Compare commits

..

369 Commits

Author SHA1 Message Date
Aryan
e8aacda762 Release: v0.32.1 2024-12-25 11:34:06 +01:00
Aryan
12184f4015 Fix TorchAO related bugs; revert device_map changes (#10371)
* Revert "Add support for sharded models when TorchAO quantization is enabled (#10256)"

This reverts commit 41ba8c0bf6.

* update tests

* udpate

* update

* update

* update device map tests

* apply review suggestions

* update

* make style

* fix

* update docs

* update tests

* update workflow

* update

* improve tests

* allclose tolerance

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update tests/quantization/torchao/test_torchao.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* improve tests

* fix

* update correct slices

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-25 11:31:21 +01:00
Sayak Paul
6e1d2da194 fix test pypi installation in the release workflow (#10360)
fix
2024-12-25 11:25:34 +01:00
YiYi Xu
11b1151840 make style for https://github.com/huggingface/diffusers/pull/10368 (#10370)
* fix bug for torch.uint1-7 not support in torch<2.6

* up

---------

Co-authored-by: baymax591 <cbai@mail.nwpu.edu.cn>
2024-12-25 11:25:14 +01:00
sayakpaul
cd4d0d8ffb Release: v0.32.0 2024-12-23 20:26:28 +05:30
Aryan
4b557132ce [core] LTX Video 0.9.1 (#10330)
* update

* make style

* update

* update

* update

* make style

* single file related changes

* update

* fix

* update single file urls and docs

* update

* fix
2024-12-23 19:51:33 +05:30
Sayak Paul
851dfa30ae [Tests] Fix more tests sayak (#10359)
* fixes to tests

* fixture

* fixes
2024-12-23 19:11:21 +05:30
Sayak Paul
ea1ba0ba53 [LoRA] test fix (#10351)
updates
2024-12-23 15:45:45 +05:30
Aryan
9d27df8071 Rename LTX blocks and docs title (#10213)
* rename blocks and docs

* fix docs

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-23 15:29:10 +05:30
Aryan
055d95543a Fix failing CogVideoX LoRA fuse test (#10352)
fix
2024-12-23 14:22:09 +05:30
hlky
71cc2013fe Fix FluxIPAdapterTesterMixin (#10354) 2024-12-23 14:20:06 +05:30
Sayak Paul
c34fc34563 [Tests] QoL improvements to the LoRA test suite (#10304)
* misc lora test improvements.

* updates

* fixes to tests
2024-12-23 13:59:55 +05:30
Dhruv Nair
5fcee4a447 [Single File] Fix loading (#10349)
update
2024-12-23 13:12:23 +05:30
Sayak Paul
76e2727b5c [SANA LoRA] sana lora training tests and misc. (#10296)
* sana lora training tests and misc.

* remove push to hub

* Update examples/dreambooth/train_dreambooth_lora_sana.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-23 12:35:13 +05:30
Aryan
02c777c065 [tests] Refactor TorchAO serialization fast tests (#10271)
refactor
2024-12-23 11:04:57 +05:30
Sayak Paul
6a970a45c5 [docs] fix: torchao example. (#10278)
fix: torchao example.
2024-12-23 11:03:50 +05:30
Aryan
ffc0eaab6d Bump minimum TorchAO version to 0.7.0 (#10293)
* bump min torchao version to 0.7.0

* update
2024-12-23 11:03:04 +05:30
Thien Tran
3c2e2aa8a9 .from_single_file() - Add missing .shape (#10332)
Add missing `.shape`
2024-12-23 08:57:25 +05:30
Junsong Chen
b58868e6f4 [Sana bug] bug fix for 2K model config (#10340)
* fix the Positinoal Embedding bug in 2K model;

* Change the default model to the BF16 one for more stable training and output

* make style

* substract buffer size

* add compute_module_persistent_sizes

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-12-23 08:56:25 +05:30
Dhruv Nair
da21d590b5 [Single File] Add Single File support for HunYuan video (#10320)
* update

* Update src/diffusers/loaders/single_file_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-23 08:44:58 +05:30
YiYi Xu
7c2f0afb1c update get_parameter_dtype (#10342)
add:
q
2024-12-23 08:14:13 +05:30
hlky
f615f00f58 Fix enable_sequential_cpu_offload in test_kandinsky_combined (#10324)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-22 15:28:28 -10:00
Aryan
6aaa0518e3 Community hosted weights for diffusers format HunyuanVideo weights (#10344)
update docs and example to use community weights
2024-12-22 15:26:28 -10:00
Mehmet Yiğit Özgenç
233dffdc3f flux controlnet inpaint config bug (#10291)
* flux controlnet inpaint config bug

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py

---------

Co-authored-by: yigitozgenc <yigit@quantuslabs.ai>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-21 18:44:43 +00:00
hlky
be2070991f Support Flux IP Adapter (#10261)
* Flux IP-Adapter

* test cfg

* make style

* temp remove copied from

* fix test

* fix test

* v2

* fix

* make style

* temp remove copied from

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Move encoder_hid_proj to inside FluxTransformer2DModel

* merge

* separate encode_prompt, add copied from, image_encoder offload

* make

* fix test

* fix

* Update src/diffusers/pipelines/flux/pipeline_flux.py

* test_flux_prompt_embeds change not needed

* true_cfg -> true_cfg_scale

* fix merge conflict

* test_flux_ip_adapter_inference

* add fast test

* FluxIPAdapterMixin not test mixin

* Update pipeline_flux.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-21 17:49:58 +00:00
hlky
bf9a641f1a Fix EMAModel test_from_pretrained (#10325) 2024-12-21 14:10:44 +00:00
hlky
a756694bf0 Fix push_tests_mps.yml (#10326) 2024-12-21 14:10:32 +00:00
Sayak Paul
d41388145e [Docs] Update gguf.md to remove generator from the pipeline from_pretrained (#10299)
Update gguf.md to remove generator from the pipeline from_pretrained
2024-12-21 07:15:03 +05:30
Junsong Chen
a6288a5571 [Sana]add 2K related model for Sana (#10322)
add 2K related model for Sana
2024-12-20 07:21:34 -10:00
Steven Liu
7d4db57037 [docs] Fix quantization links (#10323)
Update overview.md
2024-12-20 08:30:21 -08:00
Aditya Raj
902008608a [BUG FIX] [Stable Audio Pipeline] Resolve torch.Tensor.new_zeros() TypeError in function prepare_latents caused by audio_vae_length (#10306)
[BUG FIX] [Stable Audio Pipeline] TypeError: new_zeros(): argument 'size' failed to unpack the object at pos 3 with error "type must be tuple of ints,but got float"

torch.Tensor.new_zeros() takes a single argument size (int...) – a list, tuple, or torch.Size of integers defining the shape of the output tensor.

in function prepare_latents:
audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length
audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
...
audio = initial_audio_waveforms.new_zeros(audio_shape)

audio_vae_length evaluates to float because self.transformer.config.sample_size returns a float

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-20 15:29:58 +00:00
Leojc
c8ee4af228 docs: fix a mistake in docstring (#10319)
Update pipeline_hunyuan_video.py

docs: fix a mistake
2024-12-20 15:22:32 +00:00
Sayak Paul
b64ca6c11c [Docs] Update ltx_video.md to remove generator from from_pretrained() (#10316)
Update ltx_video.md to remove generator from `from_pretrained()`
2024-12-20 18:32:22 +05:30
Dhruv Nair
e12d610faa Mochi docs (#9934)
* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-20 16:27:38 +05:30
Sayak Paul
bf6eaa8aec [Tests] add integration tests for lora expansion stuff in Flux. (#10318)
add integration tests for lora expansion stuff in Flux.
2024-12-20 16:14:58 +05:30
Sayak Paul
17128c42a4 [LoRA] feat: support loading regular Flux LoRAs into Flux Control, and Fill (#10259)
* lora expansion with dummy zeros.

* updates

* fix working 🥳

* working.

* use torch.device meta for state dict expansion.

* tests

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>

* fixes

* fixes

* switch to debug

* fix

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

* fix stuff

* docs

---------

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-20 14:30:32 +05:30
Dhruv Nair
dbc1d505f0 [Single File] Add GGUF support for LTX (#10298)
* update

* add docs.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-20 11:52:29 +05:30
Aryan
151b74cd77 Make tensors in ResNet contiguous for Hunyuan VAE (#10309)
contiguous tensors in resnet

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-20 11:45:37 +05:30
Aryan
41ba8c0bf6 Add support for sharded models when TorchAO quantization is enabled (#10256)
* add sharded + device_map check
2024-12-19 15:42:20 -10:00
Daniel Regado
3191248472 [WIP] SD3.5 IP-Adapter Pipeline Integration (#9987)
* Added support for single IPAdapter on SD3.5 pipeline



---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-19 14:48:18 -10:00
dg845
648d968cfc Enable Gradient Checkpointing for UNet2DModel (New) (#7201)
* Port UNet2DModel gradient checkpointing code from #6718.


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Vincent Neemie <92559302+VincentNeemie@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-19 14:45:45 -10:00
djm
b756ec6e80 unet's sample_size attribute is to accept tuple(h, w) in StableDiffusionPipeline (#10181) 2024-12-19 22:24:18 +00:00
Aryan
d8825e7697 Fix failing lora tests after HunyuanVideo lora (#10307)
fix
2024-12-20 02:35:41 +05:30
hlky
074798b299 Fix local_files_only for checkpoints with shards (#10294) 2024-12-19 07:04:57 -10:00
Dhruv Nair
3ee966950b Allow Mochi Transformer to be split across multiple GPUs (#10300)
update
2024-12-19 22:34:44 +05:30
Dhruv Nair
9764f229d4 [Single File] Add single file support for Mochi Transformer (#10268)
update
2024-12-19 22:20:40 +05:30
Shenghai Yuan
1826a1e7d3 [LoRA] Support HunyuanVideo (#10254)
* 1217

* 1217

* 1217

* update

* reverse

* add test

* update test

* make style

* update

* make style

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-19 16:22:20 +05:30
hlky
0ed09a17bb Check correct model type is passed to from_pretrained (#10189)
* Check correct model type is passed to `from_pretrained`

* Flax, skip scheduler

* test_wrong_model

* Fix for scheduler

* Update tests/pipelines/test_pipelines.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* EnumMeta

* Flax

* scheduler in expected types

* make

* type object 'CLIPTokenizer' has no attribute '_PipelineFastTests__name'

* support union

* fix typing in kandinsky

* make

* add LCMScheduler

* 'LCMScheduler' object has no attribute 'sigmas'

* tests for wrong scheduler

* make

* update

* warning

* tests

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* import FlaxSchedulerMixin

* skip scheduler

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-19 09:24:52 +00:00
赵三石
2f7a417d1f Update lora_conversion_utils.py (#9980)
x-flux single-blocks lora load

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-18 23:07:50 -10:00
hlky
4450d26b63 Add Flux Control to AutoPipeline (#10292) 2024-12-18 22:28:56 -10:00
Aryan
f781b8c30c Hunyuan VAE tiling fixes and transformer docs (#10295)
* update

* udpate

* fix test
2024-12-19 10:28:10 +05:30
Sayak Paul
9c0e20de61 [chore] Update README_sana.md to update the default model (#10285)
Update README_sana.md to update the default model
2024-12-19 10:24:57 +05:30
Aryan
f35a38725b [tests] remove nullop import checks from lora tests (#10273)
remove nullop imports
2024-12-19 01:19:08 +05:30
Aryan
f66bd3261c Rename Mochi integration test correctly (#10220)
rename integration test
2024-12-18 22:41:23 +05:30
Aryan
c4c99c3907 [tests] Fix broken cuda, nightly and lora tests on main for CogVideoX (#10270)
fix joint pos embedding device
2024-12-18 22:36:08 +05:30
Dhruv Nair
862a7d5038 [Single File] Add single file support for Flux Canny, Depth and Fill (#10288)
update
2024-12-18 19:19:47 +05:30
Dhruv Nair
8304adce2a Make zeroing prompt embeds for Mochi Pipeline configurable (#10284)
update
2024-12-18 18:32:53 +05:30
Dhruv Nair
b389f339ec Fix Doc links in GGUF and Quantization overview docs (#10279)
* update

* Update docs/source/en/quantization/gguf.md

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-18 18:32:36 +05:30
hlky
e222246b4e Fix sigma_last with use_flow_sigmas (#10267) 2024-12-18 12:22:10 +00:00
Andrés Romero
83709d5a06 Flux Control(Depth/Canny) + Inpaint (#10192)
* flux_control_inpaint - failing test_flux_different_prompts

* removing test_flux_different_prompts?

* fix style

* fix from PR comments

* fix style

* reducing guidance_scale in demo

* Update src/diffusers/pipelines/flux/pipeline_flux_control_inpaint.py

Co-authored-by: hlky <hlky@hlky.ac>

* make

* prepare_latents is not copied from

* update docs

* typos

---------

Co-authored-by: affromero <ubuntu@ip-172-31-17-146.ec2.internal>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-18 09:14:16 +00:00
Qin Zhou
8eb73c872a Support pass kwargs to sd3 custom attention processor (#9818)
* Support pass kwargs to sd3 custom attention processor


---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-17 21:58:33 -10:00
Xinyuan Zhao
88b015dc9f Make time_embed_dim of UNet2DModel changeable (#10262) 2024-12-17 21:55:18 -10:00
Sayak Paul
63cdf9c0ba [chore] fix: reamde -> readme (#10276)
fix: reamde -> readme
2024-12-18 10:56:08 +05:30
hlky
0ac52d6f09 Use torch in get_2d_rotary_pos_embed (#10155)
* Use `torch` in `get_2d_rotary_pos_embed`

* Add deprecation
2024-12-17 18:26:52 -10:00
Sayak Paul
ba6fd6eb30 [chore] fix: licensing headers in mochi and ltx (#10275)
fix: licensing header.
2024-12-18 08:43:57 +05:30
Sayak Paul
9408aa2dfc [LoRA] feat: lora support for SANA. (#10234)
* feat: lora support for SANA.

* make fix-copies

* rename test class.

* attention_kwargs -> cross_attention_kwargs.

* Revert "attention_kwargs -> cross_attention_kwargs."

This reverts commit 23433bf9bc.

* exhaust 119 max line limit

* sana lora fine-tuning script.

* readme

* add a note about the supported models.

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

* style

* docs for attention_kwargs.

* remove lora_scale from pag pipeline.

* copy fix

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-18 08:22:31 +05:30
hlky
ec1c7a793f Add set_shift to FlowMatchEulerDiscreteScheduler (#10269) 2024-12-17 21:40:09 +00:00
cjkangme
9c68c945e9 [Community Pipeline] Fix typo that cause error on regional prompting pipeline (#10251)
fix: fix typo that cause error
2024-12-17 21:09:50 +00:00
Steven Liu
2739241ad1 [docs] delete_adapters() (#10245)
delete_adapters

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-17 09:26:45 -08:00
Aryan
1524781b88 [tests] Remove/rename unsupported quantization torchao type (#10263)
update
2024-12-17 21:43:15 +05:30
Dhruv Nair
128b96f369 Fix Mochi Quality Issues (#10033)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update src/diffusers/models/transformers/transformer_mochi.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-17 19:40:00 +05:30
Dhruv Nair
e24941b2a7 [Single File] Add GGUF support (#9964)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update src/diffusers/quantizers/gguf/utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* Update docs/source/en/quantization/gguf.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-17 16:09:37 +05:30
Aryan
f9d5a9324d [docs] Clarify dtypes for Sana (#10248)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-17 13:43:24 +05:30
Aryan
ac86393487 [LoRA] Support LTX Video (#10228)
* add lora support for ltx

* add tests

* fix copied from comments

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-17 12:05:05 +05:30
Aryan
0d96a894a7 Fix copied from comment in Mochi lora loader (#10255)
update
2024-12-17 11:09:57 +05:30
Sayak Paul
6fb94d51cb [chore] add contribution note for lawrence. (#10253)
add contribution note for lawrence.
2024-12-17 09:17:40 +05:30
Steven Liu
7667cfcb41 [docs] Add missing AttnProcessors (#10246)
* attnprocessors

* lora

* make style

* fix

* fix

* sana

* typo
2024-12-16 15:36:26 -08:00
Aryan
9f00c617a0 [core] TorchAO Quantizer (#10009)
* torchao quantizer


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-16 13:35:40 -10:00
Kaiwen Sheng
aafed3f8dd fix downsample bug in MidResTemporalBlock1D (#10250) 2024-12-17 04:55:16 +05:30
hlky
5ed761a6f2 Add ControlNetUnion to AutoPipeline from_pretrained (#10219) 2024-12-16 10:25:08 -10:00
hlky
2f023d7b84 Fix RePaint Scheduler (#10185)
Fix repaint scheduler
2024-12-16 09:38:13 -10:00
hlky
e9a3911b67 Fix checkpoint in CogView3PlusPipeline example (#10211) 2024-12-16 09:31:22 -10:00
hlky
7186bb45f0 Add enable_vae_tiling to AllegroPipeline, fix example (#10212) 2024-12-16 09:31:02 -10:00
hlky
438bd60549 Use non-human subject in StableDiffusion3ControlNetPipeline example (#10214)
* Use non-human subject in StableDiffusion3ControlNetPipeline example

* make style
2024-12-16 09:30:26 -10:00
hlky
87e8157437 Fix ControlNetUnion _callback_tensor_inputs (#10218) 2024-12-16 09:29:12 -10:00
hlky
3f421fe09f Fix use_flow_sigmas (#10242)
use_flow_sigmas copy
2024-12-16 09:27:22 -10:00
hlky
a7d50524dd Add dynamic_shifting to SD3 (#10236)
* Add `dynamic_shifting` to SD3

* calculate_shift

* FlowMatchHeunDiscreteScheduler doesn't support mu

* Inpaint/img2img
2024-12-16 09:25:21 -10:00
hlky
672bd49573 Use t instead of timestep in _apply_perturbed_attention_guidance (#10243) 2024-12-16 09:24:16 -10:00
Sayak Paul
ea893a9ae7 [Docs] add rest of the lora loader mixins to the docs. (#10230)
add rest of the lora loader mixins to the docs.
2024-12-16 08:50:27 -08:00
fancy45daddy
5fb3a98517 Update pipeline_controlnet.py add support for pytorch_xla (#10222)
* Update pipeline_controlnet.py

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-16 09:05:50 +00:00
Aryan
aace1f412b [core] Hunyuan Video (#10136)
* copy transformer

* copy vae

* copy pipeline

* make fix-copies

* refactor; make original code work with diffusers; test latents for comparison generated with this commit

* move rope into pipeline; remove flash attention; refactor

* begin conversion script

* make style

* refactor attention

* refactor

* refactor final layer

* their mlp -> our feedforward

* make style

* add docs

* refactor layer names

* refactor modulation

* cleanup

* refactor norms

* refactor activations

* refactor single blocks attention

* refactor attention processor

* make style

* cleanup a bit

* refactor double transformer block attention

* update mochi attn proc

* use diffusers attention implementation in all modules; checkpoint for all values matching original

* remove helper functions in vae

* refactor upsample

* refactor causal conv

* refactor resnet

* refactor

* refactor

* refactor

* grad checkpointing

* autoencoder test

* fix scaling factor

* refactor clip

* refactor llama text encoding

* add coauthor

Co-Authored-By: "Gregory D. Hunkins" <greg@ollano.com>

* refactor rope; diff: 0.14990234375; reason and fix: create rope grid on cpu and move to device

Note: The following line diverges from original behaviour. We create the grid on the device, whereas
original implementation creates it on CPU and then moves it to device. This results in numerical
differences in layerwise debugging outputs, but visually it is the same.

* use diffusers timesteps embedding; diff: 0.10205078125

* rename

* convert

* update

* add tests for transformer

* add pipeline tests; text encoder 2 is not optional

* fix attention implementation for torch

* add example

* update docs

* update docs

* apply suggestions from review

* refactor vae

* update

* Apply suggestions from code review

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py

Co-authored-by: hlky <hlky@hlky.ac>

* make fix-copies

* update

---------

Co-authored-by: "Gregory D. Hunkins" <greg@ollano.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-16 13:56:18 +05:30
Dhruv Nair
8957324363 Fix format issue in push_test yml (#10235)
update
2024-12-16 12:28:36 +05:30
Sayak Paul
e68092a471 [docs] minor stuff to ltx video docs. (#10229)
minor stuff to ltx video docs.
2024-12-16 12:24:14 +05:30
Sayak Paul
3bf5400a64 Update sana.md with minor corrections (#10232) 2024-12-16 10:26:06 +05:30
Sayak Paul
02cbe972c3 [Tests] update always test pipelines list. (#10143)
update always test pipelines list.
2024-12-16 08:51:55 +05:30
Junsong Chen
5a196e3d46 [Sana] Add Sana, including SanaPipeline, SanaPAGPipeline, LinearAttentionProcessor, Flow-based DPM-sovler and so on. (#9982)
* first add a script for DC-AE;

* DC-AE init

* replace triton with custom implementation

* 1. rename file and remove un-used codes;

* no longer rely on omegaconf and dataclass

* replace custom activation with diffuers activation

* remove dc_ae attention in attention_processor.py

* iinherit from ModelMixin

* inherit from ConfigMixin

* dc-ae reduce to one file

* update downsample and upsample

* clean code

* support DecoderOutput

* remove get_same_padding and val2tuple

* remove autocast and some assert

* update ResBlock

* remove contents within super().__init__

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove opsequential

* update other blocks to support the removal of build_norm

* remove build encoder/decoder project in/out

* remove inheritance of RMSNorm2d from LayerNorm

* remove reset_parameters for RMSNorm2d

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove device and dtype in RMSNorm2d __init__

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove op_list & build_block

* remove build_stage_main

* change file name to autoencoder_dc

* move LiteMLA to attention.py

* align with other vae decode output;

* add DC-AE into init files;

* update

* make quality && make style;

* quick push before dgx disappears again

* update

* make style

* update

* update

* fix

* refactor

* refactor

* refactor

* update

* possibly change to nn.Linear

* refactor

* make fix-copies

* replace vae with ae

* replace get_block_from_block_type to get_block

* replace downsample_block_type from Conv to conv for consistency

* add scaling factors

* incorporate changes for all checkpoints

* make style

* move mla to attention processor file; split qkv conv to linears

* refactor

* add tests

* from original file loader

* add docs

* add standard autoencoder methods

* combine attention processor

* fix tests

* update

* minor fix

* minor fix

* minor fix & in/out shortcut rename

* minor fix

* make style

* fix paper link

* update docs

* update single file loading

* make style

* remove single file loading support; todo for DN6

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add abstract

* 1. add DCAE into diffusers;
2. make style and make quality;

* add DCAE_HF into diffusers;

* bug fixed;

* add SanaPipeline, SanaTransformer2D into diffusers;

* add sanaLinearAttnProcessor2_0;

* first update for SanaTransformer;

* first update for SanaPipeline;

* first success run SanaPipeline;

* model output finally match with original model with the same intput;

* code update;

* code update;

* add a flow dpm-solver scripts

* 🎉[important update]
1. Integrate flow-dpm-sovler into diffusers;
2. finally run successfully on both `FlowMatchEulerDiscreteScheduler` and `FlowDPMSolverMultistepScheduler`;

* 🎉🔧[important update & fix huge bugs!!]
1. add SanaPAGPipeline & several related Sana linear attention operators;
2. `SanaTransformer2DModel` not supports multi-resolution input;
2. fix the multi-scale HW bugs in SanaPipeline and SanaPAGPipeline;
3. fix the flow-dpm-solver set_timestep() init `model_output` and `lower_order_nums` bugs;

* remove prints;

* add convert sana official checkpoint to diffusers format Safetensor.

* Update src/diffusers/models/transformers/sana_transformer_2d.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/transformers/sana_transformer_2d.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/transformers/sana_transformer_2d.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/pag/pipeline_pag_sana.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/transformers/sana_transformer_2d.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/transformers/sana_transformer_2d.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/sana/pipeline_sana.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update Sana for DC-AE's recent commit;

* make style && make quality

* Add StableDiffusion3PAGImg2Img Pipeline + Fix SD3 Unconditional PAG (#9932)

* fix progress bar updates in SD 1.5 PAG Img2Img pipeline

---------

Co-authored-by: Vinh H. Pham <phamvinh257@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make the vae can be None in `__init__` of `SanaPipeline`

* Update src/diffusers/models/transformers/sana_transformer_2d.py

Co-authored-by: hlky <hlky@hlky.ac>

* change the ae related code due to the latest update of DCAE branch;

* change the ae related code due to the latest update of DCAE branch;

* 1. change code based on AutoencoderDC;
2. fix the bug of new GLUMBConv;
3. run success;

* update for solving conversation.

* 1. fix bugs and run convert script success;
2. Downloading ckpt from hub automatically;

* make style && make quality;

* 1. remove un-unsed parameters in init;
2. code update;

* remove test file

* refactor; add docs; add tests; update conversion script

* make style

* make fix-copies

* refactor

* udpate pipelines

* pag tests and refactor

* remove sana pag conversion script

* handle weight casting in conversion script

* update conversion script

* add a processor

* 1. add bf16 pth file path;
2. add complex human instruct in pipeline;

* fix fast \tests

* change gemma-2-2b-it ckpt to a non-gated repo;

* fix the pth path bug in conversion script;

* change grad ckpt to original; make style

* fix the complex_human_instruct bug and typo;

* remove dpmsolver flow scheduler

* apply review suggestions

* change the `FlowMatchEulerDiscreteScheduler` to default `DPMSolverMultistepScheduler` with flow matching scheduler.

* fix the tokenizer.padding_side='right' bug;

* update docs

* make fix-copies

* fix imports

* fix docs

* add integration test

* update docs

* update examples

* fix convert_model_output in schedulers

* fix failing tests

---------

Co-authored-by: Junyu Chen <chenjydl2003@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: chenjy2003 <70215701+chenjy2003@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-16 02:16:56 +05:30
Aryan
22c4f079b1 Test error raised when loading normal and expanding loras together in Flux (#10188)
* add test for expanding lora and normal lora error

* Update tests/lora/test_lora_layers_flux.py

* fix things.

* Update src/diffusers/loaders/peft.py

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-15 21:46:21 +05:30
Junjie
96a9097445 Add offload option in flux-control training (#10225)
* Add offload option in flux-control training

* Update examples/flux-control/train_control_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* modify help message

* fix format

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-15 20:49:17 +05:30
Juan Acevedo
a5f35ee473 add reshape to fix use_memory_efficient_attention in flax (#7918)
Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-14 17:45:45 +01:00
hlky
63243406ba Use torch in get_2d_sincos_pos_embed and get_3d_sincos_pos_embed (#10156)
* Use torch in get_2d_sincos_pos_embed

* Use torch in get_3d_sincos_pos_embed

* get_1d_sincos_pos_embed_from_grid in LatteTransformer3DModel

* deprecate

* move deprecate, make private
2024-12-13 10:13:38 -10:00
Miguel Farinha
6bd30ba748 Allow image resolutions multiple of 8 instead of 64 in SVD pipeline (#6646)
allow resolutions not multiple of 64 in SVD

Co-authored-by: Miguel Farinha <mignha@CSL15958.local>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-13 16:17:15 +00:00
Linoy Tsaban
cef0e3677e [RF inversion community pipeline] add eta_decay (#10199)
* add decay

* add decay

* style
2024-12-13 11:04:26 +02:00
skotapati
ec9bfa9e14 Remove mps workaround for fp16 GELU, which is now supported natively (#10133)
* Remove mps workaround for fp16 GELU, which is now supported natively

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-12 16:05:59 -10:00
Bios
bdbaea8f64 update StableDiffusion3Img2ImgPipeline.add image size validation (#10166)
* update StableDiffusion3Img2ImgPipeline.add image size validation

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-12 12:32:18 -10:00
hlky
e8b65bffa2 refactor StableDiffusionXLControlNetUnion (#10200)
mode
2024-12-12 12:21:27 -10:00
hlky
f2d348d904 Remove negative_* from SDXL callback (#10203)
* Remove `negative_*` from SDXL callback

* Change example and add XL version
2024-12-12 20:58:50 +00:00
Pauline Bailly-Masson
c002724dd5 Ci update tpu (#10197)
* Update nightly_tests.yml for TPU CI

* Update push_tests.yml
2024-12-12 23:54:41 +05:30
Aryan
96c376a5ff [core] LTX Video (#10021)
* transformer

* make style & make fix-copies

* transformer

* add transformer tests

* 80% vae

* make style

* make fix-copies

* fix

* undo cogvideox changes

* update

* update

* match vae

* add docs

* t2v pipeline working; scheduler needs to be checked

* docs

* add pipeline test

* update

* update

* make fix-copies

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update

* copy t2v to i2v pipeline

* update

* apply review suggestions

* update

* make style

* remove framewise encoding/decoding

* pack/unpack latents

* image2video

* update

* make fix-copies

* update

* update

* rope scale fix

* debug layerwise code

* remove debug

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* propagate precision changes to i2v pipeline

* remove downcast

* address review comments

* fix comment

* address review comments

* [Single File] LTX support for loading original weights (#10135)

* from original file mixin for ltx

* undo config mapping fn changes

* update

* add single file to pipelines

* update docs

* Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py

* Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py

* rename classes based on ltx review

* point to original repository for inference

* make style

* resolve conflicts correctly

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-12 16:21:28 +05:30
Sayak Paul
8170dc368d [WIP][Training] Flux Control LoRA training script (#10130)
* update

* add

* update

* add control-lora conversion script; make flux loader handle norms; fix rank calculation assumption

* control lora updates

* remove copied-from

* create separate pipelines for flux control

* make fix-copies

* update docs

* add tests

* fix

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* remove control lora changes

* apply suggestions from review

* Revert "remove control lora changes"

This reverts commit 73cfc519c9.

* update

* update

* improve log messages

* updates.

* updates

* support register_config.

* fix

* fix

* fix

* updates

* updates

* updates

* fix-copies

* fix

* apply suggestions from review

* add tests

* remove conversion script; enable on-the-fly conversion

* bias -> lora_bias.

* fix-copies

* peft.py

* fix lora conversion

* changes

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>

* fix-copies

* updates for tests

* fix

* alpha_pattern.

* add a test for varied lora ranks and alphas.

* revert changes in num_channels_latents = self.transformer.config.in_channels // 8

* revert moe

* add a sanity check on unexpected keys when loading norm layers.

* contro lora.

* fixes

* fixes

* fixes

* tests

* reviewer feedback

* fix

* proper peft version for lora_bias

* fix-copies

* updates

* updates

* updates

* remove debug code

* update docs

* integration tests

* nis

* fuse and unload.

* fix

* add slices.

* more updates.

* button up readme

* train()

* add full fine-tuning version.

* fixes

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

* set_grads_to_none remove.

* readme

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>
2024-12-12 15:34:57 +05:30
Sayak Paul
25f3e91c81 [CI] merge peft pr workflow into the main pr workflow. (#10042)
* merge peft pr workflow into the main pr workflow.

* remove latest

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-12 13:13:09 +05:30
Sayak Paul
a6a18cff5e [LoRA] add a test to ensure set_adapters() and attn kwargs outs match (#10110)
* add a test to ensure set_adapters() and attn kwargs outs match

* remove print

* fix

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* assertFalse.

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-12-12 12:52:50 +05:30
Canva
7db9463e52 Add support for XFormers in SD3 (#8583)
* Add support for XFormers in SD3

* sd3 xformers test

* sd3 xformers quality

* sd3 xformers update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-12 12:05:39 +05:30
Ethan Smith
26e80e0143 fix min-snr implementation (#8466)
* fix min-snr implementation

https://github.com/kohya-ss/sd-scripts/blob/main/library/custom_train_functions.py#L66

* Update train_dreambooth.py

fix variable name mse_loss_weights

* fix divisor

* make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-12 09:55:59 +05:30
hlky
914a585be8 Add ControlNetUnion (#10131)
* ControlNetUnion model
2024-12-11 07:07:50 -10:00
Dhruv Nair
ad40e26515 [Single File] Add single file support for AutoencoderDC (#10183)
* update

* update

* update
2024-12-11 16:57:36 +05:30
SahilCarterr
d041dd5040 Added Error when len(gligen_images ) is not equal to len(gligen_phrases) in StableDiffusionGLIGENTextImagePipeline (#10176)
* added check value error

* fix style
2024-12-11 08:59:41 +00:00
Jonathan Yin
0967593400 Fix Nonetype attribute error when loading multiple Flux loras (#10182)
Fix Nonetype attribute error
2024-12-11 13:33:33 +05:30
Linoy Tsaban
43534a8d1f [community pipeline rf-inversion] - fix example in doc (#10179)
* fix example in doc

* remove redundancies

* change param
2024-12-11 00:30:05 +02:00
Darshil Jariwala
65b98b5da4 Add PAG Support for Stable Diffusion Inpaint Pipeline (#9386)
* using sd inpaint pipeline and sdxl pag inpaint pipeline to add changes

* using sd inpaint pipeline and sdxl pag inpaint pipeline to add changes

* finished the call function

* added auto pipeline

* merging diffusers

* ready to test

* ready to test

* added copied from and removed unnecessary tests

* make style changes

* doc changes

* updating example doc string

* style fix

* init

* adding imports

* quality

* Update src/diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py

* make

* Update tests/pipelines/pag/test_pag_sd_inpaint.py

* slice and size

* slice

---------

Co-authored-by: Darshil Jariwala <darshiljariwala@Darshils-MacBook-Air.local>
Co-authored-by: Darshil Jariwala <jariwala.darshil2002@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-10 21:06:31 +00:00
Aryan
49a9143479 Flux Control LoRA (#9999)
* update


---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-10 09:08:13 -10:00
hlky
4c4b323c1f Use torch in get_3d_rotary_pos_embed/_allegro (#10161)
Use torch in get_3d_rotary_pos_embed/_allegro
2024-12-10 08:56:26 -10:00
Soof Golan
22d3a82651 Improve post-processing performance (#10170)
* Use multiplication instead of division
* Add fast path when denormalizing all or none of the images
2024-12-10 08:07:26 -10:00
Linoy Tsaban
c9e4fab42c [community pipeline] Add RF-inversion Flux pipeline (#9816)
* initial commit

* update denoising loop

* fix scheduling

* style

* fix import

* fixes

* fixes

* style

* fixes

* change invert

* change denoising & check inputs

* shape & timesteps fixes

* timesteps fixes

* style

* remove redundancies

* small changes

* update documentation a bit

* update documentation a bit

* update documentation a bit

* style

* change strength param, remove redundancies

* style

* forward ode loop change

* add inversion progress bar

* fix image_seq_len

* revert to strength but == 1 by default.

* style

* add "copied from..." comments

* credit authors

* make style

* return inversion outputs without self-assigning

* adjust denoising loop to generate regular images if inverted latents are not provided

* adjust denoising loop to generate regular images if inverted latents are not provided

* fix import

* comment

* remove redundant line

* modify comment on ti

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update examples/community/pipeline_flux_rf_inversion.py

Co-authored-by: hlky <hlky@hlky.ac>

* fix syntax error

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-10 12:41:12 +02:00
Aryan
0e50401e34 [Single file] Support revision argument when loading single file config (#10168)
update
2024-12-10 14:12:13 +05:30
Yu Zheng
6131a93b96 support sd3.5 for controlnet example (#9860)
* support sd3.5 in controlnet

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-06 10:59:27 -10:00
Juan Acevedo
3cb7b8628c Update ptxla training (#9864)
* update ptxla example

---------

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Pei Zhang <zpcore@gmail.com>
Co-authored-by: Pei Zhang <piz@google.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pei Zhang <pei@Peis-MacBook-Pro.local>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-06 10:50:13 -10:00
Sayak Paul
fa3a9100be [LoRA] depcrecate save_attn_procs(). (#10126)
depcrecate save_attn_procs().
2024-12-06 10:38:57 -10:00
zhangp365
188bca3084 fixed a dtype bfloat16 bug in torch_utils.py (#10125)
* fixed a dtype bfloat16 bug in torch_utils.py

when generating 1024*1024 image with bfloat16 dtype, there is an exception:
  File "/opt/conda/lib/python3.10/site-packages/diffusers/utils/torch_utils.py", line 107, in fourier_filter
    x_freq = fftn(x, dim=(-2, -1))
RuntimeError: Unsupported dtype BFloat16

* remove whitespace in torch_utils.py

* Update src/diffusers/utils/torch_utils.py

* Update torch_utils.py

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-06 10:36:39 -10:00
Junsong Chen
cd892041e2 [DC-AE] Add the official Deep Compression Autoencoder code(32x,64x,128x compression ratio); (#9708)
* first add a script for DC-AE;

* DC-AE init

* replace triton with custom implementation

* 1. rename file and remove un-used codes;

* no longer rely on omegaconf and dataclass

* replace custom activation with diffuers activation

* remove dc_ae attention in attention_processor.py

* iinherit from ModelMixin

* inherit from ConfigMixin

* dc-ae reduce to one file

* update downsample and upsample

* clean code

* support DecoderOutput

* remove get_same_padding and val2tuple

* remove autocast and some assert

* update ResBlock

* remove contents within super().__init__

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove opsequential

* update other blocks to support the removal of build_norm

* remove build encoder/decoder project in/out

* remove inheritance of RMSNorm2d from LayerNorm

* remove reset_parameters for RMSNorm2d

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove device and dtype in RMSNorm2d __init__

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/dc_ae.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* remove op_list & build_block

* remove build_stage_main

* change file name to autoencoder_dc

* move LiteMLA to attention.py

* align with other vae decode output;

* add DC-AE into init files;

* update

* make quality && make style;

* quick push before dgx disappears again

* update

* make style

* update

* update

* fix

* refactor

* refactor

* refactor

* update

* possibly change to nn.Linear

* refactor

* make fix-copies

* replace vae with ae

* replace get_block_from_block_type to get_block

* replace downsample_block_type from Conv to conv for consistency

* add scaling factors

* incorporate changes for all checkpoints

* make style

* move mla to attention processor file; split qkv conv to linears

* refactor

* add tests

* from original file loader

* add docs

* add standard autoencoder methods

* combine attention processor

* fix tests

* update

* minor fix

* minor fix

* minor fix & in/out shortcut rename

* minor fix

* make style

* fix paper link

* update docs

* update single file loading

* make style

* remove single file loading support; todo for DN6

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add abstract

---------

Co-authored-by: Junyu Chen <chenjydl2003@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: chenjy2003 <70215701+chenjy2003@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-07 01:01:51 +05:30
suzukimain
6394d905da [community] Load Models from Sources like Civitai into Existing Pipelines (#9986)
* Added example of model search.

* Combine processing into one file

* Add parameters for base model

* Bug Fixes

* bug fix

* Create README.md

* Update search_for_civitai_and_HF.py

* Create requirements.txt

* bug fix

* Update README.md

* bug fix

* Correction of typos

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply the changes

* Replace search_for_civitai_and_HF.py with pipeline_easy.py

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update examples/model_search/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update README.md

* Organize the table of parameters

* Update README.md

* Update README.md

* Update README.md

* make style

* Fixing the style of pipeline

* Fix pipeline style

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-06 07:48:45 -08:00
Aryan
18f9b99088 Remove duplicate checks for len(generator) != batch_size when generator is a list (#10134)
remove duplicate checks
2024-12-06 11:29:10 +00:00
Aritra Roy Gosthipaty
bf64b32652 [Guide] Quantize your Diffusion Models with bnb (#10012)
* chore: initial draft

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* chore: link in place

* chore: review suggestions

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* chore: review suggestions

* Update docs/source/en/quantization/bitsandbytes.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* review suggestions

* chore: review suggestions

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* adding same changes to 4 bit section

* review suggestions

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-12-05 13:54:03 -08:00
SahilCarterr
3335e2262d [FIX] Bug in FluxPosEmbed (#10115)
* Fix get_1d_rotary_pos_embed in embedding.py

* Update embeddings.py

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-05 13:12:48 +00:00
Sayak Paul
65ab1052b8 [Tests] xfail incompatible SD configs. (#10127)
* xfail incompatible SD configs.

* fix
2024-12-05 15:11:52 +05:30
Sayak Paul
40fc389c44 [Tests] fix condition argument in xfail. (#10099)
* fix condition argument in xfail.

* revert init changes.
2024-12-05 10:13:45 +05:30
Aryan
98d0cd5778 Use torch.device instead of current device index for BnB quantizer (#10069)
* update

* apply review suggestion

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-05 08:05:24 +05:30
Steven Liu
0d11ab26c4 [docs] load_lora_adapter (#10119)
* load_lora_adapter

* save

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-05 08:00:03 +05:30
YiYi Xu
243d9a4986 pass attn mask arg for flux (#10122) 2024-12-04 14:22:36 -10:00
linjiapro
96220390a2 Fix a bug for SD35 control net training and improve control net block index (#10065)
* wip

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-04 14:20:05 -10:00
zhangp365
73dac0c49e Fix a bug in the state dict judgment in ip_adapter.py. (#10095)
* fix a judging state dict bug in ip_adapter.py

* make

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-04 14:03:43 -10:00
Linoy Tsaban
04bba38725 [Flux Redux] add prompt & multiple image input (#10056)
* add multiple prompts to flux redux

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-04 08:48:32 -10:00
hlky
a2d424eb2e Add sigmas to pipelines using FlowMatch (#10116) 2024-12-04 08:42:47 -10:00
Parag Ekbote
25ddc7945b Fix Broken Links in ReadMe (#10117)
Update broken links in ReadME.
2024-12-04 09:04:31 -08:00
Sayak Paul
e8da75dff5 [bitsandbytes] allow directly CUDA placements of pipelines loaded with bnb components (#9840)
* allow device placement when using bnb quantization.

* warning.

* tests

* fixes

* docs.

* require accelerate version.

* remove print.

* revert to()

* tests

* fixes

* fix: missing AutoencoderKL lora adapter (#9807)

* fix: missing AutoencoderKL lora adapter

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fixes

* fix condition test

* updates

* updates

* remove is_offloaded.

* fixes

* better

* empty

---------

Co-authored-by: Emmanuel Benazera <emmanuel.benazera@jolibrain.com>
2024-12-04 22:27:43 +05:30
hlky
8a450c3da0 Fix pipeline_stable_audio formating (#10114) 2024-12-04 17:47:42 +05:30
fancy45daddy
9ff72433fa add torch_xla support in pipeline_stable_audio.py (#10109)
Update pipeline_stable_audio.py
2024-12-04 11:24:22 +00:00
Sayak Paul
c1926cef6b [tests] refactor vae tests (#9808)
* add: autoencoderkl tests

* autoencodertiny.

* fix

* asymmetric autoencoder.

* more

* integration tests for stable audio decoder.

* consistency decoder vae tests

* remove grad check from consistency decoder.

* cog

* bye test_models_vae.py

* fix

* fix

* remove allegro

* fixes

* fixes

* fixes

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-04 15:58:36 +05:30
Ivan Skorokhodov
8421c1461b Use parameters + buffers when deciding upscale_dtype (#9882)
Sometimes, the decoder might lack parameters and only buffers (e.g., this happens when we manually need to convert all the parameters to buffers — e.g. to avoid packing fp16 and fp32 parameters with FSDP)
2024-12-03 21:20:11 -10:00
hlky
cfdeebd4a8 Test skip_guidance_layers in SD3 pipeline (#10102)
* Test `skip_guidance_layers` in pipelines

* Move to test_pipeline_stable_diffusion_3
2024-12-03 14:28:31 -10:00
hlky
6a51427b6a Fix multi-prompt inference (#10103)
* Fix multi-prompt inference

Fix generation of multiple images with multiple prompts, e.g len(prompts)>1, num_images_per_prompt>1

* make

* fix copies

---------

Co-authored-by: Nikita Balabin <nikita@mxl.ru>
2024-12-03 13:58:31 -10:00
Anand Kumar
5effcd3e64 [Bug fix] "previous_timestep()" in DDPM scheduling compatible with "trailing" and "linspace" options (#9384)
* Update scheduling_ddpm.py

* fix copies

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-03 13:57:52 -10:00
lsb
619b9658e2 Avoid compiling a progress bar. (#10098)
* Avoid creating a progress bar when it is disabled.

This is useful when exporting a pipeline, and allows a compiler to avoid trying to compile away tqdm.

* Prevent the PyTorch compiler from compiling progress bars.

* Update pipeline_utils.py
2024-12-03 11:54:32 -10:00
aihao
b58f67f2d5 update (#7067)
* add data_dir parameter to load_dataset

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-03 11:26:47 -10:00
StAlKeR7779
8ac6de963c DPM++ third order fixes (#9104)
* Fix wrong output on 3n-1 steps count

* Add sde handling to 3 order

* make

* copies

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-03 11:21:37 -10:00
Parag Ekbote
2be66e6aa0 Fix Broken Link in Optimization Docs (#10105)
Update broken link.
2024-12-03 10:23:35 -08:00
Parag Ekbote
cf258948b2 Notebooks for Community Scripts-4 (#10094)
* Add Diffuser Notebooks for Community Scripts.

* Add missing link.

* Styling Improvement.
2024-12-03 10:23:00 -08:00
Benjamin Paine
63b631f383 Add StableDiffusion3PAGImg2Img Pipeline + Fix SD3 Unconditional PAG (#9932)
* fix progress bar updates in SD 1.5 PAG Img2Img pipeline



---------

Co-authored-by: Vinh H. Pham <phamvinh257@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-02 21:39:47 -10:00
Pedro Cuenca
acf79b3487 Don't stale close-to-merge (#10096)
Re: https://github.com/huggingface/diffusers/discussions/10046#discussioncomment-11443466
2024-12-03 13:00:01 +05:30
DTG
fc72e0f261 Fix some documentation in ./src/diffusers/models/embeddings.py for demo (#9579)
* Fix some documentation in ./src/diffusers/models/embeddings.py as demonstration.


---------

Co-authored-by: DaAccursed05 <68813178+DaAccursed05@users.noreply.github.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-02 17:42:52 -10:00
Lucain
0763a7edf4 Let server decide default repo visibility (#10047) 2024-12-02 17:15:46 -10:00
Emmanuel Benazera
963ffca434 fix: missing AutoencoderKL lora adapter (#9807)
* fix: missing AutoencoderKL lora adapter

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-02 17:10:20 -10:00
hlky
30f2e9bd20 Convert sigmas to np.array in FlowMatch set_timesteps (#10088) 2024-12-02 14:18:40 -10:00
Pedro Cuenca
2312b27f79 Interpolate fix on cuda for large output tensors (#10067)
* Workaround for upscale with large output tensors.

Fixes #10040.

* Fix scale when output_size is given

* Style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-02 13:33:56 -10:00
Dhruv Nair
6db33337a4 [Single File] Pass token when fetching interpreted config (#10082)
update
2024-12-02 11:55:36 -10:00
hlky
beb856685d Fix num_images_per_prompt>1 with Skip Guidance Layers in StableDiffusion3Pipeline (#10086) 2024-12-02 21:43:03 +00:00
Dhruv Nair
a9d3f6c359 [Single File] Fix SD3.5 single file loading (#10077)
update
2024-12-02 11:16:16 -10:00
YiYi Xu
cd344393e2 fix offloading for sd3.5 controlnets (#10072)
* add
2024-12-02 10:11:25 -10:00
ChG
c44fba8899 fix link in the docs (#10058)
* fix link in the docs

* fix same issue for ko
2024-12-02 11:45:12 -08:00
Parag Ekbote
922c5f5c3c Fixed Nits in Evaluation Docs (#10063)
Minor fixes and script improvement in evaluation
docs.
2024-12-02 10:50:00 -08:00
hlky
8d386f7990 Add sigmas to Flux pipelines (#10081) 2024-12-02 08:16:47 -10:00
Sayak Paul
827b6c25f9 [CI] Add quantization (#9832)
* add quantization to nightly CI.

* prep.

* fix lib name.

* remove deps that are not needed.

* fix slice.
2024-12-02 14:53:43 +05:30
SahilCarterr
784b351f32 [Fix] Syntax error (#10068)
fix syntax error
2024-12-02 11:28:00 +05:30
Sayak Paul
c96bfa5c80 [Mochi-1] ensuring to compute the fourier features in FP32 in Mochi encoder (#10031)
compute fourier features in FP32.
2024-11-29 14:15:00 +05:30
Fanli Lin
6b288ec44d make pipelines tests device-agnostic (part2) (#9400)
* enable on xpu

* add 1 more

* add one more

* enable more

* add 1 more

* add more

* enable 1

* enable more cases

* enable

* enable

* update comment

* one more

* enable 1

* add more cases

* enable xpu

* add one more caswe

* add more cases

* add 1

* add more

* add more cases

* add case

* enable

* add more

* add more

* add more

* enbale more

* add more

* update code

* update test marker

* add skip back

* update comment

* remove single files

* remove

* style

* add

* revert

* reformat

* enable

* enable esingle g

* add 2 more

* update decorator

* update

* update

* update

* Update tests/pipelines/deepfloyd_if/test_if.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* update float16

* no unitest.skipt

* update

* apply style check

* adapt style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-29 11:33:41 +05:30
Álvaro Somoza
fdec8bd675 Change image_gen_aux repository URL (#10048)
change image_gen_aux repo url
2024-11-28 12:57:55 -05:00
Dimitri Barbot
069186fac5 Add sdxl controlnet reference community pipeline (#9893)
* Add reference_attn & reference_adain support for sdxl with other controlnet

* Update README.md

* Update README.md by replacing human example with a cat one

Replace human example with a cat one

* Replace default human example with a cat one

* Use example images from huggingface documentation-images repository

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-28 17:12:07 +05:30
cjkangme
69c83d6eed [Community Pipeline] Add some feature for regional prompting pipeline (#9874)
* [Fix] fix bugs of  regional_prompting pipeline

* [Feat] add base prompt feature

* [Fix] fix __init__ pipeline error

* [Fix] delete unused args

* [Fix] improve string handling

* [Docs] docs to use_base in regional_prompting

* make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-28 16:54:23 +05:30
Dimitri Barbot
e44fc75acb Update sdxl reference pipeline to latest sdxl pipeline (#9938)
* Update sdxl reference community pipeline

* Update README.md

Add example images.

* Style & quality

* Use example images from huggingface documentation-images repository

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-28 16:34:56 +05:30
hlky
e47cc1fc1a Add beta, exponential and karras sigmas to FlowMatchEulerDiscreteScheduler (#10001)
Add beta, exponential and karras sigmas to FlowMatchEuler
2024-11-27 14:24:35 -10:00
YiYi Xu
75bd1e83cb Sd35 controlnet (#10020)
* add model/pipeline

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-27 10:44:48 -10:00
Parag Ekbote
8d477daed5 Notebooks for Community Scripts-3 (#10032)
* Add Notebooks for Community Scripts
in  ReadME.

* Minor Script Improvement.
2024-11-26 23:05:45 -10:00
Aryan
ad5ecd1251 [docs] Fix CogVideoX table (#10008)
* fix

* fix
2024-11-26 09:14:14 -08:00
SkyCol
074e12358b Add prompt about wandb in examples/dreambooth/readme. (#10014)
Add files via upload
2024-11-25 18:42:06 +05:30
Sayak Paul
047bf49291 [Docs] add: missing pipelines from the spec. (#10005)
add: missing pipelines from the spec.
2024-11-25 00:27:59 -10:00
Linoy Tsaban
c4b5d2ff6b [SD3 dreambooth lora] smol fix to checkpoint saving (#9993)
* smol change to fix checkpoint saving & resuming (as done in train_dreambooth_sd3.py)

* style

* modify comment to explain reasoning behind hidden size check
2024-11-24 18:51:06 +02:00
Aryan
7ac6e286ee Flux Fill, Canny, Depth, Redux (#9985)
* update

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-23 01:41:25 -10:00
hlky
b5fd6f13f5 ControlNet from_single_file when already converted (#9978)
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-22 17:52:52 +05:30
Fanli Lin
64b3e0f539 make pipelines tests device-agnostic (part1) (#9399)
* enable on xpu

* add 1 more

* add one more

* enable more

* add 1 more

* add more

* enable 1

* enable more cases

* enable

* enable

* update comment

* one more

* enable 1

* add more cases

* enable xpu

* add one more caswe

* add more cases

* add 1

* add more

* add more cases

* add case

* enable

* add more

* add more

* add more

* enbale more

* add more

* update code

* update test marker

* add skip back

* update comment

* remove single files

* remove

* style

* add

* revert

* reformat

* update decorator

* update

* update

* update

* Update tests/pipelines/deepfloyd_if/test_if.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update tests/pipelines/animatediff/test_animatediff_controlnet.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* update float16

* no unitest.skipt

* update

* apply style check

* reapply format

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-22 15:32:54 +05:30
Sayak Paul
2e86a3f023 [Tests] skip nan lora tests on PyTorch 2.5.1 CPU. (#9975)
* skip nan lora tests on PyTorch 2.5.1 CPU.

* cog

* use xfail

* correct xfail

* add condition

* tests
2024-11-22 12:45:21 +05:30
Aryan
cd6ca9df29 Fix prepare latent image ids and vae sample generators for flux (#9981)
* fix

* update expected slice
2024-11-21 13:02:31 +05:30
YiYi Xu
e564abe292 fix controlnet module refactor (#9968)
* fix
2024-11-20 13:11:39 -10:00
raulmosa
3139d39fa7 Update handle single blocks on _convert_xlabs_flux_lora_to_diffusers (#9915)
* Update handle single blocks on _convert_xlabs_flux_lora_to_diffusers to fix bug on updating keys and old_state_dict


---------

Co-authored-by: raul_ar <raul.moreno.salinas@autoretouch.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-20 12:53:20 -10:00
linjiapro
12358622e5 Improve control net block index for sd3 (#9758)
* improve control net index

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-11-20 12:45:18 -10:00
Sayak Paul
805aa93789 [LoRA] enable LoRA for Mochi-1 (#9943)
* feat: add lora support to Mochi-1.
2024-11-20 12:07:04 -10:00
Dhruv Nair
f6f7afa1d7 Flux latents fix (#9929)
* update

* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-20 17:30:17 +05:30
hlky
637e2302ac Fix beta and exponential sigmas + add tests (#9954)
* Fix beta and exponential sigmas + add tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-20 01:20:34 -10:00
Bagheera
99c0483b67 add skip_layers argument to SD3 transformer model class (#9880)
* add skip_layers argument to SD3 transformer model class

* add unit test for skip_layers in stable diffusion 3

* sd3: pipeline should support skip layer guidance

* up

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-11-19 15:22:54 -05:00
Parag Ekbote
cc7d88f247 Move IP Adapter Scripts to research project (#9960)
* Move files to research-projects.

* docs: add IP Adapter training instructions

* Delete venv

* Update examples/ip_adapter/tutorial_train_sdxl.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Cherry-picked commits and re-moved files
to research_projects.

* make style.

* Update toctree and delete ip_adapter.

* Nit Fix

* Fix nit.

* Fix nit.

* Create training script for single GPU and set
model format to .safetensors

* Add sample inference script and restore _toctree

* Restore toctree.yaml

* fix spacing.

* Update toctree.yaml

---------

Co-authored-by: AMohamedAakhil <a.aakhilmohamed@gmail.com>
Co-authored-by: BootesVoid <78485654+AMohamedAakhil@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-19 10:37:22 -08:00
Dhruv Nair
ea40933f36 [CI] Unpin torch<2.5 in CI (#9961)
* update

* update
2024-11-19 18:50:46 +05:30
Aryan
0583a8d12a Make CogVideoX RoPE implementation consistent (#9963)
* update cogvideox rope implementation

* apply suggestions from review
2024-11-19 17:40:38 +05:30
Sayak Paul
7d0b9c4d4e [LoRA] feat: save_lora_adapter() (#9862)
* feat: save_lora_adapter.
2024-11-18 21:03:38 -10:00
Linoy Tsaban
acf479bded [advanced flux training] bug fix + reduce memory cost as in #9829 (#9838)
* memory improvement as done here: https://github.com/huggingface/diffusers/pull/9829

* fix bug

* fix bug

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-19 08:43:36 +05:30
Parag Ekbote
03bf77c4af Notebooks for Community Scripts-2 (#9952)
4 Notebooks for Community Scripts and minor
script improvements.
2024-11-18 12:58:57 -08:00
Yuxuan.Zhang
3b2830618d CogVideoX 1.5 (#9877)
* CogVideoX1_1PatchEmbed test

* 1360 * 768

* refactor

* make style

* update docs

* add modeling tests for cogvideox 1.5

* update

* make fix-copies

* add ofs embed(for convert)

* add ofs embed(for convert)

* more resolution for cogvideox1.5-5b-i2v

* use even number of latent frames only

* update pipeline implementations

* make style

* set patch_size_t as None by default

* #skip frames 0

* refactor

* make style

* update docs

* fix ofs_embed

* update docs

* invert_scale_latents

* update

* fix

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/transformers/cogvideox_transformer_3d.py

* update conversion script

* remove copied from

* fix test

* Update docs/source/en/api/pipelines/cogvideox.md

* Update docs/source/en/api/pipelines/cogvideox.md

* Update docs/source/en/api/pipelines/cogvideox.md

* Update docs/source/en/api/pipelines/cogvideox.md

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-11-19 00:56:34 +05:30
Grant Sherrick
c3c94fe71b Add server example (#9918)
* Add server example.

* Minor updates to README.

* Add fixes after local testing.

* Apply suggestions from code review

Updates to README from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* More doc updates.

* Maybe this will work to build the docs correctly?

* Fix style issues.

* Fix toc.

* Minor reformatting.

* Move docs to proper loc.

* Fix missing tick.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Sync docs changes back to README.

* Very minor update to docs to add space.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-11-18 09:26:13 -08:00
Parag Ekbote
365a938884 Fixed Nits in Docs and Example Script (#9940)
Fixed nits in docs and example script.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-18 09:03:22 -08:00
ちくわぶ
345907f32d Add all AttnProcessor classes in AttentionProcessor type (#9909)
Add all AttnProcessor in `AttentionProcessor` type
2024-11-18 16:18:12 +09:00
_
07d0fbf3ec Correct pipeline_output.py to the type Mochi (#9945)
Correct pipeline_output.py
2024-11-18 08:40:06 +09:00
Heavenn
1d2204d3a0 Modify apply_overlay for inpainting with padding_mask_crop (Inpainting area: "Only Masked") (#8793)
* Modify apply_overlay for inpainting

* style

---------

Co-authored-by: root <root@debian>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-11-17 12:14:13 +09:00
高佳宝
d38c50c8dd Update ip_adapter.py (#8882)
update comments of load_ip_adapter function
2024-11-17 06:54:13 +09:00
Parag Ekbote
e255920719 Move Wuerstchen Dreambooth to research_projects (#9935)
update file paths to research_projects folder.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-16 18:56:16 +05:30
Pakkapon Phongthawee
40ab1c03f3 add depth controlnet sd3 pre-trained checkpoints to docs (#9937) 2024-11-16 18:36:01 +05:30
Sam
5c94937dc7 Update pipeline_flux_img2img.py (#9928)
* Update pipeline_flux_img2img.py

Added FromSingleFileMixin to this pipeline loader like the other FLUX pipelines.

* Update pipeline_flux_img2img.py

typo

* modified:   src/diffusers/pipelines/flux/pipeline_flux_img2img.py
2024-11-14 17:58:14 -03:00
Benjamin Paine
d74483c47a Fix Progress Bar Updates in SD 1.5 PAG Img2Img pipeline (#9925)
fix progress bar updates in SD 1.5 PAG Img2Img pipeline
2024-11-14 16:40:20 -03:00
Parag Ekbote
1dbd26fa23 Notebooks for Community Scripts Examples (#9905)
* Add Notebooks on Community Scripts
2024-11-12 14:08:48 -10:00
Eliseu Silva
dac623b59f Feature IP Adapter Xformers Attention Processor (#9881)
* Feature IP Adapter Xformers Attention Processor: this fix error loading incorrect attention processor when setting Xformers attn after load ip adapter scale, issues: #8863 #8872
2024-11-08 15:40:51 -10:00
Sayak Paul
8d6dc2be5d Revert "[Flux] reduce explicit device transfers and typecasting in flux." (#9896)
Revert "[Flux] reduce explicit device transfers and typecasting in flux. (#9817)"

This reverts commit 5588725e8e.
2024-11-08 13:35:38 -10:00
Sayak Paul
d720b2132e [Advanced LoRA v1.5] fix: gradient unscaling problem (#7018)
fix: gradient unscaling problem

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-11-08 19:31:43 -04:00
SahilCarterr
9cc96a64f1 [FIX] Fix TypeError in DreamBooth SDXL when use_dora is False (#9879)
* fix use_dora

* fix style and quality

* fix use_dora with peft version

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-08 19:09:24 -04:00
Michael Tkachuk
5b972fbd6a Enabling gradient checkpointing in eval() mode (#9878)
* refactored
2024-11-08 09:03:26 -10:00
SahilCarterr
0be52c07d6 [fix] Replaced shutil.copy with shutil.copyfile (#9885)
fix shutil.copy
2024-11-08 08:32:32 -10:00
Dhruv Nair
1b392544c7 Improve downloads of sharded variants (#9869)
* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-08 17:49:00 +05:30
Sayak Paul
5588725e8e [Flux] reduce explicit device transfers and typecasting in flux. (#9817)
reduce explicit device transfers and typecasting in flux.
2024-11-06 22:33:39 -04:00
Sayak Paul
ded3db164b [Core] introduce controlnet module (#8768)
* move vae flax module.

* controlnet module.

* prepare for PR.

* revert a commit

* gracefully deprecate controlnet deps.

* fix

* fix doc path

* fix-copies

* fix path

* style

* style

* conflicts

* fix

* fix-copies

* sparsectrl.

* updates

* fix

* updates

* updates

* updates

* fix

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-11-06 22:08:55 -04:00
SahilCarterr
76b7d86a9a Updated _encode_prompt_with_clip and encode_prompt in train_dreamboth_sd3 (#9800)
* updated encode prompt and clip encod prompt


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-05 15:08:50 -10:00
Sookwan Han
e2b3c248d8 Add new community pipeline for 'Adaptive Mask Inpainting', introduced in [ECCV2024] ComA (#9228)
* Add new community pipeline for 'Adaptive Mask Inpainting', introduced in [ECCV2024] Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models
2024-11-05 15:05:58 -10:00
Vahid Askari
a03bf4a531 Fix: Remove duplicated comma in distributed_inference.md (#9868)
Fix: Remove duplicated comma

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-05 23:37:11 +01:00
SahilCarterr
08ac5cbc7f [Fix] Test of sd3 lora (#9843)
* fix test

* fix test asser

* fix format

* Update test_lora_layers_sd3.py
2024-11-05 11:05:20 -10:00
Aryan
3f329a426a [core] Mochi T2V (#9769)
* update

* udpate

* update transformer

* make style

* fix

* add conversion script

* update

* fix

* update

* fix

* update

* fixes

* make style

* update

* update

* update

* init

* update

* update

* add

* up

* up

* up

* update

* mochi transformer

* remove original implementation

* make style

* update inits

* update conversion script

* docs

* Update src/diffusers/pipelines/mochi/pipeline_mochi.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/pipelines/mochi/pipeline_mochi.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* fix docs

* pipeline fixes

* make style

* invert sigmas in scheduler; fix pipeline

* fix pipeline num_frames

* flip proj and gate in swiglu

* make style

* fix

* make style

* fix tests

* latent mean and std fix

* update

* cherry-pick 1069d210e1

* remove additional sigma already handled by flow match scheduler

* fix

* remove hardcoded value

* replace conv1x1 with linear

* Update src/diffusers/pipelines/mochi/pipeline_mochi.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* framewise decoding and conv_cache

* make style

* Apply suggestions from code review

* mochi vae encoder changes

* rebase correctly

* Update scripts/convert_mochi_to_diffusers.py

* fix tests

* fixes

* make style

* update

* make style

* update

* add framewise and tiled encoding

* make style

* make original vae implementation behaviour the default; note: framewise encoding does not work

* remove framewise encoding implementation due to presence of attn layers

* fight test 1

* fight test 2

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-11-05 20:33:41 +05:30
RogerSinghChugh
a3cc641f78 Refac training utils.py (#9815)
* Refac training utils.py

* quality

---------

Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2024-11-04 09:40:44 -08:00
Sayak Paul
13e8fdecda [feat] add load_lora_adapter() for compatible models (#9712)
* add first draft.

* fix

* updates.

* updates.

* updates

* updates

* updates.

* fix-copies

* lora constants.

* add tests

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* docstrings.

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-11-02 09:50:39 +05:30
Dorsa Rohani
c10f875ff0 Add Diffusion Policy for Reinforcement Learning (#9824)
* enable cpu ability

* model creation + comprehensive testing

* training + tests

* all tests working

* remove unneeded files + clarify docs

* update train tests

* update readme.md

* remove data from gitignore

* undo cpu enabled option

* Update README.md

* update readme

* code quality fixes

* diffusion policy example

* update readme

* add pretrained model weights + doc

* add comment

* add documentation

* add docstrings

* update comments

* update readme

* fix code quality

* Update examples/reinforcement_learning/README.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/reinforcement_learning/diffusion_policy.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* suggestions + safe globals for weights_only=True

* suggestions + safe weights loading

* fix code quality

* reformat file

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-02 09:18:44 +05:30
Leo Jiang
a98a839de7 Reduce Memory Cost in Flux Training (#9829)
* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

* Reduce memory cost for flux training process

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-01 12:19:32 +05:30
Boseong Jeon
3deed729e6 Handling mixed precision for dreambooth flux lora training (#9565)
Handling mixed precision and add unwarp

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-11-01 10:16:05 +05:30
ScilenceForest
7ffbc2525f Update train_controlnet_flux.py,Fix size mismatch issue in validation (#9679)
Update train_controlnet_flux.py

Fix the problem of inconsistency between size of image and size of validation_image which causes np.stack to report error.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-01 10:15:10 +05:30
SahilCarterr
f55f1f7ee5 Fixes EMAModel "from_pretrained" method (#9779)
* fix from_pretrained and added test

* make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-11-01 09:20:19 +05:30
Leo Jiang
9dcac83057 NPU Adaption for FLUX (#9751)
* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

* NPU implementation for FLUX

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
2024-11-01 09:03:15 +05:30
Abhipsha Das
c75431843f [Model Card] standardize advanced diffusion training sd15 lora (#7613)
* modelcard generation edit

* add missed tag

* fix param name

* fix var

* change str to dict

* add use_dora check

* use correct tags for lora

* make style && make quality

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-11-01 03:23:00 +05:30
YiYi Xu
d2e5cb3c10 Revert "[LoRA] fix: lora loading when using with a device_mapped mode… (#9823)
Revert "[LoRA] fix: lora loading when using with a device_mapped model. (#9449)"

This reverts commit 41e4779d98.
2024-10-31 08:19:32 -10:00
Sayak Paul
41e4779d98 [LoRA] fix: lora loading when using with a device_mapped model. (#9449)
* fix: lora loading when using with a device_mapped model.

* better attibutung

* empty

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* minors

* better error messages.

* fix-copies

* add: tests, docs.

* add hardware note.

* quality

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixes

* skip properly.

* fixes

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-31 21:17:41 +05:30
Sayak Paul
ff182ad669 [CI] add a big GPU marker to run memory-intensive tests separately on CI (#9691)
* add a marker for big gpu tests

* update

* trigger on PRs temporarily.

* onnx

* fix

* total memory

* fixes

* reduce memory threshold.

* bigger gpu

* empty

* g6e

* Apply suggestions from code review

* address comments.

* fix

* fix

* fix

* fix

* fix

* okay

* further reduce.

* updates

* remove

* updates

* updates

* updates

* updates

* fixes

* fixes

* updates.

* fix

* workflow fixes.

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-31 18:44:34 +05:30
Sayak Paul
4adf6affbb [Tests] clean up and refactor gradient checkpointing tests (#9494)
* check.

* fixes

* fixes

* updates

* fixes

* fixes
2024-10-31 18:24:19 +05:30
Sayak Paul
8ce37ab055 [training] use the lr when using 8bit adam. (#9796)
* use the lr when using 8bit adam.

* remove lr as we pack it in params_to_optimize.

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-10-31 15:51:42 +05:30
Sayak Paul
09b8aebd67 [training] fixes to the quantization training script and add AdEMAMix optimizer as an option (#9806)
* fixes

* more fixes.
2024-10-31 15:46:00 +05:30
Sayak Paul
c1d4a0dded [CI] add new runner for testing (#9699)
new runner.
2024-10-31 14:58:05 +05:30
Aryan
9a92b8177c Allegro VAE fix (#9811)
fix
2024-10-30 18:04:15 +05:30
Aryan
0d1d267b12 [core] Allegro T2V (#9736)
* update

* refactor transformer part 1

* refactor part 2

* refactor part 3

* make style

* refactor part 4; modeling tests

* make style

* refactor part 5

* refactor part 6

* gradient checkpointing

* pipeline tests (broken atm)

* update

* add coauthor

Co-Authored-By: Huan Yang <hyang@fastmail.com>

* refactor part 7

* add docs

* make style

* add coauthor

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

* make fix-copies

* undo unrelated change

* revert changes to embeddings, normalization, transformer

* refactor part 8

* make style

* refactor part 9

* make style

* fix

* apply suggestions from review

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update example

* remove attention mask for self-attention

* update

* copied from

* update

* update

---------

Co-authored-by: Huan Yang <hyang@fastmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-29 13:14:36 +05:30
Raul Ciotescu
c5376c5695 adds the pipeline for pixart alpha controlnet (#8857)
* add the controlnet pipeline for pixart alpha

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: junsongc <cjs1020440147@icloud.com>
2024-10-28 08:48:04 -10:00
Linoy Tsaban
743a5697f2 [flux dreambooth lora training] make LoRA target modules configurable + small bug fix (#9646)
* make lora target modules configurable and change the default

* style

* make lora target modules configurable and change the default

* fix bug when using prodigy and training te

* fix mixed precision training as  proposed in https://github.com/huggingface/diffusers/pull/9565 for full dreambooth as well

* add test and notes

* style

* address sayaks comments

* style

* fix test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-28 17:27:41 +02:00
Linoy Tsaban
db5b6a9630 [SD 3.5 Dreambooth LoRA] support configurable training block & layers (#9762)
* configurable layers

* configurable layers

* update README

* style

* add test

* style

* add layer test, update readme, add nargs

* readme

* test style

* remove print, change nargs

* test arg change

* style

* revert nargs 2/2

* address sayaks comments

* style

* address sayaks comments
2024-10-28 16:07:54 +02:00
Biswaroop
493aa74312 [Fix] remove setting lr for T5 text encoder when using prodigy in flux dreambooth lora script (#9473)
* fix: removed setting of text encoder lr for T5 as it's not being tuned

* fix: removed setting of text encoder lr for T5 as it's not being tuned

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-10-28 13:07:30 +02:00
Vinh H. Pham
3b5b1c5698 [Fix] train_dreambooth_lora_flux_advanced ValueError: unexpected save model: <class 'transformers.models.t5.modeling_t5.T5EncoderModel'> (#9777)
fix save state te T5
2024-10-28 12:52:27 +02:00
Sayak Paul
fddbab7993 [research_projects] Update README.md to include a note about NF5 T5-xxl (#9775)
Update README.md
2024-10-26 22:13:03 +09:00
SahilCarterr
298ab6eb01 Added Support of Xlabs controlnet to FluxControlNetInpaintPipeline (#9770)
* added xlabs support
2024-10-25 11:50:55 -10:00
Ina
73b59f5203 [refactor] enhance readability of flux related pipelines (#9711)
* flux pipline: readability enhancement.
2024-10-25 11:01:51 -10:00
Jingya HUANG
52d4449810 Add a doc for AWS Neuron in Diffusers (#9766)
* start draft

* add doc

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* bref intro of ON

* Update docs/source/en/optimization/neuron.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-25 08:24:58 -07:00
Sayak Paul
df073ba137 [research_projects] add flux training script with quantization (#9754)
* add flux training script with quantization

* remove exclamation
2024-10-26 00:07:57 +09:00
Leo Jiang
94643fac8a [bugfix] bugfix for npu free memory (#9640)
* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* Improve NPU performance

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

* [bugfix] bugfix for npu free memory

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-25 23:35:19 +09:00
Zhiyang Shen
435f6b7e47 [Docs] fix docstring typo in SD3 pipeline (#9765)
* fix docstring typo in SD3 pipeline

* fix docstring typo in SD3 pipeline
2024-10-25 16:33:35 +05:30
Sayak Paul
1d1e1a2888 Some minor updates to the nightly and push workflows (#9759)
* move lora integration tests to nightly./

* remove slow marker in the workflow where not needed.
2024-10-24 23:49:09 +09:00
Rachit Shah
24c7d578ba config attribute not foud error for FluxImagetoImage Pipeline for multi controlnet solved (#9586)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-23 10:33:29 -10:00
Linoy Tsaban
bfa0aa4ff2 [SD3-5 dreambooth lora] update model cards (#9749)
* improve readme

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-23 23:16:53 +03:00
Álvaro Somoza
ab1b7b2080 [Official callbacks] SDXL Controlnet CFG Cutoff (#9311)
* initial proposal

* style
2024-10-23 13:21:56 -03:00
Fanli Lin
9366c8f84b fix bug in require_accelerate_version_greater (#9746)
fix bug
2024-10-23 10:01:33 +05:30
Sayak Paul
e45c25d03a post-release 0.31.0 (#9742)
* post-release

* style
2024-10-22 20:42:30 +05:30
Dhruv Nair
76c00c7236 is_safetensors_compatible fix (#9741)
update
2024-10-22 19:35:03 +05:30
Dhruv Nair
0d9d98fe5f Fix typos (#9739)
* update

* update

* update

* update

* update

* update
2024-10-22 16:12:28 +05:30
Sayak Paul
60ffa84253 [bitsandbbytes] follow-ups (#9730)
* bnb follow ups.

* add a warning when dtypes mismatch.

* fx-copies

* clear cache.

* check_if_quantized_param

* add a check on shape.

* updates

* docs

* improve readability.

* resources.

* fix
2024-10-22 16:00:05 +05:30
Álvaro Somoza
0f079b932d [Fix] Using sharded checkpoints with gated repositories (#9737)
fix
2024-10-22 01:33:52 -03:00
Yu Zheng
b0ffe92230 Update sd3 controlnet example (#9735)
* use make_image_grid in diffusers.utils

* use checkpoint on the Hub
2024-10-22 09:02:16 +05:30
Tolga Cangöz
1b64772b79 Fix schedule_shifted_power usage in 🪆Matryoshka Diffusion Models (#9723)
* [matryoshka.py] Add schedule_shifted_power attribute and update get_schedule_shifted method
2024-10-21 14:23:50 -10:00
YiYi Xu
2d280f173f fix singlestep dpm tests (#9716)
fix

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-21 13:27:01 -10:00
G.O.D
63a0c9e5f7 [bugfix] reduce float value error when adding noise (#9004)
* Update train_controlnet.py

reduce float value error for bfloat16

* Update train_controlnet_sdxl.py

* style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-10-21 13:26:05 -10:00
YiYi Xu
e2d037bbf1 minor doc/test update (#9734)
* update some docs and tests!

---------

Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: apolinário <joaopaulo.passos@gmail.com>
2024-10-21 13:06:13 -10:00
timdalxx
bcd61fd349 [docs] add docstrings in pipline_stable_diffusion.py (#9590)
* fix the issue on flux dreambooth lora training

* update : origin main code

* docs: update pipeline_stable_diffusion docstring

* docs: update pipeline_stable_diffusion docstring

* Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: style

* fix: style

* fix: copies

* make fix-copies

* remove extra newline

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-21 09:39:20 -07:00
Sayak Paul
d27ecc5960 [Docs] docs to xlabs controlnets. (#9688)
* docs to xlabs controlnets.

Co-authored-by: Anzhella Pankratova <son0shad@gmail.com>

* Apply suggestions from code review

Co-authored-by: Anzhella Pankratova <54744846+Anghellia@users.noreply.github.com>

---------

Co-authored-by: Anzhella Pankratova <son0shad@gmail.com>
Co-authored-by: Anzhella Pankratova <54744846+Anghellia@users.noreply.github.com>
2024-10-21 09:38:22 -07:00
Chenyu Li
6b915672f4 Fix typo in cogvideo pipeline (#9722)
Fix type in cogvideo pipeline
2024-10-21 21:39:39 +05:30
Sayak Paul
b821f006d0 [Quantization] Add quantization support for bitsandbytes (#9213)
* quantization config.

* fix-copies

* fix

* modules_to_not_convert

* add bitsandbytes utilities.

* make progress.

* fixes

* quality

* up

* up

rotary embedding refactor 2: update comments, fix dtype for use_real=False (#9312)

fix notes and dtype

up

up

* minor

* up

* up

* fix

* provide credits where due.

* make configurations work.

* fixes

* fix

* update_missing_keys

* fix

* fix

* make it work.

* fix

* provide credits to transformers.

* empty commit

* handle to() better.

* tests

* change to bnb from bitsandbytes

* fix tests

fix slow quality tests

SD3 remark

fix

complete int4 tests

add a readme to the test files.

add model cpu offload tests

warning test

* better safeguard.

* change merging status

* courtesy to transformers.

* move  upper.

* better

* make the unused kwargs warning friendlier.

* harmonize changes with https://github.com/huggingface/transformers/pull/33122

* style

* trainin tests

* feedback part i.

* Add Flux inpainting and Flux Img2Img (#9135)

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>

Update `UNet2DConditionModel`'s error messages (#9230)

* refactor

[CI] Update Single file Nightly Tests (#9357)

* update

* update

feedback.

improve README for flux dreambooth lora (#9290)

* improve readme

* improve readme

* improve readme

* improve readme

fix one uncaught deprecation warning for accessing vae_latent_channels in VaeImagePreprocessor (#9372)

deprecation warning vae_latent_channels

add mixed int8 tests and more tests to nf4.

[core] Freenoise memory improvements (#9262)

* update

* implement prompt interpolation

* make style

* resnet memory optimizations

* more memory optimizations; todo: refactor

* update

* update animatediff controlnet with latest changes

* refactor chunked inference changes

* remove print statements

* update

* chunk -> split

* remove changes from incorrect conflict resolution

* remove changes from incorrect conflict resolution

* add explanation of SplitInferenceModule

* update docs

* Revert "update docs"

This reverts commit c55a50a271.

* update docstring for freenoise split inference

* apply suggestions from review

* add tests

* apply suggestions from review

quantization docs.

docs.

* Revert "Add Flux inpainting and Flux Img2Img (#9135)"

This reverts commit 5799954dd4.

* tests

* don

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* contribution guide.

* changes

* empty

* fix tests

* harmonize with https://github.com/huggingface/transformers/pull/33546.

* numpy_cosine_distance

* config_dict modification.

* remove if config comment.

* note for load_state_dict changes.

* float8 check.

* quantizer.

* raise an error for non-True low_cpu_mem_usage values when using quant.

* low_cpu_mem_usage shenanigans when using fp32 modules.

* don't re-assign _pre_quantization_type.

* make comments clear.

* remove comments.

* handle mixed types better when moving to cpu.

* add tests to check if we're throwing warning rightly.

* better check.

* fix 8bit test_quality.

* handle dtype more robustly.

* better message when keep_in_fp32_modules.

* handle dtype casting.

* fix dtype checks in pipeline.

* fix warning message.

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* mitigate the confusing cpu warning

---------

Co-authored-by: Vishnu V Jaddipal <95531133+Gothos@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-21 10:11:57 +05:30
Aryan
24281f8036 make deps_table_update to fix CI tests (#9720)
* update

* dummy change to trigger CI; will revert

* no deps peft

* np deps

* todo

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-21 09:58:26 +05:30
Sayak Paul
2a1d2f6218 [Docker] pin torch versions in the dockerfiles. (#9721)
* pin torch versions in the dockerfiles.

* more
2024-10-20 10:44:09 +05:30
Aryan
56d6d21bae [CI] pin max torch version to fix CI errors (#9709)
* pin max torch version

* update

* Update setup.py
2024-10-20 01:50:56 +05:30
hlky
89565e9171 Add prompt scheduling callback to community scripts (#9718) 2024-10-19 14:22:22 -03:00
bonlime
5d3e7bdaaa Fix bug in Textual Inversion Unloading (#9304)
* Update textual_inversion.py

* add unload test

* add comment

* fix style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-19 02:37:32 -10:00
Linoy Tsaban
2541d141d5 [advanced flux lora script] minor updates to readme (#9705)
* fix arg naming

* fix arg naming

* fix arg naming

* fix arg naming
2024-10-18 15:35:44 +03:00
Aryan
5704376d03 [refactor] DiffusionPipeline.download (#9557)
* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-10-17 12:38:06 -10:00
Linoy Tsaban
9a7f824645 [Flux] Add advanced training script + support textual inversion inference (#9434)
* add ostris trainer to README & add cache latents of vae

* add ostris trainer to README & add cache latents of vae

* style

* readme

* add test for latent caching

* add ostris noise scheduler
9ee1ef2a0a/toolkit/samplers/custom_flowmatch_sampler.py (L95)

* style

* fix import

* style

* fix tests

* style

* --change upcasting of transformer?

* update readme according to main

* add pivotal tuning for CLIP

* fix imports, encode_prompt call,add TextualInversionLoaderMixin to FluxPipeline for inference

* TextualInversionLoaderMixin support for FluxPipeline for inference

* move changes to advanced flux script, revert canonical

* add latent caching to canonical script

* revert changes to canonical script to keep it separate from https://github.com/huggingface/diffusers/pull/9160

* revert changes to canonical script to keep it separate from https://github.com/huggingface/diffusers/pull/9160

* style

* remove redundant line and change code block placement to align with logic

* add initializer_token arg

* add transformer frac for range support from pure textual inversion to the orig pivotal tuning

* support pure textual inversion - wip

* adjustments to support pure textual inversion and transformer optimization in only part of the epochs

* fix logic when using initializer token

* fix pure_textual_inversion_condition

* fix ti/pivotal loading of last validation run

* remove embeddings loading for ti in final training run (to avoid adding huggingface hub dependency)

* support pivotal for t5

* adapt pivotal for T5 encoder

* adapt pivotal for T5 encoder and support in flux pipeline

* t5 pivotal support + support fo pivotal for clip only or both

* fix param chaining

* fix param chaining

* README first draft

* readme

* readme

* readme

* style

* fix import

* style

* add fix from https://github.com/huggingface/diffusers/pull/9419

* add to readme, change function names

* te lr changes

* readme

* change concept tokens logic

* fix indices

* change arg name

* style

* dummy test

* revert dummy test

* reorder pivoting

* add warning in case the token abstraction is not the instance prompt

* experimental - wip - specific block training

* fix documentation and token abstraction processing

* remove transformer block specification feature (for now)

* style

* fix copies

* fix indexing issue when --initializer_concept has different amounts

* add if TextualInversionLoaderMixin to all flux pipelines

* style

* fix import

* fix imports

* address review comments - remove necessary prints & comments, use pin_memory=True, use free_memory utils, unify warning and prints

* style

* logger info fix

* make lora target modules configurable and change the default

* make lora target modules configurable and change the default

* style

* make lora target modules configurable and change the default, add notes to readme

* style

* add tests

* style

* fix repo id

* add updated requirements for advanced flux

* fix indices of t5 pivotal tuning embeddings

* fix path in test

* remove `pin_memory`

* fix filename of embedding

* fix filename of embedding

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-17 12:22:11 +03:00
Aryan
d9029f2c59 [tests] fix name and unskip CogI2V integration test (#9683)
update

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:28:19 +05:30
Aryan
d204e53291 [core] improve VAE encode/decode framewise batching (#9684)
* update

* apply suggestions from review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:25:41 +05:30
Aryan
8cabd4a0db [pipeline] CogVideoX-Fun Control (#9671)
* cogvideox-fun control

* make style

* make fix-copies

* karras schedulers

* Update src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/cogvideox.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggestions from review

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:21:09 +05:30
Jongho Choi
5783286d2b [peft] simple update when unscale (#9689)
Update peft_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 16:10:19 +05:30
Linoy Tsaban
ee4ab23892 [SD3 dreambooth-lora training] small updates + bug fixes (#9682)
* add latent caching + smol updates

* update license

* replace with free_memory

* add --upcast_before_saving to allow saving transformer weights in lower precision

* fix models to accumulate

* fix mixed precision issue as proposed in https://github.com/huggingface/diffusers/pull/9565

* smol update to readme

* style

* fix caching latents

* style

* add tests for latent caching

* style

* fix latent caching

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-16 11:13:37 +03:00
Sayak Paul
cef4f65cf7 [LoRA] log a warning when there are missing keys in the LoRA loading. (#9622)
* log a warning when there are missing keys in the LoRA loading.

* handle missing keys and unexpected keys better.

* add tests

* fix-copies.

* updates

* tests

* concat warning.

* Add Differential Diffusion to Kolors (#9423)

* Added diff diff support for kolors img2img

* Fized relative imports

* Fized relative imports

* Added diff diff support for Kolors

* Fized import issues

* Added map

* Fized import issues

* Fixed naming issues

* Added diffdiff support for Kolors img2img pipeline

* Removed example docstrings

* Added map input

* Updated latents

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Updated `original_with_noise`

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Improved code quality

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* FluxMultiControlNetModel (#9647)

* tests

* Update src/diffusers/loaders/lora_pipeline.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* fix

---------

Co-authored-by: M Saqlain <118016760+saqlain2204@users.noreply.github.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-16 07:46:12 +05:30
Charchit Sharma
29a2c5d1ca Resolves [BUG] 'GatheredParameters' object is not callable (#9614)
* gatherparams bug

* calling context lib object

* fix

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-16 06:44:10 +05:30
glide-the
0d935df67d Docs: CogVideoX (#9578)
* CogVideoX docs


---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-15 14:41:56 -10:00
YiYi Xu
3e9a28a8a1 [authored by @Anghellia) Add support of Xlabs Controlnets #9638 (#9687)
* Add support of Xlabs Controlnets


---------

Co-authored-by: Anzhella Pankratova <son0shad@gmail.com>
2024-10-15 12:10:45 -10:00
Aryan
2ffbb88f1c [training] CogVideoX-I2V LoRA (#9482)
* update

* update

* update

* update

* update

* add coauthor

Co-Authored-By: yuan-shenghai <963658029@qq.com>

* add coauthor

Co-Authored-By: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com>

* update

Co-Authored-By: yuan-shenghai <963658029@qq.com>

* update

---------

Co-authored-by: yuan-shenghai <963658029@qq.com>
Co-authored-by: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com>
2024-10-16 02:07:07 +05:30
Ahnjj_DEV
d40da7b68a Fix some documentation in ./src/diffusers/models/adapter.py (#9591)
* Fix some documentation in ./src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/models/adapter.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* run make style

* make style & fix

* make style : 0.1.5 version ruff

* revert changes to examples

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-15 10:27:39 -07:00
wony617
a3e8d3f7de [docs] refactoring docstrings in models/embeddings_flax.py (#9592)
* [docs] refactoring docstrings in `models/embeddings_flax.py`

* Update src/diffusers/models/embeddings_flax.py

* make style

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-15 19:15:14 +05:30
wony617
fff4be8e23 [docs] refactoring docstrings in community/hd_painter.py (#9593)
* [docs] refactoring docstrings in community/hd_painter.py

* Update examples/community/hd_painter.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* make style

---------

Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-15 18:50:12 +05:30
Jiwook Han
355bb641e3 [doc] Fix some docstrings in src/diffusers/training_utils.py (#9606)
* refac: docstrings in training_utils.py

* fix: manual edits

* run make style

* add docstring at cast_training_params

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-15 18:47:52 +05:30
Charchit Sharma
92d2baf643 refactor image_processor.py file (#9608)
* refactor image_processor file

* changes as requested

* +1 edits

* quality fix

* indent issue

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-15 17:20:33 +05:30
0x名無し
dccf39f01e Dreambooth lora flux bug 3dtensor to 2dtensor (#9653)
* fixed issue #9350, Tensor is deprecated

* ran make style
2024-10-15 17:18:13 +05:30
Sayak Paul
99d87474fd [Chore] fix import of EntryNotFoundError. (#9676)
fix import of EntryNotFoundError.
2024-10-15 14:07:08 +05:30
Robin
79b118e863 [Fix] when run load pretain with local_files_only, local variable 'cached_folder' referenced before assignment (#9376)
Fix local variable 'cached_folder' referenced before assignment in hub_utils.py

Fix when use `local_files_only=True` with `subfolder`, local variable 'cached_folder' referenced before assignment issue.

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 20:49:36 -10:00
hlky
9d0616189e Slight performance improvement to Euler, EDMEuler, FlowMatchHeun, KDPM2Ancestral (#9616)
* Slight performance improvement to Euler

* Slight performance improvement to EDMEuler

* Slight performance improvement to FlowMatchHeun

* Slight performance improvement to KDPM2Ancestral

* Update KDPM2AncestralDiscreteSchedulerTest

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 19:34:25 -10:00
hlky
5f0df17703 Refactor SchedulerOutput and add pred_original_sample in DPMSolverSDE, Heun, KDPM2Ancestral and KDPM2 (#9650)
Refactor SchedulerOutput and add pred_original_sample

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 18:11:01 -10:00
hlky
957e5cabff Convert list/tuple of HunyuanDiT2DControlNetModel to HunyuanDiT2DMultiControlNetModel (#9651)
Convert list/tuple of HunyuanDiT2DControlNetModel to HunyuanDiT2DMultiControlNetModel

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 18:09:30 -10:00
hlky
3e4c5707c3 Convert list/tuple of SD3ControlNetModel to SD3MultiControlNetModel (#9652)
Convert list/tuple of SD3ControlNetModel to SD3MultiControlNetModel

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 17:57:34 -10:00
hlky
1bcd19e4d0 Add pred_original_sample to if not return_dict path (#9649)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 17:56:54 -10:00
SahilCarterr
22ed39f571 Added Lora Support to SD3 Img2Img Pipeline (#9659)
* add lora
2024-10-14 11:39:20 -10:00
Tolga Cangöz
56c21150d8 [Community Pipeline] Add 🪆Matryoshka Diffusion Models (#9157) 2024-10-14 11:38:44 -10:00
Leo Jiang
5956b68a69 Improve the performance and suitable for NPU computing (#9642)
* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU computing

* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU

* Improve the performance and suitable for NPU

---------

Co-authored-by: 蒋硕 <jiangshuo9@h-partners.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-14 21:39:33 +05:30
Yuxuan.Zhang
8d81564b27 CogView3Plus DiT (#9570)
* merge 9588

* max_shard_size="5GB" for colab running

* conversion script updates; modeling test; refactor transformer

* make fix-copies

* Update convert_cogview3_to_diffusers.py

* initial pipeline draft

* make style

* fight bugs 🐛🪳

* add example

* add tests; refactor

* make style

* make fix-copies

* add co-author

YiYi Xu <yixu310@gmail.com>

* remove files

* add docs

* add co-author

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

* fight docs

* address reviews

* make style

* make model work

* remove qkv fusion

* remove qkv fusion tets

* address review comments

* fix make fix-copies error

* remove None and TODO

* for FP16(draft)

* make style

* remove dynamic cfg

* remove pooled_projection_dim as a parameter

* fix tests

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-14 19:30:36 +05:30
Ryan Lin
68d16f7806 Flux - soft inpainting via differential diffusion (#9268)
* Flux - soft inpainting via differential diffusion

* .

* track changes to FluxInpaintPipeline

* make mask arrangement simplier

* make style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: asomoza <somoza.alvaro@gmail.com>
2024-10-14 10:07:48 -03:00
Sayak Paul
86bcbc389e [Tests] increase transformers version in test_low_cpu_mem_usage_with_loading (#9662)
increase transformers version in test_low_cpu_mem_usage_with_loading
2024-10-13 22:39:38 +05:30
Jinzhe Pan
6a5f06488c [docs] Fix xDiT doc image damage (#9655)
* docs: fix xDiT doc image damage

* doc: move xdit images to hf dataset

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-10-12 13:05:07 +05:30
Sayak Paul
c7a6d77b5f [CI] replace ubuntu version to 22.04. (#9656)
replace ubuntu version to 22.04.
2024-10-12 11:55:36 +05:30
hlky
0f8fb75c7b FluxMultiControlNetModel (#9647) 2024-10-11 14:39:19 -03:00
M Saqlain
3033f08201 Add Differential Diffusion to Kolors (#9423)
* Added diff diff support for kolors img2img

* Fized relative imports

* Fized relative imports

* Added diff diff support for Kolors

* Fized import issues

* Added map

* Fized import issues

* Fixed naming issues

* Added diffdiff support for Kolors img2img pipeline

* Removed example docstrings

* Added map input

* Updated latents

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Updated `original_with_noise`

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>

* Improved code quality

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2024-10-11 10:47:31 -03:00
GSSun
164ec9f423 fix IsADirectoryError when running the training code for sd3_dreambooth_lora_16gb.ipynb (#9634)
Add files via upload

fix IsADirectoryError when running the training code
2024-10-11 13:33:39 +05:30
Subho Ghosh
38a3e4df92 flux controlnet control_guidance_start and control_guidance_end implement (#9571)
* flux controlnet control_guidance_start and control_guidance_end implement

* minor fix - added docstrings, consistent controlnet scale flux and SD3
2024-10-10 09:29:02 -03:00
Sayak Paul
e16fd93d0a [LoRA] fix dora test to catch the warning properly. (#9627)
fix dora test.
2024-10-10 11:47:49 +05:30
Pakkapon Phongthawee
07bd2fabb6 make controlnet support interrupt (#9620)
* make controlnet support interrupt

* remove white space in controlnet interrupt
2024-10-09 12:03:13 -10:00
SahilCarterr
af28ae2d5b add PAG support for SD Img2Img (#9463)
* added pag to sd img2img pipeline


---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-09 10:40:58 -10:00
Sayak Paul
31058cdaef [LoRA] allow loras to be loaded with low_cpu_mem_usage. (#9510)
* allow loras to be loaded with low_cpu_mem_usage.

* add flux support but note https://github.com/huggingface/diffusers/pull/9510\#issuecomment-2378316687

* low_cpu_mem_usage.

* fix-copies

* fix-copies again

* tests

* _LOW_CPU_MEM_USAGE_DEFAULT_LORA

* _peft_version default.

* version checks.

* version check.

* version check.

* version check.

* require peft 0.13.1.

* explicitly specify low_cpu_mem_usage=False.

* docs.

* transformers version 4.45.2.

* update

* fix

* empty

* better name initialize_dummy_state_dict.

* doc todos.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* style

* fix-copies

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-09 10:57:16 +05:30
Yijun Lee
ec9e5264c0 refac/pipeline_output (#9582) 2024-10-08 16:11:13 -10:00
sanaka
acd6d2c42f Fix the bug that joint_attention_kwargs is not passed to the FLUX's transformer attention processors (#9517)
* Update transformer_flux.py
2024-10-08 11:25:48 -10:00
v2ray
86bd991ee5 Fixed noise_pred_text referenced before assignment. (#9537)
* Fixed local variable noise_pred_text referenced before assignment when using PAG with guidance scale and guidance rescale at the same time.

* Fixed style.

* Made returning text pred noise an argument.
2024-10-08 09:27:10 -10:00
Sayak Paul
02eeb8e77e [LoRA] Handle DoRA better (#9547)
* handle dora.

* print test

* debug

* fix

* fix-copies

* update logits

* add warning in the test.

* make is_dora check consistent.

* fix-copies
2024-10-08 21:47:44 +05:30
glide-the
66eef9a6dc fix: CogVideox train dataset _preprocess_data crop video (#9574)
* Removed int8 to float32 conversion (`* 2.0 - 1.0`) from `train_transforms` as it caused image overexposure.

Added `_resize_for_rectangle_crop` function to enable video cropping functionality. The cropping mode can be configured via `video_reshape_mode`, supporting options: ['center', 'random', 'none'].

* The number 127.5 may experience precision loss during division operations.

* wandb request pil image Type

* Resizing bug

* del jupyter

* make style

* Update examples/cogvideo/README.md

* make style

---------

Co-authored-by: --unset <--unset>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-08 12:52:52 +05:30
Sayak Paul
63a5c8742a Update distributed_inference.md to include transformer.device_map (#9553)
* Update distributed_inference.md to include `transformer.device_map`

* Update docs/source/en/training/distributed_inference.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-10-08 08:03:51 +05:30
Eliseu Silva
1287822973 Fix for use_safetensors parameters, allow use of parameter on loading submodels (#9576) (#9587)
* Fix for use_safetensors parameters, allow use of parameter on loading submodels (#9576)
2024-10-07 10:41:32 -10:00
Yijun Lee
a80f689200 refac: docstrings in import_utils.py (#9583)
* refac: docstrings in import_utils.py

* Update import_utils.py
2024-10-07 13:27:35 -07:00
captainzz
2cb383f591 fix vae dtype when accelerate config using --mixed_precision="fp16" (#9601)
* fix vae dtype when accelerate config using --mixed_precision="fp16"

* Add param for upcast vae
2024-10-07 21:00:25 +05:30
Sayak Paul
31010ecc45 [Chore] add a note on the versions in Flux LoRA integration tests (#9598)
add a note on the versions.
2024-10-07 17:43:48 +05:30
Clem
3159e60d59 fix xlabs FLUX lora conversion typo (#9581)
* fix startswith syntax in xlabs lora conversion

* Trigger CI

https://github.com/huggingface/diffusers/pull/9581#issuecomment-2395530360
2024-10-07 10:47:54 +05:30
YiYi Xu
99f608218c [sd3] make sure height and size are divisible by 16 (#9573)
* check size

* up
2024-10-03 08:36:26 -10:00
Xiangchendong
7f323f0f31 fix cogvideox autoencoder decode (#9569)
Co-authored-by: Aryan <aryan@huggingface.co>
2024-10-02 09:07:06 -10:00
Darren Hsu
61d37640ad Support bfloat16 for Upsample2D (#9480)
* Support bfloat16 for Upsample2D

* Add test and use is_torch_version

* Resolve comments and add decorator

* Simplify require_torch_version_greater_equal decorator

* Run make style

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-10-01 16:08:12 -10:00
JuanCarlosPi
33fafe3d14 Add PAG support to StableDiffusionControlNetPAGInpaintPipeline (#8875)
* Add pag to controlnet inpainting pipeline


---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-30 20:04:42 -10:00
hlky
c4a8979f30 Add beta sigmas to other schedulers and update docs (#9538) 2024-09-30 09:00:54 -10:00
Sayak Paul
f9fd511466 [LoRA] support Kohya Flux LoRAs that have text encoders as well (#9542)
* support kohya flux loras that have tes.
2024-09-30 07:59:39 -10:00
Sayak Paul
8e7d6c03a3 [chore] fix: retain memory utility. (#9543)
* fix: retain memory utility.

* fix

* quality

* free_memory.
2024-09-28 21:08:45 +05:30
Anand Kumar
b28675c605 [train_instruct_pix2pix.py]Fix the LR schedulers when num_train_epochs is passed in a distributed training env (#9316)
Fixed pix2pix lr scheduler

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-28 21:01:37 +05:30
Aryan
bd4df2856a [refactor] remove conv_cache from CogVideoX VAE (#9524)
* remove conv cache from the layer and pass as arg instead

* make style

* yiyi's cleaner implementation

Co-Authored-By: YiYi Xu <yixu310@gmail.com>

* sayak's compiled implementation

Co-Authored-By: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-28 17:09:30 +05:30
Sayak Paul
11542431a5 [Core] fix variant-identification. (#9253)
* fix variant-idenitification.

* fix variant

* fix sharded variant checkpoint loading.

* Apply suggestions from code review

* fixes.

* more fixes.

* remove print.

* fixes

* fixes

* comments

* fixes

* apply suggestions.

* hub_utils.py

* fix test

* updates

* fixes

* fixes

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* updates.

* removep patch file.

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-28 09:57:31 +05:30
Sayak Paul
81cf3b2f15 [Tests] [LoRA] clean up the serialization stuff. (#9512)
* clean up the serialization stuff.

* better
2024-09-27 07:57:09 -10:00
PromeAI
534848c370 [examples] add train flux-controlnet scripts in example. (#9324)
* add train flux-controlnet scripts in example.

* fix error

* fix subfolder error

* fix preprocess error

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix readme

* fix note error

* add some Tutorial for deepspeed

* fix some Format Error

* add dataset_path example

* remove print, add guidance_scale CLI, readable apply

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update,push_to_hub,save_weight_dtype,static method,clear_objs_and_retain_memory,report_to=wandb

* add push to hub in readme

* apply weighting schemes

* add note

* Update examples/controlnet/README_flux.md

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* make code style and quality

* fix some unnoticed error

* make code style and quality

* add example controlnet in readme

* add test controlnet

* rm Remove duplicate notes

* Fix formatting errors

* add new control image

* add model cpu offload

* update help for adafactor

* make quality & style

* make quality and style

* rename flux_controlnet_model_name_or_path

* fix back src/diffusers/pipelines/flux/pipeline_flux_controlnet.py

* fix dtype error by pre calculate text emb

* rm image save

* quality fix

* fix test

* fix tiny flux train error

* change report to to tensorboard

* fix save name error when test

* Fix shrinking errors

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Your Name <you@example.com>
2024-09-27 13:31:47 +05:30
Sayak Paul
2daedc0ad3 [LoRA] make set_adapters() method more robust. (#9535)
* make set_adapters() method more robust.

* remove patch

* better and concise code.

* Update src/diffusers/loaders/lora_base.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-27 07:32:43 +05:30
Aryan
665c6b47a2 [bug] Precedence of operations in VAE should be slicing -> tiling (#9342)
* bugfix: precedence of operations should be slicing -> tiling

* fix typo

* fix another typo

* deprecate current implementation of tiled_encode and use new impl

* Update src/diffusers/models/autoencoders/autoencoder_kl.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/autoencoders/autoencoder_kl.py

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-26 22:12:07 +05:30
Álvaro Somoza
066ea374c8 [Tests] Fix ChatGLMTokenizer (#9536)
fix
2024-09-25 22:10:15 -10:00
YiYi Xu
9cd37557d5 flux controlnet fix (control_modes batch & others) (#9507)
* flux controlnet mode to take into account batch size

* incorporate yiyixuxu's suggestions (cleaner logic) as well as clean up control mode handling for multi case

* fix

* fix use_guidance when controlnet is a multi and does not have config

---------

Co-authored-by: Christopher Beckham <christopher.j.beckham@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-09-25 19:09:54 -10:00
hlky
1c6ede9371 [Schedulers] Add beta sigmas / beta noise schedule (#9509)
Add beta sigmas / beta noise schedule
2024-09-25 13:30:32 -10:00
v2ray
aa3c46d99a [Doc] Improved level of clarity for latents_to_rgb. (#9529)
Fixed latents_to_rgb doc.

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2024-09-25 19:26:58 -03:00
YiYi Xu
c76e88405c update get_parameter_dtype (#9526)
* up

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-09-25 11:00:57 -10:00
Steven Liu
d9c969172d [docs] Model sharding (#9521)
* flux shard

* feedback
2024-09-25 09:33:54 -07:00
Lee Penkman
065ce07ac3 Update community_projects.md (#9266) 2024-09-25 08:54:36 -07:00
Sayak Paul
6ca5a58e43 [Community Pipeline] Batched implementation of Flux with CFG (#9513)
* batched implementation of flux cfg.

* style.

* readme

* remove comments.
2024-09-25 15:25:15 +05:30
hlky
b52684c3ed Add exponential sigmas to other schedulers and update docs (#9518) 2024-09-24 14:50:12 -10:00
YiYi Xu
bac8a2412d a few fix for SingleFile tests (#9522)
* update sd15 repo

* update more
2024-09-24 13:36:53 -10:00
Sayak Paul
28f9d84549 [CI] allow faster downloads from the Hub in CI. (#9478)
* allow faster downloads from the Hub in CI.

* HF_HUB_ENABLE_HF_TRANSFER: 1

* empty

* empty

* remove ENV HF_HUB_ENABLE_HF_TRANSFER=1.

* empty
2024-09-24 09:42:11 +05:30
LukeLin
2b5bc5be0b [Doc] Fix path and and also import imageio (#9506)
* Fix bug

* import imageio
2024-09-23 16:47:34 -07:00
captainzz
bab17789b5 fix bugs for sd3 controlnet training (#9489)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:40:44 -10:00
hlky
19547a5734 Add Noise Schedule/Schedule Type to Schedulers Overview documentation (#9504)
* Add Noise Schedule/Schedule Type to Schedulers Overview docs

* Update docs/source/en/api/schedulers/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-23 16:39:55 -07:00
Seongbin Lim
3e69e241f7 Allow DDPMPipeline half precision (#9222)
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:28:14 -10:00
hlky
65f9439b56 [Schedulers] Add exponential sigmas / exponential noise schedule (#9499)
* exponential sigmas

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* make style

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-09-23 13:12:51 -10:00
pibbo88
00f5b41862 Fix the bug of sd3 controlnet training when using gradient checkpointing. (#9498)
Fix the bug of sd3 controlnet training when using gradient_checkpointing. Refer to issue #9496
2024-09-23 12:30:24 -10:00
M Saqlain
14f6464bef [Tests] Reduce the model size in the lumina test (#8985)
* Reduced model size for lumina-tests

* Handled failing tests
2024-09-23 20:35:50 +05:30
Sayak Paul
ba5af5aebb [Cog] some minor fixes and nits (#9466)
* fix positional arguments in check_inputs().

* add video and latetns to check_inputs().

* prep latents_in_channels.

* quality

* multiple fixes.

* fix
2024-09-23 11:27:05 +05:30
629 changed files with 104413 additions and 7781 deletions

View File

@@ -7,6 +7,7 @@ on:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8

View File

@@ -25,7 +25,7 @@ jobs:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_COMMUNITY_MIRROR }}
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
# Checkout to correct ref
# If workflow dispatch

View File

@@ -180,14 +180,71 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_big_gpu_torch_tests:
name: Torch tests on big GPU
strategy:
fail-fast: false
max-parallel: 2
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Selected Torch CUDA Test on big GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-m "big_gpu_with_torch_cuda" \
--make-reports=tests_big_gpu_torch_cuda \
--report-log=tests_big_gpu_torch_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_big_gpu_torch_cuda_stats.txt
cat reports/tests_big_gpu_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_big_gpu_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on: docker-tpu
runs-on:
group: gcp-ct5lp-hightpu-8t
if: github.event_name == 'schedule'
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --privileged
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
defaults:
run:
shell: bash
@@ -291,6 +348,68 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
matrix:
config:
- backend: "bitsandbytes"
test_location: "bnb"
- backend: "gguf"
test_location: "gguf"
- backend: "torchao"
test_location: "torchao"
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U ${{ matrix.config.backend }}
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: ${{ matrix.config.backend }} quantization tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
tests/quantization/${{ matrix.config.test_location }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_stats.txt
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_${{ matrix.config.backend }}_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
# M1 runner currently not well supported
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
# run_nightly_tests_apple_m1:
@@ -405,4 +524,4 @@ jobs:
# if: always()
# run: |
# pip install slack_sdk tabulate
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
# python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -7,7 +7,7 @@ on:
jobs:
build:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_dependencies:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_flax_dependencies:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -1,132 +0,0 @@
name: Fast tests for PRs - PEFT backend
on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
- "tests/**.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
run_fast_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
lib-versions: ["main", "latest"]
name: LoRA - ${{ matrix.lib-versions }}
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
if [ "${{ matrix.lib-versions }}" == "main" ]; then
python -m pip install -U peft@git+https://github.com/huggingface/peft.git
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
else
python -m uv pip install -U peft transformers accelerate
fi
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch LoRA CPU tests with PEFT backend
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_${{ matrix.lib-versions }} \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_${{ matrix.lib-versions }} \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.lib-versions }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.lib-versions }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.lib-versions }}_test_reports
path: reports

View File

@@ -22,13 +22,14 @@ concurrency:
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -48,7 +49,7 @@ jobs:
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
@@ -233,3 +234,67 @@ jobs:
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports
run_lora_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
name: LoRA tests with PEFT main
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
# TODO (sayakpaul, DN6): revisit `--no-deps`
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch LoRA tests with PEFT
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_peft_main \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_peft_main \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_lora_failures_short.txt
cat reports/tests_models_lora_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pr_main_test_reports
path: reports

View File

@@ -16,7 +16,7 @@ concurrency:
jobs:
check_torch_dependencies:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python

View File

@@ -14,6 +14,7 @@ env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 50000
@@ -80,7 +81,7 @@ jobs:
- name: Environment
run: |
python utils/print_env.py
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
- name: PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
@@ -160,10 +161,11 @@ jobs:
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu
runs-on:
group: gcp-ct5lp-hightpu-8t
container:
image: diffusers/diffusers-flax-tpu
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/ --privileged
options: --shm-size "16gb" --ipc host --privileged ${{ vars.V5_LITEPOD_8_ENV}} -v /mnt/hf_cache:/mnt/hf_cache
defaults:
run:
shell: bash
@@ -183,7 +185,7 @@ jobs:
run: |
python utils/print_env.py
- name: Run slow Flax TPU tests
- name: Run Flax TPU tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |
@@ -231,7 +233,7 @@ jobs:
run: |
python utils/print_env.py
- name: Run slow ONNXRuntime CUDA tests
- name: Run ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
run: |

View File

@@ -18,6 +18,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no

View File

@@ -13,6 +13,7 @@ env:
HF_HOME: /mnt/cache
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
RUN_SLOW: no
@@ -45,7 +46,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade

View File

@@ -10,7 +10,7 @@ on:
jobs:
find-and-checkout-latest-branch:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
outputs:
latest_branch: ${{ steps.set_latest_branch.outputs.latest_branch }}
steps:
@@ -36,7 +36,7 @@ jobs:
release:
needs: find-and-checkout-latest-branch
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout Repo
@@ -68,7 +68,7 @@ jobs:
- name: Test installing diffusers and importing
run: |
pip install diffusers && pip uninstall diffusers -y
pip install -i https://testpypi.python.org/pypi diffusers
pip install -i https://test.pypi.org/simple/ diffusers
python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"

View File

@@ -4,12 +4,13 @@ on:
workflow_dispatch:
inputs:
runner_type:
description: 'Type of runner to test (aws-g6-4xlarge-plus: a10 or aws-g4dn-2xlarge: t4)'
description: 'Type of runner to test (aws-g6-4xlarge-plus: a10, aws-g4dn-2xlarge: t4, aws-g6e-xlarge-plus: L40)'
type: choice
required: true
options:
- aws-g6-4xlarge-plus
- aws-g4dn-2xlarge
- aws-g6e-xlarge-plus
docker_image:
description: 'Name of the Docker image'
required: true

View File

@@ -8,7 +8,7 @@ jobs:
close_stale_issues:
name: Close Stale Issues
if: github.repository == 'huggingface/diffusers'
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
permissions:
issues: write
pull-requests: write

View File

@@ -5,7 +5,7 @@ name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout code
uses: actions/checkout@v4

View File

@@ -5,7 +5,7 @@ on:
jobs:
build:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3

View File

@@ -112,9 +112,9 @@ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to l
| **Documentation** | **What can I learn?** |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/overview_techniques) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/fp16) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution

View File

@@ -3,7 +3,7 @@ import sys
import pandas as pd
from huggingface_hub import hf_hub_download, upload_file
from huggingface_hub.utils._errors import EntryNotFoundError
from huggingface_hub.utils import EntryNotFoundError
sys.path.append(".")

View File

@@ -43,6 +43,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -43,6 +43,7 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -44,6 +44,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
numpy==1.26.4 \
scipy \
tensorboard \
transformers matplotlib
transformers matplotlib \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
pytorch-lightning
pytorch-lightning \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -45,6 +45,7 @@ RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
scipy \
tensorboard \
transformers \
xformers
xformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -55,8 +55,10 @@
- sections:
- local: using-diffusers/overview_techniques
title: Overview
- local: using-diffusers/create_a_server
title: Create a server
- local: training/distributed_inference
title: Distributed inference with multiple GPUs
title: Distributed inference
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/scheduler_features
@@ -75,6 +77,8 @@
title: Outpainting
title: Advanced inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/sdxl_turbo
@@ -129,6 +133,8 @@
title: T2I-Adapters
- local: training/instructpix2pix
title: InstructPix2Pix
- local: training/cogvideox
title: CogVideoX
title: Models
- isExpanded: false
sections:
@@ -146,6 +152,16 @@
title: Reinforcement learning training with DDPO
title: Methods
title: Training
- sections:
- local: quantization/overview
title: Getting Started
- local: quantization/bitsandbytes
title: bitsandbytes
- local: quantization/gguf
title: gguf
- local: quantization/torchao
title: torchao
title: Quantization Methods
- sections:
- local: optimization/fp16
title: Speed up inference
@@ -178,6 +194,8 @@
title: Metal Performance Shaders (MPS)
- local: optimization/habana
title: Habana Gaudi
- local: optimization/neuron
title: AWS Neuron
title: Optimized hardware
title: Accelerate inference and reduce memory
- sections:
@@ -205,6 +223,8 @@
title: Logging
- local: api/outputs
title: Outputs
- local: api/quantization
title: Quantization
title: Main Classes
- isExpanded: false
sections:
@@ -218,6 +238,8 @@
title: Textual Inversion
- local: api/loaders/unet
title: UNet
- local: api/loaders/transformer_sd3
title: SD3Transformer2D
- local: api/loaders/peft
title: PEFT
title: Loaders
@@ -236,28 +258,42 @@
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
title: AllegroTransformer3DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
title: CogView3PlusTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/hunyuan_video_transformer_3d
title: HunyuanVideoTransformer3DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/ltx_video_transformer3d
title: LTXVideoTransformer3DModel
- local: api/models/mochi_transformer3d
title: MochiTransformer3DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/transformer2d
@@ -284,10 +320,20 @@
- sections:
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/autoencoderkl_allegro
title: AutoencoderKLAllegro
- local: api/models/autoencoderkl_cogvideox
title: AutoencoderKLCogVideoX
- local: api/models/autoencoder_kl_hunyuan_video
title: AutoencoderKLHunyuanVideo
- local: api/models/autoencoderkl_ltx_video
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
title: AutoencoderDC
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/autoencoder_oobleck
@@ -302,6 +348,8 @@
sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/allegro
title: Allegro
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
@@ -320,6 +368,8 @@
title: BLIP-Diffusion
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
@@ -336,6 +386,8 @@
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
title: ControlNet-XS with Stable Diffusion XL
- local: api/pipelines/controlnet_union
title: ControlNetUnion
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
@@ -350,8 +402,12 @@
title: DiT
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/hunyuan_video
title: HunyuanVideo
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/pix2pix
@@ -372,10 +428,14 @@
title: Latte
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/ltx_video
title: LTXVideo
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold
title: Marigold
- local: api/pipelines/mochi
title: Mochi
- local: api/pipelines/panorama
title: MultiDiffusion
- local: api/pipelines/musicldm
@@ -390,6 +450,8 @@
title: PixArt-α
- local: api/pipelines/pixart_sigma
title: PixArt-Σ
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion

View File

@@ -15,40 +15,135 @@ specific language governing permissions and limitations under the License.
An attention processor is a class for applying different types of attention mechanisms.
## AttnProcessor
[[autodoc]] models.attention_processor.AttnProcessor
## AttnProcessor2_0
[[autodoc]] models.attention_processor.AttnProcessor2_0
## AttnAddedKVProcessor
[[autodoc]] models.attention_processor.AttnAddedKVProcessor
## AttnAddedKVProcessor2_0
[[autodoc]] models.attention_processor.AttnAddedKVProcessor2_0
## CrossFrameAttnProcessor
[[autodoc]] pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor
[[autodoc]] models.attention_processor.AttnProcessorNPU
## CustomDiffusionAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor
## CustomDiffusionAttnProcessor2_0
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor2_0
## CustomDiffusionXFormersAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## FusedAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAttnProcessor2_0
## Allegro
[[autodoc]] models.attention_processor.AllegroAttnProcessor2_0
## AuraFlow
[[autodoc]] models.attention_processor.AuraFlowAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedAuraFlowAttnProcessor2_0
## CogVideoX
[[autodoc]] models.attention_processor.CogVideoXAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedCogVideoXAttnProcessor2_0
## CrossFrameAttnProcessor
[[autodoc]] pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.CrossFrameAttnProcessor
## Custom Diffusion
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor
[[autodoc]] models.attention_processor.CustomDiffusionAttnProcessor2_0
[[autodoc]] models.attention_processor.CustomDiffusionXFormersAttnProcessor
## Flux
[[autodoc]] models.attention_processor.FluxAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedFluxAttnProcessor2_0
[[autodoc]] models.attention_processor.FluxSingleAttnProcessor2_0
## Hunyuan
[[autodoc]] models.attention_processor.HunyuanAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedHunyuanAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGHunyuanAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGHunyuanAttnProcessor2_0
## IdentitySelfAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGIdentitySelfAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGIdentitySelfAttnProcessor2_0
## IP-Adapter
[[autodoc]] models.attention_processor.IPAdapterAttnProcessor
[[autodoc]] models.attention_processor.IPAdapterAttnProcessor2_0
[[autodoc]] models.attention_processor.SD3IPAdapterJointAttnProcessor2_0
## JointAttnProcessor2_0
[[autodoc]] models.attention_processor.JointAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGJointAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGJointAttnProcessor2_0
[[autodoc]] models.attention_processor.FusedJointAttnProcessor2_0
## LoRA
[[autodoc]] models.attention_processor.LoRAAttnProcessor
[[autodoc]] models.attention_processor.LoRAAttnProcessor2_0
[[autodoc]] models.attention_processor.LoRAAttnAddedKVProcessor
[[autodoc]] models.attention_processor.LoRAXFormersAttnProcessor
## Lumina-T2X
[[autodoc]] models.attention_processor.LuminaAttnProcessor2_0
## Mochi
[[autodoc]] models.attention_processor.MochiAttnProcessor2_0
[[autodoc]] models.attention_processor.MochiVaeAttnProcessor2_0
## Sana
[[autodoc]] models.attention_processor.SanaLinearAttnProcessor2_0
[[autodoc]] models.attention_processor.SanaMultiscaleAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGCFGSanaLinearAttnProcessor2_0
[[autodoc]] models.attention_processor.PAGIdentitySanaLinearAttnProcessor2_0
## Stable Audio
[[autodoc]] models.attention_processor.StableAudioAttnProcessor2_0
## SlicedAttnProcessor
[[autodoc]] models.attention_processor.SlicedAttnProcessor
## SlicedAttnAddedKVProcessor
[[autodoc]] models.attention_processor.SlicedAttnAddedKVProcessor
## XFormersAttnProcessor
[[autodoc]] models.attention_processor.XFormersAttnProcessor
## AttnProcessorNPU
[[autodoc]] models.attention_processor.AttnProcessorNPU
[[autodoc]] models.attention_processor.XFormersAttnAddedKVProcessor
## XLAFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFlashAttnProcessor2_0

View File

@@ -24,6 +24,12 @@ Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter [loading]
[[autodoc]] loaders.ip_adapter.IPAdapterMixin
## SD3IPAdapterMixin
[[autodoc]] loaders.ip_adapter.SD3IPAdapterMixin
- all
- is_ip_adapter_active
## IPAdapterMaskProcessor
[[autodoc]] image_processor.IPAdapterMaskProcessor

View File

@@ -17,6 +17,9 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`StableDiffusionLoraLoaderMixin`] provides functions for loading and unloading, fusing and unfusing, enabling and disabling, and more functions for managing LoRA weights. This class can be used with any model.
- [`StableDiffusionXLLoraLoaderMixin`] is a [Stable Diffusion (SDXL)](../../api/pipelines/stable_diffusion/stable_diffusion_xl) version of the [`StableDiffusionLoraLoaderMixin`] class for loading and saving LoRA weights. It can only be used with the SDXL model.
- [`SD3LoraLoaderMixin`] provides similar functions for [Stable Diffusion 3](https://huggingface.co/blog/sd3).
- [`FluxLoraLoaderMixin`] provides similar functions for [Flux](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux).
- [`CogVideoXLoraLoaderMixin`] provides similar functions for [CogVideoX](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox).
- [`Mochi1LoraLoaderMixin`] provides similar functions for [Mochi](https://huggingface.co/docs/diffusers/main/en/api/pipelines/mochi).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
@@ -38,6 +41,18 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
[[autodoc]] loaders.lora_pipeline.SD3LoraLoaderMixin
## FluxLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.FluxLoraLoaderMixin
## CogVideoXLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.CogVideoXLoraLoaderMixin
## Mochi1LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Mochi1LoraLoaderMixin
## AmusedLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin

View File

@@ -0,0 +1,29 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SD3Transformer2D
This class is useful when *only* loading weights into a [`SD3Transformer2DModel`]. If you need to load weights into the text encoder or a text encoder and SD3Transformer2DModel, check [`SD3LoraLoaderMixin`](lora#diffusers.loaders.SD3LoraLoaderMixin) class instead.
The [`SD3Transformer2DLoadersMixin`] class currently only loads IP-Adapter weights, but will be used in the future to save weights and load LoRAs.
<Tip>
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
</Tip>
## SD3Transformer2DLoadersMixin
[[autodoc]] loaders.transformer_sd3.SD3Transformer2DLoadersMixin
- all
- _load_ip_adapter_weights

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AllegroTransformer3DModel
A Diffusion Transformer model for 3D data from [Allegro](https://github.com/rhymes-ai/Allegro) was introduced in [Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) by RhymesAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AllegroTransformer3DModel
vae = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## AllegroTransformer3DModel
[[autodoc]] AllegroTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,72 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderDC
The 2D Autoencoder model used in [SANA](https://huggingface.co/papers/2410.10629) and introduced in [DCAE](https://huggingface.co/papers/2410.10733) by authors Junyu Chen\*, Han Cai\*, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, Song Han from MIT HAN Lab.
The abstract from the paper is:
*We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. Our code is available at [this https URL](https://github.com/mit-han-lab/efficientvit).*
The following DCAE models are released and supported in Diffusers.
| Diffusers format | Original format |
|:----------------:|:---------------:|
| [`mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers) | [`mit-han-lab/dc-ae-f32c32-sana-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0)
| [`mit-han-lab/dc-ae-f32c32-in-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-in-1.0-diffusers) | [`mit-han-lab/dc-ae-f32c32-in-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-in-1.0)
| [`mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers) | [`mit-han-lab/dc-ae-f32c32-mix-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f32c32-mix-1.0)
| [`mit-han-lab/dc-ae-f64c128-in-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-in-1.0-diffusers) | [`mit-han-lab/dc-ae-f64c128-in-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-in-1.0)
| [`mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers) | [`mit-han-lab/dc-ae-f64c128-mix-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f64c128-mix-1.0)
| [`mit-han-lab/dc-ae-f128c512-in-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0-diffusers) | [`mit-han-lab/dc-ae-f128c512-in-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0)
| [`mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers) | [`mit-han-lab/dc-ae-f128c512-mix-1.0`](https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0)
This model was contributed by [lawrence-cj](https://github.com/lawrence-cj).
Load a model in Diffusers format with [`~ModelMixin.from_pretrained`].
```python
from diffusers import AutoencoderDC
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32).to("cuda")
```
## Load a model in Diffusers via `from_single_file`
```python
from difusers import AutoencoderDC
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0/blob/main/model.safetensors"
model = AutoencoderDC.from_single_file(ckpt_path)
```
The `AutoencoderDC` model has `in` and `mix` single file checkpoint variants that have matching checkpoint keys, but use different scaling factors. It is not possible for Diffusers to automatically infer the correct config file to use with the model based on just the checkpoint and will default to configuring the model using the `mix` variant config file. To override the automatically determined config, please use the `config` argument when using single file loading with `in` variant checkpoints.
```python
from diffusers import AutoencoderDC
ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0/blob/main/model.safetensors"
model = AutoencoderDC.from_single_file(ckpt_path, config="mit-han-lab/dc-ae-f128c512-in-1.0-diffusers")
```
## AutoencoderDC
[[autodoc]] AutoencoderDC
- encode
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLHunyuanVideo
The 3D variational autoencoder (VAE) model with KL loss used in [HunyuanVideo](https://github.com/Tencent/HunyuanVideo/), which was introduced in [HunyuanVideo: A Systematic Framework For Large Video Generative Models](https://huggingface.co/papers/2412.03603) by Tencent.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanVideo
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16)
```
## AutoencoderKLHunyuanVideo
[[autodoc]] AutoencoderKLHunyuanVideo
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,37 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLAllegro
The 3D variational autoencoder (VAE) model with KL loss used in [Allegro](https://github.com/rhymes-ai/Allegro) was introduced in [Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) by RhymesAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLAllegro
vae = AutoencoderKLCogVideoX.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLAllegro
[[autodoc]] AutoencoderKLAllegro
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,37 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLLTXVideo
The 3D variational autoencoder (VAE) model with KL loss used in [LTX](https://huggingface.co/Lightricks/LTX-Video) was introduced by Lightricks.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLLTXVideo
vae = AutoencoderKLLTXVideo.from_pretrained("Lightricks/LTX-Video", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLLTXVideo
[[autodoc]] AutoencoderKLLTXVideo
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,32 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLMochi
The 3D variational autoencoder (VAE) model with KL loss used in [Mochi](https://github.com/genmoai/models) was introduced in [Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLMochi
vae = AutoencoderKLMochi.from_pretrained("genmo/mochi-1-preview", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLMochi
[[autodoc]] AutoencoderKLMochi
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,30 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogView3PlusTransformer2DModel
A Diffusion Transformer model for 2D data from [CogView3Plus](https://github.com/THUDM/CogView3) was introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121) by Tsinghua University & ZhipuAI.
The model can be loaded with the following code snippet.
```python
from diffusers import CogView3PlusTransformer2DModel
vae = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView3PlusTransformer2DModel
[[autodoc]] CogView3PlusTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -39,7 +39,7 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## ControlNetOutput
[[autodoc]] models.controlnet.ControlNetOutput
[[autodoc]] models.controlnets.controlnet.ControlNetOutput
## FlaxControlNetModel
@@ -47,4 +47,4 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## FlaxControlNetOutput
[[autodoc]] models.controlnet_flax.FlaxControlNetOutput
[[autodoc]] models.controlnets.controlnet_flax.FlaxControlNetOutput

View File

@@ -38,5 +38,5 @@ pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-di
## SD3ControlNetOutput
[[autodoc]] models.controlnet_sd3.SD3ControlNetOutput
[[autodoc]] models.controlnets.controlnet_sd3.SD3ControlNetOutput

View File

@@ -0,0 +1,35 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNetUnionModel
ControlNetUnionModel is an implementation of ControlNet for Stable Diffusion XL.
The ControlNet model was introduced in [ControlNetPlus](https://github.com/xinsir6/ControlNetPlus) by xinsir6. It supports multiple conditioning inputs without increasing computation.
*We design a new architecture that can support 10+ control types in condition text-to-image generation and can generate high resolution images visually comparable with midjourney. The network is based on the original ControlNet architecture, we propose two new modules to: 1 Extend the original ControlNet to support different image conditions using the same network parameter. 2 Support multiple conditions input without increasing computation offload, which is especially important for designers who want to edit image in detail, different conditions use the same condition encoder, without adding extra computations or parameters.*
## Loading
By default the [`ControlNetUnionModel`] should be loaded with [`~ModelMixin.from_pretrained`].
```py
from diffusers import StableDiffusionXLControlNetUnionPipeline, ControlNetUnionModel
controlnet = ControlNetUnionModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0")
pipe = StableDiffusionXLControlNetUnionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet)
```
## ControlNetUnionModel
[[autodoc]] ControlNetUnionModel

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HunyuanVideoTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [HunyuanVideo: A Systematic Framework For Large Video Generative Models](https://huggingface.co/papers/2412.03603) by Tencent.
The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanVideoTransformer3DModel
transformer = HunyuanVideoTransformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanVideoTransformer3DModel
[[autodoc]] HunyuanVideoTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# LTXVideoTransformer3DModel
A Diffusion Transformer model for 3D data from [LTX](https://huggingface.co/Lightricks/LTX-Video) was introduced by Lightricks.
The model can be loaded with the following code snippet.
```python
from diffusers import LTXVideoTransformer3DModel
transformer = LTXVideoTransformer3DModel.from_pretrained("Lightricks/LTX-Video", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## LTXVideoTransformer3DModel
[[autodoc]] LTXVideoTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,30 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# MochiTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Mochi-1 Preview](https://huggingface.co/genmo/mochi-1-preview) by Genmo.
The model can be loaded with the following code snippet.
```python
from diffusers import MochiTransformer3DModel
vae = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## MochiTransformer3DModel
[[autodoc]] MochiTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,34 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# SanaTransformer2DModel
A Diffusion Transformer model for 2D data from [SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers](https://huggingface.co/papers/2410.10629) was introduced from NVIDIA and MIT HAN Lab, by Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, Song Han.
The abstract from the paper is:
*We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 resolution image. Sana enables content creation at low cost. Code and model will be publicly released.*
The model can be loaded with the following code snippet.
```python
from diffusers import SanaTransformer2DModel
transformer = SanaTransformer2DModel.from_pretrained("Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## SanaTransformer2DModel
[[autodoc]] SanaTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -0,0 +1,34 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# Allegro
[Allegro: Open the Black Box of Commercial-Level Video Generation Model](https://huggingface.co/papers/2410.15458) from RhymesAI, by Yuan Zhou, Qiuyue Wang, Yuxuan Cai, Huan Yang.
The abstract from the paper is:
*Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## AllegroPipeline
[[autodoc]] AllegroPipeline
- all
- __call__
## AllegroPipelineOutput
[[autodoc]] pipelines.allegro.pipeline_output.AllegroPipelineOutput

View File

@@ -29,12 +29,32 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.m
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
There are two models available that can be used with the text-to-video and video-to-video CogVideoX pipelines:
- [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b): The recommended dtype for running this model is `fp16`.
- [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b): The recommended dtype for running this model is `bf16`.
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
There is one model available that can be used with the image-to-video CogVideoX pipeline:
- [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V): The recommended dtype for running this model is `bf16`.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |
There are two official CogVideoX checkpoints available for image-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
For the CogVideoX 1.5 series:
- Text-to-video (T2V) works best at a resolution of 1360x768 because it was trained with that specific resolution.
- Image-to-video (I2V) works for multiple resolutions. The width can vary from 768 to 1360, but the height must be 768. The height/width must be divisible by 16.
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
## Inference
@@ -118,6 +138,12 @@ It is also worth noting that torchao quantization is fully compatible with [torc
- all
- __call__
## CogVideoXFunControlPipeline
[[autodoc]] CogVideoXFunControlPipeline
- all
- __call__
## CogVideoXPipelineOutput
[[autodoc]] pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput

View File

@@ -0,0 +1,40 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# CogView3Plus
[CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121) from Tsinghua University & ZhipuAI, by Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong, Ming Ding, Jie Tang.
The abstract from the paper is:
*Recent advancements in text-to-image generative systems have been largely driven by diffusion models. However, single-stage text-to-image diffusion models still face challenges, in terms of computational efficiency and the refinement of image details. To tackle the issue, we propose CogView3, an innovative cascaded framework that enhances the performance of text-to-image diffusion. CogView3 is the first model implementing relay diffusion in the realm of text-to-image generation, executing the task by first creating low-resolution images and subsequently applying relay-based super-resolution. This methodology not only results in competitive text-to-image outputs but also greatly reduces both training and inference costs. Our experimental results demonstrate that CogView3 outperforms SDXL, the current state-of-the-art open-source text-to-image diffusion model, by 77.0% in human evaluations, all while requiring only about 1/2 of the inference time. The distilled variant of CogView3 achieves comparable performance while only utilizing 1/10 of the inference time by SDXL.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
## CogView3PlusPipeline
[[autodoc]] CogView3PlusPipeline
- all
- __call__
## CogView3PipelineOutput
[[autodoc]] pipelines.cogview3.pipeline_output.CogView3PipelineOutput

View File

@@ -0,0 +1,89 @@
<!--Copyright 2024 The HuggingFace Team, The Black Forest Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# FluxControlInpaint
FluxControlInpaintPipeline is an implementation of Inpainting for Flux.1 Depth/Canny models. It is a pipeline that allows you to inpaint images using the Flux.1 Depth/Canny models. The pipeline takes an image and a mask as input and returns the inpainted image.
FLUX.1 Depth and Canny [dev] is a 12 billion parameter rectified flow transformer capable of generating an image based on a text description while following the structure of a given input image. **This is not a ControlNet model**.
| Control type | Developer | Link |
| -------- | ---------- | ---- |
| Depth | [Black Forest Labs](https://huggingface.co/black-forest-labs) | [Link](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev) |
| Canny | [Black Forest Labs](https://huggingface.co/black-forest-labs) | [Link](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
<Tip>
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
</Tip>
```python
import torch
from diffusers import FluxControlInpaintPipeline
from diffusers.models.transformers import FluxTransformer2DModel
from transformers import T5EncoderModel
from diffusers.utils import load_image, make_image_grid
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
from PIL import Image
import numpy as np
pipe = FluxControlInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16,
)
# use following lines if you have GPU constraints
# ---------------------------------------------------------------
transformer = FluxTransformer2DModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
# ---------------------------------------------------------------
pipe.to("cuda")
prompt = "a blue robot singing opera with human-like expressions"
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
head_mask = np.zeros_like(image)
head_mask[65:580,300:642] = 255
mask_image = Image.fromarray(head_mask)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(image)[0].convert("RGB")
output = pipe(
prompt=prompt,
image=image,
control_image=control_image,
mask_image=mask_image,
num_inference_steps=30,
strength=0.9,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save("output.png")
```
## FluxControlInpaintPipeline
[[autodoc]] FluxControlInpaintPipeline
- all
- __call__
## FluxPipelineOutput
[[autodoc]] pipelines.flux.pipeline_output.FluxPipelineOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team, The InstantX Team, and the XLabs Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -31,6 +31,14 @@ This controlnet code is implemented by [The InstantX Team](https://huggingface.c
| Depth | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Depth) |
| Union | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union) |
XLabs ControlNets are also supported, which was contributed by the [XLabs team](https://huggingface.co/XLabs-AI).
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-canny-diffusers) |
| Depth | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-depth-diffusers) |
| HED | [The XLabs Team](https://huggingface.co/XLabs-AI) | [Link](https://huggingface.co/XLabs-AI/flux-controlnet-hed-diffusers) |
<Tip>

View File

@@ -28,6 +28,7 @@ This controlnet code is mainly implemented by [The InstantX Team](https://huggin
| ControlNet type | Developer | Link |
| -------- | ---------- | ---- |
| Canny | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Canny) |
| Depth | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Depth) |
| Pose | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Pose) |
| Tile | [The InstantX Team](https://huggingface.co/InstantX) | [Link](https://huggingface.co/InstantX/SD3-Controlnet-Tile) |
| Inpainting | [The AlimamaCreative Team](https://huggingface.co/alimama-creative) | [link](https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting) |

View File

@@ -0,0 +1,35 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNetUnion
ControlNetUnionModel is an implementation of ControlNet for Stable Diffusion XL.
The ControlNet model was introduced in [ControlNetPlus](https://github.com/xinsir6/ControlNetPlus) by xinsir6. It supports multiple conditioning inputs without increasing computation.
*We design a new architecture that can support 10+ control types in condition text-to-image generation and can generate high resolution images visually comparable with midjourney. The network is based on the original ControlNet architecture, we propose two new modules to: 1 Extend the original ControlNet to support different image conditions using the same network parameter. 2 Support multiple conditions input without increasing computation offload, which is especially important for designers who want to edit image in detail, different conditions use the same condition encoder, without adding extra computations or parameters.*
## StableDiffusionXLControlNetUnionPipeline
[[autodoc]] StableDiffusionXLControlNetUnionPipeline
- all
- __call__
## StableDiffusionXLControlNetUnionImg2ImgPipeline
[[autodoc]] StableDiffusionXLControlNetUnionImg2ImgPipeline
- all
- __call__
## StableDiffusionXLControlNetUnionInpaintPipeline
[[autodoc]] StableDiffusionXLControlNetUnionInpaintPipeline
- all
- __call__

View File

@@ -22,12 +22,20 @@ Flux can be quite expensive to run on consumer hardware devices. However, you ca
</Tip>
Flux comes in two variants:
Flux comes in the following variants:
* Timestep-distilled (`black-forest-labs/FLUX.1-schnell`)
* Guidance-distilled (`black-forest-labs/FLUX.1-dev`)
| model type | model id |
|:----------:|:--------:|
| Timestep-distilled | [`black-forest-labs/FLUX.1-schnell`](https://huggingface.co/black-forest-labs/FLUX.1-schnell) |
| Guidance-distilled | [`black-forest-labs/FLUX.1-dev`](https://huggingface.co/black-forest-labs/FLUX.1-dev) |
| Fill Inpainting/Outpainting (Guidance-distilled) | [`black-forest-labs/FLUX.1-Fill-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev) |
| Canny Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Canny-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
| Depth Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Depth-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev) |
| Canny Control (LoRA) | [`black-forest-labs/FLUX.1-Canny-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev-lora) |
| Depth Control (LoRA) | [`black-forest-labs/FLUX.1-Depth-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev-lora) |
| Redux (Adapter) | [`black-forest-labs/FLUX.1-Redux-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev) |
Both checkpoints have slightly difference usage which we detail below.
All checkpoints have different usage which we detail below.
### Timestep-distilled
@@ -77,7 +85,228 @@ out = pipe(
out.save("image.png")
```
### Fill Inpainting/Outpainting
* Flux Fill pipeline does not require `strength` as an input like regular inpainting pipelines.
* It supports both inpainting and outpainting.
```python
import torch
from diffusers import FluxFillPipeline
from diffusers.utils import load_image
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup.png")
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
image = pipe(
prompt="a white paper cup",
image=image,
mask_image=mask,
height=1632,
width=1232,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"output.png")
```
### Canny Control
**Note:** `black-forest-labs/Flux.1-Canny-dev` is _not_ a [`ControlNetModel`] model. ControlNet models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Canny Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
```python
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=30.0,
).images[0]
image.save("output.png")
```
Canny Control is also possible with a LoRA variant of this condition. The usage is as follows:
```python
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=30.0,
).images[0]
image.save("output.png")
```
### Depth Control
**Note:** `black-forest-labs/Flux.1-Depth-dev` is _not_ a ControlNet model. [`ControlNetModel`] models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Depth Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
```python
# !pip install git+https://github.com/huggingface/image_gen_aux
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=30,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```
Depth Control is also possible with a LoRA variant of this condition. The usage is as follows:
```python
# !pip install git+https://github.com/huggingface/image_gen_aux
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=30,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```
### Redux
* Flux Redux pipeline is an adapter for FLUX.1 base models. It can be used with both flux-dev and flux-schnell, for image-to-image generation.
* You can first use the `FluxPriorReduxPipeline` to get the `prompt_embeds` and `pooled_prompt_embeds`, and then feed them into the `FluxPipeline` for image-to-image generation.
* When use `FluxPriorReduxPipeline` with a base pipeline, you can set `text_encoder=None` and `text_encoder_2=None` in the base pipeline, in order to save VRAM.
```python
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
device = "cuda"
dtype = torch.bfloat16
repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
repo_base = "black-forest-labs/FLUX.1-dev"
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
pipe = FluxPipeline.from_pretrained(
repo_base,
text_encoder=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16
).to(device)
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")
pipe_prior_output = pipe_prior_redux(image)
images = pipe(
guidance_scale=2.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
**pipe_prior_output,
).images
images[0].save("flux-redux.png")
```
## Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux
We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps' inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).
```py
from diffusers import FluxControlPipeline
from image_gen_aux import DepthPreprocessor
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
import torch
control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora", adapter_name="depth")
control_pipe.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
)
control_pipe.set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
control_pipe.enable_model_cpu_offload()
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = control_pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=8,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```
## Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
FP16 inference code:
@@ -188,3 +417,27 @@ image.save("flux-fp8-dev.png")
[[autodoc]] FluxControlNetImg2ImgPipeline
- all
- __call__
## FluxControlPipeline
[[autodoc]] FluxControlPipeline
- all
- __call__
## FluxControlImg2ImgPipeline
[[autodoc]] FluxControlImg2ImgPipeline
- all
- __call__
## FluxPriorReduxPipeline
[[autodoc]] FluxPriorReduxPipeline
- all
- __call__
## FluxFillPipeline
[[autodoc]] FluxFillPipeline
- all
- __call__

View File

@@ -0,0 +1,43 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# HunyuanVideo
[HunyuanVideo](https://www.arxiv.org/abs/2412.03603) by Tencent.
*Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at [this https URL](https://github.com/Tencent/HunyuanVideo).*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
Recommendations for inference:
- Both text encoders should be in `torch.float16`.
- Transformer should be in `torch.bfloat16`.
- VAE should be in `torch.float16`.
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `129`.
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For more information about supported resolutions and other details, please refer to the original repository [here](https://github.com/Tencent/HunyuanVideo/).
## HunyuanVideoPipeline
[[autodoc]] HunyuanVideoPipeline
- all
- __call__
## HunyuanVideoPipelineOutput
[[autodoc]] pipelines.hunyuan_video.pipeline_output.HunyuanVideoPipelineOutput

View File

@@ -0,0 +1,156 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# LTX Video
[LTX Video](https://huggingface.co/Lightricks/LTX-Video) is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
Available models:
| Model name | Recommended dtype |
|:-------------:|:-----------------:|
| [`LTX Video 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors) | `torch.bfloat16` |
| [`LTX Video 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
## Loading Single Files
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`]. We recommend using `from_single_file` for the Lightricks series of models, as they plan to release multiple models in the future in the single file format.
```python
import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
# `single_file_url` could also be https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(
single_file_url, torch_dtype=torch.bfloat16
)
vae = AutoencoderKLLTXVideo.from_single_file(single_file_url, torch_dtype=torch.bfloat16)
pipe = LTXImageToVideoPipeline.from_pretrained(
"Lightricks/LTX-Video", transformer=transformer, vae=vae, torch_dtype=torch.bfloat16
)
# ... inference code ...
```
Alternatively, the pipeline can be used to load the weights with [`~FromSingleFileMixin.from_single_file`].
```python
import torch
from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
text_encoder = T5EncoderModel.from_pretrained(
"Lightricks/LTX-Video", subfolder="text_encoder", torch_dtype=torch.bfloat16
)
tokenizer = T5Tokenizer.from_pretrained(
"Lightricks/LTX-Video", subfolder="tokenizer", torch_dtype=torch.bfloat16
)
pipe = LTXImageToVideoPipeline.from_single_file(
single_file_url, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=torch.bfloat16
)
```
Loading [LTX GGUF checkpoints](https://huggingface.co/city96/LTX-Video-gguf) are also supported:
```py
import torch
from diffusers.utils import export_to_video
from diffusers import LTXPipeline, LTXVideoTransformer3DModel, GGUFQuantizationConfig
ckpt_path = (
"https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf"
)
transformer = LTXVideoTransformer3DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipe = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=704,
height=480,
num_frames=161,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output_gguf_ltx.mp4", fps=24)
```
Make sure to read the [documentation on GGUF](../../quantization/gguf) to learn more about our GGUF support.
<!-- TODO(aryan): Update this when official weights are supported -->
Loading and running inference with [LTX Video 0.9.1](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) weights.
```python
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
## LTXPipeline
[[autodoc]] LTXPipeline
- all
- __call__
## LTXImageToVideoPipeline
[[autodoc]] LTXImageToVideoPipeline
- all
- __call__
## LTXPipelineOutput
[[autodoc]] pipelines.ltx.pipeline_output.LTXPipelineOutput

View File

@@ -0,0 +1,231 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# Mochi 1 Preview
[Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) from Genmo.
*Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation. This model dramatically closes the gap between closed and open video generation systems. The model is released under a permissive Apache 2.0 license.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## Generating videos with Mochi-1 Preview
The following example will download the full precision `mochi-1-preview` weights and produce the highest quality results but will require at least 42GB VRAM to run.
```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")
# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
with torch.autocast("cuda", torch.bfloat16, cache_enabled=False):
frames = pipe(prompt, num_frames=85).frames[0]
export_to_video(frames, "mochi.mp4", fps=30)
```
## Using a lower precision variant to save memory
The following example will use the `bfloat16` variant of the model and requires 22GB VRAM to run. There is a slight drop in the quality of the generated video as a result.
```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
frames = pipe(prompt, num_frames=85).frames[0]
export_to_video(frames, "mochi.mp4", fps=30)
```
## Reproducing the results from the Genmo Mochi repo
The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the the original implementation, please refer to the following example.
<Tip>
The original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder.
When enabling `force_zeros_for_empty_prompt`, it is recommended to run the text encoding step outside the autocast context in full precision.
</Tip>
<Tip>
Decoding the latents in full precision is very memory intensive. You will need at least 70GB VRAM to generate the 163 frames in this example. To reduce memory, either reduce the number of frames or run the decoding step in `torch.bfloat16`.
</Tip>
```python
import torch
from torch.nn.attention import SDPBackend, sdpa_kernel
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
from diffusers.video_processor import VideoProcessor
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", force_zeros_for_empty_prompt=True)
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()
prompt = "An aerial shot of a parade of elephants walking across the African savannah. The camera showcases the herd and the surrounding landscape."
with torch.no_grad():
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = (
pipe.encode_prompt(prompt=prompt)
)
with torch.autocast("cuda", torch.bfloat16):
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
frames = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_attention_mask=negative_prompt_attention_mask,
guidance_scale=4.5,
num_inference_steps=64,
height=480,
width=848,
num_frames=163,
generator=torch.Generator("cuda").manual_seed(0),
output_type="latent",
return_dict=False,
)[0]
video_processor = VideoProcessor(vae_scale_factor=8)
has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None
has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
)
latents_std = (
torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
)
frames = frames * latents_std / pipe.vae.config.scaling_factor + latents_mean
else:
frames = frames / pipe.vae.config.scaling_factor
with torch.no_grad():
video = pipe.vae.decode(frames.to(pipe.vae.dtype), return_dict=False)[0]
video = video_processor.postprocess_video(video)[0]
export_to_video(video, "mochi.mp4", fps=30)
```
## Running inference with multiple GPUs
It is possible to split the large Mochi transformer across multiple GPUs using the `device_map` and `max_memory` options in `from_pretrained`. In the following example we split the model across two GPUs, each with 24GB of VRAM.
```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video
model_id = "genmo/mochi-1-preview"
transformer = MochiTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
device_map="auto",
max_memory={0: "24GB", 1: "24GB"}
)
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
frames = pipe(
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
negative_prompt="",
height=480,
width=848,
num_frames=85,
num_inference_steps=50,
guidance_scale=4.5,
num_videos_per_prompt=1,
generator=torch.Generator(device="cuda").manual_seed(0),
max_sequence_length=256,
output_type="pil",
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
## Using single file loading with the Mochi Transformer
You can use `from_single_file` to load the Mochi transformer in its original format.
<Tip>
Diffusers currently doesn't support using the FP8 scaled versions of the Mochi single file checkpoints.
</Tip>
```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video
model_id = "genmo/mochi-1-preview"
ckpt_path = "https://huggingface.co/Comfy-Org/mochi_preview_repackaged/blob/main/split_files/diffusion_models/mochi_preview_bf16.safetensors"
transformer = MochiTransformer3DModel.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16)
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
frames = pipe(
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
negative_prompt="",
height=480,
width=848,
num_frames=85,
num_inference_steps=50,
guidance_scale=4.5,
num_videos_per_prompt=1,
generator=torch.Generator(device="cuda").manual_seed(0),
max_sequence_length=256,
output_type="pil",
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
## MochiPipeline
[[autodoc]] MochiPipeline
- all
- __call__
## MochiPipelineOutput
[[autodoc]] pipelines.mochi.pipeline_output.MochiPipelineOutput

View File

@@ -48,13 +48,26 @@ Since RegEx is supported as a way for matching layer identifiers, it is crucial
- all
- __call__
## StableDiffusionPAGInpaintPipeline
[[autodoc]] StableDiffusionPAGInpaintPipeline
- all
- __call__
## StableDiffusionPAGPipeline
[[autodoc]] StableDiffusionPAGPipeline
- all
- __call__
## StableDiffusionPAGImg2ImgPipeline
[[autodoc]] StableDiffusionPAGImg2ImgPipeline
- all
- __call__
## StableDiffusionControlNetPAGPipeline
[[autodoc]] StableDiffusionControlNetPAGPipeline
## StableDiffusionControlNetPAGInpaintPipeline
[[autodoc]] StableDiffusionControlNetPAGInpaintPipeline
- all
- __call__
@@ -88,6 +101,10 @@ Since RegEx is supported as a way for matching layer identifiers, it is crucial
- all
- __call__
## StableDiffusion3PAGImg2ImgPipeline
[[autodoc]] StableDiffusion3PAGImg2ImgPipeline
- all
- __call__
## PixArtSigmaPAGPipeline
[[autodoc]] PixArtSigmaPAGPipeline

View File

@@ -0,0 +1,67 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# SanaPipeline
[SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers](https://huggingface.co/papers/2410.10629) from NVIDIA and MIT HAN Lab, by Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, Song Han.
The abstract from the paper is:
*We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096×4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8×, we trained an AE that can compress images 32×, effectively reducing the number of latent tokens. (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024×1024 resolution image. Sana enables content creation at low cost. Code and model will be publicly released.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [lawrence-cj](https://github.com/lawrence-cj) and [chenjy2003](https://github.com/chenjy2003). The original codebase can be found [here](https://github.com/NVlabs/Sana). The original weights can be found under [hf.co/Efficient-Large-Model](https://huggingface.co/Efficient-Large-Model).
Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_512px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_512px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_600M_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_600M_512px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_600M_512px_diffusers) | `torch.float16` |
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-673efba2a57ed99843f11f9e) collection for more information.
Note: The recommended dtype mentioned is for the transformer weights. The text encoder and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
<Tip>
Make sure to pass the `variant` argument for downloaded checkpoints to use lower disk space. Set it to `"fp16"` for models with recommended dtype as `torch.float16`, and `"bf16"` for models with recommended dtype as `torch.bfloat16`. By default, `torch.float32` weights are downloaded, which use twice the amount of disk storage. Additionally, `torch.float32` weights can be downcasted on-the-fly by specifying the `torch_dtype` argument. Read about it in the [docs](https://huggingface.co/docs/diffusers/v0.31.0/en/api/pipelines/overview#diffusers.DiffusionPipeline.from_pretrained).
</Tip>
## SanaPipeline
[[autodoc]] SanaPipeline
- all
- __call__
## SanaPAGPipeline
[[autodoc]] SanaPAGPipeline
- all
- __call__
## SanaPipelineOutput
[[autodoc]] pipelines.sana.pipeline_output.SanaPipelineOutput

View File

@@ -54,9 +54,81 @@ image = pipe(
image.save("sd3_hello_world.png")
```
**Note:** Stable Diffusion 3.5 can also be run using the SD3 pipeline, and all mentioned optimizations and techniques apply to it as well. In total there are three official models in the SD3 family:
- [`stabilityai/stable-diffusion-3-medium-diffusers`](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers)
- [`stabilityai/stable-diffusion-3.5-large`](https://huggingface.co/stabilityai/stable-diffusion-3-5-large)
- [`stabilityai/stable-diffusion-3.5-large-turbo`](https://huggingface.co/stabilityai/stable-diffusion-3-5-large-turbo)
## Image Prompting with IP-Adapters
An IP-Adapter lets you prompt SD3 with images, in addition to the text prompt. This is especially useful when describing complex concepts that are difficult to articulate through text alone and you have reference images. To load and use an IP-Adapter, you need:
- `image_encoder`: Pre-trained vision model used to obtain image features, usually a CLIP image encoder.
- `feature_extractor`: Image processor that prepares the input image for the chosen `image_encoder`.
- `ip_adapter_id`: Checkpoint containing parameters of image cross attention layers and image projection.
IP-Adapters are trained for a specific model architecture, so they also work in finetuned variations of the base model. You can use the [`~SD3IPAdapterMixin.set_ip_adapter_scale`] function to adjust how strongly the output aligns with the image prompt. The higher the value, the more closely the model follows the image prompt. A default value of 0.5 is typically a good balance, ensuring the model considers both the text and image prompts equally.
```python
import torch
from PIL import Image
from diffusers import StableDiffusion3Pipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "InstantX/SD3.5-Large-IP-Adapter"
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id,
torch_dtype=torch.float16
)
image_encoder = SiglipVisionModel.from_pretrained(
image_encoder_id,
torch_dtype=torch.float16
).to( "cuda")
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
torch_dtype=torch.float16,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
).to("cuda")
pipe.load_ip_adapter(ip_adapter_id)
pipe.set_ip_adapter_scale(0.6)
ref_img = Image.open("image.jpg").convert('RGB')
image = pipe(
width=1024,
height=1024,
prompt="a cat",
negative_prompt="lowres, low quality, worst quality",
num_inference_steps=24,
guidance_scale=5.0,
ip_adapter_image=ref_img
).images[0]
image.save("result.jpg")
```
<div class="justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd3_ip_adapter_example.png"/>
<figcaption class="mt-2 text-sm text-center text-gray-500">IP-Adapter examples with prompt "a cat"</figcaption>
</div>
<Tip>
Check out [IP-Adapter](../../../using-diffusers/ip_adapter) to learn more about how IP-Adapters work.
</Tip>
## Memory Optimisations for SD3
SD3 uses three text encoders, one if which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using `fp16` precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
SD3 uses three text encoders, one of which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using `fp16` precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
### Running Inference with Model Offloading
@@ -308,6 +380,26 @@ image = pipe("a picture of a cat holding a sign that says hello world").images[0
image.save('sd3-single-file-t5-fp8.png')
```
### Loading the single file checkpoint for the Stable Diffusion 3.5 Transformer Model
```python
import torch
from diffusers import SD3Transformer2DModel, StableDiffusion3Pipeline
transformer = SD3Transformer2DModel.from_single_file(
"https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo/blob/main/sd3.5_large.safetensors",
torch_dtype=torch.bfloat16,
)
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
image = pipe("a cat holding a sign that says hello world").images[0]
image.save("sd35.png")
```
## StableDiffusion3Pipeline
[[autodoc]] StableDiffusion3Pipeline

View File

@@ -40,6 +40,7 @@ To generate a video from prompt, run the following Python code:
```python
import torch
from diffusers import TextToVideoZeroPipeline
import imageio
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

View File

@@ -0,0 +1,40 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quantization
Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Diffusers supports 8-bit and 4-bit quantization with [bitsandbytes](https://huggingface.co/docs/bitsandbytes/en/index).
Quantization techniques that aren't supported in Transformers can be added with the [`DiffusersQuantizer`] class.
<Tip>
Learn how to quantize models in the [Quantization](../quantization/overview) guide.
</Tip>
## BitsAndBytesConfig
[[autodoc]] BitsAndBytesConfig
## GGUFQuantizationConfig
[[autodoc]] GGUFQuantizationConfig
## TorchAoConfig
[[autodoc]] TorchAoConfig
## DiffusersQuantizer
[[autodoc]] quantizers.base.DiffusersQuantizer

View File

@@ -45,6 +45,15 @@ Many schedulers are implemented from the [k-diffusion](https://github.com/crowso
| N/A | [`DEISMultistepScheduler`] | |
| N/A | [`UniPCMultistepScheduler`] | |
## Noise schedules and schedule types
| A1111/k-diffusion | 🤗 Diffusers |
|--------------------------|----------------------------------------------------------------------------|
| Karras | init with `use_karras_sigmas=True` |
| sgm_uniform | init with `timestep_spacing="trailing"` |
| simple | init with `timestep_spacing="trailing"` |
| exponential | init with `timestep_spacing="linspace"`, `use_exponential_sigmas=True` |
| beta | init with `timestep_spacing="linspace"`, `use_beta_sigmas=True` |
All schedulers are built from the base [`SchedulerMixin`] class which implements low level utilities shared by all schedulers.
## SchedulerMixin

View File

@@ -75,4 +75,8 @@ Happy exploring, and thank you for being part of the Diffusers community!
<td><a href="https://github.com/cumulo-autumn/StreamDiffusion"> StreamDiffusion </a></td>
<td>A Pipeline-Level Solution for Real-Time Interactive Generation</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Netwrck/stable-diffusion-server"> Stable Diffusion Server </a></td>
<td>A server configured for Inpainting/Generation/img2img with one stable diffusion model</td>
</tr>
</table>

View File

@@ -181,7 +181,7 @@ Then we load the [v1-5 checkpoint](https://huggingface.co/stable-diffusion-v1-5/
```python
model_ckpt_1_5 = "stable-diffusion-v1-5/stable-diffusion-v1-5"
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=weight_dtype).to(device)
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=torch.float16).to("cuda")
images_1_5 = sd_pipeline_1_5(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
```
@@ -280,7 +280,7 @@ from diffusers import StableDiffusionInstructPix2PixPipeline
instruct_pix2pix_pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", torch_dtype=torch.float16
).to(device)
).to("cuda")
```
Now, we perform the edits:
@@ -326,9 +326,9 @@ from transformers import (
clip_id = "openai/clip-vit-large-patch14"
tokenizer = CLIPTokenizer.from_pretrained(clip_id)
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to(device)
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to("cuda")
image_processor = CLIPImageProcessor.from_pretrained(clip_id)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to("cuda")
```
Notice that we are using a particular CLIP checkpoint, i.e., `openai/clip-vit-large-patch14`. This is because the Stable Diffusion pre-training was performed with this CLIP variant. For more details, refer to the [documentation](https://huggingface.co/docs/transformers/model_doc/clip).
@@ -350,7 +350,7 @@ class DirectionalSimilarity(nn.Module):
def preprocess_image(self, image):
image = self.image_processor(image, return_tensors="pt")["pixel_values"]
return {"pixel_values": image.to(device)}
return {"pixel_values": image.to("cuda")}
def tokenize_text(self, text):
inputs = self.tokenizer(
@@ -360,7 +360,7 @@ class DirectionalSimilarity(nn.Module):
truncation=True,
return_tensors="pt",
)
return {"input_ids": inputs.input_ids.to(device)}
return {"input_ids": inputs.input_ids.to("cuda")}
def encode_image(self, image):
preprocessed_image = self.preprocess_image(image)
@@ -459,6 +459,7 @@ with ZipFile(local_filepath, "r") as zipper:
```python
from PIL import Image
import os
import numpy as np
dataset_path = "sample-imagenet-images"
image_paths = sorted([os.path.join(dataset_path, x) for x in os.listdir(dataset_path)])
@@ -477,6 +478,7 @@ Now that the images are loaded, let's apply some lightweight pre-processing on t
```python
from torchvision.transforms import functional as F
import torch
def preprocess_image(image):
@@ -498,6 +500,10 @@ dit_pipeline = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=
dit_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(dit_pipeline.scheduler.config)
dit_pipeline = dit_pipeline.to("cuda")
seed = 0
generator = torch.manual_seed(seed)
words = [
"cassette player",
"chainsaw",

View File

@@ -95,7 +95,7 @@ print(f"Model downloaded at {model_path}")
Once you have downloaded a snapshot of the model, you can test it using Apple's Python script.
```shell
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i models/coreml-stable-diffusion-v1-4_original_packages -o </path/to/output/image> --compute-unit CPU_AND_GPU --seed 93
python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i ./models/coreml-stable-diffusion-v1-4_original_packages/original/packages -o </path/to/output/image> --compute-unit CPU_AND_GPU --seed 93
```
Pass the path of the downloaded checkpoint with `-i` flag to the script. `--compute-unit` indicates the hardware you want to allow for inference. It must be one of the following options: `ALL`, `CPU_AND_GPU`, `CPU_ONLY`, `CPU_AND_NE`. You may also provide an optional output path, and a seed for reproducibility.

View File

@@ -0,0 +1,61 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AWS Neuron
Diffusers functionalities are available on [AWS Inf2 instances](https://aws.amazon.com/ec2/instance-types/inf2/), which are EC2 instances powered by [Neuron machine learning accelerators](https://aws.amazon.com/machine-learning/inferentia/). These instances aim to provide better compute performance (higher throughput, lower latency) with good cost-efficiency, making them good candidates for AWS users to deploy diffusion models to production.
[Optimum Neuron](https://huggingface.co/docs/optimum-neuron/en/index) is the interface between Hugging Face libraries and AWS Accelerators, including AWS [Trainium](https://aws.amazon.com/machine-learning/trainium/) and AWS [Inferentia](https://aws.amazon.com/machine-learning/inferentia/). It supports many of the features in Diffusers with similar APIs, so it is easier to learn if you're already familiar with Diffusers. Once you have created an AWS Inf2 instance, install Optimum Neuron.
```bash
python -m pip install --upgrade-strategy eager optimum[neuronx]
```
<Tip>
We provide pre-built [Hugging Face Neuron Deep Learning AMI](https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2) (DLAMI) and Optimum Neuron containers for Amazon SageMaker. It's recommended to correctly set up your environment.
</Tip>
The example below demonstrates how to generate images with the Stable Diffusion XL model on an inf2.8xlarge instance (you can switch to cheaper inf2.xlarge instances once the model is compiled). To generate some images, use the [`~optimum.neuron.NeuronStableDiffusionXLPipeline`] class, which is similar to the [`StableDiffusionXLPipeline`] class in Diffusers.
Unlike Diffusers, you need to compile models in the pipeline to the Neuron format, `.neuron`. Launch the following command to export the model to the `.neuron` format.
```bash
optimum-cli export neuron --model stabilityai/stable-diffusion-xl-base-1.0 \
--batch_size 1 \
--height 1024 `# height in pixels of generated image, eg. 768, 1024` \
--width 1024 `# width in pixels of generated image, eg. 768, 1024` \
--num_images_per_prompt 1 `# number of images to generate per prompt, defaults to 1` \
--auto_cast matmul `# cast only matrix multiplication operations` \
--auto_cast_type bf16 `# cast operations from FP32 to BF16` \
sd_neuron_xl/
```
Now generate some images with the pre-compiled SDXL model.
```python
>>> from optimum.neuron import NeuronStableDiffusionXLPipeline
>>> stable_diffusion_xl = NeuronStableDiffusionXLPipeline.from_pretrained("sd_neuron_xl/")
>>> prompt = "a pig with wings flying in floating US dollar banknotes in the air, skyscrapers behind, warm color palette, muted colors, detailed, 8k"
>>> image = stable_diffusion_xl(prompt).images[0]
```
<img
src="https://huggingface.co/datasets/Jingya/document_images/resolve/main/optimum/neuron/sdxl_pig.png"
width="256"
height="256"
alt="peggy generated by sdxl on inf2"
/>
Feel free to check out more guides and examples on different use cases from the Optimum Neuron [documentation](https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/stable_diffusion#generate-images-with-stable-diffusion-models-on-aws-inferentia)!

View File

@@ -9,7 +9,7 @@ Optimization orthogonal to parallelization focuses on accelerating single GPU pe
The overview of xDiT is shown as follows.
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/methods/xdit_overview.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/methods/xdit_overview.png">
</div>
You can install xDiT using the following command:
@@ -78,37 +78,36 @@ A subset of Diffusers models are supported in xDiT, such as Flux.1, Stable Diffu
## Benchmark
We tested different models on various machines, and here is some of the benchmark data.
### Flux.1-schnell
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/flux/Flux-2k-L40.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/flux/Flux-2k-L40.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/flux/Flux-2K-A100.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/flux/Flux-2K-A100.png">
</div>
### Stable Diffusion 3
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/sd3/L40-SD3.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/sd3/L40-SD3.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/sd3/A100-SD3.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/sd3/A100-SD3.png">
</div>
### HunyuanDiT
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/hunuyuandit/L40-HunyuanDiT.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/hunuyuandit/L40-HunyuanDiT.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/hunuyuandit/A100-HunyuanDiT.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/hunuyuandit/V100-HunyuanDiT.png">
</div>
<div class="flex justify-center">
<img src="https://github.com/xdit-project/xDiT/raw/main/assets/performance/hunuyuandit/T4-HunyuanDiT.png">
<img src="https://huggingface.co/datasets/xDiT/documentation-images/resolve/main/performance/hunuyuandit/T4-HunyuanDiT.png">
</div>
More detailed performance metric can be found on our [github page](https://github.com/xdit-project/xDiT?tab=readme-ov-file#perf).

View File

@@ -0,0 +1,416 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# bitsandbytes
[bitsandbytes](https://huggingface.co/docs/bitsandbytes/index) is the easiest option for quantizing a model to 8 and 4-bit. 8-bit quantization multiplies outliers in fp16 with non-outliers in int8, converts the non-outlier values back to fp16, and then adds them together to return the weights in fp16. This reduces the degradative effect outlier values have on a model's performance.
4-bit quantization compresses a model even further, and it is commonly used with [QLoRA](https://hf.co/papers/2305.14314) to finetune quantized LLMs.
This guide demonstrates how quantization can enable running
[FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
on less than 16GB of VRAM and even on a free Google
Colab instance.
![comparison image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/quant-bnb/comparison.png)
To use bitsandbytes, make sure you have the following libraries installed:
```bash
pip install diffusers transformers accelerate bitsandbytes -U
```
Now you can quantize a model by passing a [`BitsAndBytesConfig`] to [`~ModelMixin.from_pretrained`]. This works for any model in any modality, as long as it supports loading with [Accelerate](https://hf.co/docs/accelerate/index) and contains `torch.nn.Linear` layers.
<hfoptions id="bnb">
<hfoption id="8-bit">
Quantizing a model in 8-bit halves the memory-usage:
bitsandbytes is supported in both Transformers and Diffusers, so you can quantize both the
[`FluxTransformer2DModel`] and [`~transformers.T5EncoderModel`].
For Ada and higher-series GPUs. we recommend changing `torch_dtype` to `torch.bfloat16`.
> [!TIP]
> The [`CLIPTextModel`] and [`AutoencoderKL`] aren't quantized because they're already small in size and because [`AutoencoderKL`] only has a few `torch.nn.Linear` layers.
```py
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel
quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,)
text_encoder_2_8bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True,)
transformer_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
```
By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter.
```diff
transformer_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
+ torch_dtype=torch.float32,
)
```
Let's generate an image using our quantized models.
Setting `device_map="auto"` automatically fills all available space on the GPU(s) first, then the
CPU, and finally, the hard drive (the absolute slowest option) if there is still not enough memory.
```py
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer_8bit,
text_encoder_2=text_encoder_2_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
pipe_kwargs = {
"prompt": "A cat holding a sign that says hello world",
"height": 1024,
"width": 1024,
"guidance_scale": 3.5,
"num_inference_steps": 50,
"max_sequence_length": 512,
}
image = pipe(**pipe_kwargs, generator=torch.manual_seed(0),).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/quant-bnb/8bit.png"/>
</div>
When there is enough memory, you can also directly move the pipeline to the GPU with `.to("cuda")` and apply [`~DiffusionPipeline.enable_model_cpu_offload`] to optimize GPU memory usage.
Once a model is quantized, you can push the model to the Hub with the [`~ModelMixin.push_to_hub`] method. The quantization `config.json` file is pushed first, followed by the quantized model weights. You can also save the serialized 8-bit models locally with [`~ModelMixin.save_pretrained`].
</hfoption>
<hfoption id="4-bit">
Quantizing a model in 4-bit reduces your memory-usage by 4x:
bitsandbytes is supported in both Transformers and Diffusers, so you can can quantize both the
[`FluxTransformer2DModel`] and [`~transformers.T5EncoderModel`].
For Ada and higher-series GPUs. we recommend changing `torch_dtype` to `torch.bfloat16`.
> [!TIP]
> The [`CLIPTextModel`] and [`AutoencoderKL`] aren't quantized because they're already small in size and because [`AutoencoderKL`] only has a few `torch.nn.Linear` layers.
```py
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel
quant_config = TransformersBitsAndBytesConfig(load_in_4bit=True,)
text_encoder_2_4bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_4bit=True,)
transformer_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
```
By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter.
```diff
transformer_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
+ torch_dtype=torch.float32,
)
```
Let's generate an image using our quantized models.
Setting `device_map="auto"` automatically fills all available space on the GPU(s) first, then the CPU, and finally, the hard drive (the absolute slowest option) if there is still not enough memory.
```py
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer_4bit,
text_encoder_2=text_encoder_2_4bit,
torch_dtype=torch.float16,
device_map="auto",
)
pipe_kwargs = {
"prompt": "A cat holding a sign that says hello world",
"height": 1024,
"width": 1024,
"guidance_scale": 3.5,
"num_inference_steps": 50,
"max_sequence_length": 512,
}
image = pipe(**pipe_kwargs, generator=torch.manual_seed(0),).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/quant-bnb/4bit.png"/>
</div>
When there is enough memory, you can also directly move the pipeline to the GPU with `.to("cuda")` and apply [`~DiffusionPipeline.enable_model_cpu_offload`] to optimize GPU memory usage.
Once a model is quantized, you can push the model to the Hub with the [`~ModelMixin.push_to_hub`] method. The quantization `config.json` file is pushed first, followed by the quantized model weights. You can also save the serialized 4-bit models locally with [`~ModelMixin.save_pretrained`].
</hfoption>
</hfoptions>
<Tip warning={true}>
Training with 8-bit and 4-bit weights are only supported for training *extra* parameters.
</Tip>
Check your memory footprint with the `get_memory_footprint` method:
```py
print(model.get_memory_footprint())
```
Quantized models can be loaded from the [`~ModelMixin.from_pretrained`] method without needing to specify the `quantization_config` parameters:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_4bit = FluxTransformer2DModel.from_pretrained(
"hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer"
)
```
## 8-bit (LLM.int8() algorithm)
<Tip>
Learn more about the details of 8-bit quantization in this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration)!
</Tip>
This section explores some of the specific features of 8-bit models, such as outlier thresholds and skipping module conversion.
### Outlier threshold
An "outlier" is a hidden state value greater than a certain threshold, and these values are computed in fp16. While the values are usually normally distributed ([-3.5, 3.5]), this distribution can be very different for large models ([-60, 6] or [6, 60]). 8-bit quantization works well for values ~5, but beyond that, there is a significant performance penalty. A good default threshold value is 6, but a lower threshold may be needed for more unstable models (small models or finetuning).
To find the best threshold for your model, we recommend experimenting with the `llm_int8_threshold` parameter in [`BitsAndBytesConfig`]:
```py
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_threshold=10,
)
model_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quantization_config,
)
```
### Skip module conversion
For some models, you don't need to quantize every module to 8-bit which can actually cause instability. For example, for diffusion models like [Stable Diffusion 3](../api/pipelines/stable_diffusion/stable_diffusion_3), the `proj_out` module can be skipped using the `llm_int8_skip_modules` parameter in [`BitsAndBytesConfig`]:
```py
from diffusers import SD3Transformer2DModel, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True, llm_int8_skip_modules=["proj_out"],
)
model_8bit = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="transformer",
quantization_config=quantization_config,
)
```
## 4-bit (QLoRA algorithm)
<Tip>
Learn more about its details in this [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
</Tip>
This section explores some of the specific features of 4-bit models, such as changing the compute data type, using the Normal Float 4 (NF4) data type, and using nested quantization.
### Compute data type
To speedup computation, you can change the data type from float32 (the default value) to bf16 using the `bnb_4bit_compute_dtype` parameter in [`BitsAndBytesConfig`]:
```py
import torch
from diffusers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
```
### Normal Float 4 (NF4)
NF4 is a 4-bit data type from the [QLoRA](https://hf.co/papers/2305.14314) paper, adapted for weights initialized from a normal distribution. You should use NF4 for training 4-bit base models. This can be configured with the `bnb_4bit_quant_type` parameter in the [`BitsAndBytesConfig`]:
```py
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel
quant_config = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
)
text_encoder_2_4bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
)
transformer_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
```
For inference, the `bnb_4bit_quant_type` does not have a huge impact on performance. However, to remain consistent with the model weights, you should use the `bnb_4bit_compute_dtype` and `torch_dtype` values.
### Nested quantization
Nested quantization is a technique that can save additional memory at no additional performance cost. This feature performs a second quantization of the already quantized weights to save an additional 0.4 bits/parameter.
```py
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel
quant_config = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
text_encoder_2_4bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
transformer_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
```
## Dequantizing `bitsandbytes` models
Once quantized, you can dequantize a model to its original precision, but this might result in a small loss of quality. Make sure you have enough GPU RAM to fit the dequantized model.
```python
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from diffusers import FluxTransformer2DModel
from transformers import T5EncoderModel
quant_config = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
text_encoder_2_4bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
)
transformer_4bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
text_encoder_2_4bit.dequantize()
transformer_4bit.dequantize()
```
## Resources
* [End-to-end notebook showing Flux.1 Dev inference in a free-tier Colab](https://gist.github.com/sayakpaul/c76bd845b48759e11687ac550b99d8b4)
* [Training](https://gist.github.com/sayakpaul/05afd428bc089b47af7c016e42004527)

View File

@@ -0,0 +1,69 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# GGUF
The GGUF file format is typically used to store models for inference with [GGML](https://github.com/ggerganov/ggml) and supports a variety of block wise quantization options. Diffusers supports loading checkpoints prequantized and saved in the GGUF format via `from_single_file` loading with Model classes. Loading GGUF checkpoints via Pipelines is currently not supported.
The following example will load the [FLUX.1 DEV](https://huggingface.co/black-forest-labs/FLUX.1-dev) transformer model using the GGUF Q2_K quantization variant.
Before starting please install gguf in your environment
```shell
pip install -U gguf
```
Since GGUF is a single file format, use [`~FromSingleFileMixin.from_single_file`] to load the model and pass in the [`GGUFQuantizationConfig`].
When using GGUF checkpoints, the quantized weights remain in a low memory `dtype`(typically `torch.uint8`) and are dynamically dequantized and cast to the configured `compute_dtype` during each module's forward pass through the model. The `GGUFQuantizationConfig` allows you to set the `compute_dtype`.
The functions used for dynamic dequantizatation are based on the great work done by [city96](https://github.com/city96/ComfyUI-GGUF), who created the Pytorch ports of the original [`numpy`](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/quants.py) implementation by [compilade](https://github.com/compilade).
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig
ckpt_path = (
"https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf"
)
transformer = FluxTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")
```
## Supported Quantization Types
- BF16
- Q4_0
- Q4_1
- Q5_0
- Q5_1
- Q8_0
- Q2_K
- Q3_K
- Q4_K
- Q5_K
- Q6_K

View File

@@ -0,0 +1,40 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quantization
Quantization techniques focus on representing data with less information while also trying to not lose too much accuracy. This often means converting a data type to represent the same information with fewer bits. For example, if your model weights are stored as 32-bit floating points and they're quantized to 16-bit floating points, this halves the model size which makes it easier to store and reduces memory-usage. Lower precision can also speedup inference because it takes less time to perform calculations with fewer bits.
<Tip>
Interested in adding a new quantization method to Diffusers? Refer to the [Contribute new quantization method guide](https://huggingface.co/docs/transformers/main/en/quantization/contribute) to learn more about adding a new quantization method.
</Tip>
<Tip>
If you are new to the quantization field, we recommend you to check out these beginner-friendly courses about quantization in collaboration with DeepLearning.AI:
* [Quantization Fundamentals with Hugging Face](https://www.deeplearning.ai/short-courses/quantization-fundamentals-with-hugging-face/)
* [Quantization in Depth](https://www.deeplearning.ai/short-courses/quantization-in-depth/)
</Tip>
## When to use what?
Diffusers currently supports the following quantization methods.
- [BitsandBytes](./bitsandbytes)
- [TorchAO](./torchao)
- [GGUF](./gguf)
[This resource](https://huggingface.co/docs/transformers/main/en/quantization/overview#when-to-use-what) provides a good overview of the pros and cons of different quantization techniques.

View File

@@ -0,0 +1,156 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# torchao
[TorchAO](https://github.com/pytorch/ao) is an architecture optimization library for PyTorch. It provides high-performance dtypes, optimization techniques, and kernels for inference and training, featuring composability with native PyTorch features like [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html), FullyShardedDataParallel (FSDP), and more.
Before you begin, make sure you have Pytorch 2.5+ and TorchAO installed.
```bash
pip install -U torch torchao
```
Quantize a model by passing [`TorchAoConfig`] to [`~ModelMixin.from_pretrained`] (you can also load pre-quantized models). This works for any model in any modality, as long as it supports loading with [Accelerate](https://hf.co/docs/accelerate/index) and contains `torch.nn.Linear` layers.
The example below only quantizes the weights to int8.
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig
model_id = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
quantization_config = TorchAoConfig("int8wo")
transformer = FluxTransformer2DModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=dtype,
)
pipe = FluxPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=dtype,
)
pipe.to("cuda")
# Without quantization: ~31.447 GB
# With quantization: ~20.40 GB
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB")
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
```
TorchAO is fully compatible with [torch.compile](./optimization/torch2.0#torchcompile), setting it apart from other quantization methods. This makes it easy to speed up inference with just one line of code.
```python
# In the above code, add the following after initializing the transformer
transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True)
```
For speed and memory benchmarks on Flux and CogVideoX, please refer to the table [here](https://github.com/huggingface/diffusers/pull/10009#issue-2688781450). You can also find some torchao [benchmarks](https://github.com/pytorch/ao/tree/main/torchao/quantization#benchmarks) numbers for various hardware.
torchao also supports an automatic quantization API through [autoquant](https://github.com/pytorch/ao/blob/main/torchao/quantization/README.md#autoquantization). Autoquantization determines the best quantization strategy applicable to a model by comparing the performance of each technique on chosen input types and shapes. Currently, this can be used directly on the underlying modeling components. Diffusers will also expose an autoquant configuration option in the future.
The `TorchAoConfig` class accepts three parameters:
- `quant_type`: A string value mentioning one of the quantization types below.
- `modules_to_not_convert`: A list of module full/partial module names for which quantization should not be performed. For example, to not perform any quantization of the [`FluxTransformer2DModel`]'s first block, one would specify: `modules_to_not_convert=["single_transformer_blocks.0"]`.
- `kwargs`: A dict of keyword arguments to pass to the underlying quantization method which will be invoked based on `quant_type`.
## Supported quantization types
torchao supports weight-only quantization and weight and dynamic-activation quantization for int8, float3-float8, and uint1-uint7.
Weight-only quantization stores the model weights in a specific low-bit data type but performs computation with a higher-precision data type, like `bfloat16`. This lowers the memory requirements from model weights but retains the memory peaks for activation computation.
Dynamic activation quantization stores the model weights in a low-bit dtype, while also quantizing the activations on-the-fly to save additional memory. This lowers the memory requirements from model weights, while also lowering the memory overhead from activation computations. However, this may come at a quality tradeoff at times, so it is recommended to test different models thoroughly.
The quantization methods supported are as follows:
| **Category** | **Full Function Names** | **Shorthands** |
|--------------|-------------------------|----------------|
| **Integer quantization** | `int4_weight_only`, `int8_dynamic_activation_int4_weight`, `int8_weight_only`, `int8_dynamic_activation_int8_weight` | `int4wo`, `int4dq`, `int8wo`, `int8dq` |
| **Floating point 8-bit quantization** | `float8_weight_only`, `float8_dynamic_activation_float8_weight`, `float8_static_activation_float8_weight` | `float8wo`, `float8wo_e5m2`, `float8wo_e4m3`, `float8dq`, `float8dq_e4m3`, `float8_e4m3_tensor`, `float8_e4m3_row` |
| **Floating point X-bit quantization** | `fpx_weight_only` | `fpX_eAwB` where `X` is the number of bits (1-7), `A` is exponent bits, and `B` is mantissa bits. Constraint: `X == A + B + 1` |
| **Unsigned Integer quantization** | `uintx_weight_only` | `uint1wo`, `uint2wo`, `uint3wo`, `uint4wo`, `uint5wo`, `uint6wo`, `uint7wo` |
Some quantization methods are aliases (for example, `int8wo` is the commonly used shorthand for `int8_weight_only`). This allows using the quantization methods described in the torchao docs as-is, while also making it convenient to remember their shorthand notations.
Refer to the official torchao documentation for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
## Serializing and Deserializing quantized models
To serialize a quantized model in a given dtype, first load the model with the desired quantization dtype and then save it using the [`~ModelMixin.save_pretrained`] method.
```python
import torch
from diffusers import FluxTransformer2DModel, TorchAoConfig
quantization_config = TorchAoConfig("int8wo")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/Flux.1-Dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
transformer.save_pretrained("/path/to/flux_int8wo", safe_serialization=False)
```
To load a serialized quantized model, use the [`~ModelMixin.from_pretrained`] method.
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel
transformer = FluxTransformer2DModel.from_pretrained("/path/to/flux_int8wo", torch_dtype=torch.bfloat16, use_safetensors=False)
pipe = FluxPipeline.from_pretrained("black-forest-labs/Flux.1-Dev", transformer=transformer, torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.0).images[0]
image.save("output.png")
```
Some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
```python
import torch
from accelerate import init_empty_weights
from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig
# Serialize the model
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/Flux.1-Dev",
subfolder="transformer",
quantization_config=TorchAoConfig("uint4wo"),
torch_dtype=torch.bfloat16,
)
transformer.save_pretrained("/path/to/flux_uint4wo", safe_serialization=False, max_shard_size="50GB")
# ...
# Load the model
state_dict = torch.load("/path/to/flux_uint4wo/diffusion_pytorch_model.bin", weights_only=False, map_location="cpu")
with init_empty_weights():
transformer = FluxTransformer2DModel.from_config("/path/to/flux_uint4wo/config.json")
transformer.load_state_dict(state_dict, strict=True, assign=True)
```
## Resources
- [TorchAO Quantization API](https://github.com/pytorch/ao/blob/main/torchao/quantization/README.md)
- [Diffusers-TorchAO examples](https://github.com/sayakpaul/diffusers-torchao)

View File

@@ -0,0 +1,291 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CogVideoX
CogVideoX is a text-to-video generation model focused on creating more coherent videos aligned with a prompt. It achieves this using several methods.
- a 3D variational autoencoder that compresses videos spatially and temporally, improving compression rate and video accuracy.
- an expert transformer block to help align text and video, and a 3D full attention module for capturing and creating spatially and temporally accurate videos.
The actual test of the video instruction dimension found that CogVideoX has good effects on consistent theme, dynamic information, consistent background, object information, smooth motion, color, scene, appearance style, and temporal style but cannot achieve good results with human action, spatial relationship, and multiple objects.
Finetuning with Diffusers can help make up for these poor results.
## Data Preparation
The training scripts accepts data in two formats.
The first format is suited for small-scale training, and the second format uses a CSV format, which is more appropriate for streaming data for large-scale training. In the future, Diffusers will support the `<Video>` tag.
### Small format
Two files where one file contains line-separated prompts and another file contains line-separated paths to video data (the path to video files must be relative to the path you pass when specifying `--instance_data_root`). Let's take a look at an example to understand this better!
Assume you've specified `--instance_data_root` as `/dataset`, and that this directory contains the files: `prompts.txt` and `videos.txt`.
The `prompts.txt` file should contain line-separated prompts:
```
A black and white animated sequence featuring a rabbit, named Rabbity Ribfried, and an anthropomorphic goat in a musical, playful environment, showcasing their evolving interaction.
A black and white animated sequence on a ship's deck features a bulldog character, named Bully Bulldoger, showcasing exaggerated facial expressions and body language. The character progresses from confident to focused, then to strained and distressed, displaying a range of emotions as it navigates challenges. The ship's interior remains static in the background, with minimalistic details such as a bell and open door. The character's dynamic movements and changing expressions drive the narrative, with no camera movement to distract from its evolving reactions and physical gestures.
...
```
The `videos.txt` file should contain line-separate paths to video files. Note that the path should be _relative_ to the `--instance_data_root` directory.
```
videos/00000.mp4
videos/00001.mp4
...
```
Overall, this is how your dataset would look like if you ran the `tree` command on the dataset root directory:
```
/dataset
├── prompts.txt
├── videos.txt
├── videos
├── videos/00000.mp4
├── videos/00001.mp4
├── ...
```
When using this format, the `--caption_column` must be `prompts.txt` and `--video_column` must be `videos.txt`.
### Stream format
You could use a single CSV file. For the sake of this example, assume you have a `metadata.csv` file. The expected format is:
```
<CAPTION_COLUMN>,<PATH_TO_VIDEO_COLUMN>
"""A black and white animated sequence featuring a rabbit, named Rabbity Ribfried, and an anthropomorphic goat in a musical, playful environment, showcasing their evolving interaction.""","""00000.mp4"""
"""A black and white animated sequence on a ship's deck features a bulldog character, named Bully Bulldoger, showcasing exaggerated facial expressions and body language. The character progresses from confident to focused, then to strained and distressed, displaying a range of emotions as it navigates challenges. The ship's interior remains static in the background, with minimalistic details such as a bell and open door. The character's dynamic movements and changing expressions drive the narrative, with no camera movement to distract from its evolving reactions and physical gestures.""","""00001.mp4"""
...
```
In this case, the `--instance_data_root` should be the location where the videos are stored and `--dataset_name` should be either a path to local folder or a [`~datasets.load_dataset`] compatible dataset hosted on the Hub. Assuming you have videos of Minecraft gameplay at `https://huggingface.co/datasets/my-awesome-username/minecraft-videos`, you would have to specify `my-awesome-username/minecraft-videos`.
When using this format, the `--caption_column` must be `<CAPTION_COLUMN>` and `--video_column` must be `<PATH_TO_VIDEO_COLUMN>`.
You are not strictly restricted to the CSV format. Any format works as long as the `load_dataset` method supports the file format to load a basic `<PATH_TO_VIDEO_COLUMN>` and `<CAPTION_COLUMN>`. The reason for going through these dataset organization gymnastics for loading video data is because `load_dataset` does not fully support all kinds of video formats.
> [!NOTE]
> CogVideoX works best with long and descriptive LLM-augmented prompts for video generation. We recommend pre-processing your videos by first generating a summary using a VLM and then augmenting the prompts with an LLM. To generate the above captions, we use [MiniCPM-V-26](https://huggingface.co/openbmb/MiniCPM-V-2_6) and [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct). A very barebones and no-frills example for this is available [here](https://gist.github.com/a-r-r-o-w/4dee20250e82f4e44690a02351324a4a). The official recommendation for augmenting prompts is [ChatGLM](https://huggingface.co/THUDM?search_models=chatglm) and a length of 50-100 words is considered good.
>![NOTE]
> It is expected that your dataset is already pre-processed. If not, some basic pre-processing can be done by playing with the following parameters:
> `--height`, `--width`, `--fps`, `--max_num_frames`, `--skip_frames_start` and `--skip_frames_end`.
> Presently, all videos in your dataset should contain the same number of video frames when using a training batch size > 1.
<!-- TODO: Implement frame packing in future to address above issue. -->
## Training
You need to setup your development environment by installing the necessary requirements. The following packages are required:
- Torch 2.0 or above based on the training features you are utilizing (might require latest or nightly versions for quantized/deepspeed training)
- `pip install diffusers transformers accelerate peft huggingface_hub` for all things modeling and training related
- `pip install datasets decord` for loading video training data
- `pip install bitsandbytes` for using 8-bit Adam or AdamW optimizers for memory-optimized training
- `pip install wandb` optionally for monitoring training logs
- `pip install deepspeed` optionally for [DeepSpeed](https://github.com/microsoft/DeepSpeed) training
- `pip install prodigyopt` optionally if you would like to use the Prodigy optimizer for training
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
Before running the script, make sure you install the library from source:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
- PyTorch
```bash
cd examples/cogvideo
pip install -r requirements.txt
```
And initialize an [🤗 Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell (e.g., a notebook)
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if you use torch.compile, there can be dramatic speedups. The PEFT library is used as a backend for LoRA training, so make sure to have `peft>=0.6.0` installed in your environment.
If you would like to push your model to the Hub after training is completed with a neat model card, make sure you're logged in:
```bash
huggingface-cli login
# Alternatively, you could upload your model manually using:
# huggingface-cli upload my-cool-account-name/my-cool-lora-name /path/to/awesome/lora
```
Make sure your data is prepared as described in [Data Preparation](#data-preparation). When ready, you can begin training!
Assuming you are training on 50 videos of a similar concept, we have found 1500-2000 steps to work well. The official recommendation, however, is 100 videos with a total of 4000 steps. Assuming you are training on a single GPU with a `--train_batch_size` of `1`:
- 1500 steps on 50 videos would correspond to `30` training epochs
- 4000 steps on 100 videos would correspond to `40` training epochs
```bash
#!/bin/bash
GPU_IDS="0"
accelerate launch --gpu_ids $GPU_IDS examples/cogvideo/train_cogvideox_lora.py \
--pretrained_model_name_or_path THUDM/CogVideoX-2b \
--cache_dir <CACHE_DIR> \
--instance_data_root <PATH_TO_WHERE_VIDEO_FILES_ARE_STORED> \
--dataset_name my-awesome-name/my-awesome-dataset \
--caption_column <CAPTION_COLUMN> \
--video_column <PATH_TO_VIDEO_COLUMN> \
--id_token <ID_TOKEN> \
--validation_prompt "<ID_TOKEN> Spiderman swinging over buildings:::A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance" \
--validation_prompt_separator ::: \
--num_validation_videos 1 \
--validation_epochs 10 \
--seed 42 \
--rank 64 \
--lora_alpha 64 \
--mixed_precision fp16 \
--output_dir /raid/aryan/cogvideox-lora \
--height 480 --width 720 --fps 8 --max_num_frames 49 --skip_frames_start 0 --skip_frames_end 0 \
--train_batch_size 1 \
--num_train_epochs 30 \
--checkpointing_steps 1000 \
--gradient_accumulation_steps 1 \
--learning_rate 1e-3 \
--lr_scheduler cosine_with_restarts \
--lr_warmup_steps 200 \
--lr_num_cycles 1 \
--enable_slicing \
--enable_tiling \
--optimizer Adam \
--adam_beta1 0.9 \
--adam_beta2 0.95 \
--max_grad_norm 1.0 \
--report_to wandb
```
To better track our training experiments, we're using the following flags in the command above:
* `--report_to wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
Setting the `<ID_TOKEN>` is not necessary. From some limited experimentation, we found it works better (as it resembles [Dreambooth](https://huggingface.co/docs/diffusers/en/training/dreambooth) training) than without. When provided, the `<ID_TOKEN>` is appended to the beginning of each prompt. So, if your `<ID_TOKEN>` was `"DISNEY"` and your prompt was `"Spiderman swinging over buildings"`, the effective prompt used in training would be `"DISNEY Spiderman swinging over buildings"`. When not provided, you would either be training without any additional token or could augment your dataset to apply the token where you wish before starting the training.
> [!NOTE]
> You can pass `--use_8bit_adam` to reduce the memory requirements of training.
> [!IMPORTANT]
> The following settings have been tested at the time of adding CogVideoX LoRA training support:
> - Our testing was primarily done on CogVideoX-2b. We will work on CogVideoX-5b and CogVideoX-5b-I2V soon
> - One dataset comprised of 70 training videos of resolutions `200 x 480 x 720` (F x H x W). From this, by using frame skipping in data preprocessing, we created two smaller 49-frame and 16-frame datasets for faster experimentation and because the maximum limit recommended by the CogVideoX team is 49 frames. Out of the 70 videos, we created three groups of 10, 25 and 50 videos. All videos were similar in nature of the concept being trained.
> - 25+ videos worked best for training new concepts and styles.
> - We found that it is better to train with an identifier token that can be specified as `--id_token`. This is similar to Dreambooth-like training but normal finetuning without such a token works too.
> - Trained concept seemed to work decently well when combined with completely unrelated prompts. We expect even better results if CogVideoX-5B is finetuned.
> - The original repository uses a `lora_alpha` of `1`. We found this not suitable in many runs, possibly due to difference in modeling backends and training settings. Our recommendation is to set to the `lora_alpha` to either `rank` or `rank // 2`.
> - If you're training on data whose captions generate bad results with the original model, a `rank` of 64 and above is good and also the recommendation by the team behind CogVideoX. If the generations are already moderately good on your training captions, a `rank` of 16/32 should work. We found that setting the rank too low, say `4`, is not ideal and doesn't produce promising results.
> - The authors of CogVideoX recommend 4000 training steps and 100 training videos overall to achieve the best result. While that might yield the best results, we found from our limited experimentation that 2000 steps and 25 videos could also be sufficient.
> - When using the Prodigy opitimizer for training, one can follow the recommendations from [this](https://huggingface.co/blog/sdxl_lora_advanced_script) blog. Prodigy tends to overfit quickly. From my very limited testing, I found a learning rate of `0.5` to be suitable in addition to `--prodigy_use_bias_correction`, `prodigy_safeguard_warmup` and `--prodigy_decouple`.
> - The recommended learning rate by the CogVideoX authors and from our experimentation with Adam/AdamW is between `1e-3` and `1e-4` for a dataset of 25+ videos.
>
> Note that our testing is not exhaustive due to limited time for exploration. Our recommendation would be to play around with the different knobs and dials to find the best settings for your data.
<!-- TODO: Test finetuning with CogVideoX-5b and CogVideoX-5b-I2V and update scripts accordingly -->
## Inference
Once you have trained a lora model, the inference can be done simply loading the lora weights into the `CogVideoXPipeline`.
```python
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16)
# pipe.load_lora_weights("/path/to/lora/weights", adapter_name="cogvideox-lora") # Or,
pipe.load_lora_weights("my-awesome-hf-username/my-awesome-lora-name", adapter_name="cogvideox-lora") # If loading from the HF Hub
pipe.to("cuda")
# Assuming lora_alpha=32 and rank=64 for training. If different, set accordingly
pipe.set_adapters(["cogvideox-lora"], [32 / 64])
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
frames = pipe(prompt, guidance_scale=6, use_dynamic_cfg=True).frames[0]
export_to_video(frames, "output.mp4", fps=8)
```
## Reduce memory usage
While testing using the diffusers library, all optimizations included in the diffusers library were enabled. This
scheme has not been tested for actual memory usage on devices outside of **NVIDIA A100 / H100** architectures.
Generally, this scheme can be adapted to all **NVIDIA Ampere architecture** and above devices. If optimizations are
disabled, memory consumption will multiply, with peak memory usage being about 3 times the value in the table.
However, speed will increase by about 3-4 times. You can selectively disable some optimizations, including:
```
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
```
+ For multi-GPU inference, the `enable_sequential_cpu_offload()` optimization needs to be disabled.
+ Using INT8 models will slow down inference, which is done to accommodate lower-memory GPUs while maintaining minimal
video quality loss, though inference speed will significantly decrease.
+ The CogVideoX-2B model was trained in `FP16` precision, and all CogVideoX-5B models were trained in `BF16` precision.
We recommend using the precision in which the model was trained for inference.
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
used to quantize the text encoder, transformer, and VAE modules to reduce the memory requirements of CogVideoX. This
allows the model to run on free T4 Colabs or GPUs with smaller memory! Also, note that TorchAO quantization is fully
compatible with `torch.compile`, which can significantly improve inference speed. FP8 precision must be used on
devices with NVIDIA H100 and above, requiring source installation of `torch`, `torchao`, `diffusers`, and `accelerate`
Python packages. CUDA 12.4 is recommended.
+ The inference speed tests also used the above memory optimization scheme. Without memory optimization, inference speed
increases by about 10%. Only the `diffusers` version of the model supports quantization.
+ The model only supports English input; other languages can be translated into English for use via large model
refinement.
+ The memory usage of model fine-tuning is tested in an `8 * H100` environment, and the program automatically
uses `Zero 2` optimization. If a specific number of GPUs is marked in the table, that number or more GPUs must be used
for fine-tuning.
| **Attribute** | **CogVideoX-2B** | **CogVideoX-5B** |
| ------------------------------------ | ---------------------------------------------------------------------- | ---------------------------------------------------------------------- |
| **Model Name** | CogVideoX-2B | CogVideoX-5B |
| **Inference Precision** | FP16* (Recommended), BF16, FP32, FP8*, INT8, Not supported INT4 | BF16 (Recommended), FP16, FP32, FP8*, INT8, Not supported INT4 |
| **Single GPU Inference VRAM** | FP16: Using diffusers 12.5GB* INT8: Using diffusers with torchao 7.8GB* | BF16: Using diffusers 20.7GB* INT8: Using diffusers with torchao 11.4GB* |
| **Multi GPU Inference VRAM** | FP16: Using diffusers 10GB* | BF16: Using diffusers 15GB* |
| **Inference Speed** | Single A100: ~90 seconds, Single H100: ~45 seconds | Single A100: ~180 seconds, Single H100: ~90 seconds |
| **Fine-tuning Precision** | FP16 | BF16 |
| **Fine-tuning VRAM Consumption** | 47 GB (bs=1, LORA) 61 GB (bs=2, LORA) 62GB (bs=1, SFT) | 63 GB (bs=1, LORA) 80 GB (bs=2, LORA) 75GB (bs=1, SFT) |

View File

@@ -1,6 +1,6 @@
# Create a dataset for training
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](hf.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the 🤗 [Datasets](https://huggingface.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
This guide will show you two ways to create a dataset to finetune on:
@@ -87,4 +87,4 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
Now that you've created a dataset, you can plug it into the `train_data_dir` (if your dataset is local) or `dataset_name` (if your dataset is on the Hub) arguments of a training script.
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Distributed inference with multiple GPUs
# Distributed inference
On distributed setups, you can run inference across multiple GPUs with 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) or [PyTorch Distributed](https://pytorch.org/tutorials/beginner/dist_overview.html), which is useful for generating with multiple prompts in parallel.
@@ -109,3 +109,131 @@ torchrun run_distributed.py --nproc_per_node=2
> [!TIP]
> You can use `device_map` within a [`DiffusionPipeline`] to distribute its model-level components on multiple devices. Refer to the [Device placement](../tutorials/inference_with_big_models#device-placement) guide to learn more.
## Model sharding
Modern diffusion systems such as [Flux](../api/pipelines/flux) are very large and have multiple models. For example, [Flux.1-Dev](https://hf.co/black-forest-labs/FLUX.1-dev) is made up of two text encoders - [T5-XXL](https://hf.co/google/t5-v1_1-xxl) and [CLIP-L](https://hf.co/openai/clip-vit-large-patch14) - a [diffusion transformer](../api/models/flux_transformer), and a [VAE](../api/models/autoencoderkl). With a model this size, it can be challenging to run inference on consumer GPUs.
Model sharding is a technique that distributes models across GPUs when the models don't fit on a single GPU. The example below assumes two 16GB GPUs are available for inference.
Start by computing the text embeddings with the text encoders. Keep the text encoders on two GPUs by setting `device_map="balanced"`. The `balanced` strategy evenly distributes the model on all available GPUs. Use the `max_memory` parameter to allocate the maximum amount of memory for each text encoder on each GPU.
> [!TIP]
> **Only** load the text encoders for this step! The diffusion transformer and VAE are loaded in a later step to preserve memory.
```py
from diffusers import FluxPipeline
import torch
prompt = "a photo of a dog with cat-like look"
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=None,
vae=None,
device_map="balanced",
max_memory={0: "16GB", 1: "16GB"},
torch_dtype=torch.bfloat16
)
with torch.no_grad():
print("Encoding prompts.")
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
prompt=prompt, prompt_2=None, max_sequence_length=512
)
```
Once the text embeddings are computed, remove them from the GPU to make space for the diffusion transformer.
```py
import gc
def flush():
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
del pipeline.text_encoder
del pipeline.text_encoder_2
del pipeline.tokenizer
del pipeline.tokenizer_2
del pipeline
flush()
```
Load the diffusion transformer next which has 12.5B parameters. This time, set `device_map="auto"` to automatically distribute the model across two 16GB GPUs. The `auto` strategy is backed by [Accelerate](https://hf.co/docs/accelerate/index) and available as a part of the [Big Model Inference](https://hf.co/docs/accelerate/concept_guides/big_model_inference) feature. It starts by distributing a model across the fastest device first (GPU) before moving to slower devices like the CPU and hard drive if needed. The trade-off of storing model parameters on slower devices is slower inference latency.
```py
from diffusers import FluxTransformer2DModel
import torch
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
device_map="auto",
torch_dtype=torch.bfloat16
)
```
> [!TIP]
> At any point, you can try `print(pipeline.hf_device_map)` to see how the various models are distributed across devices. This is useful for tracking the device placement of the models. You can also try `print(transformer.hf_device_map)` to see how the transformer model is sharded across devices.
Add the transformer model to the pipeline for denoising, but set the other model-level components like the text encoders and VAE to `None` because you don't need them yet.
```py
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
text_encoder=None,
text_encoder_2=None,
tokenizer=None,
tokenizer_2=None,
vae=None,
transformer=transformer,
torch_dtype=torch.bfloat16
)
print("Running denoising.")
height, width = 768, 1360
latents = pipeline(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
num_inference_steps=50,
guidance_scale=3.5,
height=height,
width=width,
output_type="latent",
).images
```
Remove the pipeline and transformer from memory as they're no longer needed.
```py
del pipeline.transformer
del pipeline
flush()
```
Finally, decode the latents with the VAE into an image. The VAE is typically small enough to be loaded on a single GPU.
```py
from diffusers import AutoencoderKL
from diffusers.image_processor import VaeImageProcessor
import torch
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
with torch.no_grad():
print("Running decoding.")
latents = FluxPipeline._unpack_latents(latents, height, width, vae_scale_factor)
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
image = vae.decode(latents, return_dict=False)[0]
image = image_processor.postprocess(image, output_type="pil")
image[0].save("split_transformer.png")
```
By selectively loading and unloading the models you need at a given stage and sharding the largest models across multiple GPUs, it is possible to run inference with large models on consumer GPUs.

View File

@@ -75,7 +75,7 @@ For convenience, create a `TrainingConfig` class containing the training hyperpa
... push_to_hub = True # whether to upload the saved model to the HF Hub
... hub_model_id = "<your-username>/<my-awesome-model>" # the name of the repository to create on the HF Hub
... hub_private_repo = False
... hub_private_repo = None
... overwrite_output_dir = True # overwrite the old model when re-running the notebook
... seed = 0

View File

@@ -56,7 +56,7 @@ image
With the `adapter_name` parameter, it is really easy to use another adapter for inference! Load the [nerijs/pixel-art-xl](https://huggingface.co/nerijs/pixel-art-xl) adapter that has been fine-tuned to generate pixel art images and call it `"pixel"`.
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method:
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~PeftAdapterMixin.set_adapters`] method:
```python
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
@@ -75,11 +75,17 @@ image
![pixel-art](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_12_1.png)
<Tip>
By default, if the most up-to-date versions of PEFT and Transformers are detected, `low_cpu_mem_usage` is set to `True` to speed up the loading time of LoRA checkpoints.
</Tip>
## Merge adapters
You can also merge different adapter checkpoints for inference to blend their styles together.
Once again, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
Once again, use the [`~PeftAdapterMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
```python
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
@@ -108,7 +114,7 @@ Impressive! As you can see, the model generated an image that mixed the characte
> [!TIP]
> Through its PEFT integration, Diffusers also offers more efficient merging methods which you can learn about in the [Merge LoRAs](../using-diffusers/merge_loras) guide!
To return to only using one adapter, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`] method to activate the `"toy"` adapter:
To return to only using one adapter, use the [`~PeftAdapterMixin.set_adapters`] method to activate the `"toy"` adapter:
```python
pipe.set_adapters("toy")
@@ -121,7 +127,7 @@ image = pipe(
image
```
Or to disable all adapters entirely, use the [`~diffusers.loaders.UNet2DConditionLoadersMixin.disable_lora`] method to return the base model.
Or to disable all adapters entirely, use the [`~PeftAdapterMixin.disable_lora`] method to return the base model.
```python
pipe.disable_lora()
@@ -134,7 +140,8 @@ image
![no-lora](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_20_1.png)
### Customize adapters strength
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~diffusers.loaders.UNet2DConditionLoadersMixin.set_adapters`].
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~PeftAdapterMixin.set_adapters`].
For example, here's how you can turn on the adapter for the `down` parts, but turn it off for the `mid` and `up` parts:
```python
@@ -189,7 +196,7 @@ image
![block-lora-mixed](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peft_integration/diffusers_peft_lora_inference_block_mixed.png)
## Manage active adapters
## Manage adapters
You have attached multiple adapters in this tutorial, and if you're feeling a bit lost on what adapters have been attached to the pipeline's components, use the [`~diffusers.loaders.StableDiffusionLoraLoaderMixin.get_active_adapters`] method to check the list of active adapters:
@@ -206,3 +213,11 @@ list_adapters_component_wise = pipe.get_list_adapters()
list_adapters_component_wise
{"text_encoder": ["toy", "pixel"], "unet": ["toy", "pixel"], "text_encoder_2": ["toy", "pixel"]}
```
The [`~PeftAdapterMixin.delete_adapters`] function completely removes an adapter and their LoRA layers from a model.
```py
pipe.delete_adapters("toy")
pipe.get_active_adapters()
["pixel"]
```

View File

@@ -171,14 +171,13 @@ def latents_to_rgb(latents):
weights = (
(60, -60, 25, -70),
(60, -5, 15, -50),
(60, 10, -5, -35)
(60, 10, -5, -35),
)
weights_tensor = torch.t(torch.tensor(weights, dtype=latents.dtype).to(latents.device))
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(latents.device)
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
image_array = image_array.transpose(1, 2, 0)
image_array = rgb_tensor.clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
return Image.fromarray(image_array)
```
@@ -189,7 +188,7 @@ def latents_to_rgb(latents):
def decode_tensors(pipe, step, timestep, callback_kwargs):
latents = callback_kwargs["latents"]
image = latents_to_rgb(latents)
image = latents_to_rgb(latents[0])
image.save(f"{step}.png")
return callback_kwargs

View File

@@ -0,0 +1,120 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# CogVideoX
CogVideoX is a text-to-video generation model focused on creating more coherent videos aligned with a prompt. It achieves this using several methods.
- a 3D variational autoencoder that compresses videos spatially and temporally, improving compression rate and video accuracy.
- an expert transformer block to help align text and video, and a 3D full attention module for capturing and creating spatially and temporally accurate videos.
## Load model checkpoints
Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method.
```py
from diffusers import CogVideoXPipeline, CogVideoXImageToVideoPipeline
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
)
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
```
## Text-to-Video
For text-to-video, pass a text prompt. By default, CogVideoX generates a 720x480 video for the best results.
```py
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_out.gif" alt="generated image of an astronaut in a jungle"/>
</div>
## Image-to-Video
You'll use the [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V) checkpoint for this guide.
```py
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
image = load_image(image="cogvideox_rocket.png")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
video = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_outrocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>

View File

@@ -0,0 +1,61 @@
# Create a server
Diffusers' pipelines can be used as an inference engine for a server. It supports concurrent and multithreaded requests to generate images that may be requested by multiple users at the same time.
This guide will show you how to use the [`StableDiffusion3Pipeline`] in a server, but feel free to use any pipeline you want.
Start by navigating to the `examples/server` folder and installing all of the dependencies.
```py
pip install .
pip install -f requirements.txt
```
Launch the server with the following command.
```py
python server.py
```
The server is accessed at http://localhost:8000. You can curl this model with the following command.
```
curl -X POST -H "Content-Type: application/json" --data '{"model": "something", "prompt": "a kitten in front of a fireplace"}' http://localhost:8000/v1/images/generations
```
If you need to upgrade some dependencies, you can use either [pip-tools](https://github.com/jazzband/pip-tools) or [uv](https://github.com/astral-sh/uv). For example, upgrade the dependencies with `uv` using the following command.
```
uv pip compile requirements.in -o requirements.txt
```
The server is built with [FastAPI](https://fastapi.tiangolo.com/async/). The endpoint for `v1/images/generations` is shown below.
```py
@app.post("/v1/images/generations")
async def generate_image(image_input: TextToImageInput):
try:
loop = asyncio.get_event_loop()
scheduler = shared_pipeline.pipeline.scheduler.from_config(shared_pipeline.pipeline.scheduler.config)
pipeline = StableDiffusion3Pipeline.from_pipe(shared_pipeline.pipeline, scheduler=scheduler)
generator = torch.Generator(device="cuda")
generator.manual_seed(random.randint(0, 10000000))
output = await loop.run_in_executor(None, lambda: pipeline(image_input.prompt, generator = generator))
logger.info(f"output: {output}")
image_url = save_image(output.images[0])
return {"data": [{"url": image_url}]}
except Exception as e:
if isinstance(e, HTTPException):
raise e
elif hasattr(e, 'message'):
raise HTTPException(status_code=500, detail=e.message + traceback.format_exc())
raise HTTPException(status_code=500, detail=str(e) + traceback.format_exc())
```
The `generate_image` function is defined as asynchronous with the [async](https://fastapi.tiangolo.com/async/) keyword so that FastAPI knows that whatever is happening in this function won't necessarily return a result right away. Once it hits some point in the function that it needs to await some other [Task](https://docs.python.org/3/library/asyncio-task.html#asyncio.Task), the main thread goes back to answering other HTTP requests. This is shown in the code below with the [await](https://fastapi.tiangolo.com/async/#async-and-await) keyword.
```py
output = await loop.run_in_executor(None, lambda: pipeline(image_input.prompt, generator = generator))
```
At this point, the execution of the pipeline function is placed onto a [new thread](https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor), and the main thread performs other things until a result is returned from the `pipeline`.
Another important aspect of this implementation is creating a `pipeline` from `shared_pipeline`. The goal behind this is to avoid loading the underlying model more than once onto the GPU while still allowing for each new request that is running on a separate thread to have its own generator and scheduler. The scheduler, in particular, is not thread-safe, and it will cause errors like: `IndexError: index 21 is out of bounds for dimension 0 with size 21` if you try to use the same scheduler across multiple threads.

View File

@@ -134,14 +134,16 @@ The [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] method loads L
- the LoRA weights don't have separate identifiers for the UNet and text encoder
- the LoRA weights have separate identifiers for the UNet and text encoder
But if you only need to load LoRA weights into the UNet, then you can use the [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method. Let's load the [jbilcke-hf/sdxl-cinematic-1](https://huggingface.co/jbilcke-hf/sdxl-cinematic-1) LoRA:
To directly load (and save) a LoRA adapter at the *model-level*, use [`~PeftAdapterMixin.load_lora_adapter`], which builds and prepares the necessary model configuration for the adapter. Like [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`], [`PeftAdapterMixin.load_lora_adapter`] can load LoRAs for both the UNet and text encoder. For example, if you're loading a LoRA for the UNet, [`PeftAdapterMixin.load_lora_adapter`] ignores the keys for the text encoder.
Use the `weight_name` parameter to specify the specific weight file and the `prefix` parameter to filter for the appropriate state dicts (`"unet"` in this case) to load.
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.unet.load_attn_procs("jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors")
pipeline.unet.load_lora_adapter("jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", prefix="unet")
# use cnmt in the prompt to trigger the LoRA
prompt = "A cute cnmt eating a slice of pizza, stunning color scheme, masterpiece, illustration"
@@ -153,6 +155,8 @@ image
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_attn_proc.png" />
</div>
Save an adapter with [`~PeftAdapterMixin.save_lora_adapter`].
To unload the LoRA weights, use the [`~loaders.StableDiffusionLoraLoaderMixin.unload_lora_weights`] method to discard the LoRA weights and restore the model to its original weights:
```py

View File

@@ -23,6 +23,59 @@ This guide will show you how to generate videos, how to configure video model pa
[Stable Video Diffusions (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid), [I2VGen-XL](https://huggingface.co/ali-vilab/i2vgen-xl/), [AnimateDiff](https://huggingface.co/guoyww/animatediff), and [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b) are popular models used for video diffusion. Each model is distinct. For example, AnimateDiff inserts a motion modeling module into a frozen text-to-image model to generate personalized animated images, whereas SVD is entirely pretrained from scratch with a three-stage training process to generate short high-quality videos.
[CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) is another popular video generation model. The model is a multidimensional transformer that integrates text, time, and space. It employs full attention in the attention module and includes an expert block at the layer level to spatially align text and video.
### CogVideoX
[CogVideoX](../api/pipelines/cogvideox) uses a 3D Variational Autoencoder (VAE) to compress videos along the spatial and temporal dimensions.
Begin by loading the [`CogVideoXPipeline`] and passing an initial text or image to generate a video.
<Tip>
CogVideoX is available for image-to-video and text-to-video. [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V) uses the [`CogVideoXImageToVideoPipeline`] for image-to-video. [THUDM/CogVideoX-5b](https://huggingface.co/THUDM/CogVideoX-5b) and [THUDM/CogVideoX-2b](https://huggingface.co/THUDM/CogVideoX-2b) are available for text-to-video with the [`CogVideoXPipeline`].
</Tip>
```py
import torch
from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
image = load_image(image="cogvideox_rocket.png")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
video = pipe(
prompt=prompt,
image=image,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_outrocket.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
### Stable Video Diffusion
[SVD](../api/pipelines/svd) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image. You can learn more details about model, like micro-conditioning, in the [Stable Video Diffusion](../using-diffusers/svd) guide.

View File

@@ -121,7 +121,7 @@ image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inferen
### 이미지 결과물을 정제하기
[base 모델 체크포인트](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)에서, StableDiffusion-XL 또한 고주파 품질을 향상시키는 이미지를 생성하기 위해 낮은 노이즈 단계 이미지를 제거하는데 특화된 [refiner 체크포인트](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 포함하고 있습니다. 이 refiner 체크포인트는 이미지 품질을 향상시키기 위해 base 체크포인트를 실행한 후 "두 번째 단계" 파이프라인에 사용될 수 있습니다.
[base 모델 체크포인트](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)에서, StableDiffusion-XL 또한 고주파 품질을 향상시키는 이미지를 생성하기 위해 낮은 노이즈 단계 이미지를 제거하는데 특화된 [refiner 체크포인트](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 포함하고 있습니다. 이 refiner 체크포인트는 이미지 품질을 향상시키기 위해 base 체크포인트를 실행한 후 "두 번째 단계" 파이프라인에 사용될 수 있습니다.
refiner를 사용할 때, 쉽게 사용할 수 있습니다
- 1.) base 모델과 refiner을 사용하는데, 이는 *Denoisers의 앙상블*을 위한 첫 번째 제안된 [eDiff-I](https://research.nvidia.com/labs/dir/eDiff-I/)를 사용하거나
@@ -215,7 +215,7 @@ image = refiner(
#### 2.) 노이즈가 완전히 제거된 기본 이미지에서 이미지 출력을 정제하기
일반적인 [`StableDiffusionImg2ImgPipeline`] 방식에서, 기본 모델에서 생성된 완전히 노이즈가 제거된 이미지는 [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 사용해 더 향상시킬 수 있습니다.
일반적인 [`StableDiffusionImg2ImgPipeline`] 방식에서, 기본 모델에서 생성된 완전히 노이즈가 제거된 이미지는 [refiner checkpoint](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)를 사용해 더 향상시킬 수 있습니다.
이를 위해, 보통의 "base" text-to-image 파이프라인을 수행 후에 image-to-image 파이프라인으로써 refiner를 실행시킬 수 있습니다. base 모델의 출력을 잠재 공간에 남겨둘 수 있습니다.

View File

@@ -1,7 +1,7 @@
# 학습을 위한 데이터셋 만들기
[Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) 에는 모델 교육을 위한 많은 데이터셋이 있지만,
관심이 있거나 사용하고 싶은 데이터셋을 찾을 수 없는 경우 🤗 [Datasets](hf.co/docs/datasets) 라이브러리를 사용하여 데이터셋을 만들 수 있습니다.
관심이 있거나 사용하고 싶은 데이터셋을 찾을 수 없는 경우 🤗 [Datasets](https://huggingface.co/docs/datasets) 라이브러리를 사용하여 데이터셋을 만들 수 있습니다.
데이터셋 구조는 모델을 학습하려는 작업에 따라 달라집니다.
가장 기본적인 데이터셋 구조는 unconditional 이미지 생성과 같은 작업을 위한 이미지 디렉토리입니다.
또 다른 데이터셋 구조는 이미지 디렉토리와 text-to-image 생성과 같은 작업에 해당하는 텍스트 캡션이 포함된 텍스트 파일일 수 있습니다.

View File

@@ -36,7 +36,7 @@ specific language governing permissions and limitations under the License.
[cloneofsimo](https://github.com/cloneofsimo)는 인기 있는 [lora](https://github.com/cloneofsimo/lora) GitHub 리포지토리에서 Stable Diffusion을 위한 LoRA 학습을 최초로 시도했습니다. 🧨 Diffusers는 [text-to-image 생성](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image#training-with-lora) 및 [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#training-with-low-rank-adaptation-of-large-language-models-lora)을 지원합니다. 이 가이드는 두 가지를 모두 수행하는 방법을 보여줍니다.
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](hf.co/join)하세요):
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](https://huggingface.co/join)하세요):
```bash
huggingface-cli login

View File

@@ -76,7 +76,7 @@ huggingface-cli login
... output_dir = "ddpm-butterflies-128" # 로컬 및 HF Hub에 저장되는 모델명
... push_to_hub = True # 저장된 모델을 HF Hub에 업로드할지 여부
... hub_private_repo = False
... hub_private_repo = None
... overwrite_output_dir = True # 노트북을 다시 실행할 때 이전 모델에 덮어씌울지
... seed = 0

View File

@@ -0,0 +1,351 @@
# Advanced diffusion training examples
## Train Dreambooth LoRA with Flux.1 Dev
> [!TIP]
> 💡 This example follows some of the techniques and recommended practices covered in the community derived guide we made for SDXL training: [LoRA training scripts of the world, unite!](https://huggingface.co/blog/sdxl_lora_advanced_script).
> As many of these are architecture agnostic & generally relevant to fine-tuning of diffusion models we suggest to take a look 🤗
[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text-to-image models like flux, stable diffusion given just a few(3~5) images of a subject.
LoRA - Low-Rank Adaption of Large Language Models, was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*
In a nutshell, LoRA allows to adapt pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages:
- Previous pretrained weights are kept frozen so that the model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114)
- Rank-decomposition matrices have significantly fewer parameters than the original model, which means that trained LoRA weights are easily portable.
- LoRA attention layers allow to control to which extent the model is adapted towards new training images via a `scale` parameter.
[cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in
the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository.
The `train_dreambooth_lora_flux_advanced.py` script shows how to implement dreambooth-LoRA, combining the training process shown in `train_dreambooth_lora_flux.py`, with
advanced features and techniques, inspired and built upon contributions by [Nataniel Ruiz](https://twitter.com/natanielruizg): [Dreambooth](https://dreambooth.github.io), [Rinon Gal](https://twitter.com/RinonGal): [Textual Inversion](https://textual-inversion.github.io), [Ron Mokady](https://twitter.com/MokadyRon): [Pivotal Tuning](https://arxiv.org/abs/2106.05744), [Simo Ryu](https://twitter.com/cloneofsimo): [cog-sdxl](https://github.com/replicate/cog-sdxl),
[ostris](https://x.com/ostrisai):[ai-toolkit](https://github.com/ostris/ai-toolkit), [bghira](https://github.com/bghira):[SimpleTuner](https://github.com/bghira/SimpleTuner), [Kohya](https://twitter.com/kohya_tech/): [sd-scripts](https://github.com/kohya-ss/sd-scripts), [The Last Ben](https://twitter.com/__TheBen): [fast-stable-diffusion](https://github.com/TheLastBen/fast-stable-diffusion) ❤️
> [!NOTE]
> 💡If this is your first time training a Dreambooth LoRA, congrats!🥳
> You might want to familiarize yourself more with the techniques: [Dreambooth blog](https://huggingface.co/blog/dreambooth), [Using LoRA for Efficient Stable Diffusion Fine-Tuning blog](https://huggingface.co/blog/lora)
## Running locally with PyTorch
### Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd in the `examples/advanced_diffusion_training` folder and run
```bash
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell e.g. a notebook
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.
### Target Modules
When LoRA was first adapted from language models to diffusion models, it was applied to the cross-attention layers in the Unet that relate the image representations with the prompts that describe them.
More recently, SOTA text-to-image diffusion models replaced the Unet with a diffusion Transformer(DiT). With this change, we may also want to explore
applying LoRA training onto different types of layers and blocks. To allow more flexibility and control over the targeted modules we added `--lora_layers`- in which you can specify in a comma seperated string
the exact modules for LoRA training. Here are some examples of target modules you can provide:
- for attention only layers: `--lora_layers="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0"`
- to train the same modules as in the fal trainer: `--lora_layers="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0,attn.add_k_proj,attn.add_q_proj,attn.add_v_proj,attn.to_add_out,ff.net.0.proj,ff.net.2,ff_context.net.0.proj,ff_context.net.2"`
- to train the same modules as in ostris ai-toolkit / replicate trainer: `--lora_blocks="attn.to_k,attn.to_q,attn.to_v,attn.to_out.0,attn.add_k_proj,attn.add_q_proj,attn.add_v_proj,attn.to_add_out,ff.net.0.proj,ff.net.2,ff_context.net.0.proj,ff_context.net.2,norm1_context.linear, norm1.linear,norm.linear,proj_mlp,proj_out"`
> [!NOTE]
> `--lora_layers` can also be used to specify which **blocks** to apply LoRA training to. To do so, simply add a block prefix to each layer in the comma seperated string:
> **single DiT blocks**: to target the ith single transformer block, add the prefix `single_transformer_blocks.i`, e.g. - `single_transformer_blocks.i.attn.to_k`
> **MMDiT blocks**: to target the ith MMDiT block, add the prefix `transformer_blocks.i`, e.g. - `transformer_blocks.i.attn.to_k`
> [!NOTE]
> keep in mind that while training more layers can improve quality and expressiveness, it also increases the size of the output LoRA weights.
### Pivotal Tuning (and more)
**Training with text encoder(s)**
Alongside the Transformer, LoRA fine-tuning of the text encoders is also supported. In addition to the text encoder optimization
available with `train_dreambooth_lora_flux_advanced.py`, in the advanced script **pivotal tuning** is also supported.
[pivotal tuning](https://huggingface.co/blog/sdxl_lora_advanced_script#pivotal-tuning) combines Textual Inversion with regular diffusion fine-tuning -
we insert new tokens into the text encoders of the model, instead of reusing existing ones.
We then optimize the newly-inserted token embeddings to represent the new concept.
To do so, just specify `--train_text_encoder_ti` while launching training (for regular text encoder optimizations, use `--train_text_encoder`).
Please keep the following points in mind:
* Flux uses two text encoders - [CLIP](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#diffusers.FluxPipeline.text_encoder) & [T5](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#diffusers.FluxPipeline.text_encoder_2) , by default `--train_text_encoder_ti` performs pivotal tuning for the **CLIP** encoder only.
To activate pivotal tuning for both encoders, add the flag `--enable_t5_ti`.
* When not fine-tuning the text encoders, we ALWAYS precompute the text embeddings to save memory.
* **pure textual inversion** - to support the full range from pivotal tuning to textual inversion we introduce `--train_transformer_frac` which controls the amount of epochs the transformer LoRA layers are trained. By default, `--train_transformer_frac==1`, to trigger a textual inversion run set `--train_transformer_frac==0`. Values between 0 and 1 are supported as well, and we welcome the community to experiment w/ different settings and share the results!
* **token initializer** - similar to the original textual inversion work, you can specify a concept of your choosing as the starting point for training. By default, when enabling `--train_text_encoder_ti`, the new inserted tokens are initialized randomly. You can specify a token in `--initializer_concept` such that the starting point for the trained embeddings will be the embeddings associated with your chosen `--initializer_concept`.
## Training examples
Now let's get our dataset. For this example we will use some cool images of 3d rendered icons: https://huggingface.co/datasets/linoyts/3d_icon.
Let's first download it locally:
```python
from huggingface_hub import snapshot_download
local_dir = "./3d_icon"
snapshot_download(
"LinoyTsaban/3d_icon",
local_dir=local_dir, repo_type="dataset",
ignore_patterns=".gitattributes",
)
```
Let's review some of the advanced features we're going to be using for this example:
- **custom captions**:
To use custom captioning, first ensure that you have the datasets library installed, otherwise you can install it by
```bash
pip install datasets
```
Now we'll simply specify the name of the dataset and caption column (in this case it's "prompt")
```
--dataset_name=./3d_icon
--caption_column=prompt
```
You can also load a dataset straight from by specifying it's name in `dataset_name`.
Look [here](https://huggingface.co/blog/sdxl_lora_advanced_script#custom-captioning) for more info on creating/loadin your own caption dataset.
- **optimizer**: for this example, we'll use [prodigy](https://huggingface.co/blog/sdxl_lora_advanced_script#adaptive-optimizers) - an adaptive optimizer
- **pivotal tuning**
### Example #1: Pivotal tuning
**Now, we can launch training:**
```bash
export MODEL_NAME="black-forest-labs/FLUX.1-dev"
export DATASET_NAME="./3d_icon"
export OUTPUT_DIR="3d-icon-Flux-LoRA"
accelerate launch train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--instance_prompt="3d icon in the style of TOK" \
--output_dir=$OUTPUT_DIR \
--caption_column="prompt" \
--mixed_precision="bf16" \
--resolution=1024 \
--train_batch_size=1 \
--repeats=1 \
--report_to="wandb"\
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--learning_rate=1.0 \
--text_encoder_lr=1.0 \
--optimizer="prodigy"\
--train_text_encoder_ti\
--train_text_encoder_ti_frac=0.5\
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=700 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
```
To better track our training experiments, we're using the following flags in the command above:
* `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
Our experiments were conducted on a single 40GB A100 GPU.
### Example #2: Pivotal tuning with T5
Now let's try that with T5 as well, so instead of only optimizing the CLIP embeddings associated with newly inserted tokens, we'll optimize
the T5 embeddings as well. We can do this by simply adding `--enable_t5_ti` to the previous configuration:
```bash
export MODEL_NAME="black-forest-labs/FLUX.1-dev"
export DATASET_NAME="./3d_icon"
export OUTPUT_DIR="3d-icon-Flux-LoRA"
accelerate launch train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--instance_prompt="3d icon in the style of TOK" \
--output_dir=$OUTPUT_DIR \
--caption_column="prompt" \
--mixed_precision="bf16" \
--resolution=1024 \
--train_batch_size=1 \
--repeats=1 \
--report_to="wandb"\
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--learning_rate=1.0 \
--text_encoder_lr=1.0 \
--optimizer="prodigy"\
--train_text_encoder_ti\
--enable_t5_ti\
--train_text_encoder_ti_frac=0.5\
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=700 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
```
### Example #3: Textual Inversion
To explore a pure textual inversion - i.e. only optimizing the text embeddings w/o training transformer LoRA layers, we
can set the value for `--train_transformer_frac` - which is responsible for the percent of epochs in which the transformer is
trained. By setting `--train_transformer_frac == 0` and enabling `--train_text_encoder_ti` we trigger a textual inversion train
run.
```bash
export MODEL_NAME="black-forest-labs/FLUX.1-dev"
export DATASET_NAME="./3d_icon"
export OUTPUT_DIR="3d-icon-Flux-LoRA"
accelerate launch train_dreambooth_lora_flux_advanced.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME \
--instance_prompt="3d icon in the style of TOK" \
--output_dir=$OUTPUT_DIR \
--caption_column="prompt" \
--mixed_precision="bf16" \
--resolution=1024 \
--train_batch_size=1 \
--repeats=1 \
--report_to="wandb"\
--gradient_accumulation_steps=1 \
--gradient_checkpointing \
--learning_rate=1.0 \
--text_encoder_lr=1.0 \
--optimizer="prodigy"\
--train_text_encoder_ti\
--enable_t5_ti\
--train_text_encoder_ti_frac=0.5\
--train_transformer_frac=0\
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--rank=8 \
--max_train_steps=700 \
--checkpointing_steps=2000 \
--seed="0" \
--push_to_hub
```
### Inference - pivotal tuning
Once training is done, we can perform inference like so:
1. starting with loading the transformer lora weights
```python
import torch
from huggingface_hub import hf_hub_download, upload_file
from diffusers import AutoPipelineForText2Image
from safetensors.torch import load_file
username = "linoyts"
repo_id = f"{username}/3d-icon-Flux-LoRA"
pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipe.load_lora_weights(repo_id, weight_name="pytorch_lora_weights.safetensors")
```
2. now we load the pivotal tuning embeddings
> [!NOTE] #1 if `--enable_t5_ti` wasn't passed, we only load the embeddings to the CLIP encoder.
> [!NOTE] #2 the number of tokens (i.e. <s0>,...,<si>) is either determined by `--num_new_tokens_per_abstraction` or by `--initializer_concept`. Make sure to update inference code accordingly :)
```python
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
embedding_path = hf_hub_download(repo_id=repo_id, filename="3d-icon-Flux-LoRA_emb.safetensors", repo_type="model")
state_dict = load_file(embedding_path)
# load embeddings of text_encoder 1 (CLIP ViT-L/14)
pipe.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
# load embeddings of text_encoder 2 (T5 XXL) - ignore this line if you didn't enable `--enable_t5_ti`
pipe.load_textual_inversion(state_dict["t5"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
```
3. let's generate images
```python
instance_token = "<s0><s1>"
prompt = f"a {instance_token} icon of an orange llama eating ramen, in the style of {instance_token}"
image = pipe(prompt=prompt, num_inference_steps=25, cross_attention_kwargs={"scale": 1.0}).images[0]
image.save("llama.png")
```
### Inference - pure textual inversion
In this case, we don't load transformer layers as before, since we only optimize the text embeddings. The output of a textual inversion train run is a
`.safetensors` file containing the trained embeddings for the new tokens either for the CLIP encoder, or for both encoders (CLIP and T5)
1. starting with loading the embeddings.
💡note that here too, if you didn't enable `--enable_t5_ti`, you only load the embeddings to the CLIP encoder
```python
import torch
from huggingface_hub import hf_hub_download, upload_file
from diffusers import AutoPipelineForText2Image
from safetensors.torch import load_file
username = "linoyts"
repo_id = f"{username}/3d-icon-Flux-LoRA"
pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
embedding_path = hf_hub_download(repo_id=repo_id, filename="3d-icon-Flux-LoRA_emb.safetensors", repo_type="model")
state_dict = load_file(embedding_path)
# load embeddings of text_encoder 1 (CLIP ViT-L/14)
pipe.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
# load embeddings of text_encoder 2 (T5 XXL) - ignore this line if you didn't enable `--enable_t5_ti`
pipe.load_textual_inversion(state_dict["t5"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
```
2. let's generate images
```python
instance_token = "<s0><s1>"
prompt = f"a {instance_token} icon of an orange llama eating ramen, in the style of {instance_token}"
image = pipe(prompt=prompt, num_inference_steps=25, cross_attention_kwargs={"scale": 1.0}).images[0]
image.save("llama.png")
```
### Comfy UI / AUTOMATIC1111 Inference
The new script fully supports textual inversion loading with Comfy UI and AUTOMATIC1111 formats!
**AUTOMATIC1111 / SD.Next** \
In AUTOMATIC1111/SD.Next we will load a LoRA and a textual embedding at the same time.
- *LoRA*: Besides the diffusers format, the script will also train a WebUI compatible LoRA. It is generated as `{your_lora_name}.safetensors`. You can then include it in your `models/Lora` directory.
- *Embedding*: the embedding is the same for diffusers and WebUI. You can download your `{lora_name}_emb.safetensors` file from a trained model, and include it in your `embeddings` directory.
You can then run inference by prompting `a y2k_emb webpage about the movie Mean Girls <lora:y2k:0.9>`. You can use the `y2k_emb` token normally, including increasing its weight by doing `(y2k_emb:1.2)`.
**ComfyUI** \
In ComfyUI we will load a LoRA and a textual embedding at the same time.
- *LoRA*: Besides the diffusers format, the script will also train a ComfyUI compatible LoRA. It is generated as `{your_lora_name}.safetensors`. You can then include it in your `models/Lora` directory. Then you will load the LoRALoader node and hook that up with your model and CLIP. [Official guide for loading LoRAs](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
- *Embedding*: the embedding is the same for diffusers and WebUI. You can download your `{lora_name}_emb.safetensors` file from a trained model, and include it in your `models/embeddings` directory and use it in your prompts like `embedding:y2k_emb`. [Official guide for loading embeddings](https://comfyanonymous.github.io/ComfyUI_examples/textual_inversion_embeddings/).

View File

@@ -0,0 +1,8 @@
accelerate>=0.31.0
torchvision
transformers>=4.41.2
ftfy
tensorboard
Jinja2
peft>=0.11.1
sentencepiece

View File

@@ -0,0 +1,283 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
import tempfile
import safetensors
sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class DreamBoothLoRAFluxAdvanced(ExamplesTestsAccelerate):
instance_data_dir = "docs/source/en/imgs"
instance_prompt = "photo"
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-pipe"
script_path = "examples/advanced_diffusion_training/train_dreambooth_lora_flux_advanced.py"
def test_dreambooth_lora_flux(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# when not training the text encoder, all the parameters in the state dict should start
# with `"transformer"` in their names.
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_text_encoder_flux(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--train_text_encoder
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
starts_with_expected_prefix = all(
(key.startswith("transformer") or key.startswith("text_encoder")) for key in lora_state_dict.keys()
)
self.assertTrue(starts_with_expected_prefix)
def test_dreambooth_lora_pivotal_tuning_flux_clip(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--train_text_encoder_ti
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure embeddings were also saved
self.assertTrue(os.path.isfile(os.path.join(tmpdir, f"{os.path.basename(tmpdir)}_emb.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# make sure the state_dict has the correct naming in the parameters.
textual_inversion_state_dict = safetensors.torch.load_file(
os.path.join(tmpdir, f"{os.path.basename(tmpdir)}_emb.safetensors")
)
is_clip = all("clip_l" in k for k in textual_inversion_state_dict.keys())
self.assertTrue(is_clip)
# when performing pivotal tuning, all the parameters in the state dict should start
# with `"transformer"` in their names.
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_pivotal_tuning_flux_clip_t5(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--train_text_encoder_ti
--enable_t5_ti
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure embeddings were also saved
self.assertTrue(os.path.isfile(os.path.join(tmpdir, f"{os.path.basename(tmpdir)}_emb.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# make sure the state_dict has the correct naming in the parameters.
textual_inversion_state_dict = safetensors.torch.load_file(
os.path.join(tmpdir, f"{os.path.basename(tmpdir)}_emb.safetensors")
)
is_te = all(("clip_l" in k or "t5" in k) for k in textual_inversion_state_dict.keys())
self.assertTrue(is_te)
# when performing pivotal tuning, all the parameters in the state dict should start
# with `"transformer"` in their names.
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_latent_caching(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--cache_latents
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# when not training the text encoder, all the parameters in the state dict should start
# with `"transformer"` in their names.
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_flux_checkpointing_checkpoints_total_limit(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path={self.pretrained_model_name_or_path}
--instance_data_dir={self.instance_data_dir}
--output_dir={tmpdir}
--instance_prompt={self.instance_prompt}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=6
--checkpoints_total_limit=2
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-6"},
)
def test_dreambooth_lora_flux_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path={self.pretrained_model_name_or_path}
--instance_data_dir={self.instance_data_dir}
--output_dir={tmpdir}
--instance_prompt={self.instance_prompt}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=4
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"})
resume_run_args = f"""
{self.script_path}
--pretrained_model_name_or_path={self.pretrained_model_name_or_path}
--instance_data_dir={self.instance_data_dir}
--output_dir={tmpdir}
--instance_prompt={self.instance_prompt}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=8
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})

File diff suppressed because it is too large Load Diff

View File

@@ -39,7 +39,7 @@ from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from peft import LoraConfig
from peft import LoraConfig, set_peft_model_state_dict
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
@@ -59,19 +59,21 @@ from diffusers import (
)
from diffusers.loaders import StableDiffusionLoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr
from diffusers.utils import (
check_min_version,
convert_all_state_dict_to_peft,
convert_state_dict_to_diffusers,
convert_state_dict_to_kohya,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
check_min_version("0.32.0")
logger = get_logger(__name__)
@@ -79,30 +81,27 @@ logger = get_logger(__name__)
def save_model_card(
repo_id: str,
use_dora: bool,
images=None,
base_model=str,
images: list = None,
base_model: str = None,
train_text_encoder=False,
train_text_encoder_ti=False,
token_abstraction_dict=None,
instance_prompt=str,
validation_prompt=str,
instance_prompt=None,
validation_prompt=None,
repo_folder=None,
vae_path=None,
):
img_str = "widget:\n"
lora = "lora" if not use_dora else "dora"
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
img_str += f"""
- text: '{validation_prompt if validation_prompt else ' ' }'
output:
url:
"image_{i}.png"
"""
if not images:
img_str += f"""
- text: '{instance_prompt}'
"""
widget_dict = []
if images is not None:
for i, image in enumerate(images):
image.save(os.path.join(repo_folder, f"image_{i}.png"))
widget_dict.append(
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
)
else:
widget_dict.append({"text": instance_prompt})
embeddings_filename = f"{repo_folder}_emb"
instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1))
ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt))
@@ -137,24 +136,7 @@ pipeline.load_textual_inversion(state_dict["clip_l"], token=[{ti_keys}], text_en
trigger_str += f"""
to trigger concept `{key}` → use `{tokens}` in your prompt \n
"""
yaml = f"""---
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers-training
- text-to-image
- diffusers
- {lora}
- template:sd-lora
{img_str}
base_model: {base_model}
instance_prompt: {instance_prompt}
license: openrail++
---
"""
model_card = f"""
model_description = f"""
# SD1.5 LoRA DreamBooth - {repo_id}
<Gallery />
@@ -202,8 +184,28 @@ Pivotal tuning was enabled: {train_text_encoder_ti}.
Special VAE used for training: {vae_path}.
"""
with open(os.path.join(repo_folder, "README.md"), "w") as f:
f.write(yaml + model_card)
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="openrail++",
base_model=base_model,
prompt=instance_prompt,
model_description=model_description,
inference=True,
widget=widget_dict,
)
tags = [
"text-to-image",
"diffusers",
"diffusers-training",
lora,
"template:sd-lora" "stable-diffusion",
"stable-diffusion-diffusers",
]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def import_model_class_from_model_name_or_path(
@@ -1318,6 +1320,37 @@ def main(args):
else:
raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict, network_alphas = StableDiffusionPipeline.lora_state_dict(input_dir)
unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
if args.train_text_encoder:
# Do we need to call `scale_lora_layers()` here?
_set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_)
_set_state_dict_into_text_encoder(
lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_one_
)
# Make sure the trainable params are in float32. This is again needed since the base models
# are in `weight_dtype`. More details:
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
if args.mixed_precision == "fp16":
models = [unet_]
if args.train_text_encoder:
models.extend([text_encoder_one_])
# only upcast trainable parameters (LoRA) into fp32
cast_training_params(models)
lora_state_dict, network_alphas = StableDiffusionLoraLoaderMixin.lora_state_dict(input_dir)
StableDiffusionLoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
@@ -1358,10 +1391,7 @@ def main(args):
else args.adam_weight_decay,
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
}
params_to_optimize = [
unet_lora_parameters_with_lr,
text_lora_parameters_one_with_lr,
]
params_to_optimize = [unet_lora_parameters_with_lr, text_lora_parameters_one_with_lr]
else:
params_to_optimize = [unet_lora_parameters_with_lr]
@@ -1423,7 +1453,6 @@ def main(args):
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
beta3=args.prodigy_beta3,
weight_decay=args.adam_weight_decay,

View File

@@ -79,7 +79,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
check_min_version("0.32.0")
logger = get_logger(__name__)
@@ -1794,7 +1794,6 @@ def main(args):
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
beta3=args.prodigy_beta3,
weight_decay=args.adam_weight_decay,

View File

@@ -10,6 +10,11 @@ In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-de
At the moment, LoRA finetuning has only been tested for [CogVideoX-2b](https://huggingface.co/THUDM/CogVideoX-2b).
> [!NOTE]
> The scripts for CogVideoX come with limited support and may not be fully compatible with different training techniques. They are not feature-rich either and simply serve as minimal examples of finetuning to take inspiration from and improve.
>
> A repository containing memory-optimized finetuning scripts with support for multiple resolutions, dataset preparation, captioning, etc. is available [here](https://github.com/a-r-r-o-w/cogvideox-factory), which will be maintained jointly by the CogVideoX and Diffusers team.
## Data Preparation
The training scripts accepts data in two formats.
@@ -132,6 +137,8 @@ Assuming you are training on 50 videos of a similar concept, we have found 1500-
- 1500 steps on 50 videos would correspond to `30` training epochs
- 4000 steps on 100 videos would correspond to `40` training epochs
The following bash script launches training for text-to-video lora.
```bash
#!/bin/bash
@@ -172,6 +179,8 @@ accelerate launch --gpu_ids $GPU_IDS examples/cogvideo/train_cogvideox_lora.py \
--report_to wandb
```
For launching image-to-video finetuning instead, run the `train_cogvideox_image_to_video_lora.py` file instead. Additionally, you will have to pass `--validation_images` as paths to initial images corresponding to `--validation_prompts` for I2V validation to work.
To better track our training experiments, we're using the following flags in the command above:
* `--report_to wandb` will ensure the training runs are tracked on Weights and Biases. To use it, be sure to install `wandb` with `pip install wandb`.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
@@ -180,6 +189,7 @@ Note that setting the `<ID_TOKEN>` is not necessary. From some limited experimen
> [!TIP]
> You can pass `--use_8bit_adam` to reduce the memory requirements of training.
> You can pass `--video_reshape_mode` video cropping functionality, supporting options: ['center', 'random', 'none']. See [this](https://gist.github.com/glide-the/7658dbfd5f555be0a1a687a4139dba40) notebook for examples.
> [!IMPORTANT]
> The following settings have been tested at the time of adding CogVideoX LoRA training support:
@@ -196,8 +206,6 @@ Note that setting the `<ID_TOKEN>` is not necessary. From some limited experimen
>
> Note that our testing is not exhaustive due to limited time for exploration. Our recommendation would be to play around with the different knobs and dials to find the best settings for your data.
<!-- TODO: Test finetuning with CogVideoX-5b and CogVideoX-5b-I2V and update scripts accordingly -->
## Inference
Once you have trained a lora model, the inference can be done simply loading the lora weights into the `CogVideoXPipeline`.
@@ -226,3 +234,5 @@ prompt = (
frames = pipe(prompt, guidance_scale=6, use_dynamic_cfg=True).frames[0]
export_to_video(frames, "output.mp4", fps=8)
```
If you've trained a LoRA for `CogVideoXImageToVideoPipeline` instead, everything in the above example remains the same except you must also pass an image as initial condition for generation.

File diff suppressed because it is too large Load Diff

View File

@@ -21,27 +21,28 @@ import shutil
from pathlib import Path
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torchvision.transforms as TT
import transformers
from accelerate import Accelerator
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
from tqdm.auto import tqdm
from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer
import diffusers
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.optimization import get_scheduler
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
from diffusers.training_utils import (
cast_training_params,
clear_objs_and_retain_memory,
)
from diffusers.training_utils import cast_training_params, free_memory
from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module
@@ -51,7 +52,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
check_min_version("0.32.0")
logger = get_logger(__name__)
@@ -217,6 +218,12 @@ def get_args():
default=720,
help="All input videos are resized to this width.",
)
parser.add_argument(
"--video_reshape_mode",
type=str,
default="center",
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
)
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
parser.add_argument(
"--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames."
@@ -416,6 +423,7 @@ class VideoDataset(Dataset):
video_column: str = "video",
height: int = 480,
width: int = 720,
video_reshape_mode: str = "center",
fps: int = 8,
max_num_frames: int = 49,
skip_frames_start: int = 0,
@@ -432,6 +440,7 @@ class VideoDataset(Dataset):
self.video_column = video_column
self.height = height
self.width = width
self.video_reshape_mode = video_reshape_mode
self.fps = fps
self.max_num_frames = max_num_frames
self.skip_frames_start = skip_frames_start
@@ -535,6 +544,38 @@ class VideoDataset(Dataset):
return instance_prompts, instance_videos
def _resize_for_rectangle_crop(self, arr):
image_size = self.height, self.width
reshape_mode = self.video_reshape_mode
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
arr = resize(
arr,
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
interpolation=InterpolationMode.BICUBIC,
)
else:
arr = resize(
arr,
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
interpolation=InterpolationMode.BICUBIC,
)
h, w = arr.shape[2], arr.shape[3]
arr = arr.squeeze(0)
delta_h = h - image_size[0]
delta_w = w - image_size[1]
if reshape_mode == "random" or reshape_mode == "none":
top = np.random.randint(0, delta_h + 1)
left = np.random.randint(0, delta_w + 1)
elif reshape_mode == "center":
top, left = delta_h // 2, delta_w // 2
else:
raise NotImplementedError
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
return arr
def _preprocess_data(self):
try:
import decord
@@ -545,15 +586,14 @@ class VideoDataset(Dataset):
decord.bridge.set_bridge("torch")
videos = []
train_transforms = transforms.Compose(
[
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0),
]
progress_dataset_bar = tqdm(
range(0, len(self.instance_video_paths)),
desc="Loading progress resize and crop videos",
)
videos = []
for filename in self.instance_video_paths:
video_reader = decord.VideoReader(uri=filename.as_posix(), width=self.width, height=self.height)
video_reader = decord.VideoReader(uri=filename.as_posix())
video_num_frames = len(video_reader)
start_frame = min(self.skip_frames_start, video_num_frames)
@@ -579,10 +619,16 @@ class VideoDataset(Dataset):
assert (selected_num_frames - 1) % 4 == 0
# Training transforms
frames = frames.float()
frames = torch.stack([train_transforms(frame) for frame in frames], dim=0)
videos.append(frames.permute(0, 3, 1, 2).contiguous()) # [F, C, H, W]
frames = (frames - 127.5) / 127.5
frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
progress_dataset_bar.set_description(
f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}"
)
frames = self._resize_for_rectangle_crop(frames)
videos.append(frames.contiguous()) # [F, C, H, W]
progress_dataset_bar.update(1)
progress_dataset_bar.close()
return videos
@@ -697,8 +743,13 @@ def log_validation(
videos = []
for _ in range(args.num_validation_videos):
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
videos.append(video)
pt_images = pipe(**pipeline_args, generator=generator, output_type="pt").frames[0]
pt_images = torch.stack([pt_images[i] for i in range(pt_images.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_images)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
videos.append(image_pil)
for tracker in accelerator.trackers:
phase_name = "test" if is_final_validation else "validation"
@@ -726,7 +777,8 @@ def log_validation(
}
)
clear_objs_and_retain_memory([pipe])
del pipe
free_memory()
return videos
@@ -842,10 +894,9 @@ def prepare_rotary_positional_embeddings(
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
device=device,
)
freqs_cos = freqs_cos.to(device=device)
freqs_sin = freqs_sin.to(device=device)
return freqs_cos, freqs_sin
@@ -870,7 +921,7 @@ def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False):
)
args.optimizer = "adamw"
if args.use_8bit_adam and not (args.optimizer.lower() not in ["adam", "adamw"]):
if args.use_8bit_adam and args.optimizer.lower() not in ["adam", "adamw"]:
logger.warning(
f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was "
f"set to {args.optimizer.lower()}"
@@ -917,7 +968,6 @@ def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False):
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
beta3=args.prodigy_beta3,
weight_decay=args.adam_weight_decay,
@@ -1159,7 +1209,7 @@ def main(args):
)
use_deepspeed_scheduler = (
accelerator.state.deepspeed_plugin is not None
and "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config
)
optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer)
@@ -1173,6 +1223,7 @@ def main(args):
video_column=args.video_column,
height=args.height,
width=args.width,
video_reshape_mode=args.video_reshape_mode,
fps=args.fps,
max_num_frames=args.max_num_frames,
skip_frames_start=args.skip_frames_start,
@@ -1181,19 +1232,28 @@ def main(args):
id_token=args.id_token,
)
def encode_video(video):
def encode_video(video, bar):
bar.update(1)
video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0)
video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
latent_dist = vae.encode(video).latent_dist
return latent_dist
train_dataset.instance_videos = [encode_video(video) for video in train_dataset.instance_videos]
progress_encode_bar = tqdm(
range(0, len(train_dataset.instance_videos)),
desc="Loading Encode videos",
)
train_dataset.instance_videos = [
encode_video(video, progress_encode_bar) for video in train_dataset.instance_videos
]
progress_encode_bar.close()
def collate_fn(examples):
videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples]
prompts = [example["instance_prompt"] for example in examples]
videos = torch.cat(videos)
videos = videos.permute(0, 2, 1, 3, 4)
videos = videos.to(memory_format=torch.contiguous_format).float()
return {
@@ -1315,7 +1375,7 @@ def main(args):
models_to_accumulate = [transformer]
with accelerator.accumulate(models_to_accumulate):
model_input = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=weight_dtype) # [B, F, C, H, W]
model_input = batch["videos"].to(dtype=weight_dtype) # [B, F, C, H, W]
prompts = batch["prompts"]
# encode prompts
@@ -1394,7 +1454,7 @@ def main(args):
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if accelerator.is_main_process or accelerator.distributed_type == DistributedType.DEEPSPEED:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
@@ -1434,7 +1494,6 @@ def main(args):
args.pretrained_model_name_or_path,
transformer=unwrap_model(transformer),
text_encoder=unwrap_model(text_encoder),
vae=unwrap_model(vae),
scheduler=scheduler,
revision=args.revision,
variant=args.variant,
@@ -1478,6 +1537,10 @@ def main(args):
transformer_lora_layers=transformer_lora_layers,
)
# Cleanup trained models to save memory
del transformer
free_memory()
# Final test inference
pipe = CogVideoXPipeline.from_pretrained(
args.pretrained_model_name_or_path,

View File

@@ -10,21 +10,23 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Example | Description | Code Example | Colab | Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
| HD-Painter | [HD-Painter](https://github.com/Picsart-AI-Research/HD-Painter) enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method. | [HD-Painter](#hd-painter) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/PAIR/HD-Painter) | [Manukyan Hayk](https://github.com/haikmanukyan) and [Sargsyan Andranik](https://github.com/AndranikSargsyan) |
| Marigold Monocular Depth Estimation | A universal monocular depth estimator, utilizing Stable Diffusion, delivering sharp predictions in the wild. (See the [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) for more details.) | [Marigold Depth Estimation](#marigold-depth-estimation) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) | [Bingxin Ke](https://github.com/markkua) and [Anton Obukhov](https://github.com/toshas) |
| LLM-grounded Diffusion (LMD+) | LMD greatly improves the prompt following ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion) | [LLM-grounded Diffusion (LMD+)](#llm-grounded-diffusion) | [Huggingface Demo](https://huggingface.co/spaces/longlian/llm-grounded-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SXzMSeAB-LJYISb2yrUOdypLz4OYWUKj) | [Long (Tony) Lian](https://tonylian.com/) |
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) | [Suraj Patil](https://github.com/patil-suraj/) |
| One Step U-Net (Dummy) | Example showcasing of how to use Community Pipelines (see <https://github.com/huggingface/diffusers/issues/841>) | [One Step U-Net](#one-step-unet) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Stable Diffusion Interpolation | Interpolate the latent space of Stable Diffusion between different prompts/seeds | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | - | [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | - | [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) | - | [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | - | [Shyam Sudhakaran](https://github.com/shyamsn97) |
| Stable Diffusion Interpolation | Interpolate the latent space of Stable Diffusion between different prompts/seeds | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_interpolation.ipynb) | [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_mega.ipynb) | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/long_prompt_weighting_stable_diffusion.ipynb) | [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/speech_to_image.ipynb) | [Mikail Duzenli](https://github.com/MikailINTech)
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/wildcard_stable_diffusion.ipynb) | [Shyam Sudhakaran](https://github.com/shyamsn97) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | - | [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image | [Imagic Stable Diffusion](#imagic-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion | Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | - | [Juan Carlos Piñeros](https://github.com/juancopi81) |
| Multilingual Stable Diffusion | Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/multilingual_stable_diffusion.ipynb) | [Juan Carlos Piñeros](https://github.com/juancopi81) |
| GlueGen Stable Diffusion | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter. | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline) | - | [Phạm Hồng Vinh](https://github.com/rootonchair) |
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion) | - | [Dhruv Karan](https://github.com/unography) |
@@ -39,8 +41,8 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | - | [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | - | [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting. | [Stable Diffusion RePaint](#stable-diffusion-repaint ) | - | [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting. | [Stable Diffusion RePaint](#stable-diffusion-repaint )|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_repaint.ipynb)| [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
| TensorRT Stable Diffusion Image to Image Pipeline | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
@@ -59,20 +61,22 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Regional Prompting Pipeline | Assign multiple prompts for different regions | [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
| LDM3D-sr (LDM3D upscaler) | Upscale low resolution RGB and depth inputs to high resolution | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline) | - | [Estelle Aflalo](https://github.com/estelleafl) |
| AnimateDiff ControlNet Pipeline | Combines AnimateDiff with precise motion control using ControlNets | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
| DemoFusion Pipeline | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973) | [DemoFusion Pipeline](#demofusion) | - | [Ruoyi Du](https://github.com/RuoyiDu) |
| Instaflow Pipeline | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://arxiv.org/abs/2309.06380) | [Instaflow Pipeline](#instaflow-pipeline) | - | [Ayush Mangal](https://github.com/ayushtues) |
| DemoFusion Pipeline | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973) | [DemoFusion Pipeline](#demofusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/demo_fusion.ipynb) | [Ruoyi Du](https://github.com/RuoyiDu) |
| Instaflow Pipeline | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://arxiv.org/abs/2309.06380) | [Instaflow Pipeline](#instaflow-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/insta_flow.ipynb) | [Ayush Mangal](https://github.com/ayushtues) |
| Null-Text Inversion Pipeline | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/abs/2211.09794) as a pipeline. | [Null-Text Inversion](https://github.com/google/prompt-to-prompt/) | - | [Junsheng Luan](https://github.com/Junsheng121) |
| Rerender A Video Pipeline | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://arxiv.org/abs/2306.07954) | [Rerender A Video Pipeline](#rerender-a-video) | - | [Yifan Zhou](https://github.com/SingleZombie) |
| StyleAligned Pipeline | Implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133) | [StyleAligned Pipeline](#stylealigned-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
| IP Adapter FaceID Stable Diffusion | Stable Diffusion Pipeline that supports IP Adapter Face ID | [IP Adapter Face ID](#ip-adapter-face-id) | - | [Fabio Rigano](https://github.com/fabiorigano) |
| IP Adapter FaceID Stable Diffusion | Stable Diffusion Pipeline that supports IP Adapter Face ID | [IP Adapter Face ID](#ip-adapter-face-id) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_face_id.ipynb)| [Fabio Rigano](https://github.com/fabiorigano) |
| InstantID Pipeline | Stable Diffusion XL Pipeline that supports InstantID | [InstantID Pipeline](#instantid-pipeline) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
| UFOGen Scheduler | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines) | [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
| FRESCO V2V Pipeline | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962) | [FRESCO V2V Pipeline](#fresco) | - | [Yifan Zhou](https://github.com/SingleZombie) |
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffsuion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
@@ -82,6 +86,197 @@ pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion
## Example usages
### Adaptive Mask Inpainting
**Hyeonwoo Kim\*, Sookwan Han\*, Patrick Kwon, Hanbyul Joo**
**Seoul National University, Naver Webtoon**
Adaptive Mask Inpainting, presented in the ECCV'24 oral paper [*Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models*](https://snuvclab.github.io/coma), is an algorithm designed to insert humans into scene images without altering the background. Traditional inpainting methods often fail to preserve object geometry and details within the masked region, leading to false affordances. Adaptive Mask Inpainting addresses this issue by progressively specifying the inpainting region over diffusion timesteps, ensuring that the inserted human integrates seamlessly with the existing scene.
Here is the demonstration of Adaptive Mask Inpainting:
<video controls>
<source src="https://snuvclab.github.io/coma/static/videos/adaptive_mask_inpainting_vis.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
![teaser-img](https://snuvclab.github.io/coma/static/images/example_result_adaptive_mask_inpainting.png)
You can find additional information about Adaptive Mask Inpainting in the [paper](https://arxiv.org/pdf/2401.12978) or in the [project website](https://snuvclab.github.io/coma).
#### Usage example
First, clone the diffusers github repository, and run the following command to set environment.
```Shell
git clone https://github.com/huggingface/diffusers.git
cd diffusers
conda create --name ami python=3.9 -y
conda activate ami
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge -y
python -m pip install detectron2==0.6 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
pip install easydict
pip install diffusers==0.20.2 accelerate safetensors transformers
pip install setuptools==59.5.0
pip install opencv-python
pip install numpy==1.24.1
```
Then, run the below code under 'diffusers' directory.
```python
import numpy as np
import torch
from PIL import Image
from diffusers import DDIMScheduler
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
from examples.community.adaptive_mask_inpainting import download_file, AdaptiveMaskInpaintPipeline, AMI_INSTALL_MESSAGE
print(AMI_INSTALL_MESSAGE)
from easydict import EasyDict
if __name__ == "__main__":
"""
Download Necessary Files
"""
download_file(
url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/model_final_edd263.pkl?download=true",
output_file = "model_final_edd263.pkl",
exist_ok=True,
)
download_file(
url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/pointrend_rcnn_R_50_FPN_3x_coco.yaml?download=true",
output_file = "pointrend_rcnn_R_50_FPN_3x_coco.yaml",
exist_ok=True,
)
download_file(
url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_img.png?download=true",
output_file = "input_img.png",
exist_ok=True,
)
download_file(
url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_mask.png?download=true",
output_file = "input_mask.png",
exist_ok=True,
)
download_file(
url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-PointRend-RCNN-FPN.yaml?download=true",
output_file = "Base-PointRend-RCNN-FPN.yaml",
exist_ok=True,
)
download_file(
url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-RCNN-FPN.yaml?download=true",
output_file = "Base-RCNN-FPN.yaml",
exist_ok=True,
)
"""
Prepare Adaptive Mask Inpainting Pipeline
"""
# device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
num_steps = 50
# Scheduler
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False
)
scheduler.set_timesteps(num_inference_steps=num_steps)
## load models as pipelines
pipeline = AdaptiveMaskInpaintPipeline.from_pretrained(
"Uminosachi/realisticVisionV51_v51VAE-inpainting",
scheduler=scheduler,
torch_dtype=torch.float16,
requires_safety_checker=False
).to(device)
## disable safety checker
enable_safety_checker = False
if not enable_safety_checker:
pipeline.safety_checker = None
"""
Run Adaptive Mask Inpainting
"""
default_mask_image = Image.open("./input_mask.png").convert("L")
init_image = Image.open("./input_img.png").convert("RGB")
seed = 59
generator = torch.Generator(device=device)
generator.manual_seed(seed)
image = pipeline(
prompt="a man sitting on a couch",
negative_prompt="worst quality, normal quality, low quality, bad anatomy, artifacts, blurry, cropped, watermark, greyscale, nsfw",
image=init_image,
default_mask_image=default_mask_image,
guidance_scale=11.0,
strength=0.98,
use_adaptive_mask=True,
generator=generator,
enforce_full_mask_ratio=0.0,
visualization_save_dir="./ECCV2024_adaptive_mask_inpainting_demo", # DON'T CHANGE THIS!!!
human_detection_thres=0.015,
).images[0]
image.save(f'final_img.png')
```
#### [Troubleshooting]
If you run into an error `cannot import name 'cached_download' from 'huggingface_hub'` (issue [1851](https://github.com/easydiffusion/easydiffusion/issues/1851)), remove `cached_download` from the import line in the file `diffusers/utils/dynamic_modules_utils.py`.
For example, change the import line from `.../env/lib/python3.8/site-packages/diffusers/utils/dynamic_modules_utils.py`.
### Flux with CFG
Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).
Example usage:
```py
from diffusers import DiffusionPipeline
import torch
model_name = "black-forest-labs/FLUX.1-dev"
prompt = "a watercolor painting of a unicorn"
negative_prompt = "pink"
# Load the diffusion pipeline
pipeline = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
custom_pipeline="pipeline_flux_with_cfg"
)
pipeline.enable_model_cpu_offload()
# Generate the image
img = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
true_cfg=1.5,
guidance_scale=3.5,
generator=torch.manual_seed(0)
).images[0]
# Save the generated image
img.save("cfg_flux.png")
print("Image generated and saved successfully.")
```
### Differential Diffusion
**Eran Levin, Ohad Fried**
@@ -652,6 +847,8 @@ out = pipe(
wildcard_files=["object.txt", "animal.txt"],
num_prompt_samples=1
)
out.images[0].save("image.png")
torch.cuda.empty_cache()
```
### Composable Stable diffusion
@@ -2428,16 +2625,17 @@ for obj in range(bs):
### Stable Diffusion XL Reference
This pipeline uses the Reference. Refer to the [stable_diffusion_reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference).
This pipeline uses the Reference. Refer to the [Stable Diffusion Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference) section for more information.
```py
import torch
from PIL import Image
# from diffusers import DiffusionPipeline
from diffusers.utils import load_image
from diffusers import DiffusionPipeline
from diffusers.schedulers import UniPCMultistepScheduler
input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
from .stable_diffusion_xl_reference import StableDiffusionXLReferencePipeline
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg")
# pipe = DiffusionPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-base-1.0",
@@ -2455,7 +2653,7 @@ pipe = StableDiffusionXLReferencePipeline.from_pretrained(
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
result_img = pipe(ref_image=input_image,
prompt="1girl",
prompt="a dog",
num_inference_steps=20,
reference_attn=True,
reference_adain=True).images[0]
@@ -2463,14 +2661,14 @@ result_img = pipe(ref_image=input_image,
Reference Image
![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)
![reference_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)
Output Image
`prompt: 1 girl`
`prompt: a dog`
`reference_attn=True, reference_adain=True, num_inference_steps=20`
![Output_image](https://github.com/zideliu/diffusers/assets/34944964/743848da-a215-48f9-ae39-b5e2ae49fb13)
`reference_attn=False, reference_adain=True, num_inference_steps=20`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_dog.png)
Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/449bdab6-e744-4fb2-9620-d4068d9a741b)
@@ -2492,6 +2690,88 @@ Output Image
`reference_attn=True, reference_adain=True, num_inference_steps=20`
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)
### Stable Diffusion XL ControlNet Reference
This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.
```py
from diffusers import ControlNetModel, AutoencoderKL
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import load_image
import numpy as np
import torch
import cv2
from PIL import Image
from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline
# download an image
canny_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
)
ref_image = load_image(
"https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)
# initialize the models and pipeline
controlnet_conditioning_scale = 0.5 # recommended for good generalization
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
).to("cuda:0")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# get canny image
image = np.array(canny_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
# generate image
image = pipe(
prompt="a cat",
num_inference_steps=20,
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
ref_image=ref_image,
reference_attn=False,
reference_adain=True,
style_fidelity=1.0,
generator=torch.Generator("cuda").manual_seed(42)
).images[0]
```
Canny ControlNet Image
![canny_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)
Reference Image
![ref_image](https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png)
Output Image
`prompt: a cat`
`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_adain_canny_cat.png)
`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_canny_cat.png)
`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_canny_cat.png)
### Stable diffusion fabric pipeline
FABRIC approach applicable to a wide range of popular diffusion models, which exploits
@@ -2625,7 +2905,7 @@ image with mask mech_painted.png
<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >
result:
result:
<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >
@@ -3187,6 +3467,20 @@ best quality, 3persons in garden, a boy blue shirt BREAK
best quality, 3persons in garden, an old man red suit
```
### Use base prompt
You can use a base prompt to apply the prompt to all areas. You can set a base prompt by adding `ADDBASE` at the end. Base prompts can also be combined with common prompts, but the base prompt must be specified first.
```
2d animation style ADDBASE
masterpiece, high quality ADDCOMM
(blue sky)++ BREAK
green hair twintail BREAK
book shelf BREAK
messy desk BREAK
orange++ dress and sofa
```
### Negative prompt
Negative prompts are equally effective across all regions, but it is possible to set region-specific prompts for negative prompts as well. The number of BREAKs must be the same as the number of prompts. If the number of prompts does not match, the negative prompts will be used without being divided into regions.
@@ -3217,6 +3511,7 @@ pipe(prompt=prompt, rp_args=rp_args)
### Optional Parameters
- `save_mask`: In `Prompt` mode, choose whether to output the generated mask along with the image. The default is `False`.
- `base_ratio`: Used with `ADDBASE`. Sets the ratio of the base prompt; if base ratio is set to 0.2, then resulting images will consist of `20%*BASE_PROMPT + 80%*REGION_PROMPT`
The Pipeline supports `compel` syntax. Input prompts using the `compel` structure will be automatically applied and processed.
@@ -3545,6 +3840,7 @@ The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
@@ -3668,9 +3964,10 @@ You can also combine it with LORA out of the box, like <https://huggingface.co/a
from diffusers import DiffusionPipeline
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
pipe.to("cuda") ### if GPU is not available, comment this line
pipe.to(device) ### if GPU is not available, comment this line
pipe.load_lora_weights("artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5")
prompt = "logo, A logo for a fitness app, dynamic running figure, energetic colors (red, orange) ),LogoRedAF ,"
images = pipe(prompt=prompt,
@@ -4293,6 +4590,50 @@ image = pipe(
A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
### 🪆Matryoshka Diffusion Models
![🪆Matryoshka Diffusion Models](https://github.com/user-attachments/assets/bf90b53b-48c3-4769-a805-d9dfe4a7c572)
The Abstract of the paper:
>Diffusion models are the _de-facto_ approach for generating high-quality images and videos but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space, or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion (MDM), **a novel framework for high-resolution image and video synthesis**. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a **NestedUNet** architecture where features and parameters for small scale inputs are nested within those of the large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a **_single pixel-space model_ at resolutions of up to 1024 × 1024 pixels**, demonstrating strong zero shot generalization using the **CC12M dataset, which contains only 12 million images**. Code and pre-trained checkpoints are released at https://github.com/apple/ml-mdm.
- `64×64, nesting_level=0`: 1.719 GiB. With `50` DDIM inference steps:
**64x64**
:-------------------------:
| <img src="https://github.com/user-attachments/assets/032738eb-c6cd-4fd9-b4d7-a7317b4b6528" width="222" height="222" alt="bird_64_64"> |
- `256×256, nesting_level=1`: 1.776 GiB. With `150` DDIM inference steps:
**64x64** | **256x256**
:-------------------------:|:-------------------------:
| <img src="https://github.com/user-attachments/assets/21b9ad8b-eea6-4603-80a2-31180f391589" width="222" height="222" alt="bird_256_64"> | <img src="https://github.com/user-attachments/assets/fc411682-8a36-422c-9488-395b77d4406e" width="222" height="222" alt="bird_256_256"> |
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible in this context! With `250` DDIM inference steps:
**64x64** | **256x256** | **1024x1024**
:-------------------------:|:-------------------------:|:-------------------------:
| <img src="https://github.com/user-attachments/assets/febf4b98-3dee-4a8e-9946-fd42e1f232e6" width="222" height="222" alt="bird_1024_64"> | <img src="https://github.com/user-attachments/assets/c5f85b40-5d6d-4267-a92a-c89dff015b9b" width="222" height="222" alt="bird_1024_256"> | <img src="https://github.com/user-attachments/assets/ad66b913-4367-4cb9-889e-bc06f4d96148" width="222" height="222" alt="bird_1024_1024"> |
```py
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid
# nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
nesting_level=0,
trust_remote_code=False, # One needs to give permission for this code to run
).to("cuda")
prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
image = pipe(prompt, num_inference_steps=50).images
make_image_grid(image, rows=1, cols=len(image))
# pipe.change_nesting_level(<int>) # 0, 1, or 2
# 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
```
# Perturbed-Attention Guidance
[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
@@ -4369,3 +4710,94 @@ grid_image.save(grid_dir + "sample.png")
`pag_scale` : guidance scale of PAG (ex: 5.0)
`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])
# PIXART-α Controlnet pipeline
[Project](https://pixart-alpha.github.io/) / [GitHub](https://github.com/PixArt-alpha/PixArt-alpha/blob/master/asset/docs/pixart_controlnet.md)
This the implementation of the controlnet model and the pipelne for the Pixart-alpha model, adapted to use the HuggingFace Diffusers.
## Example Usage
This example uses the Pixart HED Controlnet model, converted from the control net model as trained by the authors of the paper.
```py
import sys
import os
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from pipeline_pixart_alpha_controlnet import PixArtAlphaControlnetPipeline
from diffusers.utils import load_image
from diffusers.image_processor import PixArtImageProcessor
from controlnet_aux import HEDdetector
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from pixart.controlnet_pixart_alpha import PixArtControlNetAdapterModel
controlnet_repo_id = "raulc0399/pixart-alpha-hed-controlnet"
weight_dtype = torch.float16
image_size = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(0)
# load controlnet
controlnet = PixArtControlNetAdapterModel.from_pretrained(
controlnet_repo_id,
torch_dtype=weight_dtype,
use_safetensors=True,
).to(device)
pipe = PixArtAlphaControlnetPipeline.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
controlnet=controlnet,
torch_dtype=weight_dtype,
use_safetensors=True,
).to(device)
images_path = "images"
control_image_file = "0_7.jpg"
prompt = "battleship in space, galaxy in background"
control_image_name = control_image_file.split('.')[0]
control_image = load_image(f"{images_path}/{control_image_file}")
print(control_image.size)
height, width = control_image.size
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
condition_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.CenterCrop([image_size, image_size]),
])
control_image = condition_transform(control_image)
hed_edge = hed(control_image, detect_resolution=image_size, image_resolution=image_size)
hed_edge.save(f"{images_path}/{control_image_name}_hed.jpg")
# run pipeline
with torch.no_grad():
out = pipe(
prompt=prompt,
image=hed_edge,
num_inference_steps=14,
guidance_scale=4.5,
height=image_size,
width=image_size,
)
out.images[0].save(f"{images_path}//{control_image_name}_output.jpg")
```
In the folder examples/pixart there is also a script that can be used to train new models.
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.

View File

@@ -6,8 +6,9 @@ If a community script doesn't work as expected, please open an issue and ping th
| Example | Description | Code Example | Colab | Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
| Using IP-Adapter with negative noise | Using negative noise with IP-adapter to better control the generation (see the [original post](https://github.com/huggingface/diffusers/discussions/7167) on the forum for more details) | [IP-Adapter Negative Noise](#ip-adapter-negative-noise) | | [Álvaro Somoza](https://github.com/asomoza)|
| asymmetric tiling |configure seamless image tiling independently for the X and Y axes | [Asymmetric Tiling](#asymmetric-tiling ) | | [alexisrolland](https://github.com/alexisrolland)|
| Using IP-Adapter with Negative Noise | Using negative noise with IP-adapter to better control the generation (see the [original post](https://github.com/huggingface/diffusers/discussions/7167) on the forum for more details) | [IP-Adapter Negative Noise](#ip-adapter-negative-noise) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_negative_noise.ipynb) | [Álvaro Somoza](https://github.com/asomoza)|
| Asymmetric Tiling |configure seamless image tiling independently for the X and Y axes | [Asymmetric Tiling](#Asymmetric-Tiling ) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/asymetric_tiling.ipynb) | [alexisrolland](https://github.com/alexisrolland)|
| Prompt Scheduling Callback |Allows changing prompts during a generation | [Prompt Scheduling-Callback](#Prompt-Scheduling-Callback ) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/prompt_scheduling_callback.ipynb) | [hlky](https://github.com/hlky)|
## Example usages
@@ -229,4 +230,210 @@ seamless_tiling(pipeline=pipeline, x_axis=False, y_axis=False)
torch.cuda.empty_cache()
image.save('image.png')
```
```
### Prompt Scheduling callback
Prompt scheduling callback allows changing prompts during a generation, like [prompt editing in A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#prompt-editing)
```python
from diffusers import StableDiffusionPipeline
from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks
from diffusers.configuration_utils import register_to_config
import torch
from typing import Any, Dict, Tuple, Union
class SDPromptSchedulingCallback(PipelineCallback):
@register_to_config
def __init__(
self,
encoded_prompt: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
cutoff_step_ratio=None,
cutoff_step_index=None,
):
super().__init__(
cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index
)
tensor_inputs = ["prompt_embeds"]
def callback_fn(
self, pipeline, step_index, timestep, callback_kwargs
) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
cutoff_step_index = self.config.cutoff_step_index
if isinstance(self.config.encoded_prompt, tuple):
prompt_embeds, negative_prompt_embeds = self.config.encoded_prompt
else:
prompt_embeds = self.config.encoded_prompt
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
cutoff_step = (
cutoff_step_index
if cutoff_step_index is not None
else int(pipeline.num_timesteps * cutoff_step_ratio)
)
if step_index == cutoff_step:
if pipeline.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
return callback_kwargs
pipeline: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
pipeline.safety_checker = None
pipeline.requires_safety_checker = False
callback = MultiPipelineCallbacks(
[
SDPromptSchedulingCallback(
encoded_prompt=pipeline.encode_prompt(
prompt=f"prompt {index}",
negative_prompt=f"negative prompt {index}",
device=pipeline._execution_device,
num_images_per_prompt=1,
# pipeline.do_classifier_free_guidance can't be accessed until after pipeline is ran
do_classifier_free_guidance=True,
),
cutoff_step_index=index,
) for index in range(1, 20)
]
)
image = pipeline(
prompt="prompt"
negative_prompt="negative prompt",
callback_on_step_end=callback,
callback_on_step_end_tensor_inputs=["prompt_embeds"],
).images[0]
torch.cuda.empty_cache()
image.save('image.png')
```
```python
from diffusers import StableDiffusionXLPipeline
from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks
from diffusers.configuration_utils import register_to_config
import torch
from typing import Any, Dict, Tuple, Union
class SDXLPromptSchedulingCallback(PipelineCallback):
@register_to_config
def __init__(
self,
encoded_prompt: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
add_text_embeds: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
add_time_ids: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
cutoff_step_ratio=None,
cutoff_step_index=None,
):
super().__init__(
cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index
)
tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"]
def callback_fn(
self, pipeline, step_index, timestep, callback_kwargs
) -> Dict[str, Any]:
cutoff_step_ratio = self.config.cutoff_step_ratio
cutoff_step_index = self.config.cutoff_step_index
if isinstance(self.config.encoded_prompt, tuple):
prompt_embeds, negative_prompt_embeds = self.config.encoded_prompt
else:
prompt_embeds = self.config.encoded_prompt
if isinstance(self.config.add_text_embeds, tuple):
add_text_embeds, negative_add_text_embeds = self.config.add_text_embeds
else:
add_text_embeds = self.config.add_text_embeds
if isinstance(self.config.add_time_ids, tuple):
add_time_ids, negative_add_time_ids = self.config.add_time_ids
else:
add_time_ids = self.config.add_time_ids
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
cutoff_step = (
cutoff_step_index
if cutoff_step_index is not None
else int(pipeline.num_timesteps * cutoff_step_ratio)
)
if step_index == cutoff_step:
if pipeline.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
add_text_embeds = torch.cat([negative_add_text_embeds, add_text_embeds])
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids])
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
callback_kwargs[self.tensor_inputs[2]] = add_time_ids
return callback_kwargs
pipeline: StableDiffusionXLPipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True,
).to("cuda")
callbacks = []
for index in range(1, 20):
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipeline.encode_prompt(
prompt=f"prompt {index}",
negative_prompt=f"prompt {index}",
device=pipeline._execution_device,
num_images_per_prompt=1,
# pipeline.do_classifier_free_guidance can't be accessed until after pipeline is ran
do_classifier_free_guidance=True,
)
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
add_time_ids = pipeline._get_add_time_ids(
(1024, 1024),
(0, 0),
(1024, 1024),
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
negative_add_time_ids = pipeline._get_add_time_ids(
(1024, 1024),
(0, 0),
(1024, 1024),
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
callbacks.append(
SDXLPromptSchedulingCallback(
encoded_prompt=(prompt_embeds, negative_prompt_embeds),
add_text_embeds=(pooled_prompt_embeds, negative_pooled_prompt_embeds),
add_time_ids=(add_time_ids, negative_add_time_ids),
cutoff_step_index=index,
)
)
callback = MultiPipelineCallbacks(callbacks)
image = pipeline(
prompt="prompt",
negative_prompt="negative prompt",
callback_on_step_end=callback,
callback_on_step_end_tensor_inputs=[
"prompt_embeds",
"add_text_embeds",
"add_time_ids",
],
).images[0]
```

File diff suppressed because it is too large Load Diff

View File

@@ -898,13 +898,16 @@ class GaussianSmoothing(nn.Module):
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
Args:
channels (`int` or `sequence`):
Number of channels of the input tensors. The output will have this number of channels as well.
kernel_size (`int` or `sequence`):
Size of the Gaussian kernel.
sigma (`float` or `sequence`):
Standard deviation of the Gaussian kernel.
dim (`int`, *optional*, defaults to `2`):
The number of dimensions of the data. Default is 2 (spatial dimensions).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
@@ -944,10 +947,14 @@ class GaussianSmoothing(nn.Module):
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Args:
input (`torch.Tensor` of shape `(N, C, H, W)`):
Input to apply Gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
`torch.Tensor`:
The filtered output tensor with the same shape as the input.
"""
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same")

View File

@@ -43,8 +43,7 @@ from diffusers.utils import BaseOutput, check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.31.0.dev0")
check_min_version("0.32.0")
class MarigoldDepthOutput(BaseOutput):
"""

Some files were not shown because too many files have changed in this diff Show More