|
|
|
|
@@ -0,0 +1,736 @@
|
|
|
|
|
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
|
|
|
|
|
# Copyright 2025 The Decart AI Team. All rights reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
#
|
|
|
|
|
# Modifications by Decart AI Team:
|
|
|
|
|
# - Based on pipeline_wan.py, but with supports recieving a condition video appended to the channel dimension.
|
|
|
|
|
|
|
|
|
|
import html
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
|
|
import regex as re
|
|
|
|
|
import torch
|
|
|
|
|
from PIL import Image
|
|
|
|
|
from transformers import AutoTokenizer, UMT5EncoderModel
|
|
|
|
|
|
|
|
|
|
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
|
|
|
from ...loaders import WanLoraLoaderMixin
|
|
|
|
|
from ...models import AutoencoderKLWan, WanTransformer3DModel
|
|
|
|
|
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
|
|
|
|
from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
|
|
|
|
|
from ...utils.torch_utils import randn_tensor
|
|
|
|
|
from ...video_processor import VideoProcessor
|
|
|
|
|
from ..pipeline_utils import DiffusionPipeline
|
|
|
|
|
from .pipeline_output import LucyPipelineOutput
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_torch_xla_available():
|
|
|
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
|
|
|
|
|
|
XLA_AVAILABLE = True
|
|
|
|
|
else:
|
|
|
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
|
|
|
|
if is_ftfy_available():
|
|
|
|
|
import ftfy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
|
|
|
Examples:
|
|
|
|
|
```python
|
|
|
|
|
>>> from typing import List
|
|
|
|
|
|
|
|
|
|
>>> import torch
|
|
|
|
|
>>> from PIL import Image
|
|
|
|
|
|
|
|
|
|
>>> from diffusers import AutoencoderKLWan, WanTransformer3DModel
|
|
|
|
|
>>> from diffusers.pipelines.lucy.pipeline_lucy_edit import LucyEditPipeline
|
|
|
|
|
>>> from diffusers.utils import export_to_video, load_video
|
|
|
|
|
|
|
|
|
|
>>> # Arguments
|
|
|
|
|
>>> url = "https://d2drjpuinn46lb.cloudfront.net/painter_original_edit.mp4"
|
|
|
|
|
>>> prompt = "Change the apron and blouse to a classic clown costume: satin polka-dot jumpsuit in bright primary colors, ruffled white collar, oversized pom-pom buttons, white gloves, oversized red shoes, red foam nose; soft window light from left, eye-level medium shot, natural folds and fabric highlights."
|
|
|
|
|
>>> negative_prompt = ""
|
|
|
|
|
>>> num_frames = 81
|
|
|
|
|
>>> height = 480
|
|
|
|
|
>>> width = 832
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>>> # Load video
|
|
|
|
|
>>> def convert_video(video: List[Image.Image]) -> List[Image.Image]:
|
|
|
|
|
... video = load_video(url)[:num_frames]
|
|
|
|
|
... video = [video[i].resize((width, height)) for i in range(num_frames)]
|
|
|
|
|
... return video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>>> video = load_video(url, convert_method=convert_video)
|
|
|
|
|
|
|
|
|
|
>>> # Load model
|
|
|
|
|
>>> model_id = "decart-ai/Lucy-Edit-Dev"
|
|
|
|
|
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
|
|
|
|
>>> pipe = LucyEditPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
|
|
|
|
>>> pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
>>> # Generate video
|
|
|
|
|
>>> output = pipe(
|
|
|
|
|
... prompt=prompt,
|
|
|
|
|
... video=video,
|
|
|
|
|
... negative_prompt=negative_prompt,
|
|
|
|
|
... height=480,
|
|
|
|
|
... width=832,
|
|
|
|
|
... num_frames=81,
|
|
|
|
|
... guidance_scale=5.0,
|
|
|
|
|
... ).frames[0]
|
|
|
|
|
|
|
|
|
|
>>> # Export video
|
|
|
|
|
>>> export_to_video(output, "output.mp4", fps=24)
|
|
|
|
|
```
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def basic_clean(text):
|
|
|
|
|
text = ftfy.fix_text(text)
|
|
|
|
|
text = html.unescape(html.unescape(text))
|
|
|
|
|
return text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def whitespace_clean(text):
|
|
|
|
|
text = re.sub(r"\s+", " ", text)
|
|
|
|
|
text = text.strip()
|
|
|
|
|
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prompt_clean(text):
|
|
|
|
|
text = whitespace_clean(basic_clean(text))
|
|
|
|
|
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
|
|
|
def retrieve_latents(
|
|
|
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
|
|
|
|
):
|
|
|
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
|
|
|
|
return encoder_output.latent_dist.sample(generator)
|
|
|
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
|
|
|
|
return encoder_output.latent_dist.mode()
|
|
|
|
|
elif hasattr(encoder_output, "latents"):
|
|
|
|
|
return encoder_output.latents
|
|
|
|
|
else:
|
|
|
|
|
raise AttributeError("Could not access latents of provided encoder_output")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LucyEditPipeline(DiffusionPipeline, WanLoraLoaderMixin):
|
|
|
|
|
r"""
|
|
|
|
|
Pipeline for video-to-video generation using Lucy Edit.
|
|
|
|
|
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
|
|
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tokenizer ([`T5Tokenizer`]):
|
|
|
|
|
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
|
|
|
|
|
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
|
|
|
|
|
text_encoder ([`T5EncoderModel`]):
|
|
|
|
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
|
|
|
|
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
|
|
|
|
|
transformer ([`WanTransformer3DModel`]):
|
|
|
|
|
Conditional Transformer to denoise the input latents.
|
|
|
|
|
scheduler ([`UniPCMultistepScheduler`]):
|
|
|
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
|
|
|
|
vae ([`AutoencoderKLWan`]):
|
|
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
|
|
|
|
transformer_2 ([`WanTransformer3DModel`], *optional*):
|
|
|
|
|
Conditional Transformer to denoise the input latents during the low-noise stage. If provided, enables
|
|
|
|
|
two-stage denoising where `transformer` handles high-noise stages and `transformer_2` handles low-noise
|
|
|
|
|
stages. If not provided, only `transformer` is used.
|
|
|
|
|
boundary_ratio (`float`, *optional*, defaults to `None`):
|
|
|
|
|
Ratio of total timesteps to use as the boundary for switching between transformers in two-stage denoising.
|
|
|
|
|
The actual boundary timestep is calculated as `boundary_ratio * num_train_timesteps`. When provided,
|
|
|
|
|
`transformer` handles timesteps >= boundary_timestep and `transformer_2` handles timesteps <
|
|
|
|
|
boundary_timestep. If `None`, only `transformer` is used for the entire denoising process.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->transformer->transformer_2->vae"
|
|
|
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
|
|
|
|
_optional_components = ["transformer", "transformer_2"]
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
tokenizer: AutoTokenizer,
|
|
|
|
|
text_encoder: UMT5EncoderModel,
|
|
|
|
|
vae: AutoencoderKLWan,
|
|
|
|
|
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
|
|
|
transformer: Optional[WanTransformer3DModel] = None,
|
|
|
|
|
transformer_2: Optional[WanTransformer3DModel] = None,
|
|
|
|
|
boundary_ratio: Optional[float] = None,
|
|
|
|
|
expand_timesteps: bool = False, # Wan2.2 ti2v
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.register_modules(
|
|
|
|
|
vae=vae,
|
|
|
|
|
text_encoder=text_encoder,
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
transformer=transformer,
|
|
|
|
|
scheduler=scheduler,
|
|
|
|
|
transformer_2=transformer_2,
|
|
|
|
|
)
|
|
|
|
|
self.register_to_config(boundary_ratio=boundary_ratio)
|
|
|
|
|
self.register_to_config(expand_timesteps=expand_timesteps)
|
|
|
|
|
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
|
|
|
|
|
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
|
|
|
|
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline._get_t5_prompt_embeds
|
|
|
|
|
def _get_t5_prompt_embeds(
|
|
|
|
|
self,
|
|
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
|
|
num_videos_per_prompt: int = 1,
|
|
|
|
|
max_sequence_length: int = 226,
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
|
):
|
|
|
|
|
device = device or self._execution_device
|
|
|
|
|
dtype = dtype or self.text_encoder.dtype
|
|
|
|
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
|
prompt = [prompt_clean(u) for u in prompt]
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
|
|
|
|
|
text_inputs = self.tokenizer(
|
|
|
|
|
prompt,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=max_sequence_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
add_special_tokens=True,
|
|
|
|
|
return_attention_mask=True,
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
)
|
|
|
|
|
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
|
|
|
|
|
seq_lens = mask.gt(0).sum(dim=1).long()
|
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
|
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
|
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
|
|
|
|
|
prompt_embeds = torch.stack(
|
|
|
|
|
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
|
|
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
|
|
|
|
|
|
|
|
|
return prompt_embeds
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
|
|
|
|
|
def encode_prompt(
|
|
|
|
|
self,
|
|
|
|
|
prompt: Union[str, List[str]],
|
|
|
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
do_classifier_free_guidance: bool = True,
|
|
|
|
|
num_videos_per_prompt: int = 1,
|
|
|
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
max_sequence_length: int = 226,
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
prompt to be encoded
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
|
|
|
less than `1`).
|
|
|
|
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether to use classifier free guidance or not.
|
|
|
|
|
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
|
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
|
|
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
|
|
|
argument.
|
|
|
|
|
device: (`torch.device`, *optional*):
|
|
|
|
|
torch device
|
|
|
|
|
dtype: (`torch.dtype`, *optional*):
|
|
|
|
|
torch dtype
|
|
|
|
|
"""
|
|
|
|
|
device = device or self._execution_device
|
|
|
|
|
|
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
|
if prompt is not None:
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
if prompt_embeds is None:
|
|
|
|
|
prompt_embeds = self._get_t5_prompt_embeds(
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
|
|
device=device,
|
|
|
|
|
dtype=dtype,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
|
|
|
negative_prompt = negative_prompt or ""
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
|
|
|
|
|
|
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
|
|
|
raise TypeError(
|
|
|
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
|
|
|
f" {type(prompt)}."
|
|
|
|
|
)
|
|
|
|
|
elif batch_size != len(negative_prompt):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
|
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
|
|
|
" the batch size of `prompt`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
|
|
|
|
prompt=negative_prompt,
|
|
|
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
|
|
device=device,
|
|
|
|
|
dtype=dtype,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
|
|
|
|
|
|
def check_inputs(
|
|
|
|
|
self,
|
|
|
|
|
video,
|
|
|
|
|
prompt,
|
|
|
|
|
negative_prompt,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
prompt_embeds=None,
|
|
|
|
|
negative_prompt_embeds=None,
|
|
|
|
|
callback_on_step_end_tensor_inputs=None,
|
|
|
|
|
guidance_scale_2=None,
|
|
|
|
|
):
|
|
|
|
|
if height % 16 != 0 or width % 16 != 0:
|
|
|
|
|
raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
|
|
|
|
|
|
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
|
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
|
|
|
):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
|
|
|
" only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
elif negative_prompt is not None and negative_prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
|
|
|
|
|
" only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
elif prompt is None and prompt_embeds is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
|
|
|
)
|
|
|
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
|
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
|
elif negative_prompt is not None and (
|
|
|
|
|
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
|
|
|
|
|
):
|
|
|
|
|
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
|
|
|
|
|
|
|
|
|
|
if self.config.boundary_ratio is None and guidance_scale_2 is not None:
|
|
|
|
|
raise ValueError("`guidance_scale_2` is only supported when the pipeline's `boundary_ratio` is not None.")
|
|
|
|
|
|
|
|
|
|
if video is None:
|
|
|
|
|
raise ValueError("`video` is required, received None.")
|
|
|
|
|
|
|
|
|
|
def prepare_latents(
|
|
|
|
|
self,
|
|
|
|
|
video: Optional[torch.Tensor] = None,
|
|
|
|
|
batch_size: int = 1,
|
|
|
|
|
num_channels_latents: int = 16,
|
|
|
|
|
height: int = 480,
|
|
|
|
|
width: int = 832,
|
|
|
|
|
dtype: Optional[torch.dtype] = None,
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
generator: Optional[torch.Generator] = None,
|
|
|
|
|
latents: Optional[torch.Tensor] = None,
|
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
num_latent_frames = (
|
|
|
|
|
(video.size(2) - 1) // self.vae_scale_factor_temporal + 1 if latents is None else latents.size(1)
|
|
|
|
|
)
|
|
|
|
|
shape = (
|
|
|
|
|
batch_size,
|
|
|
|
|
num_channels_latents,
|
|
|
|
|
num_latent_frames,
|
|
|
|
|
height // self.vae_scale_factor_spatial,
|
|
|
|
|
width // self.vae_scale_factor_spatial,
|
|
|
|
|
)
|
|
|
|
|
# Prepare noise latents
|
|
|
|
|
if latents is None:
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
|
else:
|
|
|
|
|
latents = latents.to(device)
|
|
|
|
|
|
|
|
|
|
# Prepare condition latents
|
|
|
|
|
condition_latents = [
|
|
|
|
|
retrieve_latents(self.vae.encode(vid.unsqueeze(0)), sample_mode="argmax") for vid in video
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
condition_latents = torch.cat(condition_latents, dim=0).to(dtype)
|
|
|
|
|
|
|
|
|
|
latents_mean = (
|
|
|
|
|
torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.z_dim, 1, 1, 1).to(device, dtype)
|
|
|
|
|
)
|
|
|
|
|
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
|
|
|
|
device, dtype
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
condition_latents = (condition_latents - latents_mean) * latents_std
|
|
|
|
|
|
|
|
|
|
# Check shapes
|
|
|
|
|
assert latents.shape == condition_latents.shape, (
|
|
|
|
|
f"Latents shape {latents.shape} does not match expected shape {condition_latents.shape}. Please check the input."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return latents, condition_latents
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def guidance_scale(self):
|
|
|
|
|
return self._guidance_scale
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def do_classifier_free_guidance(self):
|
|
|
|
|
return self._guidance_scale > 1.0
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def num_timesteps(self):
|
|
|
|
|
return self._num_timesteps
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def current_timestep(self):
|
|
|
|
|
return self._current_timestep
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def interrupt(self):
|
|
|
|
|
return self._interrupt
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def attention_kwargs(self):
|
|
|
|
|
return self._attention_kwargs
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
|
|
def __call__(
|
|
|
|
|
self,
|
|
|
|
|
video: List[Image.Image],
|
|
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
|
|
negative_prompt: Union[str, List[str]] = None,
|
|
|
|
|
height: int = 480,
|
|
|
|
|
width: int = 832,
|
|
|
|
|
num_frames: int = 81,
|
|
|
|
|
num_inference_steps: int = 50,
|
|
|
|
|
guidance_scale: float = 5.0,
|
|
|
|
|
guidance_scale_2: Optional[float] = None,
|
|
|
|
|
num_videos_per_prompt: Optional[int] = 1,
|
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
|
latents: Optional[torch.Tensor] = None,
|
|
|
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
|
|
|
output_type: Optional[str] = "np",
|
|
|
|
|
return_dict: bool = True,
|
|
|
|
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
|
callback_on_step_end: Optional[
|
|
|
|
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
|
|
|
|
] = None,
|
|
|
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
|
|
|
max_sequence_length: int = 512,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
The call function to the pipeline for generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
video (`List[Image.Image]`):
|
|
|
|
|
The video to use as the condition for the video generation.
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to guide the image generation. If not defined, pass `prompt_embeds` instead.
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to avoid during image generation. If not defined, pass `negative_prompt_embeds`
|
|
|
|
|
instead. Ignored when not using guidance (`guidance_scale` < `1`).
|
|
|
|
|
height (`int`, defaults to `480`):
|
|
|
|
|
The height in pixels of the generated image.
|
|
|
|
|
width (`int`, defaults to `832`):
|
|
|
|
|
The width in pixels of the generated image.
|
|
|
|
|
num_frames (`int`, defaults to `81`):
|
|
|
|
|
The number of frames in the generated video.
|
|
|
|
|
num_inference_steps (`int`, defaults to `50`):
|
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
|
expense of slower inference.
|
|
|
|
|
guidance_scale (`float`, defaults to `5.0`):
|
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion
|
|
|
|
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
|
|
|
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
|
|
|
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
|
|
|
|
the text `prompt`, usually at the expense of lower image quality.
|
|
|
|
|
guidance_scale_2 (`float`, *optional*, defaults to `None`):
|
|
|
|
|
Guidance scale for the low-noise stage transformer (`transformer_2`). If `None` and the pipeline's
|
|
|
|
|
`boundary_ratio` is not None, uses the same value as `guidance_scale`. Only used when `transformer_2`
|
|
|
|
|
and the pipeline's `boundary_ratio` are not None.
|
|
|
|
|
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
|
|
|
generation deterministic.
|
|
|
|
|
latents (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
|
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
|
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
|
|
|
output_type (`str`, *optional*, defaults to `"np"`):
|
|
|
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to return a [`LucyPipelineOutput`] instead of a plain tuple.
|
|
|
|
|
attention_kwargs (`dict`, *optional*):
|
|
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
|
|
`self.processor` in
|
|
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
|
|
|
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
|
|
|
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
|
|
|
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
|
|
|
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
|
|
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
|
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
|
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
|
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
|
|
max_sequence_length (`int`, defaults to `512`):
|
|
|
|
|
The maximum sequence length of the text encoder. If the prompt is longer than this, it will be
|
|
|
|
|
truncated. If the prompt is shorter, it will be padded to this length.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
[`~LucyPipelineOutput`] or `tuple`:
|
|
|
|
|
If `return_dict` is `True`, [`LucyPipelineOutput`] is returned, otherwise a `tuple` is returned where
|
|
|
|
|
the first element is a list with the generated images and the second element is a list of `bool`s
|
|
|
|
|
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|
|
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|
|
|
|
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
|
self.check_inputs(
|
|
|
|
|
video,
|
|
|
|
|
prompt,
|
|
|
|
|
negative_prompt,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
prompt_embeds,
|
|
|
|
|
negative_prompt_embeds,
|
|
|
|
|
callback_on_step_end_tensor_inputs,
|
|
|
|
|
guidance_scale_2,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if num_frames % self.vae_scale_factor_temporal != 1:
|
|
|
|
|
logger.warning(
|
|
|
|
|
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
|
|
|
|
|
)
|
|
|
|
|
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
|
|
|
|
|
num_frames = max(num_frames, 1)
|
|
|
|
|
|
|
|
|
|
if self.config.boundary_ratio is not None and guidance_scale_2 is None:
|
|
|
|
|
guidance_scale_2 = guidance_scale
|
|
|
|
|
|
|
|
|
|
self._guidance_scale = guidance_scale
|
|
|
|
|
self._guidance_scale_2 = guidance_scale_2
|
|
|
|
|
self._attention_kwargs = attention_kwargs
|
|
|
|
|
self._current_timestep = None
|
|
|
|
|
self._interrupt = False
|
|
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
|
|
|
|
# 2. Define call parameters
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
|
batch_size = 1
|
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
# 3. Encode input prompt
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
negative_prompt=negative_prompt,
|
|
|
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
|
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
|
|
device=device,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
transformer_dtype = self.transformer.dtype if self.transformer is not None else self.transformer_2.dtype
|
|
|
|
|
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
|
|
|
|
if negative_prompt_embeds is not None:
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
|
|
|
|
|
|
|
|
|
# 4. Prepare timesteps
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
|
|
|
|
|
|
# 5. Prepare latent variables
|
|
|
|
|
num_channels_latents = (
|
|
|
|
|
self.transformer.config.out_channels
|
|
|
|
|
if self.transformer is not None
|
|
|
|
|
else self.transformer_2.config.out_channels
|
|
|
|
|
)
|
|
|
|
|
video = self.video_processor.preprocess_video(video, height=height, width=width).to(
|
|
|
|
|
device, dtype=torch.float32
|
|
|
|
|
)
|
|
|
|
|
latents, condition_latents = self.prepare_latents(
|
|
|
|
|
video,
|
|
|
|
|
batch_size * num_videos_per_prompt,
|
|
|
|
|
num_channels_latents,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
torch.float32,
|
|
|
|
|
device,
|
|
|
|
|
generator,
|
|
|
|
|
latents,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
mask = torch.ones(latents.shape, dtype=torch.float32, device=device)
|
|
|
|
|
|
|
|
|
|
# 6. Denoising loop
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
|
|
|
|
|
|
if self.config.boundary_ratio is not None:
|
|
|
|
|
boundary_timestep = self.config.boundary_ratio * self.scheduler.config.num_train_timesteps
|
|
|
|
|
else:
|
|
|
|
|
boundary_timestep = None
|
|
|
|
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
|
for i, t in enumerate(timesteps):
|
|
|
|
|
if self.interrupt:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
self._current_timestep = t
|
|
|
|
|
|
|
|
|
|
if boundary_timestep is None or t >= boundary_timestep:
|
|
|
|
|
# wan2.1 or high-noise stage in wan2.2
|
|
|
|
|
current_model = self.transformer
|
|
|
|
|
current_guidance_scale = guidance_scale
|
|
|
|
|
else:
|
|
|
|
|
# low-noise stage in wan2.2
|
|
|
|
|
current_model = self.transformer_2
|
|
|
|
|
current_guidance_scale = guidance_scale_2
|
|
|
|
|
|
|
|
|
|
# latent_model_input = latents.to(transformer_dtype)
|
|
|
|
|
latent_model_input = torch.cat([latents, condition_latents], dim=1).to(transformer_dtype)
|
|
|
|
|
# latent_model_input = torch.cat([latents, latents], dim=1).to(transformer_dtype)
|
|
|
|
|
if self.config.expand_timesteps:
|
|
|
|
|
# seq_len: num_latent_frames * latent_height//2 * latent_width//2
|
|
|
|
|
temp_ts = (mask[0][0][:, ::2, ::2] * t).flatten()
|
|
|
|
|
# batch_size, seq_len
|
|
|
|
|
timestep = temp_ts.unsqueeze(0).expand(latents.shape[0], -1)
|
|
|
|
|
else:
|
|
|
|
|
timestep = t.expand(latents.shape[0])
|
|
|
|
|
|
|
|
|
|
with current_model.cache_context("cond"):
|
|
|
|
|
noise_pred = current_model(
|
|
|
|
|
hidden_states=latent_model_input,
|
|
|
|
|
timestep=timestep,
|
|
|
|
|
encoder_hidden_states=prompt_embeds,
|
|
|
|
|
attention_kwargs=attention_kwargs,
|
|
|
|
|
return_dict=False,
|
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance:
|
|
|
|
|
with current_model.cache_context("uncond"):
|
|
|
|
|
noise_uncond = current_model(
|
|
|
|
|
hidden_states=latent_model_input,
|
|
|
|
|
timestep=timestep,
|
|
|
|
|
encoder_hidden_states=negative_prompt_embeds,
|
|
|
|
|
attention_kwargs=attention_kwargs,
|
|
|
|
|
return_dict=False,
|
|
|
|
|
)[0]
|
|
|
|
|
noise_pred = noise_uncond + current_guidance_scale * (noise_pred - noise_uncond)
|
|
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
if callback_on_step_end is not None:
|
|
|
|
|
callback_kwargs = {}
|
|
|
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
|
|
|
callback_kwargs[k] = locals()[k]
|
|
|
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
|
|
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
|
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
|
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
|
progress_bar.update()
|
|
|
|
|
|
|
|
|
|
if XLA_AVAILABLE:
|
|
|
|
|
xm.mark_step()
|
|
|
|
|
|
|
|
|
|
self._current_timestep = None
|
|
|
|
|
|
|
|
|
|
if not output_type == "latent":
|
|
|
|
|
latents = latents.to(self.vae.dtype)
|
|
|
|
|
latents_mean = (
|
|
|
|
|
torch.tensor(self.vae.config.latents_mean)
|
|
|
|
|
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
|
|
|
|
.to(latents.device, latents.dtype)
|
|
|
|
|
)
|
|
|
|
|
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
|
|
|
|
latents.device, latents.dtype
|
|
|
|
|
)
|
|
|
|
|
latents = latents / latents_std + latents_mean
|
|
|
|
|
video = self.vae.decode(latents, return_dict=False)[0]
|
|
|
|
|
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
|
|
|
|
else:
|
|
|
|
|
video = latents
|
|
|
|
|
|
|
|
|
|
# Offload all models
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
|
return (video,)
|
|
|
|
|
|
|
|
|
|
return LucyPipelineOutput(frames=video)
|