Compare commits

...

18 Commits

Author SHA1 Message Date
Guillaume LEGENDRE
79bc5b2f60 Update tailscale action to main 2024-06-05 09:20:30 +02:00
Sayak Paul
48207d6689 [Scheduler] fix: EDM schedulers when using the exp sigma schedule. (#8385)
* fix: euledm when using the exp sigma schedule.

* fix-copies

* remove print.

* reduce friction

* yiyi's suggestioms
2024-06-04 19:31:43 -10:00
Sayak Paul
2f6f426f66 [Hunyuan] allow Hunyuan DiT to run under 6GB for GPU VRAM (#8399)
* allow hunyuan dit to run under 6GB for GPU VRAM

* add section in the docs/
2024-06-05 08:24:19 +04:00
Sayak Paul
a0542c1917 [LoRA] Remove legacy LoRA code and related adjustments (#8316)
* remove legacy code from load_attn_procs.

* finish first draft

* fix more.

* fix more

* add test

* add serialization support.

* fix-copies

* require peft backend for lora tests

* style

* fix test

* fix loading.

* empty

* address benjamin's feedback.
2024-06-05 08:15:30 +04:00
Sayak Paul
a8ad6664c2 [Hunyuan] feat: support chunked ff. (#8397)
feat: support chunked ff.
2024-06-05 08:12:18 +04:00
Sayak Paul
14f7b545bd [Hunyuan DiT] feat: enable fusing qkv projections when doing attention (#8396)
* feat: introduce qkv fusion for Hunyuan

* fix copies
2024-06-05 07:58:03 +04:00
leaps
07cd20041c Update code example in pipeline_stable_unclip_img2img.py EXAMPLE_DOC_STRING (#8401)
Update code example in pipeline_stable_unclip_img2img.py

Previous code caused an error when run
2024-06-04 17:22:46 -10:00
Sayak Paul
6ddbf6222c [Transformer2DModel] Handle norm_type safely while remapping (#8370)
* handle norm_type of transformer2d_model safely.

* log an info when old model class is being returned.

* Apply suggestions from code review

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* remove extra stuff

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-06-04 13:39:19 +04:00
Sayak Paul
3ff39e8e86 [HunyuanDiT] minor docs changes in hunyuandit (#8395)
minor docs changes in hunyuandit
2024-06-04 12:18:53 +04:00
townwish4git
6be43bd855 Fix AsymmetricAutoencoderKL forward (#8378) 2024-06-03 17:25:11 -10:00
Marçal Comajoan Cara
dc89434bdc Update transformer2d.md title (#8375)
* Update transformer2d.md title

For the other classes (e.g., UNet2DModel) the title of the documentation coincides with the name of the class, but that was not the case for Transformer2DModel.

* Update model docs titles for consistency with class names
2024-06-03 17:01:21 -07:00
Dhruv Nair
4d633bfe9a Update slow test actions (#8381)
* update

* update

* update

* update
2024-06-03 18:32:34 +05:30
XCL
174cf868ea Tencent Hunyuan Team - Updated Doc for HunyuanDiT (#8383)
* add hunyuandit doc

* update hunyuandit doc

* update hunyuandit 2d model

* update toctree.yml for hunyuandit
2024-06-03 14:02:46 +04:00
XCL
413604405f Tencent Hunyuan Team: add HunyuanDiT related updates (#8240)
* Hunyuan Team: add HunyuanDiT related updates


---------

Co-authored-by: XCLiu <liuxc1996@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-06-01 12:41:21 -10:00
39th president of the United States, probably
bc108e1533 Fix DREAM training (#8302)
Co-authored-by: Jimmy <39@🇺🇸.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-06-01 11:27:57 +04:00
Anton Obukhov
86555c9f59 Fix marigold documentation (#8372)
* rename prs-eth/marigold-lcm-v1-0 into prs-eth/marigold-depth-lcm-v1-0

* update image paths in https://huggingface.co/datasets/huggingface/documentation-images to use main branch

* fix relative paths to other diffusers pages

* Update docs/source/en/using-diffusers/marigold_usage.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-05-31 12:10:05 -10:00
Sayak Paul
983dec3bf7 [Core] Introduce class variants for Transformer2DModel (#7647)
* init for patches

* finish patched model.

* continuous transformer

* vectorized transformer2d.

* style.

* inits.

* fix-copies.

* introduce DiTTransformer2DModel.

* fixes

* use REMAPPING as suggested by @DN6

* better logging.

* add pixart transformer model.

* inits.

* caption_channels.

* attention masking.

* fix use_additional_conditions.

* remove print.

* debug

* flatten

* fix: assertion for sigma

* handle remapping for modeling_utils

* add tests for dit transformer2d

* quality

* placeholder for pixart tests

* pixart tests

* add _no_split_modules

* add docs.

* check

* check

* check

* check

* fix tests

* fix tests

* move Transformer output to modeling_output

* move errors better and bring back use_additional_conditions attribute.

* add unnecessary things from DiT.

* clean up pixart

* fix remapping

* fix device_map things in pixart2d.

* replace Transformer2DModel with appropriate classes in dit, pixart tests

* empty

* legacy mixin classes./

* use a remapping dict for fetching class names.

* change to specifc model types in the pipeline implementations.

* move _fetch_remapped_cls_from_config to modeling_loading_utils.py

* fix dependency problems.

* add deprecation note.
2024-05-31 13:40:27 +05:30
Dhruv Nair
f9fa8a868c Change checkpoint key used to identify CLIP models in single file checkpoints (#8319)
update
2024-05-31 11:20:31 +05:30
57 changed files with 3770 additions and 571 deletions

View File

@@ -59,7 +59,7 @@ jobs:
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/ --gpus 0
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3

View File

@@ -111,3 +111,21 @@ jobs:
-s -v \
--make-reports=tests_${{ matrix.config.report }} \
tests/lora/
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
-s -v \
--make-reports=tests_models_lora_${{ matrix.config.report }} \
tests/models/ -k "lora"
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.report }}_failures_short.txt
cat reports/tests_models_lora_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: pr_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -62,7 +62,7 @@ jobs:
runs-on: [single-gpu, nvidia-gpu, t4, ci]
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -71,12 +71,6 @@ jobs:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Tailscale
uses: huggingface/tailscale-action@v1
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
@@ -95,18 +89,11 @@ jobs:
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
- name: Tailscale Wait
if: ${{ failure() || runner.debug == '1' }}
uses: huggingface/tailscale-action@v1
with:
waitForSSH: true
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
@@ -202,12 +189,17 @@ jobs:
-s -v -k "not Flax and not Onnx and not PEFTLoRALoading" \
--make-reports=tests_peft_cuda \
tests/lora/
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "lora and not Flax and not Onnx and not PEFTLoRALoading" \
--make-reports=tests_peft_cuda_models_lora \
tests/models/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_peft_cuda_stats.txt
cat reports/tests_peft_cuda_failures_short.txt
cat reports/tests_peft_cuda_models_lora_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}

View File

@@ -25,7 +25,7 @@ jobs:
runs-on: [single-gpu, nvidia-gpu, "${{ github.event.inputs.runner_type }}", ci]
container:
image: ${{ github.event.inputs.docker_image }}
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
steps:
- name: Checkout diffusers
@@ -38,7 +38,7 @@ jobs:
nvidia-smi
- name: Tailscale # In order to be able to SSH when a test fails
uses: huggingface/tailscale-action@v1
uses: huggingface/tailscale-action@main
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}

View File

@@ -237,13 +237,19 @@
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/transformer2d
title: Transformer2D
title: Transformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/transformer_temporal
title: Transformer Temporal
title: TransformerTemporalModel
- local: api/models/prior_transformer
title: Prior Transformer
title: PriorTransformer
- local: api/models/controlnet
title: ControlNet
title: ControlNetModel
title: Models
isExpanded: false
- sections:
@@ -285,6 +291,8 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/i2vgenxl
title: I2VGen-XL
- local: api/pipelines/pix2pix
@@ -453,4 +461,4 @@
title: Video Processor
title: Internal classes
isExpanded: false
title: API
title: API

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# ControlNet
# ControlNetModel
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DiTTransformer2DModel
A Transformer model for image-like data from [DiT](https://huggingface.co/papers/2212.09748).
## DiTTransformer2DModel
[[autodoc]] DiTTransformer2DModel

View File

@@ -0,0 +1,20 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# HunyuanDiT2DModel
A Diffusion Transformer model for 2D data from [Hunyuan-DiT](https://github.com/Tencent/HunyuanDiT).
## HunyuanDiT2DModel
[[autodoc]] HunyuanDiT2DModel

View File

@@ -0,0 +1,19 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# PixArtTransformer2DModel
A Transformer model for image-like data from [PixArt-Alpha](https://huggingface.co/papers/2310.00426) and [PixArt-Sigma](https://huggingface.co/papers/2403.04692).
## PixArtTransformer2DModel
[[autodoc]] PixArtTransformer2DModel

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Prior Transformer
# PriorTransformer
The Prior Transformer was originally introduced in [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://huggingface.co/papers/2204.06125) by Ramesh et al. It is used to predict CLIP image embeddings from CLIP text embeddings; image embeddings are predicted through a denoising diffusion process.

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Transformer2D
# Transformer2DModel
A Transformer model for image-like data from [CompVis](https://huggingface.co/CompVis) that is based on the [Vision Transformer](https://huggingface.co/papers/2010.11929) introduced by Dosovitskiy et al. The [`Transformer2DModel`] accepts discrete (classes of vector embeddings) or continuous (actual embeddings) inputs.

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Transformer Temporal
# TransformerTemporalModel
A Transformer model for video-like data.

View File

@@ -0,0 +1,41 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Hunyuan-DiT
![chinese elements understanding](https://github.com/gnobitab/diffusers-hunyuan/assets/1157982/39b99036-c3cb-4f16-bb1a-40ec25eda573)
[Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding](https://arxiv.org/abs/2405.08748) from Tencent Hunyuan.
The abstract from the paper is:
*We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.*
You can find the original codebase at [Tencent/HunyuanDiT](https://github.com/Tencent/HunyuanDiT) and all the available checkpoints at [Tencent-Hunyuan](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).
**Highlights**: HunyuanDiT supports Chinese/English-to-image, multi-resolution generation.
HunyuanDiT has the following components:
* It uses a diffusion transformer as the backbone
* It combines two text encoders, a bilingual CLIP and a multilingual T5 encoder
## Memory optimization
By loading the T5 text encoder in 8 bits, you can run the pipeline in just under 6 GBs of GPU VRAM. Refer to [this script](https://gist.github.com/sayakpaul/3154605f6af05b98a41081aaba5ca43e) for details.
## HunyuanDiTPipeline
[[autodoc]] HunyuanDiTPipeline
- all
- __call__

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# Marigold Pipelines for Computer Vision Tasks
[Marigold](marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
[Marigold](../api/pipelines/marigold) is a novel diffusion-based dense prediction approach, and a set of pipelines for various computer vision tasks, such as monocular depth estimation.
This guide will show you how to use Marigold to obtain fast and high-quality predictions for images and videos.
@@ -31,7 +31,7 @@ The original code can also be used to train new checkpoints.
| Checkpoint | Modality | Comment |
|-----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [prs-eth/marigold-v1-0](https://huggingface.co/prs-eth/marigold-v1-0) | Depth | The first Marigold Depth checkpoint, which predicts *affine-invariant depth* maps. The performance of this checkpoint in benchmarks was studied in the original [paper](https://huggingface.co/papers/2312.02145). Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. Affine-invariant depth prediction has a range of values in each pixel between 0 (near plane) and 1 (far plane); both planes are chosen by the model as part of the inference process. See the `MarigoldImageProcessor` reference for visualization utilities. |
| [prs-eth/marigold-lcm-v1-0](https://huggingface.co/prs-eth/marigold-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
| [prs-eth/marigold-depth-lcm-v1-0](https://huggingface.co/prs-eth/marigold-depth-lcm-v1-0) | Depth | The fast Marigold Depth checkpoint, fine-tuned from `prs-eth/marigold-v1-0`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. |
| [prs-eth/marigold-normals-v0-1](https://huggingface.co/prs-eth/marigold-normals-v0-1) | Normals | A preview checkpoint for the Marigold Normals pipeline. Designed to be used with the `DDIMScheduler` at inference, it requires at least 10 steps to get reliable predictions. The surface normals predictions are unit-length 3D vectors with values in the range from -1 to 1. *This checkpoint will be phased out after the release of `v1-0` version.* |
| [prs-eth/marigold-normals-lcm-v0-1](https://huggingface.co/prs-eth/marigold-normals-lcm-v0-1) | Normals | The fast Marigold Normals checkpoint, fine-tuned from `prs-eth/marigold-normals-v0-1`. Designed to be used with the `LCMScheduler` at inference, it requires as little as 1 step to get reliable predictions. The prediction reliability saturates at 4 steps and declines after that. *This checkpoint will be phased out after the release of `v1-0` version.* |
The examples below are mostly given for depth prediction, but they can be universally applied with other supported modalities.
@@ -76,13 +76,13 @@ Below are the raw and the visualized predictions; as can be seen, dark areas (mu
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth_16bit.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth_16bit.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted depth (16-bit PNG)
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted depth visualization (Spectral)
</figcaption>
@@ -115,7 +115,7 @@ Below is the visualized prediction:
<div class="flex gap-4" style="justify-content: center; width: 100%;">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_normals.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Predicted surface normals visualization
</figcaption>
@@ -133,7 +133,7 @@ The above quick start snippets are already optimized for speed: they load the LC
The `pipe(image)` call completes in 280ms on RTX 3090 GPU.
Internally, the input image is encoded with the Stable Diffusion VAE encoder, then the U-Net performs one denoising step, and finally, the prediction latent is decoded with the VAE decoder into pixel space.
In this case, two out of three module calls are dedicated to converting between pixel and latent space of LDM.
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](autoencoder_tiny):
Because Marigold's latent space is compatible with the base Stable Diffusion, it is possible to speed up the pipeline call by more than 3x (85ms on RTX 3090) by using a [lightweight replacement of the SD VAE](../api/models/autoencoder_tiny):
```diff
import diffusers
@@ -151,7 +151,7 @@ Because Marigold's latent space is compatible with the base Stable Diffusion, it
depth = pipe(image)
```
As suggested in [Optimizations](torch2.0), adding `torch.compile` may squeeze extra performance depending on the target hardware:
As suggested in [Optimizations](../optimization/torch2.0#torch.compile), adding `torch.compile` may squeeze extra performance depending on the target hardware:
```diff
import diffusers
@@ -173,13 +173,13 @@ With the above speed optimizations, Marigold delivers predictions with more deta
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_depth.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Marigold LCM fp16 with Tiny AutoEncoder
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/bfe7cb56ca1cc0811b328212472350879dfa7f8b/marigold/einstein_depthanything_large.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/einstein_depthanything_large.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth Anything Large
</figcaption>
@@ -224,13 +224,13 @@ vis[0].save("einstein_normals.png")
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_lcm_normals.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_lcm_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals, no ensembling
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_normals.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals, with ensembling
</figcaption>
@@ -303,13 +303,13 @@ uncertainty[0].save("einstein_depth_uncertainty.png")
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_depth_uncertainty.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_depth_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth uncertainty
</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/6838ae9b9148cfe22ce9bb4c0ab0907c757c4010/marigold/marigold_einstein_normals_uncertainty.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_einstein_normals_uncertainty.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Surface normals uncertainty
</figcaption>
@@ -327,11 +327,11 @@ This becomes an obvious drawback compared to traditional end-to-end dense regres
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama.gif"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Input video</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama_depth_independent.gif"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
</div>
</div>
@@ -351,7 +351,7 @@ path_in = "obama.mp4"
path_out = "obama_depth.gif"
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
"prs-eth/marigold-depth-lcm-v1-0", variant="fp16", torch_dtype=torch.float16
).to(device)
pipe.vae = diffusers.AutoencoderTiny.from_pretrained(
"madebyollin/taesd", torch_dtype=torch.float16
@@ -387,11 +387,11 @@ The result is much more stable now:
<div class="flex gap-4">
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama_depth_independent.gif"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_independent.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth applied to input video frames independently</figcaption>
</div>
<div style="flex: 1 1 50%; max-width: 50%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/25024b5443a6c1357492751fd09355bd3f967845/marigold/marigold_obama_depth_consistent.gif"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/marigold_obama_depth_consistent.gif"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">Marigold Depth with forced latents initialization</figcaption>
</div>
</div>
@@ -414,7 +414,7 @@ image = diffusers.utils.load_image(
)
pipe = diffusers.MarigoldDepthPipeline.from_pretrained(
"prs-eth/marigold-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
"prs-eth/marigold-depth-lcm-v1-0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
depth_image = pipe(image, generator=generator).prediction
@@ -450,13 +450,13 @@ controlnet_out[0].save("motorcycle_controlnet_out.png")
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8e61e31f9feb7756c0404ceff26f3f0e5d3fe610/marigold/motorcycle_controlnet_depth.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_depth.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
Depth in the format compatible with ControlNet
</figcaption>
</div>
<div style="flex: 1 1 33%; max-width: 33%;">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/8e61e31f9feb7756c0404ceff26f3f0e5d3fe610/marigold/motorcycle_controlnet_out.png"/>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/marigold/motorcycle_controlnet_out.png"/>
<figcaption class="mt-1 text-center text-sm text-gray-500">
ControlNet generation, conditioned on depth and prompt: "high quality photo of a sports bike, city"
</figcaption>

View File

@@ -82,11 +82,14 @@ else:
"ConsistencyDecoderVAE",
"ControlNetModel",
"ControlNetXSAdapter",
"DiTTransformer2DModel",
"HunyuanDiT2DModel",
"I2VGenXLUNet",
"Kandinsky3UNet",
"ModelMixin",
"MotionAdapter",
"MultiAdapter",
"PixArtTransformer2DModel",
"PriorTransformer",
"StableCascadeUNet",
"T2IAdapter",
@@ -227,6 +230,7 @@ else:
"BlipDiffusionPipeline",
"CLIPImageProjection",
"CycleDiffusionPipeline",
"HunyuanDiTPipeline",
"I2VGenXLPipeline",
"IFImg2ImgPipeline",
"IFImg2ImgSuperResolutionPipeline",
@@ -484,11 +488,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ConsistencyDecoderVAE,
ControlNetModel,
ControlNetXSAdapter,
DiTTransformer2DModel,
HunyuanDiT2DModel,
I2VGenXLUNet,
Kandinsky3UNet,
ModelMixin,
MotionAdapter,
MultiAdapter,
PixArtTransformer2DModel,
PriorTransformer,
T2IAdapter,
T5FilmDecoder,
@@ -607,6 +614,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AudioLDMPipeline,
CLIPImageProjection,
CycleDiffusionPipeline,
HunyuanDiTPipeline,
I2VGenXLPipeline,
IFImg2ImgPipeline,
IFImg2ImgSuperResolutionPipeline,

View File

@@ -706,3 +706,20 @@ def flax_register_to_config(cls):
cls.__init__ = init
return cls
class LegacyConfigMixin(ConfigMixin):
r"""
A subclass of `ConfigMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
pipeline-specific classes (like `DiTTransformer2DModel`).
"""
@classmethod
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
# To prevent depedency import problem.
from .models.model_loading_utils import _fetch_remapped_cls_from_config
# resolve remapping
remapped_class = _fetch_remapped_cls_from_config(config, cls)
return remapped_class.from_config(config, return_unused_kwargs, **kwargs)

View File

@@ -22,17 +22,14 @@ import torch
from huggingface_hub import model_info
from huggingface_hub.constants import HF_HUB_OFFLINE
from huggingface_hub.utils import validate_hf_hub_args
from packaging import version
from torch import nn
from .. import __version__
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
from ..models.modeling_utils import load_state_dict
from ..utils import (
USE_PEFT_BACKEND,
_get_model_file,
convert_state_dict_to_diffusers,
convert_state_dict_to_peft,
convert_unet_state_dict_to_peft,
delete_adapter_layers,
get_adapter_name,
get_peft_kwargs,
@@ -119,13 +116,10 @@ class LoraLoaderMixin:
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
low_cpu_mem_usage=low_cpu_mem_usage,
adapter_name=adapter_name,
_pipeline=self,
)
@@ -136,7 +130,6 @@ class LoraLoaderMixin:
if not hasattr(self, "text_encoder")
else self.text_encoder,
lora_scale=self.lora_scale,
low_cpu_mem_usage=low_cpu_mem_usage,
adapter_name=adapter_name,
_pipeline=self,
)
@@ -193,16 +186,8 @@ class LoraLoaderMixin:
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
"""
# Load the main state dict first which has the LoRA layers for either of
# UNet and text encoder or both.
@@ -383,9 +368,7 @@ class LoraLoaderMixin:
return (is_model_cpu_offload, is_sequential_cpu_offload)
@classmethod
def load_lora_into_unet(
cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
):
def load_lora_into_unet(cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None):
"""
This will load the LoRA layers specified in `state_dict` into `unet`.
@@ -395,14 +378,11 @@ class LoraLoaderMixin:
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
See `LoRALinearLayer` for more details.
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
@@ -410,94 +390,18 @@ class LoraLoaderMixin:
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
# their prefixes.
keys = list(state_dict.keys())
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys)
if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
if any(key.startswith(cls.unet_name) for key in keys) and not only_text_encoder:
# Load the layers corresponding to UNet.
logger.info(f"Loading {cls.unet_name}.")
unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
if network_alphas is not None:
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
network_alphas = {
k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
else:
# Otherwise, we're dealing with the old format. This means the `state_dict` should only
# contain the module names of the `unet` as its keys WITHOUT any prefix.
if not USE_PEFT_BACKEND:
warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
logger.warning(warn_message)
if len(state_dict.keys()) > 0:
if adapter_name in getattr(unet, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
)
state_dict = convert_unet_state_dict_to_peft(state_dict)
if network_alphas is not None:
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
# `convert_unet_state_dict_to_peft` method.
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"]:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<", "0.9.0"):
lora_config_kwargs.pop("use_dora")
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(unet)
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
inject_adapter_in_model(lora_config, unet, adapter_name=adapter_name)
incompatible_keys = set_peft_model_state_dict(unet, state_dict, adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
unet.load_attn_procs(
state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
)
unet.load_attn_procs(
state_dict, network_alphas=network_alphas, adapter_name=adapter_name, _pipeline=_pipeline
)
@classmethod
def load_lora_into_text_encoder(
@@ -507,7 +411,6 @@ class LoraLoaderMixin:
text_encoder,
prefix=None,
lora_scale=1.0,
low_cpu_mem_usage=None,
adapter_name=None,
_pipeline=None,
):
@@ -527,11 +430,6 @@ class LoraLoaderMixin:
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
@@ -541,8 +439,6 @@ class LoraLoaderMixin:
from peft import LoraConfig
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
# their prefixes.
@@ -625,9 +521,7 @@ class LoraLoaderMixin:
# Unsafe code />
@classmethod
def load_lora_into_transformer(
cls, state_dict, network_alphas, transformer, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
):
def load_lora_into_transformer(cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
@@ -640,19 +534,12 @@ class LoraLoaderMixin:
See `LoRALinearLayer` for more details.
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
"""
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
keys = list(state_dict.keys())
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
@@ -846,22 +733,11 @@ class LoraLoaderMixin:
>>> ...
```
"""
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
if not USE_PEFT_BACKEND:
if version.parse(__version__) > version.parse("0.23"):
logger.warning(
"You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights,"
"you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT."
)
raise ValueError("PEFT backend is required for this method.")
for _, module in unet.named_modules():
if hasattr(module, "set_lora_layer"):
module.set_lora_layer(None)
else:
recurse_remove_peft_layers(unet)
if hasattr(unet, "peft_config"):
del unet.peft_config
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
unet.unload_lora()
# Safe to call the following regardless of LoRA.
self._remove_text_encoder_monkey_patch()

View File

@@ -63,7 +63,7 @@ CHECKPOINT_KEY_NAMES = {
"controlnet": "control_model.time_embed.0.weight",
"playground-v2-5": "edm_mean",
"inpainting": "model.diffusion_model.input_blocks.0.0.weight",
"clip": "cond_stage_model.transformer.text_model.embeddings.position_ids",
"clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
"clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight",
"open_clip": "cond_stage_model.model.token_embedding.weight",
"open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding",

View File

@@ -33,34 +33,32 @@ from ..models.embeddings import (
IPAdapterPlusImageProjection,
MultiIPAdapterImageProjection,
)
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta, load_state_dict
from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict
from ..utils import (
USE_PEFT_BACKEND,
_get_model_file,
convert_unet_state_dict_to_peft,
delete_adapter_layers,
get_adapter_name,
get_peft_kwargs,
is_accelerate_available,
is_peft_version,
is_torch_version,
logging,
set_adapter_layers,
set_weights_and_activate_adapters,
)
from .lora import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME
from .unet_loader_utils import _maybe_expand_lora_scales
from .utils import AttnProcsLayers
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
logger = logging.get_logger(__name__)
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
@@ -79,7 +77,8 @@ class UNet2DConditionLoadersMixin:
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
defined in
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
and be a `torch.nn.Module` class.
and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install
`peft`: `pip install -U peft`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
@@ -110,20 +109,20 @@ class UNet2DConditionLoadersMixin:
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if youre downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
adapter_name (`str`, *optional*, defaults to None):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
Example:
@@ -139,9 +138,6 @@ class UNet2DConditionLoadersMixin:
)
```
"""
from ..models.attention_processor import CustomDiffusionAttnProcessor
from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", None)
@@ -152,15 +148,9 @@ class UNet2DConditionLoadersMixin:
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
network_alphas = kwargs.pop("network_alphas", None)
adapter_name = kwargs.pop("adapter_name", None)
_pipeline = kwargs.pop("_pipeline", None)
is_network_alphas_none = network_alphas is None
network_alphas = kwargs.pop("network_alphas", None)
allow_pickle = False
if use_safetensors is None:
@@ -216,198 +206,196 @@ class UNet2DConditionLoadersMixin:
else:
state_dict = pretrained_model_name_or_path_or_dict
# fill attn processors
lora_layers_list = []
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
is_model_cpu_offload = False
is_sequential_cpu_offload = False
if is_lora:
# correct keys
state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
if network_alphas is not None:
network_alphas_keys = list(network_alphas.keys())
used_network_alphas_keys = set()
lora_grouped_dict = defaultdict(dict)
mapped_network_alphas = {}
all_keys = list(state_dict.keys())
for key in all_keys:
value = state_dict.pop(key)
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
lora_grouped_dict[attn_processor_key][sub_key] = value
# Create another `mapped_network_alphas` dictionary so that we can properly map them.
if network_alphas is not None:
for k in network_alphas_keys:
if k.replace(".alpha", "") in key:
mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
used_network_alphas_keys.add(k)
if not is_network_alphas_none:
if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
raise ValueError(
f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
)
if len(state_dict) > 0:
raise ValueError(
f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
)
for key, value_dict in lora_grouped_dict.items():
attn_processor = self
for sub_key in key.split("."):
attn_processor = getattr(attn_processor, sub_key)
# Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
# or add_{k,v,q,out_proj}_proj_lora layers.
rank = value_dict["lora.down.weight"].shape[0]
if isinstance(attn_processor, LoRACompatibleConv):
in_features = attn_processor.in_channels
out_features = attn_processor.out_channels
kernel_size = attn_processor.kernel_size
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
with ctx():
lora = LoRAConv2dLayer(
in_features=in_features,
out_features=out_features,
rank=rank,
kernel_size=kernel_size,
stride=attn_processor.stride,
padding=attn_processor.padding,
network_alpha=mapped_network_alphas.get(key),
)
elif isinstance(attn_processor, LoRACompatibleLinear):
ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
with ctx():
lora = LoRALinearLayer(
attn_processor.in_features,
attn_processor.out_features,
rank,
mapped_network_alphas.get(key),
)
else:
raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
lora_layers_list.append((attn_processor, lora))
if low_cpu_mem_usage:
device = next(iter(value_dict.values())).device
dtype = next(iter(value_dict.values())).dtype
load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
else:
lora.load_state_dict(value_dict)
elif is_custom_diffusion:
attn_processors = {}
custom_diffusion_grouped_dict = defaultdict(dict)
for key, value in state_dict.items():
if len(value) == 0:
custom_diffusion_grouped_dict[key] = {}
else:
if "to_out" in key:
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
else:
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
for key, value_dict in custom_diffusion_grouped_dict.items():
if len(value_dict) == 0:
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
)
else:
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=True,
train_q_out=train_q_out,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
)
attn_processors[key].load_state_dict(value_dict)
elif USE_PEFT_BACKEND:
# In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
# on the Unet
pass
if is_custom_diffusion:
attn_processors = self._process_custom_diffusion(state_dict=state_dict)
elif is_lora:
is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora(
state_dict=state_dict,
unet_identifier_key=self.unet_name,
network_alphas=network_alphas,
adapter_name=adapter_name,
_pipeline=_pipeline,
)
else:
raise ValueError(
f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training."
)
# <Unsafe code
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
# Now we remove any existing hooks to
# Now we remove any existing hooks to `_pipeline`.
# For LoRA, the UNet is already offloaded at this stage as it is handled inside `_process_lora`.
if is_custom_diffusion and _pipeline is not None:
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline)
# only custom diffusion needs to set attn processors
self.set_attn_processor(attn_processors)
self.to(dtype=self.dtype, device=self.device)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
def _process_custom_diffusion(self, state_dict):
from ..models.attention_processor import CustomDiffusionAttnProcessor
attn_processors = {}
custom_diffusion_grouped_dict = defaultdict(dict)
for key, value in state_dict.items():
if len(value) == 0:
custom_diffusion_grouped_dict[key] = {}
else:
if "to_out" in key:
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
else:
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
for key, value_dict in custom_diffusion_grouped_dict.items():
if len(value_dict) == 0:
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
)
else:
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=True,
train_q_out=train_q_out,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
)
attn_processors[key].load_state_dict(value_dict)
return attn_processors
def _process_lora(self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline):
# This method does the following things:
# 1. Filters the `state_dict` with keys matching `unet_identifier_key` when using the non-legacy
# format. For legacy format no filtering is applied.
# 2. Converts the `state_dict` to the `peft` compatible format.
# 3. Creates a `LoraConfig` and then injects the converted `state_dict` into the UNet per the
# `LoraConfig` specs.
# 4. It also reports if the underlying `_pipeline` has any kind of offloading inside of it.
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
keys = list(state_dict.keys())
unet_keys = [k for k in keys if k.startswith(unet_identifier_key)]
unet_state_dict = {
k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys
}
if network_alphas is not None:
alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)]
network_alphas = {
k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
is_model_cpu_offload = False
is_sequential_cpu_offload = False
state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict
if len(state_dict_to_be_used) > 0:
if adapter_name in getattr(self, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
)
state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used)
if network_alphas is not None:
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
# `convert_unet_state_dict_to_peft` method.
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"]:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<", "0.9.0"):
lora_config_kwargs.pop("use_dora")
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(self)
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name)
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
return is_model_cpu_offload, is_sequential_cpu_offload
@classmethod
# Copied from diffusers.loaders.lora.LoraLoaderMixin._optionally_disable_offloading
def _optionally_disable_offloading(cls, _pipeline):
"""
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
Args:
_pipeline (`DiffusionPipeline`):
The pipeline to disable offloading for.
Returns:
tuple:
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
"""
is_model_cpu_offload = False
is_sequential_cpu_offload = False
# For PEFT backend the Unet is already offloaded at this stage as it is handled inside `load_lora_weights_into_unet`
if not USE_PEFT_BACKEND:
if _pipeline is not None:
for _, component in _pipeline.components.items():
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
if _pipeline is not None and _pipeline.hf_device_map is None:
for _, component in _pipeline.components.items():
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
if not is_model_cpu_offload:
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
if not is_sequential_cpu_offload:
is_sequential_cpu_offload = (
isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
isinstance(component._hf_hook, AlignDevicesHook)
or hasattr(component._hf_hook, "hooks")
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
logger.info(
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
)
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
# only custom diffusion needs to set attn processors
if is_custom_diffusion:
self.set_attn_processor(attn_processors)
# set lora layers
for target_module, lora_layer in lora_layers_list:
target_module.set_lora_layer(lora_layer)
self.to(dtype=self.dtype, device=self.device)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
is_new_lora_format = all(
key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
)
if is_new_lora_format:
# Strip the `"unet"` prefix.
is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
if is_text_encoder_present:
warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
logger.warning(warn_message)
unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
# change processor format to 'pure' LoRACompatibleLinear format
if any("processor" in k.split(".") for k in state_dict.keys()):
def format_to_lora_compatible(key):
if "processor" not in key.split("."):
return key
return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")
state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}
if network_alphas is not None:
network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
return state_dict, network_alphas
return (is_model_cpu_offload, is_sequential_cpu_offload)
def save_attn_procs(
self,
@@ -460,6 +448,23 @@ class UNet2DConditionLoadersMixin:
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
is_custom_diffusion = any(
isinstance(
x,
(CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
)
for (_, x) in self.attn_processors.items()
)
if is_custom_diffusion:
state_dict = self._get_custom_diffusion_state_dict()
else:
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.")
from peft.utils import get_peft_model_state_dict
state_dict = get_peft_model_state_dict(self)
if save_function is None:
if safe_serialization:
@@ -471,36 +476,6 @@ class UNet2DConditionLoadersMixin:
os.makedirs(save_directory, exist_ok=True)
is_custom_diffusion = any(
isinstance(
x,
(CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
)
for (_, x) in self.attn_processors.items()
)
if is_custom_diffusion:
model_to_save = AttnProcsLayers(
{
y: x
for (y, x) in self.attn_processors.items()
if isinstance(
x,
(
CustomDiffusionAttnProcessor,
CustomDiffusionAttnProcessor2_0,
CustomDiffusionXFormersAttnProcessor,
),
)
}
)
state_dict = model_to_save.state_dict()
for name, attn in self.attn_processors.items():
if len(attn.state_dict()) == 0:
state_dict[name] = {}
else:
model_to_save = AttnProcsLayers(self.attn_processors)
state_dict = model_to_save.state_dict()
if weight_name is None:
if safe_serialization:
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
@@ -512,56 +487,84 @@ class UNet2DConditionLoadersMixin:
save_function(state_dict, save_path)
logger.info(f"Model weights saved in {save_path}")
def _get_custom_diffusion_state_dict(self):
from ..models.attention_processor import (
CustomDiffusionAttnProcessor,
CustomDiffusionAttnProcessor2_0,
CustomDiffusionXFormersAttnProcessor,
)
model_to_save = AttnProcsLayers(
{
y: x
for (y, x) in self.attn_processors.items()
if isinstance(
x,
(
CustomDiffusionAttnProcessor,
CustomDiffusionAttnProcessor2_0,
CustomDiffusionXFormersAttnProcessor,
),
)
}
)
state_dict = model_to_save.state_dict()
for name, attn in self.attn_processors.items():
if len(attn.state_dict()) == 0:
state_dict[name] = {}
return state_dict
def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `fuse_lora()`.")
self.lora_scale = lora_scale
self._safe_fusing = safe_fusing
self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names))
def _fuse_lora_apply(self, module, adapter_names=None):
if not USE_PEFT_BACKEND:
if hasattr(module, "_fuse_lora"):
module._fuse_lora(self.lora_scale, self._safe_fusing)
from peft.tuners.tuners_utils import BaseTunerLayer
if adapter_names is not None:
merge_kwargs = {"safe_merge": self._safe_fusing}
if isinstance(module, BaseTunerLayer):
if self.lora_scale != 1.0:
module.scale_layer(self.lora_scale)
# For BC with prevous PEFT versions, we need to check the signature
# of the `merge` method to see if it supports the `adapter_names` argument.
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
if "adapter_names" in supported_merge_kwargs:
merge_kwargs["adapter_names"] = adapter_names
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
raise ValueError(
"The `adapter_names` argument is not supported in your environment. Please switch"
" to PEFT backend to use this argument by installing latest PEFT and transformers."
" `pip install -U peft transformers`"
"The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
" to the latest version of PEFT. `pip install -U peft`"
)
else:
from peft.tuners.tuners_utils import BaseTunerLayer
merge_kwargs = {"safe_merge": self._safe_fusing}
if isinstance(module, BaseTunerLayer):
if self.lora_scale != 1.0:
module.scale_layer(self.lora_scale)
# For BC with prevous PEFT versions, we need to check the signature
# of the `merge` method to see if it supports the `adapter_names` argument.
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
if "adapter_names" in supported_merge_kwargs:
merge_kwargs["adapter_names"] = adapter_names
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
raise ValueError(
"The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
" to the latest version of PEFT. `pip install -U peft`"
)
module.merge(**merge_kwargs)
module.merge(**merge_kwargs)
def unfuse_lora(self):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `unfuse_lora()`.")
self.apply(self._unfuse_lora_apply)
def _unfuse_lora_apply(self, module):
if not USE_PEFT_BACKEND:
if hasattr(module, "_unfuse_lora"):
module._unfuse_lora()
else:
from peft.tuners.tuners_utils import BaseTunerLayer
from peft.tuners.tuners_utils import BaseTunerLayer
if isinstance(module, BaseTunerLayer):
module.unmerge()
if isinstance(module, BaseTunerLayer):
module.unmerge()
def unload_lora(self):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `unload_lora()`.")
from ..utils import recurse_remove_peft_layers
recurse_remove_peft_layers(self)
if hasattr(self, "peft_config"):
del self.peft_config
def set_adapters(
self,

View File

@@ -37,6 +37,9 @@ if is_torch_available():
_import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
_import_structure["embeddings"] = ["ImageProjection"]
_import_structure["modeling_utils"] = ["ModelMixin"]
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
_import_structure["transformers.hunyuan_transformer_2d"] = ["HunyuanDiT2DModel"]
_import_structure["transformers.pixart_transformer_2d"] = ["PixArtTransformer2DModel"]
_import_structure["transformers.prior_transformer"] = ["PriorTransformer"]
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
@@ -74,7 +77,10 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .embeddings import ImageProjection
from .modeling_utils import ModelMixin
from .transformers import (
DiTTransformer2DModel,
DualTransformer2DModel,
HunyuanDiT2DModel,
PixArtTransformer2DModel,
PriorTransformer,
T5FilmDecoder,
Transformer2DModel,

View File

@@ -50,6 +50,18 @@ def get_activation(act_fn: str) -> nn.Module:
raise ValueError(f"Unsupported activation function: {act_fn}")
class FP32SiLU(nn.Module):
r"""
SiLU activation function with input upcasted to torch.float32.
"""
def __init__(self):
super().__init__()
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
return F.silu(inputs.float(), inplace=False).to(inputs.dtype)
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.

View File

@@ -103,6 +103,7 @@ class Attention(nn.Module):
upcast_softmax: bool = False,
cross_attention_norm: Optional[str] = None,
cross_attention_norm_num_groups: int = 32,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
norm_num_groups: Optional[int] = None,
spatial_norm_dim: Optional[int] = None,
@@ -161,6 +162,15 @@ class Attention(nn.Module):
else:
self.spatial_norm = None
if qk_norm is None:
self.norm_q = None
self.norm_k = None
elif qk_norm == "layer_norm":
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
else:
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None or 'layer_norm'")
if cross_attention_norm is None:
self.norm_cross = None
elif cross_attention_norm == "layer_norm":
@@ -1426,6 +1436,104 @@ class AttnProcessor2_0:
return hidden_states
class HunyuanAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
from .embeddings import apply_rotary_emb
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
if not attn.is_cross_attention:
key = apply_rotary_emb(key, image_rotary_emb)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class FusedAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses

View File

@@ -176,7 +176,7 @@ class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin):
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, sample, mask).sample
dec = self.decode(z, generator, sample, mask).sample
if not return_dict:
return (dec,)

View File

@@ -16,10 +16,11 @@ from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import deprecate
from .activations import get_activation
from .activations import FP32SiLU, get_activation
from .attention_processor import Attention
@@ -135,6 +136,7 @@ class PatchEmbed(nn.Module):
flatten=True,
bias=True,
interpolation_scale=1,
pos_embed_type="sincos",
):
super().__init__()
@@ -156,10 +158,18 @@ class PatchEmbed(nn.Module):
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
pos_embed = get_2d_sincos_pos_embed(
embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale
)
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
if pos_embed_type is None:
self.pos_embed = None
elif pos_embed_type == "sincos":
pos_embed = get_2d_sincos_pos_embed(
embed_dim,
int(num_patches**0.5),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
)
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
else:
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
def forward(self, latent):
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
@@ -169,6 +179,8 @@ class PatchEmbed(nn.Module):
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
if self.pos_embed is None:
return latent.to(latent.dtype)
# Interpolate positional embeddings if needed.
# (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
@@ -187,6 +199,113 @@ class PatchEmbed(nn.Module):
return (latent + pos_embed).to(latent.dtype)
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
"""
RoPE for image tokens with 2d structure.
Args:
embed_dim: (`int`):
The embedding dimension size
crops_coords (`Tuple[int]`)
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the positional embedding.
use_real (`bool`):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: positional embdding with shape `( grid_size * grid_size, embed_dim/2)`.
"""
start, stop = crops_coords
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0) # [2, W, H]
grid = grid.reshape([2, 1, *grid.shape[1:]])
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
return pos_embed
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
assert embed_dim % 4 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
emb_w = get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
if use_real:
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
return cos, sin
else:
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
return emb
def get_1d_rotary_pos_embed(dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False):
"""
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
if isinstance(pos, int):
pos = np.arange(pos)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
class TimestepEmbedding(nn.Module):
def __init__(
self,
@@ -507,6 +626,88 @@ class CombinedTimestepLabelEmbeddings(nn.Module):
return conditioning
class HunyuanDiTAttentionPool(nn.Module):
# Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.permute(1, 0, 2) # NLC -> LNC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1],
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False,
)
return x.squeeze(0)
class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim=1024, seq_len=256, cross_attention_dim=2048):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.pooler = HunyuanDiTAttentionPool(
seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
)
# Here we use a default learned embedder layer for future extension.
self.style_embedder = nn.Embedding(1, embedding_dim)
extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
self.extra_embedder = PixArtAlphaTextProjection(
in_features=extra_in_dim,
hidden_size=embedding_dim * 4,
out_features=embedding_dim,
act_fn="silu_fp32",
)
def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256)
# extra condition1: text
pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024)
# extra condition2: image meta size embdding
image_meta_size = get_timestep_embedding(image_meta_size.view(-1), 256, True, 0)
image_meta_size = image_meta_size.to(dtype=hidden_dtype)
image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536)
# extra condition3: style embedding
style_embedding = self.style_embedder(style) # (N, embedding_dim)
# Concatenate all extra vectors
extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D]
return conditioning
class TextTimeEmbedding(nn.Module):
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
super().__init__()
@@ -793,11 +994,18 @@ class PixArtAlphaTextProjection(nn.Module):
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, num_tokens=120):
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
self.act_1 = nn.GELU(approximate="tanh")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu_fp32":
self.act_1 = FP32SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
def forward(self, caption):
hidden_states = self.linear_1(caption)

View File

@@ -14,6 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import os
from collections import OrderedDict
@@ -32,6 +33,13 @@ from ..utils import (
logger = logging.get_logger(__name__)
_CLASS_REMAPPING_DICT = {
"Transformer2DModel": {
"ada_norm_zero": "DiTTransformer2DModel",
"ada_norm_single": "PixArtTransformer2DModel",
}
}
if is_accelerate_available():
from accelerate import infer_auto_device_map
@@ -61,6 +69,26 @@ def _determine_device_map(model: torch.nn.Module, device_map, max_memory, torch_
return device_map
def _fetch_remapped_cls_from_config(config, old_class):
previous_class_name = old_class.__name__
remapped_class_name = _CLASS_REMAPPING_DICT.get(previous_class_name).get(config["norm_type"], None)
# Details:
# https://github.com/huggingface/diffusers/pull/7647#discussion_r1621344818
if remapped_class_name:
# load diffusers library to import compatible and original scheduler
diffusers_library = importlib.import_module(__name__.split(".")[0])
remapped_class = getattr(diffusers_library, remapped_class_name)
logger.info(
f"Changing class object to be of `{remapped_class_name}` type from `{previous_class_name}` type."
f"This is because `{previous_class_name}` is scheduled to be deprecated in a future version. Note that this"
" DOESN'T affect the final results."
)
return remapped_class
else:
return old_class
def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
"""
Reads a checkpoint file, returning properly formatted errors if they arise.

View File

@@ -15,3 +15,17 @@ class AutoencoderKLOutput(BaseOutput):
"""
latent_dist: "DiagonalGaussianDistribution" # noqa: F821
@dataclass
class Transformer2DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: "torch.Tensor" # noqa: F821

View File

@@ -42,7 +42,11 @@ from ..utils import (
is_torch_version,
logging,
)
from ..utils.hub_utils import PushToHubMixin, load_or_create_model_card, populate_model_card
from ..utils.hub_utils import (
PushToHubMixin,
load_or_create_model_card,
populate_model_card,
)
from .model_loading_utils import (
_determine_device_map,
_load_state_dict_into_model,
@@ -1039,3 +1043,55 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
del module.key
del module.value
del module.proj_attn
class LegacyModelMixin(ModelMixin):
r"""
A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
pipeline-specific classes (like `DiTTransformer2DModel`).
"""
@classmethod
@validate_hf_hub_args
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
# To prevent depedency import problem.
from .model_loading_utils import _fetch_remapped_cls_from_config
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", None)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
# Load config if we don't provide a configuration
config_path = pretrained_model_name_or_path
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "pytorch",
}
# load config
config, _, _ = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
return_commit_hash=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
**kwargs,
)
# resolve remapping
remapped_class = _fetch_remapped_cls_from_config(config, cls)
return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs)

View File

@@ -176,7 +176,8 @@ class AdaLayerNormContinuous(nn.Module):
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x

View File

@@ -2,7 +2,10 @@ from ...utils import is_torch_available
if is_torch_available():
from .dit_transformer_2d import DiTTransformer2DModel
from .dual_transformer_2d import DualTransformer2DModel
from .hunyuan_transformer_2d import HunyuanDiT2DModel
from .pixart_transformer_2d import PixArtTransformer2DModel
from .prior_transformer import PriorTransformer
from .t5_film_transformer import T5FilmDecoder
from .transformer_2d import Transformer2DModel

View File

@@ -0,0 +1,240 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import is_torch_version, logging
from ..attention import BasicTransformerBlock
from ..embeddings import PatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class DiTTransformer2DModel(ModelMixin, ConfigMixin):
r"""
A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748).
Parameters:
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
in_channels (int, defaults to 4): The number of channels in the input.
out_channels (int, optional):
The number of channels in the output. Specify this parameter if the output channel number differs from the
input.
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
norm_num_groups (int, optional, defaults to 32):
Number of groups for group normalization within Transformer blocks.
attention_bias (bool, optional, defaults to True):
Configure if the Transformer blocks' attention should contain a bias parameter.
sample_size (int, defaults to 32):
The width of the latent images. This parameter is fixed during training.
patch_size (int, defaults to 2):
Size of the patches the model processes, relevant for architectures working on non-sequential data.
activation_fn (str, optional, defaults to "gelu-approximate"):
Activation function to use in feed-forward networks within Transformer blocks.
num_embeds_ada_norm (int, optional, defaults to 1000):
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
inference.
upcast_attention (bool, optional, defaults to False):
If true, upcasts the attention mechanism dimensions for potentially improved performance.
norm_type (str, optional, defaults to "ada_norm_zero"):
Specifies the type of normalization used, can be 'ada_norm_zero'.
norm_elementwise_affine (bool, optional, defaults to False):
If true, enables element-wise affine parameters in the normalization layers.
norm_eps (float, optional, defaults to 1e-5):
A small constant added to the denominator in normalization layers to prevent division by zero.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 72,
in_channels: int = 4,
out_channels: Optional[int] = None,
num_layers: int = 28,
dropout: float = 0.0,
norm_num_groups: int = 32,
attention_bias: bool = True,
sample_size: int = 32,
patch_size: int = 2,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: Optional[int] = 1000,
upcast_attention: bool = False,
norm_type: str = "ada_norm_zero",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-5,
):
super().__init__()
# Validate inputs.
if norm_type != "ada_norm_zero":
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# Set some common variables used across the board.
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
self.gradient_checkpointing = False
# 2. Initialize the position embedding and transformer blocks.
self.height = self.config.sample_size
self.width = self.config.sample_size
self.patch_size = self.config.patch_size
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
)
for _ in range(self.config.num_layers)
]
)
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
self.proj_out_2 = nn.Linear(
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
timestep: Optional[torch.LongTensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict: bool = True,
):
"""
The [`DiTTransformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 1. Input
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
hidden_states = self.pos_embed(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
None,
None,
timestep,
cross_attention_kwargs,
class_labels,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
)
# 3. Output
conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
# unpatchify
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -0,0 +1,574 @@
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import Attention, AttentionProcessor, HunyuanAttnProcessor2_0
from ..embeddings import (
HunyuanCombinedTimestepTextSizeStyleEmbedding,
PatchEmbed,
PixArtAlphaTextProjection,
)
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormContinuous
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class FP32LayerNorm(nn.LayerNorm):
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
origin_dtype = inputs.dtype
return F.layer_norm(
inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps
).to(origin_dtype)
class AdaLayerNormShift(nn.Module):
r"""
Norm layer modified to incorporate timestep embeddings.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
num_embeddings (`int`): The size of the embeddings dictionary.
"""
def __init__(self, embedding_dim: int, elementwise_affine=True, eps=1e-6):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim)
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
shift = self.linear(self.silu(emb.to(torch.float32)).to(emb.dtype))
x = self.norm(x) + shift.unsqueeze(dim=1)
return x
@maybe_allow_in_graph
class HunyuanDiTBlock(nn.Module):
r"""
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and
QKNorm
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of headsto use for multi-head attention.
cross_attention_dim (`int`,*optional*):
The size of the encoder_hidden_states vector for cross attention.
dropout(`float`, *optional*, defaults to 0.0):
The dropout probability to use.
activation_fn (`str`,*optional*, defaults to `"geglu"`):
Activation function to be used in feed-forward. .
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, *optional*, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*):
The size of the hidden layer in the feed-forward block. Defaults to `None`.
ff_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the feed-forward block.
skip (`bool`, *optional*, defaults to `False`):
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks.
qk_norm (`bool`, *optional*, defaults to `True`):
Whether to use normalization in QK calculation. Defaults to `True`.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
cross_attention_dim: int = 1024,
dropout=0.0,
activation_fn: str = "geglu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-6,
final_dropout: bool = False,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
skip: bool = False,
qk_norm: bool = True,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# NOTE: when new version comes, check norm2 and norm 3
# 1. Self-Attn
self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
# 2. Cross-Attn
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=True,
processor=HunyuanAttnProcessor2_0(),
)
# 3. Feed-forward
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.ff = FeedForward(
dim,
dropout=dropout, ### 0.0
activation_fn=activation_fn, ### approx GeLU
final_dropout=final_dropout, ### 0.0
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio)
bias=ff_bias,
)
# 4. Skip Connection
if skip:
self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True)
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb=None,
skip=None,
) -> torch.Tensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat([hidden_states, skip], dim=-1)
cat = self.skip_norm(cat)
hidden_states = self.skip_linear(cat)
# 1. Self-Attention
norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct
attn_output = self.attn1(
norm_hidden_states,
image_rotary_emb=image_rotary_emb,
)
hidden_states = hidden_states + attn_output
# 2. Cross-Attention
hidden_states = hidden_states + self.attn2(
self.norm2(hidden_states),
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict
mlp_inputs = self.norm3(hidden_states)
hidden_states = hidden_states + self.ff(mlp_inputs)
return hidden_states
class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
"""
HunYuanDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88):
The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
patch_size (`int`, *optional*):
The size of the patch to use for the input.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to use in feed-forward.
sample_size (`int`, *optional*):
The width of the latent images. This is fixed during training since it is used to learn a number of
position embeddings.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
cross_attention_dim (`int`, *optional*):
The number of dimension in the clip text embedding.
hidden_size (`int`, *optional*):
The size of hidden layer in the conditioning embedding layers.
num_layers (`int`, *optional*, defaults to 1):
The number of layers of Transformer blocks to use.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of the hidden layer size to the input size.
learn_sigma (`bool`, *optional*, defaults to `True`):
Whether to predict variance.
cross_attention_dim_t5 (`int`, *optional*):
The number dimensions in t5 text embedding.
pooled_projection_dim (`int`, *optional*):
The size of the pooled projection.
text_len (`int`, *optional*):
The length of the clip text embedding.
text_len_t5 (`int`, *optional*):
The length of the T5 text embedding.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "gelu-approximate",
sample_size=32,
hidden_size=1152,
num_layers: int = 28,
mlp_ratio: float = 4.0,
learn_sigma: bool = True,
cross_attention_dim: int = 1024,
norm_type: str = "layer_norm",
cross_attention_dim_t5: int = 2048,
pooled_projection_dim: int = 1024,
text_len: int = 77,
text_len_t5: int = 256,
):
super().__init__()
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.num_heads = num_attention_heads
self.inner_dim = num_attention_heads * attention_head_dim
self.text_embedder = PixArtAlphaTextProjection(
in_features=cross_attention_dim_t5,
hidden_size=cross_attention_dim_t5 * 4,
out_features=cross_attention_dim,
act_fn="silu_fp32",
)
self.text_embedding_padding = nn.Parameter(
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)
)
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
in_channels=in_channels,
embed_dim=hidden_size,
patch_size=patch_size,
pos_embed_type=None,
)
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(
hidden_size,
pooled_projection_dim=pooled_projection_dim,
seq_len=text_len_t5,
cross_attention_dim=cross_attention_dim_t5,
)
# HunyuanDiT Blocks
self.blocks = nn.ModuleList(
[
HunyuanDiTBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
activation_fn=activation_fn,
ff_inner_dim=int(self.inner_dim * mlp_ratio),
cross_attention_dim=cross_attention_dim,
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
skip=layer > num_layers // 2,
)
for layer in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(HunyuanAttnProcessor2_0())
def forward(
self,
hidden_states,
timestep,
encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
image_rotary_emb=None,
return_dict=True,
):
"""
The [`HunyuanDiT2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
The input tensor.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step.
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
text_embedding_mask: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of `BertModel`.
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
text_embedding_mask_t5: torch.Tensor
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
of T5 Text Encoder.
image_meta_size (torch.Tensor):
Conditional embedding indicate the image sizes
style: torch.Tensor:
Conditional embedding indicate the style
image_rotary_emb (`torch.Tensor`):
The image rotary embeddings to apply on query and key tensors during attention calculation.
return_dict: bool
Whether to return a dictionary.
"""
height, width = hidden_states.shape[-2:]
hidden_states = self.pos_embed(hidden_states)
temb = self.time_extra_emb(
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype
) # [B, D]
# text projection
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape
encoder_hidden_states_t5 = self.text_embedder(
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])
)
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1)
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1)
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool()
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding)
skips = []
for layer, block in enumerate(self.blocks):
if layer > self.config.num_layers // 2:
skip = skips.pop()
hidden_states = block(
hidden_states,
temb=temb,
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
skip=skip,
) # (N, L, D)
else:
hidden_states = block(
hidden_states,
temb=temb,
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
) # (N, L, D)
if layer < (self.config.num_layers // 2 - 1):
skips.append(hidden_states)
# final layer
hidden_states = self.norm_out(hidden_states, temb.to(torch.float32))
hidden_states = self.proj_out(hidden_states)
# (N, L, patch_size ** 2 * out_channels)
# unpatchify: (N, out_channels, H, W)
patch_size = self.pos_embed.patch_size
height = height // patch_size
width = width // patch_size
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
def disable_forward_chunking(self):
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, None, 0)

View File

@@ -0,0 +1,336 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import is_torch_version, logging
from ..attention import BasicTransformerBlock
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormSingle
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class PixArtTransformer2DModel(ModelMixin, ConfigMixin):
r"""
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
https://arxiv.org/abs/2403.04692).
Parameters:
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
in_channels (int, defaults to 4): The number of channels in the input.
out_channels (int, optional):
The number of channels in the output. Specify this parameter if the output channel number differs from the
input.
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
norm_num_groups (int, optional, defaults to 32):
Number of groups for group normalization within Transformer blocks.
cross_attention_dim (int, optional):
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
attention_bias (bool, optional, defaults to True):
Configure if the Transformer blocks' attention should contain a bias parameter.
sample_size (int, defaults to 128):
The width of the latent images. This parameter is fixed during training.
patch_size (int, defaults to 2):
Size of the patches the model processes, relevant for architectures working on non-sequential data.
activation_fn (str, optional, defaults to "gelu-approximate"):
Activation function to use in feed-forward networks within Transformer blocks.
num_embeds_ada_norm (int, optional, defaults to 1000):
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
inference.
upcast_attention (bool, optional, defaults to False):
If true, upcasts the attention mechanism dimensions for potentially improved performance.
norm_type (str, optional, defaults to "ada_norm_zero"):
Specifies the type of normalization used, can be 'ada_norm_zero'.
norm_elementwise_affine (bool, optional, defaults to False):
If true, enables element-wise affine parameters in the normalization layers.
norm_eps (float, optional, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
caption_channels (int, optional, defaults to None):
Number of channels to use for projecting the caption embeddings.
use_linear_projection (bool, optional, defaults to False):
Deprecated argument. Will be removed in a future version.
num_vector_embeds (bool, optional, defaults to False):
Deprecated argument. Will be removed in a future version.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 72,
in_channels: int = 4,
out_channels: Optional[int] = 8,
num_layers: int = 28,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = 1152,
attention_bias: bool = True,
sample_size: int = 128,
patch_size: int = 2,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: Optional[int] = 1000,
upcast_attention: bool = False,
norm_type: str = "ada_norm_single",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
interpolation_scale: Optional[int] = None,
use_additional_conditions: Optional[bool] = None,
caption_channels: Optional[int] = None,
attention_type: Optional[str] = "default",
):
super().__init__()
# Validate inputs.
if norm_type != "ada_norm_single":
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# Set some common variables used across the board.
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
if use_additional_conditions is None:
if sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
self.gradient_checkpointing = False
# 2. Initialize the position embedding and transformer blocks.
self.height = self.config.sample_size
self.width = self.config.sample_size
interpolation_scale = (
self.config.interpolation_scale
if self.config.interpolation_scale is not None
else max(self.config.sample_size // 64, 1)
)
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
interpolation_scale=interpolation_scale,
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
cross_attention_dim=self.config.cross_attention_dim,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
attention_type=self.config.attention_type,
)
for _ in range(self.config.num_layers)
]
)
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=self.use_additional_conditions
)
self.caption_projection = None
if self.config.caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(
in_features=self.config.caption_channels, hidden_size=self.inner_dim
)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`PixArtTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep (`torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch_size = hidden_states.shape[0]
height, width = (
hidden_states.shape[-2] // self.config.patch_size,
hidden_states.shape[-1] // self.config.patch_size,
)
hidden_states = self.pos_embed(hidden_states)
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
if self.caption_projection is not None:
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
# 2. Blocks
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
None,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=None,
)
# 3. Output
shift, scale = (
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -11,39 +11,30 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput, deprecate, is_torch_version, logging
from ...configuration_utils import LegacyConfigMixin, register_to_config
from ...utils import deprecate, is_torch_version, logging
from ..attention import BasicTransformerBlock
from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
from ..modeling_utils import ModelMixin
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import LegacyModelMixin
from ..normalization import AdaLayerNormSingle
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class Transformer2DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.Tensor
class Transformer2DModelOutput(Transformer2DModelOutput):
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
class Transformer2DModel(ModelMixin, ConfigMixin):
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
"""
A 2D Transformer model for image-like data.
@@ -116,40 +107,12 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# Set some common variables used across the board.
self.use_linear_projection = use_linear_projection
self.interpolation_scale = interpolation_scale
self.caption_channels = caption_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.gradient_checkpointing = False
if use_additional_conditions is None:
if norm_type == "ada_norm_single" and sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
self.is_input_vectorized = num_vector_embeds is not None
self.is_input_patches = in_channels is not None and patch_size is not None
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
deprecation_message = (
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
)
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
norm_type = "ada_norm"
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
@@ -166,6 +129,35 @@ class Transformer2DModel(ModelMixin, ConfigMixin):
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
)
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
deprecation_message = (
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
)
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
norm_type = "ada_norm"
# Set some common variables used across the board.
self.use_linear_projection = use_linear_projection
self.interpolation_scale = interpolation_scale
self.caption_channels = caption_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.gradient_checkpointing = False
if use_additional_conditions is None:
if norm_type == "ada_norm_single" and sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
# 2. Initialize the right blocks.
# These functions follow a common structure:
# a. Initialize the input blocks. b. Initialize the transformer blocks.

View File

@@ -903,17 +903,6 @@ class UNet2DConditionModel(
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def unload_lora(self):
"""Unloads LoRA weights."""
deprecate(
"unload_lora",
"0.28.0",
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
)
for module in self.modules():
if hasattr(module, "set_lora_layer"):
module.set_lora_layer(None)
def get_time_embed(
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
) -> Optional[torch.Tensor]:

View File

@@ -22,7 +22,7 @@ import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import UNet2DConditionLoadersMixin
from ...utils import BaseOutput, deprecate, logging
from ...utils import BaseOutput, logging
from ..activations import get_activation
from ..attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
@@ -546,18 +546,6 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin)
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unload_lora
def unload_lora(self):
"""Unloads LoRA weights."""
deprecate(
"unload_lora",
"0.28.0",
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
)
for module in self.modules():
if hasattr(module, "set_lora_layer"):
module.set_lora_layer(None)
def forward(
self,
sample: torch.Tensor,

View File

@@ -150,6 +150,7 @@ else:
"IFPipeline",
"IFSuperResolutionPipeline",
]
_import_structure["hunyuandit"] = ["HunyuanDiTPipeline"]
_import_structure["kandinsky"] = [
"KandinskyCombinedPipeline",
"KandinskyImg2ImgCombinedPipeline",
@@ -418,6 +419,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
VersatileDiffusionTextToImagePipeline,
VQDiffusionPipeline,
)
from .hunyuandit import HunyuanDiTPipeline
from .i2vgen_xl import I2VGenXLPipeline
from .kandinsky import (
KandinskyCombinedPipeline,

View File

@@ -22,7 +22,7 @@ from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, Transformer2DModel
from ...models import AutoencoderKL, DiTTransformer2DModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
@@ -36,8 +36,8 @@ class DiTPipeline(DiffusionPipeline):
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
transformer ([`Transformer2DModel`]):
A class conditioned `Transformer2DModel` to denoise the encoded image latents.
transformer ([`DiTTransformer2DModel`]):
A class conditioned `DiTTransformer2DModel` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
scheduler ([`DDIMScheduler`]):
@@ -48,7 +48,7 @@ class DiTPipeline(DiffusionPipeline):
def __init__(
self,
transformer: Transformer2DModel,
transformer: DiTTransformer2DModel,
vae: AutoencoderKL,
scheduler: KarrasDiffusionSchedulers,
id2label: Optional[Dict[int, str]] = None,

View File

@@ -0,0 +1,48 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_hunyuandit"] = ["HunyuanDiTPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_hunyuandit import HunyuanDiTPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -0,0 +1,900 @@
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import VaeImageProcessor
from ...models import AutoencoderKL, HunyuanDiT2DModel
from ...models.embeddings import get_2d_rotary_pos_embed
from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from ...schedulers import DDPMScheduler
from ...utils import (
is_torch_xla_available,
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import HunyuanDiTPipeline
>>> pipe = HunyuanDiTPipeline.from_pretrained(
... "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> # You may also use English prompt as HunyuanDiT supports both English and Chinese
>>> # prompt = "An astronaut riding a horse"
>>> prompt = "一个宇航员在骑马"
>>> image = pipe(prompt).images[0]
```
"""
STANDARD_RATIO = np.array(
[
1.0, # 1:1
4.0 / 3.0, # 4:3
3.0 / 4.0, # 3:4
16.0 / 9.0, # 16:9
9.0 / 16.0, # 9:16
]
)
STANDARD_SHAPE = [
[(1024, 1024), (1280, 1280)], # 1:1
[(1024, 768), (1152, 864), (1280, 960)], # 4:3
[(768, 1024), (864, 1152), (960, 1280)], # 3:4
[(1280, 768)], # 16:9
[(768, 1280)], # 9:16
]
STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
SUPPORTED_SHAPE = [
(1024, 1024),
(1280, 1280), # 1:1
(1024, 768),
(1152, 864),
(1280, 960), # 4:3
(768, 1024),
(864, 1152),
(960, 1280), # 3:4
(1280, 768), # 16:9
(768, 1280), # 9:16
]
def map_to_standard_shapes(target_width, target_height):
target_ratio = target_width / target_height
closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
return width, height
def get_resize_crop_region_for_grid(src, tgt_size):
th = tw = tgt_size
h, w = src
r = h / w
# resize
if r > 1:
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class HunyuanDiTPipeline(DiffusionPipeline):
r"""
Pipeline for English/Chinese-to-image generation using HunyuanDiT.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
ourselves)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
`sdxl-vae-fp16-fix`.
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
HunyuanDiT uses a fine-tuned [bilingual CLIP].
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
transformer ([`HunyuanDiT2DModel`]):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
_optional_components = [
"safety_checker",
"feature_extractor",
"text_encoder_2",
"tokenizer_2",
"text_encoder",
"tokenizer",
]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = [
"latents",
"prompt_embeds",
"negative_prompt_embeds",
"prompt_embeds_2",
"negative_prompt_embeds_2",
]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: BertModel,
tokenizer: BertTokenizer,
transformer: HunyuanDiT2DModel,
scheduler: DDPMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
text_encoder_2=T5EncoderModel,
tokenizer_2=MT5Tokenizer,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
transformer=transformer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
text_encoder_2=text_encoder_2,
)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.default_sample_size = (
self.transformer.config.sample_size
if hasattr(self, "transformer") and self.transformer is not None
else 128
)
def encode_prompt(
self,
prompt: str,
device: torch.device = None,
dtype: torch.dtype = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
max_sequence_length: Optional[int] = None,
text_encoder_index: int = 0,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
dtype (`torch.dtype`):
torch dtype
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
text_encoder_index (`int`, *optional*):
Index of the text encoder to use. `0` for clip and `1` for T5.
"""
if dtype is None:
if self.text_encoder_2 is not None:
dtype = self.text_encoder_2.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
if device is None:
device = self._execution_device
tokenizers = [self.tokenizer, self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2]
tokenizer = tokenizers[text_encoder_index]
text_encoder = text_encoders[text_encoder_index]
if max_sequence_length is None:
if text_encoder_index == 0:
max_length = 77
if text_encoder_index == 1:
max_length = 256
else:
max_length = max_sequence_length
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask.to(device)
prompt_embeds = text_encoder(
text_input_ids.to(device),
attention_mask=prompt_attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
attention_mask=negative_prompt_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
prompt_embeds_2=None,
negative_prompt_embeds_2=None,
prompt_attention_mask_2=None,
negative_prompt_attention_mask_2=None,
callback_on_step_end_tensor_inputs=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is None and prompt_embeds_2 is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
raise ValueError(
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
raise ValueError(
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
f" {negative_prompt_embeds_2.shape}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_2: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
prompt_attention_mask_2: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = (1024, 1024),
target_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
use_resolution_binning: bool = True,
):
r"""
The call function to the pipeline for generation with HunyuanDiT.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`):
The height in pixels of the generated image.
width (`int`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
prompt_embeds_2 (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A callback function or a list of callback functions to be called at the end of each denoising step.
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
inputs will be passed.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
The original size of the image. Used to calculate the time ids.
target_size (`Tuple[int, int]`, *optional*):
The target size of the image. Used to calculate the time ids.
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
The top left coordinates of the crop. Used to calculate the time ids.
use_resolution_binning (`bool`, *optional*, defaults to `True`):
Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 0. default height and width
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
height = int((height // 16) * 16)
width = int((width // 16) * 16)
if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
width, height = map_to_standard_shapes(width, height)
height = int(height)
width = int(width)
logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
max_sequence_length=77,
text_encoder_index=0,
)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds_2,
negative_prompt_embeds=negative_prompt_embeds_2,
prompt_attention_mask=prompt_attention_mask_2,
negative_prompt_attention_mask=negative_prompt_attention_mask_2,
max_sequence_length=256,
text_encoder_index=1,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7 create image_rotary_emb, style embedding & time ids
grid_height = height // 8 // self.transformer.config.patch_size
grid_width = width // 8 // self.transformer.config.patch_size
base_size = 512 // 8 // self.transformer.config.patch_size
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
image_rotary_emb = get_2d_rotary_pos_embed(
self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width)
)
style = torch.tensor([0], device=device)
target_size = target_size or (height, width)
add_time_ids = list(original_size + target_size + crops_coords_top_left)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
style = torch.cat([style] * 2, dim=0)
prompt_embeds = prompt_embeds.to(device=device)
prompt_attention_mask = prompt_attention_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device)
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
batch_size * num_images_per_prompt, 1
)
style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
dtype=latent_model_input.dtype
)
# predict the noise residual
noise_pred = self.transformer(
latent_model_input,
t_expand,
encoder_hidden_states=prompt_embeds,
text_embedding_mask=prompt_attention_mask,
encoder_hidden_states_t5=prompt_embeds_2,
text_embedding_mask_t5=prompt_attention_mask_2,
image_meta_size=add_time_ids,
style=style,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
noise_pred, _ = noise_pred.chunk(2, dim=1)
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
negative_prompt_embeds_2 = callback_outputs.pop(
"negative_prompt_embeds_2", negative_prompt_embeds_2
)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

View File

@@ -608,6 +608,7 @@ def load_sub_model(
cached_folder: Union[str, os.PathLike],
):
"""Helper method to load the module `name` from `library_name` and `class_name`"""
# retrieve class candidates
class_obj, class_candidates = get_class_obj_and_candidates(

View File

@@ -22,7 +22,7 @@ import torch
from transformers import T5EncoderModel, T5Tokenizer
from ...image_processor import PixArtImageProcessor
from ...models import AutoencoderKL, Transformer2DModel
from ...models import AutoencoderKL, PixArtTransformer2DModel
from ...schedulers import DPMSolverMultistepScheduler
from ...utils import (
BACKENDS_MAPPING,
@@ -246,8 +246,8 @@ class PixArtAlphaPipeline(DiffusionPipeline):
tokenizer (`T5Tokenizer`):
Tokenizer of class
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
transformer ([`Transformer2DModel`]):
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
transformer ([`PixArtTransformer2DModel`]):
A text conditioned `PixArtTransformer2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
@@ -276,7 +276,7 @@ class PixArtAlphaPipeline(DiffusionPipeline):
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer2DModel,
transformer: PixArtTransformer2DModel,
scheduler: DPMSolverMultistepScheduler,
):
super().__init__()

View File

@@ -22,7 +22,7 @@ import torch
from transformers import T5EncoderModel, T5Tokenizer
from ...image_processor import PixArtImageProcessor
from ...models import AutoencoderKL, Transformer2DModel
from ...models import AutoencoderKL, PixArtTransformer2DModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
BACKENDS_MAPPING,
@@ -202,7 +202,7 @@ class PixArtSigmaPipeline(DiffusionPipeline):
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKL,
transformer: Transformer2DModel,
transformer: PixArtTransformer2DModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__()

View File

@@ -51,8 +51,8 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import StableUnCLIPImg2ImgPipeline
>>> pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
... "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
... ) # TODO update model path
... "stabilityai/stable-diffusion-2-1-unclip-small", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
@@ -63,7 +63,7 @@ EXAMPLE_DOC_STRING = """
>>> prompt = "A fantasy landscape, trending on artstation"
>>> images = pipe(prompt, init_image).images
>>> images = pipe(init_image, prompt).images
>>> images[0].save("fantasy_landscape.png")
```
"""

View File

@@ -243,13 +243,13 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
ramp = torch.linspace(0, 1, self.num_inference_steps)
if self.config.sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif self.config.sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
sigmas = sigmas.to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
if self.config.final_sigmas_type == "sigma_min":
@@ -283,7 +283,6 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas

View File

@@ -16,7 +16,6 @@ import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
@@ -210,13 +209,13 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
"""
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
ramp = torch.linspace(0, 1, self.num_inference_steps)
if self.config.sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif self.config.sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
sigmas = sigmas.to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
@@ -234,7 +233,6 @@ class EDMEulerScheduler(SchedulerMixin, ConfigMixin):
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:

View File

@@ -157,19 +157,19 @@ def compute_dream_and_update_latents(
with torch.no_grad():
pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
noisy_latents, target = (None, None)
_noisy_latents, _target = (None, None)
if noise_scheduler.config.prediction_type == "epsilon":
predicted_noise = pred
delta_noise = (noise - predicted_noise).detach()
delta_noise.mul_(dream_lambda)
noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
target = target.add(delta_noise)
_noisy_latents = noisy_latents.add(sqrt_one_minus_alphas_cumprod * delta_noise)
_target = target.add(delta_noise)
elif noise_scheduler.config.prediction_type == "v_prediction":
raise NotImplementedError("DREAM has not been implemented for v-prediction")
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
return noisy_latents, target
return _noisy_latents, _target
def unet_lora_state_dict(unet: UNet2DConditionModel) -> Dict[str, torch.Tensor]:

View File

@@ -107,6 +107,36 @@ class ControlNetXSAdapter(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class DiTTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class HunyuanDiT2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class I2VGenXLUNet(metaclass=DummyObject):
_backends = ["torch"]
@@ -182,6 +212,21 @@ class MultiAdapter(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class PixArtTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class PriorTransformer(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -212,6 +212,21 @@ class CycleDiffusionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class HunyuanDiTPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class I2VGenXLPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -559,7 +559,7 @@ class ModelTesterMixin:
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, expected_max_diff)
def test_output(self):
def test_output(self, expected_output_shape=None):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
@@ -575,8 +575,12 @@ class ModelTesterMixin:
# input & output have to have the same shape
input_tensor = inputs_dict[self.main_input_name]
expected_shape = input_tensor.shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
if expected_output_shape is None:
expected_shape = input_tensor.shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
else:
self.assertEqual(output.shape, expected_output_shape, "Input and output shapes do not match")
def test_model_from_pretrained(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

View File

@@ -0,0 +1,95 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import DiTTransformer2DModel, Transformer2DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
slow,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class DiTTransformer2DModelTests(ModelTesterMixin, unittest.TestCase):
model_class = DiTTransformer2DModel
main_input_name = "hidden_states"
@property
def dummy_input(self):
batch_size = 4
in_channels = 4
sample_size = 8
scheduler_num_train_steps = 1000
num_class_labels = 4
hidden_states = floats_tensor((batch_size, in_channels, sample_size, sample_size)).to(torch_device)
timesteps = torch.randint(0, scheduler_num_train_steps, size=(batch_size,)).to(torch_device)
class_label_ids = torch.randint(0, num_class_labels, size=(batch_size,)).to(torch_device)
return {"hidden_states": hidden_states, "timestep": timesteps, "class_labels": class_label_ids}
@property
def input_shape(self):
return (4, 8, 8)
@property
def output_shape(self):
return (8, 8, 8)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"in_channels": 4,
"out_channels": 8,
"activation_fn": "gelu-approximate",
"num_attention_heads": 2,
"attention_head_dim": 4,
"attention_bias": True,
"num_layers": 1,
"norm_type": "ada_norm_zero",
"num_embeds_ada_norm": 8,
"patch_size": 2,
"sample_size": 8,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
super().test_output(
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape
)
def test_correct_class_remapping_from_dict_config(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = Transformer2DModel.from_config(init_dict)
assert isinstance(model, DiTTransformer2DModel)
def test_correct_class_remapping_from_pretrained_config(self):
config = DiTTransformer2DModel.load_config("facebook/DiT-XL-2-256", subfolder="transformer")
model = Transformer2DModel.from_config(config)
assert isinstance(model, DiTTransformer2DModel)
@slow
def test_correct_class_remapping(self):
model = Transformer2DModel.from_pretrained("facebook/DiT-XL-2-256", subfolder="transformer")
assert isinstance(model, DiTTransformer2DModel)

View File

@@ -0,0 +1,108 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import PixArtTransformer2DModel, Transformer2DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
slow,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class PixArtTransformer2DModelTests(ModelTesterMixin, unittest.TestCase):
model_class = PixArtTransformer2DModel
main_input_name = "hidden_states"
# We override the items here because the transformer under consideration is small.
model_split_percents = [0.7, 0.6, 0.6]
@property
def dummy_input(self):
batch_size = 4
in_channels = 4
sample_size = 8
scheduler_num_train_steps = 1000
cross_attention_dim = 8
seq_len = 8
hidden_states = floats_tensor((batch_size, in_channels, sample_size, sample_size)).to(torch_device)
timesteps = torch.randint(0, scheduler_num_train_steps, size=(batch_size,)).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, seq_len, cross_attention_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": timesteps,
"encoder_hidden_states": encoder_hidden_states,
"added_cond_kwargs": {"aspect_ratio": None, "resolution": None},
}
@property
def input_shape(self):
return (4, 8, 8)
@property
def output_shape(self):
return (8, 8, 8)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 8,
"num_layers": 1,
"patch_size": 2,
"attention_head_dim": 2,
"num_attention_heads": 2,
"in_channels": 4,
"cross_attention_dim": 8,
"out_channels": 8,
"attention_bias": True,
"activation_fn": "gelu-approximate",
"num_embeds_ada_norm": 8,
"norm_type": "ada_norm_single",
"norm_elementwise_affine": False,
"norm_eps": 1e-6,
"use_additional_conditions": False,
"caption_channels": None,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_output(self):
super().test_output(
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape
)
def test_correct_class_remapping_from_dict_config(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = Transformer2DModel.from_config(init_dict)
assert isinstance(model, PixArtTransformer2DModel)
def test_correct_class_remapping_from_pretrained_config(self):
config = PixArtTransformer2DModel.load_config("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="transformer")
model = Transformer2DModel.from_config(config)
assert isinstance(model, PixArtTransformer2DModel)
@slow
def test_correct_class_remapping(self):
model = Transformer2DModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="transformer")
assert isinstance(model, PixArtTransformer2DModel)

View File

@@ -37,7 +37,9 @@ from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
floats_tensor,
is_peft_available,
load_hf_numpy,
require_peft_backend,
require_torch_accelerator,
require_torch_accelerator_with_fp16,
require_torch_accelerator_with_training,
@@ -51,11 +53,38 @@ from diffusers.utils.testing_utils import (
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
if is_peft_available():
from peft import LoraConfig
from peft.tuners.tuners_utils import BaseTunerLayer
logger = logging.get_logger(__name__)
enable_full_determinism()
def get_unet_lora_config():
rank = 4
unet_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
init_lora_weights=False,
use_dora=False,
)
return unet_lora_config
def check_if_lora_correctly_set(model) -> bool:
"""
Checks if the LoRA layers are correctly set with peft
"""
for module in model.modules():
if isinstance(module, BaseTunerLayer):
return True
return False
def create_ip_adapter_state_dict(model):
# "ip_adapter" (cross-attention weights)
ip_cross_attn_state_dict = {}
@@ -1005,6 +1034,65 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
@require_peft_backend
def test_lora(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
# forward pass without LoRA
with torch.no_grad():
non_lora_sample = model(**inputs_dict).sample
unet_lora_config = get_unet_lora_config()
model.add_adapter(unet_lora_config)
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
# forward pass with LoRA
with torch.no_grad():
lora_sample = model(**inputs_dict).sample
assert not torch.allclose(
non_lora_sample, lora_sample, atol=1e-4, rtol=1e-4
), "LoRA injected UNet should produce different results."
@require_peft_backend
def test_lora_serialization(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
# forward pass without LoRA
with torch.no_grad():
non_lora_sample = model(**inputs_dict).sample
unet_lora_config = get_unet_lora_config()
model.add_adapter(unet_lora_config)
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
# forward pass with LoRA
with torch.no_grad():
lora_sample_1 = model(**inputs_dict).sample
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_attn_procs(tmpdirname)
model.unload_lora()
model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
with torch.no_grad():
lora_sample_2 = model(**inputs_dict).sample
assert not torch.allclose(
non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4
), "LoRA injected UNet should produce different results."
assert torch.allclose(
lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4
), "Loading from a saved checkpoint should produce identical results."
@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):

View File

@@ -19,7 +19,7 @@ import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, Transformer2DModel
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DiTTransformer2DModel, DPMSolverMultistepScheduler
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device
@@ -46,7 +46,7 @@ class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
transformer = Transformer2DModel(
transformer = DiTTransformer2DModel(
sample_size=16,
num_layers=2,
patch_size=4,

View File

View File

@@ -0,0 +1,320 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, BertModel, T5EncoderModel
from diffusers import (
AutoencoderKL,
DDPMScheduler,
HunyuanDiT2DModel,
HunyuanDiTPipeline,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
numpy_cosine_similarity_distance,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class HunyuanDiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = HunyuanDiTPipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params
def get_dummy_components(self):
torch.manual_seed(0)
transformer = HunyuanDiT2DModel(
sample_size=16,
num_layers=2,
patch_size=2,
attention_head_dim=8,
num_attention_heads=3,
in_channels=4,
cross_attention_dim=32,
cross_attention_dim_t5=32,
pooled_projection_dim=16,
hidden_size=24,
activation_fn="gelu-approximate",
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = DDPMScheduler()
text_encoder = BertModel.from_pretrained("hf-internal-testing/tiny-random-BertModel")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"safety_checker": None,
"feature_extractor": None,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"use_resolution_binning": False,
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 16, 16, 3))
expected_slice = np.array(
[0.56939435, 0.34541583, 0.35915792, 0.46489206, 0.38775963, 0.45004836, 0.5957267, 0.59481275, 0.33287364]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_sequential_cpu_offload_forward_pass(self):
# TODO(YiYi) need to fix later
pass
def test_sequential_offload_forward_pass_twice(self):
# TODO(YiYi) need to fix later
pass
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-3,
)
def test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = pipe.encode_prompt(prompt, device=torch_device, dtype=torch.float32, text_encoder_index=0)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = pipe.encode_prompt(
prompt,
device=torch_device,
dtype=torch.float32,
text_encoder_index=1,
)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"prompt_attention_mask": prompt_attention_mask,
"negative_prompt_embeds": negative_prompt_embeds,
"negative_prompt_attention_mask": negative_prompt_attention_mask,
"prompt_embeds_2": prompt_embeds_2,
"prompt_attention_mask_2": prompt_attention_mask_2,
"negative_prompt_embeds_2": negative_prompt_embeds_2,
"negative_prompt_attention_mask_2": negative_prompt_attention_mask_2,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
"use_resolution_binning": False,
}
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
def test_feed_forward_chunking(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_no_chunking = image[0, -3:, -3:, -1]
pipe.transformer.enable_forward_chunking(chunk_size=1, dim=0)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_chunking = image[0, -3:, -3:, -1]
max_diff = np.abs(to_np(image_slice_no_chunking) - to_np(image_slice_chunking)).max()
self.assertLess(max_diff, 1e-4)
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image = pipe(**inputs)[0]
original_image_slice = image[0, -3:, -3:, -1]
pipe.transformer.fuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image_fused = pipe(**inputs)[0]
image_slice_fused = image_fused[0, -3:, -3:, -1]
pipe.transformer.unfuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image_disabled = pipe(**inputs)[0]
image_slice_disabled = image_disabled[0, -3:, -3:, -1]
assert np.allclose(
original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
), "Fusion of QKV projections shouldn't affect the outputs."
assert np.allclose(
image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
assert np.allclose(
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Original outputs should match when fused QKV projections are disabled."
@slow
@require_torch_gpu
class HunyuanDiTPipelineIntegrationTests(unittest.TestCase):
prompt = "一个宇航员在骑马"
def setUp(self):
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_hunyuan_dit_1024(self):
generator = torch.Generator("cpu").manual_seed(0)
pipe = HunyuanDiTPipeline.from_pretrained(
"XCLiu/HunyuanDiT-0523", revision="refs/pr/2", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
prompt = self.prompt
image = pipe(
prompt=prompt, height=1024, width=1024, generator=generator, num_inference_steps=2, output_type="np"
).images
image_slice = image[0, -3:, -3:, -1]
expected_slice = np.array(
[0.48388672, 0.33789062, 0.30737305, 0.47875977, 0.25097656, 0.30029297, 0.4440918, 0.26953125, 0.30078125]
)
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice)
assert max_diff < 1e-3, f"Max diff is too high. got {image_slice.flatten()}"

View File

@@ -25,7 +25,7 @@ from diffusers import (
AutoencoderKL,
DDIMScheduler,
PixArtAlphaPipeline,
Transformer2DModel,
PixArtTransformer2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
@@ -53,7 +53,7 @@ class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
transformer = Transformer2DModel(
transformer = PixArtTransformer2DModel(
sample_size=8,
num_layers=2,
patch_size=2,

View File

@@ -25,7 +25,7 @@ from diffusers import (
AutoencoderKL,
DDIMScheduler,
PixArtSigmaPipeline,
Transformer2DModel,
PixArtTransformer2DModel,
)
from diffusers.utils.testing_utils import (
enable_full_determinism,
@@ -53,7 +53,7 @@ class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
transformer = Transformer2DModel(
transformer = PixArtTransformer2DModel(
sample_size=8,
num_layers=2,
patch_size=2,
@@ -344,7 +344,7 @@ class PixArtSigmaPipelineIntegrationTests(unittest.TestCase):
def test_pixart_512(self):
generator = torch.Generator("cpu").manual_seed(0)
transformer = Transformer2DModel.from_pretrained(
transformer = PixArtTransformer2DModel.from_pretrained(
self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16
)
pipe = PixArtSigmaPipeline.from_pretrained(
@@ -399,7 +399,7 @@ class PixArtSigmaPipelineIntegrationTests(unittest.TestCase):
def test_pixart_512_without_resolution_binning(self):
generator = torch.manual_seed(0)
transformer = Transformer2DModel.from_pretrained(
transformer = PixArtTransformer2DModel.from_pretrained(
self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16
)
pipe = PixArtSigmaPipeline.from_pretrained(