mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-27 06:50:52 +08:00
Compare commits
7 Commits
sf-vae-con
...
slow-test-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cb8c90b683 | ||
|
|
278c16aa05 | ||
|
|
cfbfce4e90 | ||
|
|
b8a61d6fb9 | ||
|
|
413604405f | ||
|
|
bc108e1533 | ||
|
|
86555c9f59 |
2
.github/workflows/nightly_tests.yml
vendored
2
.github/workflows/nightly_tests.yml
vendored
@@ -59,7 +59,7 @@ jobs:
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
|
||||
15
.github/workflows/push_tests.yml
vendored
15
.github/workflows/push_tests.yml
vendored
@@ -62,7 +62,7 @@ jobs:
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
container:
|
||||
image: diffusers/diffusers-pytorch-cuda
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
uses: actions/checkout@v3
|
||||
@@ -71,12 +71,6 @@ jobs:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
- name: Tailscale
|
||||
uses: huggingface/tailscale-action@v1
|
||||
with:
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
|
||||
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
|
||||
@@ -95,18 +89,11 @@ jobs:
|
||||
-s -v -k "not Flax and not Onnx" \
|
||||
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
|
||||
tests/pipelines/${{ matrix.module }}
|
||||
- name: Tailscale Wait
|
||||
if: ${{ failure() || runner.debug == '1' }}
|
||||
uses: huggingface/tailscale-action@v1
|
||||
with:
|
||||
waitForSSH: true
|
||||
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
|
||||
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
|
||||
2
.github/workflows/ssh-runner.yml
vendored
2
.github/workflows/ssh-runner.yml
vendored
@@ -25,7 +25,7 @@ jobs:
|
||||
runs-on: [single-gpu, nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
|
||||
container:
|
||||
image: ${{ github.event.inputs.docker_image }}
|
||||
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
|
||||
|
||||
steps:
|
||||
- name: Checkout diffusers
|
||||
|
||||
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Marigold Pipelines for Computer Vision Tasks
|
||||
|
||||
[Marigold](marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
|
||||
[Marigold](../api/pipelines/marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
|
||||
|
||||
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
|
||||
|
||||
@@ -31,7 +31,7 @@ The original code can also be used to train new checkpoints.
|
||||
| Checkpoint | Modality | Comment |
|
||||
|-----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| [prs-eth/marigold-v1-0](https://huggingface.co/prs-eth/marigold-v1-0) | Depth | The first Marigold Depth checkpoint, which predicts *affine-invariant depth* maps. The performance of this checkpoint in benchmarks was studied in the original [paper](https://huggingface.co/papers/2312.02145). Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. Affine-invariant depth prediction has a range of values in each pixel between 0 (near plane) and 1 (far plane); both planes are chosen by the model as part of the inference process. See the `MarigoldImageProcessor` reference for visualization utilities. |
|
||||
| [prs-eth/marigold-lcm-v1-0](https://huggingface.co/prs-eth/marigold-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
|
||||
| [prs-eth/marigold-depth-lcm-v1-0](https://huggingface.co/prs-eth/marigold-depth-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
|
||||
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | A preview checkpoint for the Marigold Normals pipeline. Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. The surface normals predictions are unit-length 3D vectors with values in the range from -1 to 1. *This checkpoint will be phased out after the release of `v1-0` version.* |
|
||||
| [prs-eth/marigold-normals-lcm-v0-1](https://huggingface.co/prs-eth/marigold-normals-lcm-v0-1) | Normals | The fast Marigold Normals checkpoint, fine-tuned from `prs-eth/marigold-normals-v0-1`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. *This checkpoint will be phased out after the release of `v1-0` version.* |
|
||||
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
|
||||
@@ -76,13 +76,13 @@ Below are the raw and the visualized predictions; as can be seen, dark areas (mu
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth_16bit.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth_16bit.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Predicted depth (16-bit PNG)
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Predicted depth visualization (Spectral)
|
||||
</figcaption>
|
||||
@@ -115,7 +115,7 @@ Below is the visualized prediction:
|
||||
|
||||
<div class="flex gap-4" style="justify-content: center; width: 100%;">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_normals.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Predicted surface normals visualization
|
||||
</figcaption>
|
||||
@@ -133,7 +133,7 @@ The above quick start snippets are already optimized for speed: they load the LC
|
||||
The `pipe(image)` call completes in 280ms on RTX 3090 GPU.
|
||||
Internally, the input image is encoded with the Stable Diffusion VAE encoder, then the U-Net performs one denoising step, and finally, the prediction latent is decoded with the VAE decoder into pixel space.
|
||||
In this case, two out of three module calls are dedicated to converting between pixel and latent space of LDM.
|
||||
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](autoencoder_tiny):
|
||||
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](../api/models/autoencoder_tiny):
|
||||
|
||||
```diff
|
||||
import diffusers
|
||||
@@ -151,7 +151,7 @@ Because Marigold's latent space is compatible with the base Stable Diffusion, it
|
||||
depth = pipe(image)
|
||||
```
|
||||
|
||||
As suggested in [Optimizations](torch2.0), adding `torch.compile` may squeeze extra performance depending on the target hardware:
|
||||
As suggested in [Optimizations](../optimization/torch2.0#torch.compile), adding `torch.compile` may squeeze extra performance depending on the target hardware:
|
||||
|
||||
```diff
|
||||
import diffusers
|
||||
@@ -173,13 +173,13 @@ With the above speed optimizations, Marigold delivers predictions with more deta
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Marigold LCM fp16 with Tiny AutoEncoder
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/bfe7cb56ca1cc0811b328212472350879dfa7f8b/marigold/einstein_depthanything_large.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/einstein_depthanything_large.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Depth Anything Large
|
||||
</figcaption>
|
||||
@@ -224,13 +224,13 @@ vis[0].save("einstein_normals.png")
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_normals.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Surface normals, no ensembling
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_normals.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Surface normals, with ensembling
|
||||
</figcaption>
|
||||
@@ -303,13 +303,13 @@ uncertainty[0].save("einstein_depth_uncertainty.png")
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_depth_uncertainty.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_depth_uncertainty.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Depth uncertainty
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_normals_uncertainty.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals_uncertainty.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Surface normals uncertainty
|
||||
</figcaption>
|
||||
@@ -327,11 +327,11 @@ This becomes an obvious drawback compared to traditional end-to-end dense regres
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama.gif"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Input video</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama_depth_independent.gif"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
@@ -351,7 +351,7 @@ path_in = "obama.mp4"
|
||||
path_out = "obama_depth.gif"
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
|
||||
).to(device)
|
||||
pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
|
||||
"madebyollin/taesd", torch_dtype=torch.float16
|
||||
@@ -387,11 +387,11 @@ The result is much more stable now:
|
||||
|
||||
<div class="flex gap-4">
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama_depth_independent.gif"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 50%; max-width: 50%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama_depth_consistent.gif"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_consistent.gif"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth with forced latents initialization</figcaption>
|
||||
</div>
|
||||
</div>
|
||||
@@ -414,7 +414,7 @@ image = diffusers.utils.load_image(
|
||||
)
|
||||
|
||||
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
|
||||
"prs-eth/marigold-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
|
||||
"prs-eth/marigold-depth-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
|
||||
).to("cuda")
|
||||
|
||||
depth_image = pipe(image, generator=generator).prediction
|
||||
@@ -450,13 +450,13 @@ controlnet_out[0].save("motorcycle_controlnet_out.png")
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 33%; max-width: 33%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8e61e31f9feb7756c0404ceff26f3f0e5d3fe610/marigold/motorcycle_controlnet_depth.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_depth.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
Depth in the format compatible with ControlNet
|
||||
</figcaption>
|
||||
</div>
|
||||
<div style="flex: 1 1 33%; max-width: 33%;">
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8e61e31f9feb7756c0404ceff26f3f0e5d3fe610/marigold/motorcycle_controlnet_out.png"/>
|
||||
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_out.png"/>
|
||||
<figcaption class="mt-1 text-center text-sm text-gray-500">
|
||||
ControlNet generation, conditioned on depth and prompt: "high quality photo of a sports bike, city"
|
||||
</figcaption>
|
||||
|
||||
@@ -83,6 +83,7 @@ else:
|
||||
"ControlNetModel",
|
||||
"ControlNetXSAdapter",
|
||||
"DiTTransformer2DModel",
|
||||
"HunyuanDiT2DModel",
|
||||
"I2VGenXLUNet",
|
||||
"Kandinsky3UNet",
|
||||
"ModelMixin",
|
||||
@@ -229,6 +230,7 @@ else:
|
||||
"BlipDiffusionPipeline",
|
||||
"CLIPImageProjection",
|
||||
"CycleDiffusionPipeline",
|
||||
"HunyuanDiTPipeline",
|
||||
"I2VGenXLPipeline",
|
||||
"IFImg2ImgPipeline",
|
||||
"IFImg2ImgSuperResolutionPipeline",
|
||||
@@ -487,6 +489,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ControlNetModel,
|
||||
ControlNetXSAdapter,
|
||||
DiTTransformer2DModel,
|
||||
HunyuanDiT2DModel,
|
||||
I2VGenXLUNet,
|
||||
Kandinsky3UNet,
|
||||
ModelMixin,
|
||||
@@ -611,6 +614,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AudioLDMPipeline,
|
||||
CLIPImageProjection,
|
||||
CycleDiffusionPipeline,
|
||||
HunyuanDiTPipeline,
|
||||
I2VGenXLPipeline,
|
||||
IFImg2ImgPipeline,
|
||||
IFImg2ImgSuperResolutionPipeline,
|
||||
|
||||
@@ -38,6 +38,7 @@ if is_torch_available():
|
||||
_import_structure["embeddings"] = ["ImageProjection"]
|
||||
_import_structure["modeling_utils"] = ["ModelMixin"]
|
||||
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
|
||||
_import_structure["transformers.hunyuan_transformer_2d"] = ["HunyuanDiT2DModel"]
|
||||
_import_structure["transformers.pixart_transformer_2d"] = ["PixArtTransformer2DModel"]
|
||||
_import_structure["transformers.prior_transformer"] = ["PriorTransformer"]
|
||||
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
@@ -78,6 +79,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .transformers import (
|
||||
DiTTransformer2DModel,
|
||||
DualTransformer2DModel,
|
||||
HunyuanDiT2DModel,
|
||||
PixArtTransformer2DModel,
|
||||
PriorTransformer,
|
||||
T5FilmDecoder,
|
||||
|
||||
@@ -50,6 +50,18 @@ def get_activation(act_fn: str) -> nn.Module:
|
||||
raise ValueError(f"Unsupported activation function: {act_fn}")
|
||||
|
||||
|
||||
class FP32SiLU(nn.Module):
|
||||
r"""
|
||||
SiLU activation function with input upcasted to torch.float32.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
return F.silu(inputs.float(), inplace=False).to(inputs.dtype)
|
||||
|
||||
|
||||
class GELU(nn.Module):
|
||||
r"""
|
||||
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
||||
|
||||
@@ -103,6 +103,7 @@ class Attention(nn.Module):
|
||||
upcast_softmax: bool = False,
|
||||
cross_attention_norm: Optional[str] = None,
|
||||
cross_attention_norm_num_groups: int = 32,
|
||||
qk_norm: Optional[str] = None,
|
||||
added_kv_proj_dim: Optional[int] = None,
|
||||
norm_num_groups: Optional[int] = None,
|
||||
spatial_norm_dim: Optional[int] = None,
|
||||
@@ -161,6 +162,15 @@ class Attention(nn.Module):
|
||||
else:
|
||||
self.spatial_norm = None
|
||||
|
||||
if qk_norm is None:
|
||||
self.norm_q = None
|
||||
self.norm_k = None
|
||||
elif qk_norm == "layer_norm":
|
||||
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
|
||||
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
|
||||
else:
|
||||
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
|
||||
|
||||
if cross_attention_norm is None:
|
||||
self.norm_cross = None
|
||||
elif cross_attention_norm == "layer_norm":
|
||||
@@ -1426,6 +1436,104 @@ class AttnProcessor2_0:
|
||||
return hidden_states
|
||||
|
||||
|
||||
class HunyuanAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
||||
used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: Attention,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
temb: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
from .embeddings import apply_rotary_emb
|
||||
|
||||
residual = hidden_states
|
||||
if attn.spatial_norm is not None:
|
||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
if attn.norm_q is not None:
|
||||
query = attn.norm_q(query)
|
||||
if attn.norm_k is not None:
|
||||
key = attn.norm_k(key)
|
||||
|
||||
# Apply RoPE if needed
|
||||
if image_rotary_emb is not None:
|
||||
query = apply_rotary_emb(query, image_rotary_emb)
|
||||
if not attn.is_cross_attention:
|
||||
key = apply_rotary_emb(key, image_rotary_emb)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FusedAttnProcessor2_0:
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
|
||||
|
||||
@@ -16,10 +16,11 @@ from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from ..utils import deprecate
|
||||
from .activations import get_activation
|
||||
from .activations import FP32SiLU, get_activation
|
||||
from .attention_processor import Attention
|
||||
|
||||
|
||||
@@ -135,6 +136,7 @@ class PatchEmbed(nn.Module):
|
||||
flatten=True,
|
||||
bias=True,
|
||||
interpolation_scale=1,
|
||||
pos_embed_type="sincos",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -156,10 +158,18 @@ class PatchEmbed(nn.Module):
|
||||
self.height, self.width = height // patch_size, width // patch_size
|
||||
self.base_size = height // patch_size
|
||||
self.interpolation_scale = interpolation_scale
|
||||
pos_embed = get_2d_sincos_pos_embed(
|
||||
embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale
|
||||
)
|
||||
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
|
||||
if pos_embed_type is None:
|
||||
self.pos_embed = None
|
||||
elif pos_embed_type == "sincos":
|
||||
pos_embed = get_2d_sincos_pos_embed(
|
||||
embed_dim,
|
||||
int(num_patches**0.5),
|
||||
base_size=self.base_size,
|
||||
interpolation_scale=self.interpolation_scale,
|
||||
)
|
||||
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
|
||||
else:
|
||||
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
|
||||
|
||||
def forward(self, latent):
|
||||
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
|
||||
@@ -169,6 +179,8 @@ class PatchEmbed(nn.Module):
|
||||
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
|
||||
if self.layer_norm:
|
||||
latent = self.norm(latent)
|
||||
if self.pos_embed is None:
|
||||
return latent.to(latent.dtype)
|
||||
|
||||
# Interpolate positional embeddings if needed.
|
||||
# (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
|
||||
@@ -187,6 +199,113 @@ class PatchEmbed(nn.Module):
|
||||
return (latent + pos_embed).to(latent.dtype)
|
||||
|
||||
|
||||
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
|
||||
"""
|
||||
RoPE for image tokens with 2d structure.
|
||||
|
||||
Args:
|
||||
embed_dim: (`int`):
|
||||
The embedding dimension size
|
||||
crops_coords (`Tuple[int]`)
|
||||
The top-left and bottom-right coordinates of the crop.
|
||||
grid_size (`Tuple[int]`):
|
||||
The grid size of the positional embedding.
|
||||
use_real (`bool`):
|
||||
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`: positional embdding with shape `( grid_size * grid_size, embed_dim/2)`.
|
||||
"""
|
||||
start, stop = crops_coords
|
||||
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
|
||||
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
|
||||
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
||||
grid = np.stack(grid, axis=0) # [2, W, H]
|
||||
|
||||
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
||||
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
||||
return pos_embed
|
||||
|
||||
|
||||
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
||||
assert embed_dim % 4 == 0
|
||||
|
||||
# use half of dimensions to encode grid_h
|
||||
emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
|
||||
|
||||
if use_real:
|
||||
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
|
||||
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
|
||||
return cos, sin
|
||||
else:
|
||||
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
||||
return emb
|
||||
|
||||
|
||||
def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
|
||||
"""
|
||||
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
||||
|
||||
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
|
||||
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
|
||||
data type.
|
||||
|
||||
Args:
|
||||
dim (`int`): Dimension of the frequency tensor.
|
||||
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
|
||||
theta (`float`, *optional*, defaults to 10000.0):
|
||||
Scaling factor for frequency computation. Defaults to 10000.0.
|
||||
use_real (`bool`, *optional*):
|
||||
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
||||
"""
|
||||
if isinstance(pos, int):
|
||||
pos = np.arange(pos)
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
|
||||
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
||||
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
|
||||
if use_real:
|
||||
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
|
||||
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
|
||||
return freqs_cos, freqs_sin
|
||||
else:
|
||||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
||||
return freqs_cis
|
||||
|
||||
|
||||
def apply_rotary_emb(
|
||||
x: torch.Tensor,
|
||||
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
||||
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
||||
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
||||
tensors contain rotary embeddings and are returned as real tensors.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`):
|
||||
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
|
||||
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
||||
|
||||
Returns:
|
||||
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
||||
"""
|
||||
cos, sin = freqs_cis # [S, D]
|
||||
cos = cos[None, None]
|
||||
sin = sin[None, None]
|
||||
cos, sin = cos.to(x.device), sin.to(x.device)
|
||||
|
||||
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
||||
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
||||
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -507,6 +626,88 @@ class CombinedTimestepLabelEmbeddings(nn.Module):
|
||||
return conditioning
|
||||
|
||||
|
||||
class HunyuanDiTAttentionPool(nn.Module):
|
||||
# Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6
|
||||
|
||||
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
|
||||
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
||||
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
||||
self.num_heads = num_heads
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(1, 0, 2) # NLC -> LNC
|
||||
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
|
||||
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
|
||||
x, _ = F.multi_head_attention_forward(
|
||||
query=x[:1],
|
||||
key=x,
|
||||
value=x,
|
||||
embed_dim_to_check=x.shape[-1],
|
||||
num_heads=self.num_heads,
|
||||
q_proj_weight=self.q_proj.weight,
|
||||
k_proj_weight=self.k_proj.weight,
|
||||
v_proj_weight=self.v_proj.weight,
|
||||
in_proj_weight=None,
|
||||
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
||||
bias_k=None,
|
||||
bias_v=None,
|
||||
add_zero_attn=False,
|
||||
dropout_p=0,
|
||||
out_proj_weight=self.c_proj.weight,
|
||||
out_proj_bias=self.c_proj.bias,
|
||||
use_separate_proj_weight=True,
|
||||
training=self.training,
|
||||
need_weights=False,
|
||||
)
|
||||
return x.squeeze(0)
|
||||
|
||||
|
||||
class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim=1024, seq_len=256, cross_attention_dim=2048):
|
||||
super().__init__()
|
||||
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
|
||||
self.pooler = HunyuanDiTAttentionPool(
|
||||
seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
|
||||
)
|
||||
# Here we use a default learned embedder layer for future extension.
|
||||
self.style_embedder = nn.Embedding(1, embedding_dim)
|
||||
extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
|
||||
self.extra_embedder = PixArtAlphaTextProjection(
|
||||
in_features=extra_in_dim,
|
||||
hidden_size=embedding_dim * 4,
|
||||
out_features=embedding_dim,
|
||||
act_fn="silu_fp32",
|
||||
)
|
||||
|
||||
def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
|
||||
timesteps_proj = self.time_proj(timestep)
|
||||
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256)
|
||||
|
||||
# extra condition1: text
|
||||
pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024)
|
||||
|
||||
# extra condition2: image meta size embdding
|
||||
image_meta_size = get_timestep_embedding(image_meta_size.view(-1), 256, True, 0)
|
||||
image_meta_size = image_meta_size.to(dtype=hidden_dtype)
|
||||
image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536)
|
||||
|
||||
# extra condition3: style embedding
|
||||
style_embedding = self.style_embedder(style) # (N, embedding_dim)
|
||||
|
||||
# Concatenate all extra vectors
|
||||
extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
|
||||
conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D]
|
||||
|
||||
return conditioning
|
||||
|
||||
|
||||
class TextTimeEmbedding(nn.Module):
|
||||
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
|
||||
super().__init__()
|
||||
@@ -793,11 +994,18 @@ class PixArtAlphaTextProjection(nn.Module):
|
||||
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
||||
"""
|
||||
|
||||
def __init__(self, in_features, hidden_size, num_tokens=120):
|
||||
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
|
||||
super().__init__()
|
||||
if out_features is None:
|
||||
out_features = hidden_size
|
||||
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
|
||||
self.act_1 = nn.GELU(approximate="tanh")
|
||||
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
|
||||
if act_fn == "gelu_tanh":
|
||||
self.act_1 = nn.GELU(approximate="tanh")
|
||||
elif act_fn == "silu_fp32":
|
||||
self.act_1 = FP32SiLU()
|
||||
else:
|
||||
raise ValueError(f"Unknown activation function: {act_fn}")
|
||||
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
|
||||
|
||||
def forward(self, caption):
|
||||
hidden_states = self.linear_1(caption)
|
||||
|
||||
@@ -176,7 +176,8 @@ class AdaLayerNormContinuous(nn.Module):
|
||||
raise ValueError(f"unknown norm_type {norm_type}")
|
||||
|
||||
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
||||
emb = self.linear(self.silu(conditioning_embedding))
|
||||
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
||||
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
|
||||
scale, shift = torch.chunk(emb, 2, dim=1)
|
||||
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||
return x
|
||||
|
||||
@@ -4,6 +4,7 @@ from ...utils import is_torch_available
|
||||
if is_torch_available():
|
||||
from .dit_transformer_2d import DiTTransformer2DModel
|
||||
from .dual_transformer_2d import DualTransformer2DModel
|
||||
from .hunyuan_transformer_2d import HunyuanDiT2DModel
|
||||
from .pixart_transformer_2d import PixArtTransformer2DModel
|
||||
from .prior_transformer import PriorTransformer
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
|
||||
427
src/diffusers/models/transformers/hunyuan_transformer_2d.py
Normal file
427
src/diffusers/models/transformers/hunyuan_transformer_2d.py
Normal file
@@ -0,0 +1,427 @@
|
||||
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...utils import logging
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention import FeedForward
|
||||
from ..attention_processor import Attention, HunyuanAttnProcessor2_0
|
||||
from ..embeddings import (
|
||||
HunyuanCombinedTimestepTextSizeStyleEmbedding,
|
||||
PatchEmbed,
|
||||
PixArtAlphaTextProjection,
|
||||
)
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import AdaLayerNormContinuous
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class FP32LayerNorm(nn.LayerNorm):
|
||||
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
||||
origin_dtype = inputs.dtype
|
||||
return F.layer_norm(
|
||||
inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps
|
||||
).to(origin_dtype)
|
||||
|
||||
|
||||
class AdaLayerNormShift(nn.Module):
|
||||
r"""
|
||||
Norm layer modified to incorporate timestep embeddings.
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, elementwise_affine=True, eps=1e-6):
|
||||
super().__init__()
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, embedding_dim)
|
||||
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps)
|
||||
|
||||
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
||||
shift = self.linear(self.silu(emb.to(torch.float32)).to(emb.dtype))
|
||||
x = self.norm(x) + shift.unsqueeze(dim=1)
|
||||
return x
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class HunyuanDiTBlock(nn.Module):
|
||||
r"""
|
||||
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and
|
||||
QKNorm
|
||||
|
||||
Parameters:
|
||||
dim (`int`):
|
||||
The number of channels in the input and output.
|
||||
num_attention_heads (`int`):
|
||||
The number of headsto use for multi-head attention.
|
||||
cross_attention_dim (`int`,*optional*):
|
||||
The size of the encoder_hidden_states vector for cross attention.
|
||||
dropout(`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability to use.
|
||||
activation_fn (`str`,*optional*, defaults to `"geglu"`):
|
||||
Activation function to be used in feed-forward. .
|
||||
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use learnable elementwise affine parameters for normalization.
|
||||
norm_eps (`float`, *optional*, defaults to 1e-6):
|
||||
A small constant added to the denominator in normalization layers to prevent division by zero.
|
||||
final_dropout (`bool` *optional*, defaults to False):
|
||||
Whether to apply a final dropout after the last feed-forward layer.
|
||||
ff_inner_dim (`int`, *optional*):
|
||||
The size of the hidden layer in the feed-forward block. Defaults to `None`.
|
||||
ff_bias (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use bias in the feed-forward block.
|
||||
skip (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks.
|
||||
qk_norm (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use normalization in QK calculation. Defaults to `True`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
cross_attention_dim: int = 1024,
|
||||
dropout=0.0,
|
||||
activation_fn: str = "geglu",
|
||||
norm_elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-6,
|
||||
final_dropout: bool = False,
|
||||
ff_inner_dim: Optional[int] = None,
|
||||
ff_bias: bool = True,
|
||||
skip: bool = False,
|
||||
qk_norm: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Define 3 blocks. Each block has its own normalization layer.
|
||||
# NOTE: when new version comes, check norm2 and norm 3
|
||||
# 1. Self-Attn
|
||||
self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
||||
|
||||
self.attn1 = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
dim_head=dim // num_attention_heads,
|
||||
heads=num_attention_heads,
|
||||
qk_norm="layer_norm" if qk_norm else None,
|
||||
eps=1e-6,
|
||||
bias=True,
|
||||
processor=HunyuanAttnProcessor2_0(),
|
||||
)
|
||||
|
||||
# 2. Cross-Attn
|
||||
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
||||
|
||||
self.attn2 = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
dim_head=dim // num_attention_heads,
|
||||
heads=num_attention_heads,
|
||||
qk_norm="layer_norm" if qk_norm else None,
|
||||
eps=1e-6,
|
||||
bias=True,
|
||||
processor=HunyuanAttnProcessor2_0(),
|
||||
)
|
||||
# 3. Feed-forward
|
||||
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
||||
|
||||
self.ff = FeedForward(
|
||||
dim,
|
||||
dropout=dropout, ### 0.0
|
||||
activation_fn=activation_fn, ### approx GeLU
|
||||
final_dropout=final_dropout, ### 0.0
|
||||
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio)
|
||||
bias=ff_bias,
|
||||
)
|
||||
|
||||
# 4. Skip Connection
|
||||
if skip:
|
||||
self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True)
|
||||
self.skip_linear = nn.Linear(2 * dim, dim)
|
||||
else:
|
||||
self.skip_linear = None
|
||||
|
||||
# let chunk size default to None
|
||||
self._chunk_size = None
|
||||
self._chunk_dim = 0
|
||||
|
||||
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
||||
# Sets chunk feed-forward
|
||||
self._chunk_size = chunk_size
|
||||
self._chunk_dim = dim
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
temb: Optional[torch.Tensor] = None,
|
||||
image_rotary_emb=None,
|
||||
skip=None,
|
||||
) -> torch.Tensor:
|
||||
# Notice that normalization is always applied before the real computation in the following blocks.
|
||||
# 0. Long Skip Connection
|
||||
if self.skip_linear is not None:
|
||||
cat = torch.cat([hidden_states, skip], dim=-1)
|
||||
cat = self.skip_norm(cat)
|
||||
hidden_states = self.skip_linear(cat)
|
||||
|
||||
# 1. Self-Attention
|
||||
norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct
|
||||
attn_output = self.attn1(
|
||||
norm_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
# 2. Cross-Attention
|
||||
hidden_states = hidden_states + self.attn2(
|
||||
self.norm2(hidden_states),
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
)
|
||||
|
||||
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict
|
||||
mlp_inputs = self.norm3(hidden_states)
|
||||
hidden_states = hidden_states + self.ff(mlp_inputs)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
||||
"""
|
||||
HunYuanDiT: Diffusion model with a Transformer backbone.
|
||||
|
||||
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
||||
|
||||
Parameters:
|
||||
num_attention_heads (`int`, *optional*, defaults to 16):
|
||||
The number of heads to use for multi-head attention.
|
||||
attention_head_dim (`int`, *optional*, defaults to 88):
|
||||
The number of channels in each head.
|
||||
in_channels (`int`, *optional*):
|
||||
The number of channels in the input and output (specify if the input is **continuous**).
|
||||
patch_size (`int`, *optional*):
|
||||
The size of the patch to use for the input.
|
||||
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
||||
Activation function to use in feed-forward.
|
||||
sample_size (`int`, *optional*):
|
||||
The width of the latent images. This is fixed during training since it is used to learn a number of
|
||||
position embeddings.
|
||||
dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability to use.
|
||||
cross_attention_dim (`int`, *optional*):
|
||||
The number of dimension in the clip text embedding.
|
||||
hidden_size (`int`, *optional*):
|
||||
The size of hidden layer in the conditioning embedding layers.
|
||||
num_layers (`int`, *optional*, defaults to 1):
|
||||
The number of layers of Transformer blocks to use.
|
||||
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
||||
The ratio of the hidden layer size to the input size.
|
||||
learn_sigma (`bool`, *optional*, defaults to `True`):
|
||||
Whether to predict variance.
|
||||
cross_attention_dim_t5 (`int`, *optional*):
|
||||
The number dimensions in t5 text embedding.
|
||||
pooled_projection_dim (`int`, *optional*):
|
||||
The size of the pooled projection.
|
||||
text_len (`int`, *optional*):
|
||||
The length of the clip text embedding.
|
||||
text_len_t5 (`int`, *optional*):
|
||||
The length of the T5 text embedding.
|
||||
"""
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_attention_heads: int = 16,
|
||||
attention_head_dim: int = 88,
|
||||
in_channels: Optional[int] = None,
|
||||
patch_size: Optional[int] = None,
|
||||
activation_fn: str = "gelu-approximate",
|
||||
sample_size=32,
|
||||
hidden_size=1152,
|
||||
num_layers: int = 28,
|
||||
mlp_ratio: float = 4.0,
|
||||
learn_sigma: bool = True,
|
||||
cross_attention_dim: int = 1024,
|
||||
norm_type: str = "layer_norm",
|
||||
cross_attention_dim_t5: int = 2048,
|
||||
pooled_projection_dim: int = 1024,
|
||||
text_len: int = 77,
|
||||
text_len_t5: int = 256,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||||
self.num_heads = num_attention_heads
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.text_embedder = PixArtAlphaTextProjection(
|
||||
in_features=cross_attention_dim_t5,
|
||||
hidden_size=cross_attention_dim_t5 * 4,
|
||||
out_features=cross_attention_dim,
|
||||
act_fn="silu_fp32",
|
||||
)
|
||||
|
||||
self.text_embedding_padding = nn.Parameter(
|
||||
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)
|
||||
)
|
||||
|
||||
self.pos_embed = PatchEmbed(
|
||||
height=sample_size,
|
||||
width=sample_size,
|
||||
in_channels=in_channels,
|
||||
embed_dim=hidden_size,
|
||||
patch_size=patch_size,
|
||||
pos_embed_type=None,
|
||||
)
|
||||
|
||||
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(
|
||||
hidden_size,
|
||||
pooled_projection_dim=pooled_projection_dim,
|
||||
seq_len=text_len_t5,
|
||||
cross_attention_dim=cross_attention_dim_t5,
|
||||
)
|
||||
|
||||
# HunyuanDiT Blocks
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
HunyuanDiTBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.config.num_attention_heads,
|
||||
activation_fn=activation_fn,
|
||||
ff_inner_dim=int(self.inner_dim * mlp_ratio),
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
|
||||
skip=layer > num_layers // 2,
|
||||
)
|
||||
for layer in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
timestep,
|
||||
encoder_hidden_states=None,
|
||||
text_embedding_mask=None,
|
||||
encoder_hidden_states_t5=None,
|
||||
text_embedding_mask_t5=None,
|
||||
image_meta_size=None,
|
||||
style=None,
|
||||
image_rotary_emb=None,
|
||||
return_dict=True,
|
||||
):
|
||||
"""
|
||||
The [`HunyuanDiT2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
|
||||
The input tensor.
|
||||
timestep ( `torch.LongTensor`, *optional*):
|
||||
Used to indicate denoising step.
|
||||
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
||||
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
|
||||
text_embedding_mask: torch.Tensor
|
||||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
||||
of `BertModel`.
|
||||
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
||||
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
|
||||
text_embedding_mask_t5: torch.Tensor
|
||||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
||||
of T5 Text Encoder.
|
||||
image_meta_size (torch.Tensor):
|
||||
Conditional embedding indicate the image sizes
|
||||
style: torch.Tensor:
|
||||
Conditional embedding indicate the style
|
||||
image_rotary_emb (`torch.Tensor`):
|
||||
The image rotary embeddings to apply on query and key tensors during attention calculation.
|
||||
return_dict: bool
|
||||
Whether to return a dictionary.
|
||||
"""
|
||||
|
||||
height, width = hidden_states.shape[-2:]
|
||||
|
||||
hidden_states = self.pos_embed(hidden_states)
|
||||
|
||||
temb = self.time_extra_emb(
|
||||
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype
|
||||
) # [B, D]
|
||||
|
||||
# text projection
|
||||
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape
|
||||
encoder_hidden_states_t5 = self.text_embedder(
|
||||
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])
|
||||
)
|
||||
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1)
|
||||
|
||||
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1)
|
||||
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1)
|
||||
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool()
|
||||
|
||||
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding)
|
||||
|
||||
skips = []
|
||||
for layer, block in enumerate(self.blocks):
|
||||
if layer > self.config.num_layers // 2:
|
||||
skip = skips.pop()
|
||||
hidden_states = block(
|
||||
hidden_states,
|
||||
temb=temb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
skip=skip,
|
||||
) # (N, L, D)
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states,
|
||||
temb=temb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
) # (N, L, D)
|
||||
|
||||
if layer < (self.config.num_layers // 2 - 1):
|
||||
skips.append(hidden_states)
|
||||
|
||||
# final layer
|
||||
hidden_states = self.norm_out(hidden_states, temb.to(torch.float32))
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
# (N, L, patch_size ** 2 * out_channels)
|
||||
|
||||
# unpatchify: (N, out_channels, H, W)
|
||||
patch_size = self.pos_embed.patch_size
|
||||
height = height // patch_size
|
||||
width = width // patch_size
|
||||
|
||||
hidden_states = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
||||
)
|
||||
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
||||
output = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
||||
)
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -150,6 +150,7 @@ else:
|
||||
"IFPipeline",
|
||||
"IFSuperResolutionPipeline",
|
||||
]
|
||||
_import_structure["hunyuandit"] = ["HunyuanDiTPipeline"]
|
||||
_import_structure["kandinsky"] = [
|
||||
"KandinskyCombinedPipeline",
|
||||
"KandinskyImg2ImgCombinedPipeline",
|
||||
@@ -418,6 +419,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
VersatileDiffusionTextToImagePipeline,
|
||||
VQDiffusionPipeline,
|
||||
)
|
||||
from .hunyuandit import HunyuanDiTPipeline
|
||||
from .i2vgen_xl import I2VGenXLPipeline
|
||||
from .kandinsky import (
|
||||
KandinskyCombinedPipeline,
|
||||
|
||||
48
src/diffusers/pipelines/hunyuandit/__init__.py
Normal file
48
src/diffusers/pipelines/hunyuandit/__init__.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_import_structure = {}
|
||||
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_hunyuandit"] = ["HunyuanDiTPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_hunyuandit import HunyuanDiTPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
881
src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Normal file
881
src/diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py
Normal file
@@ -0,0 +1,881 @@
|
||||
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...models import AutoencoderKL, HunyuanDiT2DModel
|
||||
from ...models.embeddings import get_2d_rotary_pos_embed
|
||||
from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
from ...schedulers import DDPMScheduler
|
||||
from ...utils import (
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import HunyuanDiTPipeline
|
||||
|
||||
>>> pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT", torch_dtype=torch.float16)
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> # You may also use English prompt as HunyuanDiT supports both English and Chinese
|
||||
>>> # prompt = "An astronaut riding a horse"
|
||||
>>> prompt = "一个宇航员在骑马"
|
||||
>>> image = pipe(prompt).images[0]
|
||||
```
|
||||
"""
|
||||
|
||||
STANDARD_RATIO = np.array(
|
||||
[
|
||||
1.0, # 1:1
|
||||
4.0 / 3.0, # 4:3
|
||||
3.0 / 4.0, # 3:4
|
||||
16.0 / 9.0, # 16:9
|
||||
9.0 / 16.0, # 9:16
|
||||
]
|
||||
)
|
||||
STANDARD_SHAPE = [
|
||||
[(1024, 1024), (1280, 1280)], # 1:1
|
||||
[(1024, 768), (1152, 864), (1280, 960)], # 4:3
|
||||
[(768, 1024), (864, 1152), (960, 1280)], # 3:4
|
||||
[(1280, 768)], # 16:9
|
||||
[(768, 1280)], # 9:16
|
||||
]
|
||||
STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
|
||||
SUPPORTED_SHAPE = [
|
||||
(1024, 1024),
|
||||
(1280, 1280), # 1:1
|
||||
(1024, 768),
|
||||
(1152, 864),
|
||||
(1280, 960), # 4:3
|
||||
(768, 1024),
|
||||
(864, 1152),
|
||||
(960, 1280), # 3:4
|
||||
(1280, 768), # 16:9
|
||||
(768, 1280), # 9:16
|
||||
]
|
||||
|
||||
|
||||
def map_to_standard_shapes(target_width, target_height):
|
||||
target_ratio = target_width / target_height
|
||||
closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
|
||||
closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
|
||||
width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
|
||||
return width, height
|
||||
|
||||
|
||||
def get_resize_crop_region_for_grid(src, tgt_size):
|
||||
th = tw = tgt_size
|
||||
h, w = src
|
||||
|
||||
r = h / w
|
||||
|
||||
# resize
|
||||
if r > 1:
|
||||
resize_height = th
|
||||
resize_width = int(round(th / h * w))
|
||||
else:
|
||||
resize_width = tw
|
||||
resize_height = int(round(tw / w * h))
|
||||
|
||||
crop_top = int(round((th - resize_height) / 2.0))
|
||||
crop_left = int(round((tw - resize_width) / 2.0))
|
||||
|
||||
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
||||
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
||||
"""
|
||||
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
||||
"""
|
||||
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
||||
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
||||
# rescale the results from guidance (fixes overexposure)
|
||||
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
||||
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
||||
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
||||
return noise_cfg
|
||||
|
||||
|
||||
class HunyuanDiTPipeline(DiffusionPipeline):
|
||||
r"""
|
||||
Pipeline for English/Chinese-to-image generation using HunyuanDiT.
|
||||
|
||||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||||
|
||||
HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
|
||||
ourselves)
|
||||
|
||||
Args:
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
|
||||
`sdxl-vae-fp16-fix`.
|
||||
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
|
||||
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
||||
HunyuanDiT uses a fine-tuned [bilingual CLIP].
|
||||
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
|
||||
A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
|
||||
transformer ([`HunyuanDiT2DModel`]):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
||||
_optional_components = [
|
||||
"safety_checker",
|
||||
"feature_extractor",
|
||||
"text_encoder_2",
|
||||
"tokenizer_2",
|
||||
"text_encoder",
|
||||
"tokenizer",
|
||||
]
|
||||
_exclude_from_cpu_offload = ["safety_checker"]
|
||||
_callback_tensor_inputs = [
|
||||
"latents",
|
||||
"prompt_embeds",
|
||||
"negative_prompt_embeds",
|
||||
"prompt_embeds_2",
|
||||
"negative_prompt_embeds_2",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: BertModel,
|
||||
tokenizer: BertTokenizer,
|
||||
transformer: HunyuanDiT2DModel,
|
||||
scheduler: DDPMScheduler,
|
||||
safety_checker: StableDiffusionSafetyChecker,
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2=T5EncoderModel,
|
||||
tokenizer_2=MT5Tokenizer,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
tokenizer_2=tokenizer_2,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
text_encoder_2=text_encoder_2,
|
||||
)
|
||||
|
||||
if safety_checker is None and requires_safety_checker:
|
||||
logger.warning(
|
||||
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
||||
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
||||
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
||||
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
||||
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
||||
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
||||
)
|
||||
|
||||
if safety_checker is not None and feature_extractor is None:
|
||||
raise ValueError(
|
||||
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
||||
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
||||
)
|
||||
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||||
self.default_sample_size = self.transformer.config.sample_size
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: str,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
num_images_per_prompt: int = 1,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[str] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
max_sequence_length: Optional[int] = None,
|
||||
text_encoder_index: int = 0,
|
||||
):
|
||||
r"""
|
||||
Encodes the prompt into text encoder hidden states.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
dtype (`torch.dtype`):
|
||||
torch dtype
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
do_classifier_free_guidance (`bool`):
|
||||
whether to use classifier free guidance or not
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
prompt_attention_mask (`torch.Tensor`, *optional*):
|
||||
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
|
||||
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
||||
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
|
||||
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
|
||||
text_encoder_index (`int`, *optional*):
|
||||
Index of the text encoder to use. `0` for clip and `1` for T5.
|
||||
"""
|
||||
tokenizers = [self.tokenizer, self.tokenizer_2]
|
||||
text_encoders = [self.text_encoder, self.text_encoder_2]
|
||||
|
||||
tokenizer = tokenizers[text_encoder_index]
|
||||
text_encoder = text_encoders[text_encoder_index]
|
||||
|
||||
if max_sequence_length is None:
|
||||
if text_encoder_index == 0:
|
||||
max_length = 77
|
||||
if text_encoder_index == 1:
|
||||
max_length = 256
|
||||
else:
|
||||
max_length = max_sequence_length
|
||||
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
text_inputs = tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_attention_mask=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||||
text_input_ids, untruncated_ids
|
||||
):
|
||||
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_attention_mask = text_inputs.attention_mask.to(device)
|
||||
prompt_embeds = text_encoder(
|
||||
text_input_ids.to(device),
|
||||
attention_mask=prompt_attention_mask,
|
||||
)
|
||||
prompt_embeds = prompt_embeds[0]
|
||||
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
bs_embed, seq_len, _ = prompt_embeds.shape
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
# get unconditional embeddings for classifier free guidance
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
uncond_tokens: List[str]
|
||||
if negative_prompt is None:
|
||||
uncond_tokens = [""] * batch_size
|
||||
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif isinstance(negative_prompt, str):
|
||||
uncond_tokens = [negative_prompt]
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
else:
|
||||
uncond_tokens = negative_prompt
|
||||
|
||||
max_length = prompt_embeds.shape[1]
|
||||
uncond_input = tokenizer(
|
||||
uncond_tokens,
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
|
||||
negative_prompt_embeds = text_encoder(
|
||||
uncond_input.input_ids.to(device),
|
||||
attention_mask=negative_prompt_attention_mask,
|
||||
)
|
||||
negative_prompt_embeds = negative_prompt_embeds[0]
|
||||
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
||||
seq_len = negative_prompt_embeds.shape[1]
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
||||
def run_safety_checker(self, image, device, dtype):
|
||||
if self.safety_checker is None:
|
||||
has_nsfw_concept = None
|
||||
else:
|
||||
if torch.is_tensor(image):
|
||||
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
||||
else:
|
||||
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
||||
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
||||
image, has_nsfw_concept = self.safety_checker(
|
||||
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
||||
)
|
||||
return image, has_nsfw_concept
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||||
def prepare_extra_step_kwargs(self, generator, eta):
|
||||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||||
# and should be between [0, 1]
|
||||
|
||||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
extra_step_kwargs = {}
|
||||
if accepts_eta:
|
||||
extra_step_kwargs["eta"] = eta
|
||||
|
||||
# check if the scheduler accepts generator
|
||||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||||
if accepts_generator:
|
||||
extra_step_kwargs["generator"] = generator
|
||||
return extra_step_kwargs
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
prompt_attention_mask=None,
|
||||
negative_prompt_attention_mask=None,
|
||||
prompt_embeds_2=None,
|
||||
negative_prompt_embeds_2=None,
|
||||
prompt_attention_mask_2=None,
|
||||
negative_prompt_attention_mask_2=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is None and prompt_embeds_2 is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if prompt_embeds is not None and prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
||||
|
||||
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
|
||||
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
||||
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
||||
|
||||
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
|
||||
raise ValueError(
|
||||
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
|
||||
)
|
||||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||||
f" {negative_prompt_embeds.shape}."
|
||||
)
|
||||
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
|
||||
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
|
||||
raise ValueError(
|
||||
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
|
||||
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
|
||||
f" {negative_prompt_embeds_2.shape}."
|
||||
)
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
||||
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
||||
shape = (
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
int(height) // self.vae_scale_factor,
|
||||
int(width) // self.vae_scale_factor,
|
||||
)
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
latents = latents.to(device)
|
||||
|
||||
# scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = latents * self.scheduler.init_noise_sigma
|
||||
return latents
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def guidance_rescale(self):
|
||||
return self._guidance_rescale
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: Optional[int] = 50,
|
||||
guidance_scale: Optional[float] = 5.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: Optional[float] = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
prompt_embeds_2: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
prompt_attention_mask_2: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
||||
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
guidance_rescale: float = 0.0,
|
||||
original_size: Optional[Tuple[int, int]] = (1024, 1024),
|
||||
target_size: Optional[Tuple[int, int]] = None,
|
||||
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
||||
use_resolution_binning: bool = True,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation with HunyuanDiT.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference. This parameter is modulated by `strength`.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||||
A higher guidance scale value encourages the model to generate images closely linked to the text
|
||||
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
||||
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
||||
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||||
generation deterministic.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||||
provided, text embeddings are generated from the `prompt` input argument.
|
||||
prompt_embeds_2 (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||||
provided, text embeddings are generated from the `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
||||
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
||||
negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
||||
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
||||
prompt_attention_mask (`torch.Tensor`, *optional*):
|
||||
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
|
||||
prompt_attention_mask_2 (`torch.Tensor`, *optional*):
|
||||
Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
|
||||
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
||||
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
|
||||
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
|
||||
Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||||
plain tuple.
|
||||
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
||||
A callback function or a list of callback functions to be called at the end of each denoising step.
|
||||
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
|
||||
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
|
||||
inputs will be passed.
|
||||
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
||||
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
|
||||
Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
||||
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
|
||||
The original size of the image. Used to calculate the time ids.
|
||||
target_size (`Tuple[int, int]`, *optional*):
|
||||
The target size of the image. Used to calculate the time ids.
|
||||
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
|
||||
The top left coordinates of the crop. Used to calculate the time ids.
|
||||
use_resolution_binning (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
|
||||
standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
|
||||
768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
||||
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
||||
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
||||
"not-safe-for-work" (nsfw) content.
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
# 0. default height and width
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
height = int((height // 16) * 16)
|
||||
width = int((width // 16) * 16)
|
||||
|
||||
if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
|
||||
width, height = map_to_standard_shapes(width, height)
|
||||
height = int(height)
|
||||
width = int(width)
|
||||
logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
prompt_embeds_2,
|
||||
negative_prompt_embeds_2,
|
||||
prompt_attention_mask_2,
|
||||
negative_prompt_attention_mask_2,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
self._guidance_scale = guidance_scale
|
||||
self._guidance_rescale = guidance_rescale
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# 3. Encode input prompt
|
||||
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
dtype=self.transformer.dtype,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||||
max_sequence_length=77,
|
||||
text_encoder_index=0,
|
||||
)
|
||||
(
|
||||
prompt_embeds_2,
|
||||
negative_prompt_embeds_2,
|
||||
prompt_attention_mask_2,
|
||||
negative_prompt_attention_mask_2,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
dtype=self.transformer.dtype,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds_2,
|
||||
negative_prompt_embeds=negative_prompt_embeds_2,
|
||||
prompt_attention_mask=prompt_attention_mask_2,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask_2,
|
||||
max_sequence_length=256,
|
||||
text_encoder_index=1,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7 create image_rotary_emb, style embedding & time ids
|
||||
grid_height = height // 8 // self.transformer.config.patch_size
|
||||
grid_width = width // 8 // self.transformer.config.patch_size
|
||||
base_size = 512 // 8 // self.transformer.config.patch_size
|
||||
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
|
||||
image_rotary_emb = get_2d_rotary_pos_embed(
|
||||
self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
|
||||
)
|
||||
|
||||
style = torch.tensor([0], device=device)
|
||||
|
||||
target_size = target_size or (height, width)
|
||||
add_time_ids = list(original_size + target_size + crops_coords_top_left)
|
||||
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
||||
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
|
||||
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
|
||||
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
|
||||
add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
|
||||
style = torch.cat([style] * 2, dim=0)
|
||||
|
||||
prompt_embeds = prompt_embeds.to(device=device)
|
||||
prompt_attention_mask = prompt_attention_mask.to(device=device)
|
||||
prompt_embeds_2 = prompt_embeds_2.to(device=device)
|
||||
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
|
||||
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
|
||||
batch_size * num_images_per_prompt, 1
|
||||
)
|
||||
style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
|
||||
|
||||
# 8. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
|
||||
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
|
||||
dtype=latent_model_input.dtype
|
||||
)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.transformer(
|
||||
latent_model_input,
|
||||
t_expand,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
text_embedding_mask=prompt_attention_mask,
|
||||
encoder_hidden_states_t5=prompt_embeds_2,
|
||||
text_embedding_mask_t5=prompt_attention_mask_2,
|
||||
image_meta_size=add_time_ids,
|
||||
style=style,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
noise_pred, _ = noise_pred.chunk(2, dim=1)
|
||||
|
||||
# perform guidance
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
|
||||
negative_prompt_embeds_2 = callback_outputs.pop(
|
||||
"negative_prompt_embeds_2", negative_prompt_embeds_2
|
||||
)
|
||||
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
||||
else:
|
||||
image = latents
|
||||
has_nsfw_concept = None
|
||||
|
||||
if has_nsfw_concept is None:
|
||||
do_denormalize = [True] * image.shape[0]
|
||||
else:
|
||||
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||||
|
||||
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
@@ -157,19 +157,19 @@ def compute_dream_and_update_latents(
|
||||
with torch.no_grad():
|
||||
pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
noisy_latents, target = (None, None)
|
||||
_noisy_latents, _target = (None, None)
|
||||
if noise_scheduler.config.prediction_type == "epsilon":
|
||||
predicted_noise = pred
|
||||
delta_noise = (noise - predicted_noise).detach()
|
||||
delta_noise.mul_(dream_lambda)
|
||||
noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
|
||||
target = target.add(delta_noise)
|
||||
_noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
|
||||
_target = target.add(delta_noise)
|
||||
elif noise_scheduler.config.prediction_type == "v_prediction":
|
||||
raise NotImplementedError("DREAM has not been implemented for v-prediction")
|
||||
else:
|
||||
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
||||
|
||||
return noisy_latents, target
|
||||
return _noisy_latents, _target
|
||||
|
||||
|
||||
def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:
|
||||
|
||||
@@ -122,6 +122,21 @@ class DiTTransformer2DModel(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class HunyuanDiT2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class I2VGenXLUNet(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -212,6 +212,21 @@ class CycleDiffusionPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class HunyuanDiTPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class I2VGenXLPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
0
tests/pipelines/hunyuan_dit/__init__.py
Normal file
0
tests/pipelines/hunyuan_dit/__init__.py
Normal file
266
tests/pipelines/hunyuan_dit/test_hunyuan_dit.py
Normal file
266
tests/pipelines/hunyuan_dit/test_hunyuan_dit.py
Normal file
@@ -0,0 +1,266 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, BertModel, T5EncoderModel
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKL,
|
||||
DDPMScheduler,
|
||||
HunyuanDiT2DModel,
|
||||
HunyuanDiTPipeline,
|
||||
)
|
||||
from diffusers.utils.testing_utils import (
|
||||
enable_full_determinism,
|
||||
numpy_cosine_similarity_distance,
|
||||
require_torch_gpu,
|
||||
slow,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = HunyuanDiTPipeline
|
||||
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
||||
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
||||
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
||||
|
||||
required_optional_params = PipelineTesterMixin.required_optional_params
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = HunyuanDiT2DModel(
|
||||
sample_size=16,
|
||||
num_layers=2,
|
||||
patch_size=2,
|
||||
attention_head_dim=8,
|
||||
num_attention_heads=3,
|
||||
in_channels=4,
|
||||
cross_attention_dim=32,
|
||||
cross_attention_dim_t5=32,
|
||||
pooled_projection_dim=16,
|
||||
hidden_size=24,
|
||||
activation_fn="gelu-approximate",
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL()
|
||||
|
||||
scheduler = DDPMScheduler()
|
||||
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
"transformer": transformer.eval(),
|
||||
"vae": vae.eval(),
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"text_encoder_2": text_encoder_2,
|
||||
"tokenizer_2": tokenizer_2,
|
||||
"safety_checker": None,
|
||||
"feature_extractor": None,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device=device).manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"output_type": "np",
|
||||
"use_resolution_binning": False,
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_inference(self):
|
||||
device = "cpu"
|
||||
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
self.assertEqual(image.shape, (1, 16, 16, 3))
|
||||
expected_slice = np.array(
|
||||
[0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364]
|
||||
)
|
||||
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
||||
self.assertLessEqual(max_diff, 1e-3)
|
||||
|
||||
def test_sequential_cpu_offload_forward_pass(self):
|
||||
# TODO(YiYi) need to fix later
|
||||
pass
|
||||
|
||||
def test_sequential_offload_forward_pass_twice(self):
|
||||
# TODO(YiYi) need to fix later
|
||||
pass
|
||||
|
||||
def test_inference_batch_single_identical(self):
|
||||
self._test_inference_batch_single_identical(
|
||||
expected_max_diff=1e-3,
|
||||
)
|
||||
|
||||
def test_save_load_optional_components(self):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe.to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
prompt = inputs["prompt"]
|
||||
generator = inputs["generator"]
|
||||
num_inference_steps = inputs["num_inference_steps"]
|
||||
output_type = inputs["output_type"]
|
||||
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0)
|
||||
|
||||
(
|
||||
prompt_embeds_2,
|
||||
negative_prompt_embeds_2,
|
||||
prompt_attention_mask_2,
|
||||
negative_prompt_attention_mask_2,
|
||||
) = pipe.encode_prompt(
|
||||
prompt,
|
||||
device=torch_device,
|
||||
dtype=torch.float32,
|
||||
text_encoder_index=1,
|
||||
)
|
||||
|
||||
# inputs with prompt converted to embeddings
|
||||
inputs = {
|
||||
"prompt_embeds": prompt_embeds,
|
||||
"prompt_attention_mask": prompt_attention_mask,
|
||||
"negative_prompt_embeds": negative_prompt_embeds,
|
||||
"negative_prompt_attention_mask": negative_prompt_attention_mask,
|
||||
"prompt_embeds_2": prompt_embeds_2,
|
||||
"prompt_attention_mask_2": prompt_attention_mask_2,
|
||||
"negative_prompt_embeds_2": negative_prompt_embeds_2,
|
||||
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
|
||||
"generator": generator,
|
||||
"num_inference_steps": num_inference_steps,
|
||||
"output_type": output_type,
|
||||
"use_resolution_binning": False,
|
||||
}
|
||||
|
||||
# set all optional components to None
|
||||
for optional_component in pipe._optional_components:
|
||||
setattr(pipe, optional_component, None)
|
||||
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir)
|
||||
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
||||
pipe_loaded.to(torch_device)
|
||||
pipe_loaded.set_progress_bar_config(disable=None)
|
||||
|
||||
for optional_component in pipe._optional_components:
|
||||
self.assertTrue(
|
||||
getattr(pipe_loaded, optional_component) is None,
|
||||
f"`{optional_component}` did not stay set to None after loading.",
|
||||
)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
generator = inputs["generator"]
|
||||
num_inference_steps = inputs["num_inference_steps"]
|
||||
output_type = inputs["output_type"]
|
||||
|
||||
# inputs with prompt converted to embeddings
|
||||
inputs = {
|
||||
"prompt_embeds": prompt_embeds,
|
||||
"prompt_attention_mask": prompt_attention_mask,
|
||||
"negative_prompt_embeds": negative_prompt_embeds,
|
||||
"negative_prompt_attention_mask": negative_prompt_attention_mask,
|
||||
"prompt_embeds_2": prompt_embeds_2,
|
||||
"prompt_attention_mask_2": prompt_attention_mask_2,
|
||||
"negative_prompt_embeds_2": negative_prompt_embeds_2,
|
||||
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
|
||||
"generator": generator,
|
||||
"num_inference_steps": num_inference_steps,
|
||||
"output_type": output_type,
|
||||
"use_resolution_binning": False,
|
||||
}
|
||||
|
||||
output_loaded = pipe_loaded(**inputs)[0]
|
||||
|
||||
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
||||
self.assertLess(max_diff, 1e-4)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase):
|
||||
prompt = "一个宇航员在骑马"
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def test_hunyuan_dit_1024(self):
|
||||
generator = torch.Generator("cpu").manual_seed(0)
|
||||
|
||||
pipe = HunyuanDiTPipeline.from_pretrained(
|
||||
"XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16
|
||||
)
|
||||
pipe.enable_model_cpu_offload()
|
||||
prompt = self.prompt
|
||||
|
||||
image = pipe(
|
||||
prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np"
|
||||
).images
|
||||
|
||||
image_slice = image[0, -3:, -3:, -1]
|
||||
expected_slice = np.array(
|
||||
[0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125]
|
||||
)
|
||||
|
||||
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
|
||||
assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}"
|
||||
Reference in New Issue
Block a user