Compare commits

...

1 Commits

Author SHA1 Message Date
Aryan
66e15a76ad remove duplicate checks 2024-12-05 21:34:51 +01:00
3 changed files with 0 additions and 18 deletions

View File

@@ -662,12 +662,6 @@ class AnimateDiffVideoToVideoPipeline(
self.vae.to(dtype=torch.float32)
if isinstance(generator, list):
if len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
init_latents = [
self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0)
for i in range(batch_size)

View File

@@ -794,12 +794,6 @@ class AnimateDiffVideoToVideoControlNetPipeline(
self.vae.to(dtype=torch.float32)
if isinstance(generator, list):
if len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
init_latents = [
self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0)
for i in range(batch_size)

View File

@@ -373,12 +373,6 @@ class CogVideoXVideoToVideoPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin)
if latents is None:
if isinstance(generator, list):
if len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
init_latents = [
retrieve_latents(self.vae.encode(video[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
]