Compare commits

...

1 Commits

Author SHA1 Message Date
yiyixuxu
c73c00610e add:
q
2024-12-22 10:21:00 +01:00

View File

@@ -99,21 +99,39 @@ def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
try:
return next(parameter.parameters()).dtype
except StopIteration:
try:
return next(parameter.buffers()).dtype
except StopIteration:
# For torch.nn.DataParallel compatibility in PyTorch 1.5
"""
Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
"""
last_dtype = None
for param in parameter.parameters():
last_dtype = param.dtype
if param.is_floating_point():
return param.dtype
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
for buffer in parameter.buffers():
last_dtype = buffer.dtype
if buffer.is_floating_point():
return buffer.dtype
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
if last_dtype is not None:
# if no floating dtype was found return whatever the first dtype is
return last_dtype
# For nn.DataParallel compatibility in PyTorch > 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
last_tuple = None
for tuple in gen:
last_tuple = tuple
if tuple[1].is_floating_point():
return tuple[1].dtype
if last_tuple is not None:
# fallback to the last dtype
return last_tuple[1].dtype
class ModelMixin(torch.nn.Module, PushToHubMixin):