix2Pix on the [project page](https://www.timothybrooks.com/instruct-pix2pix), [original codebase](https://github.com/timothybrooks/instruct-pix2pix), and try it out in a [demo](https://huggingface.co/spaces/timbrooks/instruct-pix2pix).
* [Project Page](https://www.timothybrooks.com/instruct-pix2pix).
* [Paper](https://arxiv.org/abs/2211.09800).
* [Original Code](https://github.com/timothybrooks/instruct-pix2pix).
* [Demo](https://huggingface.co/spaces/timbrooks/instruct-pix2pix).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
## Available Pipelines:
| Pipeline | Tasks | Demo
|---|---|:---:|
| [StableDiffusionInstructPix2PixPipeline](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py) | *Text-Based Image Editing* | [🤗 Space](https://huggingface.co/spaces/timbrooks/instruct-pix2pix) |
<!-- TODO: add Colab -->
## Usage example
```python
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(url)
prompt = "make the mountains snowy"
images = pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7).images
images[0].save("snowy_mountains.png")
```
</Tip>
## StableDiffusionInstructPix2PixPipeline
[[autodoc]] StableDiffusionInstructPix2PixPipeline
@@ -71,3 +33,8 @@ images[0].save("snowy_mountains.png")
- load_textual_inversion
- load_lora_weights
- save_lora_weights
## StableDiffusionXLInstructPix2PixPipeline
[[autodoc]] StableDiffusionXLInstructPix2PixPipeline
- __call__
- all

View File

@@ -10,22 +10,15 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Zero-shot Image-to-Image Translation
# Pix2Pix Zero
## Overview
[Zero-shot Image-to-Image Translation](https://huggingface.co/papers/2302.03027) is by Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan Zhu.
[Zero-shot Image-to-Image Translation](https://arxiv.org/abs/2302.03027).
The abstract of the paper is the following:
The abstract from the paper is:
*Large-scale text-to-image generative models have shown their remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is hard for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. In this work, we propose pix2pix-zero, an image-to-image translation method that can preserve the content of the original image without manual prompting. We first automatically discover editing directions that reflect desired edits in the text embedding space. To preserve the general content structure after editing, we further propose cross-attention guidance, which aims to retain the cross-attention maps of the input image throughout the diffusion process. In addition, our method does not need additional training for these edits and can directly use the existing pre-trained text-to-image diffusion model. We conduct extensive experiments and show that our method outperforms existing and concurrent works for both real and synthetic image editing.*
Resources:
* [Project Page](https://pix2pixzero.github.io/).
* [Paper](https://arxiv.org/abs/2302.03027).
* [Original Code](https://github.com/pix2pixzero/pix2pix-zero).
* [Demo](https://huggingface.co/spaces/pix2pix-zero-library/pix2pix-zero-demo).
You can find additional information about Pix2Pix Zero on the [project page](https://pix2pixzero.github.io/), [original codebase](https://github.com/pix2pixzero/pix2pix-zero), and try it out in a [demo](https://huggingface.co/spaces/pix2pix-zero-library/pix2pix-zero-demo).
## Tips

View File

@@ -0,0 +1,36 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PixArt
![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/pixart/header_collage.png)
[PixArt-α: Fast Training of Diffusion Transformer for Photorealistic Text-to-Image Synthesis](https://huggingface.co/papers/2310.00426) is Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li.
The abstract from the paper is:
*The most advanced text-to-image (T2I) models require significant training costs (e.g., millions of GPU hours), seriously hindering the fundamental innovation for the AIGC community while increasing CO2 emissions. This paper introduces PIXART-α, a Transformer-based T2I diffusion model whose image generation quality is competitive with state-of-the-art image generators (e.g., Imagen, SDXL, and even Midjourney), reaching near-commercial application standards. Additionally, it supports high-resolution image synthesis up to 1024px resolution with low training cost, as shown in Figure 1 and 2. To achieve this goal, three core designs are proposed: (1) Training strategy decomposition: We devise three distinct training steps that separately optimize pixel dependency, text-image alignment, and image aesthetic quality; (2) Efficient T2I Transformer: We incorporate cross-attention modules into Diffusion Transformer (DiT) to inject text conditions and streamline the computation-intensive class-condition branch; (3) High-informative data: We emphasize the significance of concept density in text-image pairs and leverage a large Vision-Language model to auto-label dense pseudo-captions to assist text-image alignment learning. As a result, PIXART-α's training speed markedly surpasses existing large-scale T2I models, e.g., PIXART-α only takes 10.8% of Stable Diffusion v1.5's training time (675 vs. 6,250 A100 GPU days), saving nearly $300,000 ($26,000 vs. $320,000) and reducing 90% CO2 emissions. Moreover, compared with a larger SOTA model, RAPHAEL, our training cost is merely 1%. Extensive experiments demonstrate that PIXART-α excels in image quality, artistry, and semantic control. We hope PIXART-α will provide new insights to the AIGC community and startups to accelerate building their own high-quality yet low-cost generative models from scratch.*
You can find the original codebase at [PixArt-alpha/PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha) and all the available checkpoints at [PixArt-alpha](https://huggingface.co/PixArt-alpha).
Some notes about this pipeline:
* It uses a Transformer backbone (instead of a UNet) for denoising. As such it has a similar architecture as [DiT](./dit.md).
* It was trained using text conditions computed from T5. This aspect makes the pipeline better at following complex text prompts with intricate details.
* It is good at producing high-resolution images at different aspect ratios. To get the best results, the authors recommend some size brackets which can be found [here](https://github.com/PixArt-alpha/PixArt-alpha/blob/08fbbd281ec96866109bdd2cdb75f2f58fb17610/diffusion/data/datasets/utils.py).
* It rivals the quality of state-of-the-art text-to-image generation systems (as of this writing) such as Stable Diffusion XL, Imagen, and DALL-E 2, while being more efficient than them.
## PixArtAlphaPipeline
[[autodoc]] PixArtAlphaPipeline
- all
- __call__

Some files were not shown because too many files have changed in this diff Show More