mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-06 20:44:33 +08:00
Compare commits
6 Commits
shared-var
...
transforme
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9280201966 | ||
|
|
4d4abfb5e4 | ||
|
|
f542042c5b | ||
|
|
913f5665e7 | ||
|
|
96141d6343 | ||
|
|
442829ff08 |
@@ -33,12 +33,12 @@ from .attention_processor import (
|
||||
from .controlnet import ControlNetConditioningEmbedding
|
||||
from .embeddings import TimestepEmbedding, Timesteps
|
||||
from .modeling_utils import ModelMixin
|
||||
from .transformers import ContinuousTransformer2DModelBlock
|
||||
from .unets.unet_2d_blocks import (
|
||||
CrossAttnDownBlock2D,
|
||||
CrossAttnUpBlock2D,
|
||||
Downsample2D,
|
||||
ResnetBlock2D,
|
||||
Transformer2DModel,
|
||||
UNetMidBlock2DCrossAttn,
|
||||
Upsample2D,
|
||||
)
|
||||
@@ -147,7 +147,7 @@ def get_down_block_adapter(
|
||||
|
||||
if has_crossattn:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
ctrl_out_channels // num_attention_heads,
|
||||
in_channels=ctrl_out_channels,
|
||||
@@ -1281,7 +1281,7 @@ class ControlNetXSCrossAttnDownBlock2D(nn.Module):
|
||||
|
||||
if has_crossattn:
|
||||
base_attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
base_num_attention_heads,
|
||||
base_out_channels // base_num_attention_heads,
|
||||
in_channels=base_out_channels,
|
||||
@@ -1293,7 +1293,7 @@ class ControlNetXSCrossAttnDownBlock2D(nn.Module):
|
||||
)
|
||||
)
|
||||
ctrl_attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
ctrl_num_attention_heads,
|
||||
ctrl_out_channels // ctrl_num_attention_heads,
|
||||
in_channels=ctrl_out_channels,
|
||||
@@ -1732,7 +1732,7 @@ class ControlNetXSCrossAttnUpBlock2D(nn.Module):
|
||||
|
||||
if has_crossattn:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
|
||||
@@ -12,5 +12,6 @@ if is_torch_available():
|
||||
from .prior_transformer import PriorTransformer
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
from .transformer_2d import Transformer2DModel
|
||||
from .transformer_2d_block import ContinuousTransformer2DModelBlock
|
||||
from .transformer_sd3 import SD3Transformer2DModel
|
||||
from .transformer_temporal import TransformerTemporalModel
|
||||
|
||||
@@ -115,6 +115,10 @@ class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
|
||||
self.is_input_vectorized = num_vector_embeds is not None
|
||||
self.is_input_patches = in_channels is not None and patch_size is not None
|
||||
|
||||
if self.is_input_continuous:
|
||||
deprecation_message = "Using `Transformer2DModel` when the input is continuous is deprecared and it will be removed in a future version. Please use `ContinuousTransformer2DModelBlock`, importing from `diffusers.models.transformers.transformer_2d_block`."
|
||||
deprecate("Continuous transformer block.", "1.0.0", deprecation_message)
|
||||
|
||||
if self.is_input_continuous and self.is_input_vectorized:
|
||||
raise ValueError(
|
||||
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
||||
|
||||
282
src/diffusers/models/transformers/transformer_2d_block.py
Normal file
282
src/diffusers/models/transformers/transformer_2d_block.py
Normal file
@@ -0,0 +1,282 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from ...utils import is_torch_version, logging
|
||||
from ..attention import BasicTransformerBlock
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class ContinuousTransformer2DModelBlock(nn.Module):
|
||||
"""
|
||||
A 2D Transformer block for continuous image-like data.
|
||||
|
||||
Parameters:
|
||||
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
||||
in_channels (`int`, *optional*):
|
||||
The number of channels in the input and output (specify if the input is **continuous**).
|
||||
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
||||
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||||
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
||||
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
||||
This is fixed during training since it is used to learn a number of position embeddings.
|
||||
num_vector_embeds (`int`, *optional*):
|
||||
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
||||
Includes the class for the masked latent pixel.
|
||||
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
||||
num_embeds_ada_norm ( `int`, *optional*):
|
||||
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
||||
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
||||
added to the hidden states.
|
||||
|
||||
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
||||
attention_bias (`bool`, *optional*):
|
||||
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["BasicTransformerBlock"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int = 16,
|
||||
attention_head_dim: int = 88,
|
||||
in_channels: Optional[int] = None,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 1,
|
||||
dropout: float = 0.0,
|
||||
norm_num_groups: int = 32,
|
||||
cross_attention_dim: Optional[int] = None,
|
||||
attention_bias: bool = False,
|
||||
sample_size: Optional[int] = None,
|
||||
activation_fn: str = "geglu",
|
||||
num_embeds_ada_norm: Optional[int] = None,
|
||||
use_linear_projection: bool = False,
|
||||
only_cross_attention: bool = False,
|
||||
double_self_attention: bool = False,
|
||||
upcast_attention: bool = False,
|
||||
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-5,
|
||||
attention_type: str = "default",
|
||||
use_additional_conditions: Optional[bool] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Set some common variables used across the board.
|
||||
self.use_linear_projection = use_linear_projection
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
if use_additional_conditions is None:
|
||||
if norm_type == "ada_norm_single" and sample_size == 128:
|
||||
use_additional_conditions = True
|
||||
else:
|
||||
use_additional_conditions = False
|
||||
self.use_additional_conditions = use_additional_conditions
|
||||
|
||||
# Norm
|
||||
inner_dim = num_attention_heads * attention_head_dim
|
||||
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||
|
||||
# Input projection.
|
||||
if self.use_linear_projection:
|
||||
self.proj_in = torch.nn.Linear(in_channels, inner_dim)
|
||||
else:
|
||||
self.proj_in = torch.nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
# Transformer blocks.
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
dropout=dropout,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
activation_fn=activation_fn,
|
||||
num_embeds_ada_norm=num_embeds_ada_norm,
|
||||
attention_bias=attention_bias,
|
||||
only_cross_attention=only_cross_attention,
|
||||
double_self_attention=double_self_attention,
|
||||
upcast_attention=upcast_attention,
|
||||
norm_type=norm_type,
|
||||
norm_elementwise_affine=norm_elementwise_affine,
|
||||
norm_eps=norm_eps,
|
||||
attention_type=attention_type,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
# Output projection.
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
if self.use_linear_projection:
|
||||
self.proj_out = torch.nn.Linear(inner_dim, out_channels)
|
||||
else:
|
||||
self.proj_out = torch.nn.Conv2d(inner_dim, out_channels, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
timestep: Optional[torch.LongTensor] = None,
|
||||
class_labels: Optional[torch.LongTensor] = None,
|
||||
cross_attention_kwargs: Dict[str, Any] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
"""
|
||||
The [`Transformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
|
||||
Input `hidden_states`.
|
||||
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
||||
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
||||
self-attention.
|
||||
timestep ( `torch.LongTensor`, *optional*):
|
||||
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
||||
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
||||
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
||||
`AdaLayerZeroNorm`.
|
||||
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
attention_mask ( `torch.Tensor`, *optional*):
|
||||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||||
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||||
negative values to the attention scores corresponding to "discard" tokens.
|
||||
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
||||
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
||||
|
||||
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
||||
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
||||
|
||||
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
||||
above. This bias will be added to the cross-attention scores.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
|
||||
otherwise a `tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if cross_attention_kwargs is not None:
|
||||
if cross_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
||||
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
||||
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
||||
# expects mask of shape:
|
||||
# [batch, key_tokens]
|
||||
# adds singleton query_tokens dimension:
|
||||
# [batch, 1, key_tokens]
|
||||
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||||
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||||
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||||
if attention_mask is not None and attention_mask.ndim == 2:
|
||||
# assume that mask is expressed as:
|
||||
# (1 = keep, 0 = discard)
|
||||
# convert mask into a bias that can be added to attention scores:
|
||||
# (keep = +0, discard = -10000.0)
|
||||
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
||||
attention_mask = attention_mask.unsqueeze(1)
|
||||
|
||||
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||||
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
||||
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
||||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||||
|
||||
# 1. Input
|
||||
batch_size, _, height, width = hidden_states.shape
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
if not self.use_linear_projection:
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
inner_dim = hidden_states.shape[1]
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, inner_dim)
|
||||
else:
|
||||
inner_dim = hidden_states.shape[1]
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, inner_dim)
|
||||
hidden_states = self.proj_in(hidden_states)
|
||||
|
||||
# 2. Blocks
|
||||
for block in self.transformer_blocks:
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
timestep,
|
||||
cross_attention_kwargs,
|
||||
class_labels,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
timestep=timestep,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
class_labels=class_labels,
|
||||
)
|
||||
|
||||
# 3. Output
|
||||
if not self.use_linear_projection:
|
||||
hidden_states = (
|
||||
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
||||
)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
else:
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
hidden_states = (
|
||||
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
||||
)
|
||||
output = hidden_states + residual
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -34,7 +34,7 @@ from ..resnet import (
|
||||
Upsample2D,
|
||||
)
|
||||
from ..transformers.dual_transformer_2d import DualTransformer2DModel
|
||||
from ..transformers.transformer_2d import Transformer2DModel
|
||||
from ..transformers.transformer_2d_block import ContinuousTransformer2DModelBlock
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -801,7 +801,7 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
for i in range(num_layers):
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -1198,7 +1198,7 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
)
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -2444,7 +2444,7 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
)
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
|
||||
@@ -28,7 +28,7 @@ from ..resnet import (
|
||||
Upsample2D,
|
||||
)
|
||||
from ..transformers.dual_transformer_2d import DualTransformer2DModel
|
||||
from ..transformers.transformer_2d import Transformer2DModel
|
||||
from ..transformers.transformer_2d_block import ContinuousTransformer2DModelBlock
|
||||
from ..transformers.transformer_temporal import (
|
||||
TransformerSpatioTemporalModel,
|
||||
TransformerTemporalModel,
|
||||
@@ -375,7 +375,7 @@ class UNetMidBlock3DCrossAttn(nn.Module):
|
||||
|
||||
for _ in range(num_layers):
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
in_channels // num_attention_heads,
|
||||
num_attention_heads,
|
||||
in_channels=in_channels,
|
||||
@@ -513,7 +513,7 @@ class CrossAttnDownBlock3D(nn.Module):
|
||||
)
|
||||
)
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
out_channels // num_attention_heads,
|
||||
num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -747,7 +747,7 @@ class CrossAttnUpBlock3D(nn.Module):
|
||||
)
|
||||
)
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
out_channels // num_attention_heads,
|
||||
num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -1162,7 +1162,7 @@ class CrossAttnDownBlockMotion(nn.Module):
|
||||
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -1373,7 +1373,7 @@ class CrossAttnUpBlockMotion(nn.Module):
|
||||
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -1736,7 +1736,7 @@ class UNetMidBlockCrossAttnMotion(nn.Module):
|
||||
for i in range(num_layers):
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
in_channels // num_attention_heads,
|
||||
in_channels=in_channels,
|
||||
|
||||
@@ -35,7 +35,7 @@ from ...models.embeddings import (
|
||||
)
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
from ...models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
||||
from ...models.transformers.transformer_2d import Transformer2DModel
|
||||
from ...models.transformers import ContinuousTransformer2DModelBlock
|
||||
from ...models.unets.unet_2d_blocks import DownBlock2D, UpBlock2D
|
||||
from ...models.unets.unet_2d_condition import UNet2DConditionOutput
|
||||
from ...utils import BaseOutput, is_torch_version, logging
|
||||
@@ -1060,7 +1060,7 @@ class CrossAttnDownBlock2D(nn.Module):
|
||||
)
|
||||
for j in range(len(cross_attention_dim)):
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -1236,7 +1236,7 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
||||
for i in range(num_layers):
|
||||
for j in range(len(cross_attention_dim)):
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
in_channels // num_attention_heads,
|
||||
in_channels=in_channels,
|
||||
@@ -1412,7 +1412,7 @@ class CrossAttnUpBlock2D(nn.Module):
|
||||
)
|
||||
for j in range(len(cross_attention_dim)):
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
|
||||
@@ -31,8 +31,8 @@ from ....models.embeddings import (
|
||||
Timesteps,
|
||||
)
|
||||
from ....models.resnet import ResnetBlockCondNorm2D
|
||||
from ....models.transformers import ContinuousTransformer2DModelBlock
|
||||
from ....models.transformers.dual_transformer_2d import DualTransformer2DModel
|
||||
from ....models.transformers.transformer_2d import Transformer2DModel
|
||||
from ....models.unets.unet_2d_condition import UNet2DConditionOutput
|
||||
from ....utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ....utils.torch_utils import apply_freeu
|
||||
@@ -1677,7 +1677,7 @@ class CrossAttnDownBlockFlat(nn.Module):
|
||||
)
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -1957,7 +1957,7 @@ class CrossAttnUpBlockFlat(nn.Module):
|
||||
)
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
@@ -2294,7 +2294,7 @@ class UNetMidBlockFlatCrossAttn(nn.Module):
|
||||
for i in range(num_layers):
|
||||
if not dual_cross_attention:
|
||||
attentions.append(
|
||||
Transformer2DModel(
|
||||
ContinuousTransformer2DModelBlock(
|
||||
num_attention_heads,
|
||||
out_channels // num_attention_heads,
|
||||
in_channels=out_channels,
|
||||
|
||||
@@ -628,7 +628,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
|
||||
"CrossAttnDownBlock2D",
|
||||
"UNetMidBlock2DCrossAttn",
|
||||
"UpBlock2D",
|
||||
"Transformer2DModel",
|
||||
"ContinuousTransformer2DModelBlock",
|
||||
"DownBlock2D",
|
||||
}
|
||||
|
||||
|
||||
@@ -291,7 +291,7 @@ class UNetControlNetXSModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Tes
|
||||
model.enable_gradient_checkpointing()
|
||||
|
||||
EXPECTED_SET = {
|
||||
"Transformer2DModel",
|
||||
"ContinuousTransformer2DModelBlock",
|
||||
"UNetMidBlock2DCrossAttn",
|
||||
"ControlNetXSCrossAttnDownBlock2D",
|
||||
"ControlNetXSCrossAttnMidBlock2D",
|
||||
|
||||
@@ -186,7 +186,7 @@ class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase)
|
||||
"CrossAttnDownBlockMotion",
|
||||
"UNetMidBlockCrossAttnMotion",
|
||||
"UpBlockMotion",
|
||||
"Transformer2DModel",
|
||||
"ContinuousTransformer2DModelBlock",
|
||||
"DownBlockMotion",
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user