Compare commits

...

2 Commits

Author SHA1 Message Date
Sayak Paul
4133545a15 Merge branch 'main' into save-load-optional-components-tests 2025-03-06 11:27:13 +05:30
sayakpaul
d34dbbd05a fix tests 2025-03-06 09:38:11 +05:30
6 changed files with 270 additions and 4 deletions

View File

@@ -14,6 +14,7 @@
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
@@ -212,6 +213,99 @@ class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def test_encode_prompt_works_in_isolation(self):
pass
def test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = pipe.encode_prompt(
prompt,
device=torch_device,
dtype=torch.float32,
text_encoder_index=1,
)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
@slow
@require_torch_accelerator

View File

@@ -15,6 +15,7 @@
import gc
import inspect
import tempfile
import unittest
import numpy as np
@@ -39,7 +40,7 @@ from diffusers.utils.testing_utils import (
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin
from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, to_np
enable_full_determinism()
@@ -217,6 +218,73 @@ class LattePipelineFastTests(PipelineTesterMixin, PyramidAttentionBroadcastTeste
def test_encode_prompt_works_in_isolation(self):
pass
def test_save_load_optional_components(self):
if not hasattr(self.pipeline_class, "_optional_components"):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
(
prompt_embeds,
negative_prompt_embeds,
) = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt": None,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"video_length": 1,
"mask_feature": False,
"output_type": "pt",
"clean_caption": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1.0)
@slow
@require_torch_accelerator

View File

@@ -14,6 +14,7 @@
# limitations under the License.
import inspect
import tempfile
import unittest
import numpy as np
@@ -27,9 +28,7 @@ from diffusers import (
HunyuanDiTPAGPipeline,
HunyuanDiTPipeline,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
)
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
@@ -269,3 +268,96 @@ class HunyuanDiTPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
)
def test_encode_prompt_works_in_isolation(self):
pass
def test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = pipe.encode_prompt(
prompt,
device=torch_device,
dtype=torch.float32,
text_encoder_index=1,
)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)

View File

@@ -343,3 +343,7 @@ class PixArtSigmaPAGPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
@unittest.skip("Test is already covered through encode_prompt isolation.")
def test_save_load_optional_components(self):
pass

View File

@@ -144,6 +144,10 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
@unittest.skip("Test is already covered through encode_prompt isolation.")
def test_save_load_optional_components(self):
pass
def test_inference_with_embeddings_and_multiple_images(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)

View File

@@ -239,6 +239,10 @@ class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
@unittest.skip("Test is already covered through encode_prompt isolation.")
def test_save_load_optional_components(self):
pass
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(expected_max_diff=1e-3)