Compare commits

...

1 Commits

Author SHA1 Message Date
DN6
ff690a1324 update 2025-12-12 11:01:36 +05:30

View File

@@ -156,38 +156,33 @@ class ModuleGroup:
finally: finally:
pinned_dict = None pinned_dict = None
def _transfer_tensor_to_device(self, tensor, source_tensor, default_stream): def _transfer_tensor_to_device(self, tensor, source_tensor):
tensor.data = source_tensor.to(self.onload_device, non_blocking=self.non_blocking) tensor.data = source_tensor.to(self.onload_device, non_blocking=self.non_blocking)
if self.record_stream:
tensor.data.record_stream(default_stream)
def _process_tensors_from_modules(self, pinned_memory=None, default_stream=None): def _process_tensors_from_modules(self, pinned_memory=None):
for group_module in self.modules: for group_module in self.modules:
for param in group_module.parameters(): for param in group_module.parameters():
source = pinned_memory[param] if pinned_memory else param.data source = pinned_memory[param] if pinned_memory else param.data
self._transfer_tensor_to_device(param, source, default_stream) self._transfer_tensor_to_device(param, source)
for buffer in group_module.buffers(): for buffer in group_module.buffers():
source = pinned_memory[buffer] if pinned_memory else buffer.data source = pinned_memory[buffer] if pinned_memory else buffer.data
self._transfer_tensor_to_device(buffer, source, default_stream) self._transfer_tensor_to_device(buffer, source)
for param in self.parameters: for param in self.parameters:
source = pinned_memory[param] if pinned_memory else param.data source = pinned_memory[param] if pinned_memory else param.data
self._transfer_tensor_to_device(param, source, default_stream) self._transfer_tensor_to_device(param, source)
for buffer in self.buffers: for buffer in self.buffers:
source = pinned_memory[buffer] if pinned_memory else buffer.data source = pinned_memory[buffer] if pinned_memory else buffer.data
self._transfer_tensor_to_device(buffer, source, default_stream) self._transfer_tensor_to_device(buffer, source)
def _onload_from_disk(self): def _onload_from_disk(self):
if self.stream is not None: if self.stream is not None:
# Wait for previous Host->Device transfer to complete
self.stream.synchronize() self.stream.synchronize()
context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream) context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream)
current_stream = self._torch_accelerator_module.current_stream() if self.record_stream else None
with context: with context:
# Load to CPU (if using streams) or directly to target device, pin, and async copy to device
device = str(self.onload_device) if self.stream is None else "cpu" device = str(self.onload_device) if self.stream is None else "cpu"
loaded_tensors = safetensors.torch.load_file(self.safetensors_file_path, device=device) loaded_tensors = safetensors.torch.load_file(self.safetensors_file_path, device=device)
@@ -195,8 +190,6 @@ class ModuleGroup:
for key, tensor_obj in self.key_to_tensor.items(): for key, tensor_obj in self.key_to_tensor.items():
pinned_tensor = loaded_tensors[key].pin_memory() pinned_tensor = loaded_tensors[key].pin_memory()
tensor_obj.data = pinned_tensor.to(self.onload_device, non_blocking=self.non_blocking) tensor_obj.data = pinned_tensor.to(self.onload_device, non_blocking=self.non_blocking)
if self.record_stream:
tensor_obj.data.record_stream(current_stream)
else: else:
onload_device = ( onload_device = (
self.onload_device.type if isinstance(self.onload_device, torch.device) else self.onload_device self.onload_device.type if isinstance(self.onload_device, torch.device) else self.onload_device
@@ -207,45 +200,57 @@ class ModuleGroup:
def _onload_from_memory(self): def _onload_from_memory(self):
if self.stream is not None: if self.stream is not None:
# Wait for previous Host->Device transfer to complete
self.stream.synchronize() self.stream.synchronize()
context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream) context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream)
default_stream = self._torch_accelerator_module.current_stream() if self.stream is not None else None
with context: with context:
if self.stream is not None: if self.stream is not None:
with self._pinned_memory_tensors() as pinned_memory: with self._pinned_memory_tensors() as pinned_memory:
self._process_tensors_from_modules(pinned_memory, default_stream=default_stream) self._process_tensors_from_modules(pinned_memory)
else: else:
self._process_tensors_from_modules(None) self._process_tensors_from_modules(None)
def _offload_to_disk(self): def _offload_to_disk(self):
# TODO: we can potentially optimize this code path by checking if the _all_ the desired
# safetensor files exist on the disk and if so, skip this step entirely, reducing IO
# overhead. Currently, we just check if the given `safetensors_file_path` exists and if not
# we perform a write.
# Check if the file has been saved in this session or if it already exists on disk.
if not self._is_offloaded_to_disk and not os.path.exists(self.safetensors_file_path): if not self._is_offloaded_to_disk and not os.path.exists(self.safetensors_file_path):
os.makedirs(os.path.dirname(self.safetensors_file_path), exist_ok=True) os.makedirs(os.path.dirname(self.safetensors_file_path), exist_ok=True)
tensors_to_save = {key: tensor.data.to(self.offload_device) for tensor, key in self.tensor_to_key.items()} tensors_to_save = {key: tensor.data.to(self.offload_device) for tensor, key in self.tensor_to_key.items()}
safetensors.torch.save_file(tensors_to_save, self.safetensors_file_path) safetensors.torch.save_file(tensors_to_save, self.safetensors_file_path)
# The group is now considered offloaded to disk for the rest of the session.
self._is_offloaded_to_disk = True self._is_offloaded_to_disk = True
# We do this to free up the RAM which is still holding the up tensor data. if self.stream is not None:
if self.record_stream:
current_stream = self._torch_accelerator_module.current_stream()
for tensor_obj in self.tensor_to_key.keys():
tensor_obj.data.record_stream(current_stream)
else:
self._torch_accelerator_module.current_stream().synchronize()
for tensor_obj in self.tensor_to_key.keys(): for tensor_obj in self.tensor_to_key.keys():
tensor_obj.data = torch.empty_like(tensor_obj.data, device=self.offload_device) tensor_obj.data = torch.empty_like(tensor_obj.data, device=self.offload_device)
def _offload_to_memory(self): def _offload_to_memory(self):
if self.stream is not None: if self.stream is not None:
if not self.record_stream: if self.record_stream:
current_stream = self._torch_accelerator_module.current_stream()
for group_module in self.modules:
for param in group_module.parameters():
param.data.record_stream(current_stream)
for buffer in group_module.buffers():
buffer.data.record_stream(current_stream)
for param in self.parameters:
param.data.record_stream(current_stream)
for buffer in self.buffers:
buffer.data.record_stream(current_stream)
else:
self._torch_accelerator_module.current_stream().synchronize() self._torch_accelerator_module.current_stream().synchronize()
for group_module in self.modules: for group_module in self.modules:
for param in group_module.parameters(): for param in group_module.parameters():
param.data = self.cpu_param_dict[param] param.data = self.cpu_param_dict[param]
for buffer in group_module.buffers():
buffer.data = self.cpu_param_dict[buffer]
for param in self.parameters: for param in self.parameters:
param.data = self.cpu_param_dict[param] param.data = self.cpu_param_dict[param]
for buffer in self.buffers: for buffer in self.buffers: