Compare commits

...

2 Commits

Author SHA1 Message Date
Dhruv Nair
700f882bc5 update 2026-02-03 10:09:28 +01:00
songkey
b712042da1 [Flux2] Fix LoRA loading for Flux2 Klein by adaptively enumerating transformer blocks (#13030)
* Resolve Flux2 Klein 4B/9B LoRA loading errors

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-02 20:36:19 +05:30
3 changed files with 299 additions and 86 deletions

View File

@@ -2321,8 +2321,14 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
prefix = "diffusion_model."
original_state_dict = {k[len(prefix) :]: v for k, v in state_dict.items()}
num_double_layers = 8
num_single_layers = 48
num_double_layers = 0
num_single_layers = 0
for key in original_state_dict.keys():
if key.startswith("single_blocks."):
num_single_layers = max(num_single_layers, int(key.split(".")[1]) + 1)
elif key.startswith("double_blocks."):
num_double_layers = max(num_double_layers, int(key.split(".")[1]) + 1)
lora_keys = ("lora_A", "lora_B")
attn_types = ("img_attn", "txt_attn")

View File

@@ -219,6 +219,10 @@ class TestFluxTransformerMemory(FluxTransformerTesterConfig, MemoryTesterMixin):
class TestFluxTransformerTraining(FluxTransformerTesterConfig, TrainingTesterMixin):
"""Training tests for Flux Transformer."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"FluxTransformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestFluxTransformerAttention(FluxTransformerTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Flux Transformer."""

View File

@@ -13,48 +13,88 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import Flux2Transformer2DModel, attention_backend
from diffusers import Flux2Transformer2DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import enable_full_determinism, torch_device
from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
ContextParallelTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
LoraHotSwappingForModelTesterMixin,
LoraTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
)
enable_full_determinism()
class Flux2TransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = Flux2Transformer2DModel
main_input_name = "hidden_states"
# We override the items here because the transformer under consideration is small.
model_split_percents = [0.7, 0.6, 0.6]
# Skip setting testing with default: AttnProcessor
uses_custom_attn_processor = True
class Flux2TransformerTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return Flux2Transformer2DModel
@property
def dummy_input(self):
return self.prepare_dummy_input()
@property
def input_shape(self):
def output_shape(self) -> tuple[int, int]:
return (16, 4)
@property
def output_shape(self):
def input_shape(self) -> tuple[int, int]:
return (16, 4)
def prepare_dummy_input(self, height=4, width=4):
@property
def model_split_percents(self) -> list:
# We override the items here because the transformer under consideration is small.
return [0.7, 0.6, 0.6]
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def uses_custom_attn_processor(self) -> bool:
# Skip setting testing with default: AttnProcessor
return True
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int]]:
return {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"timestep_guidance_channels": 256, # Hardcoded in original code
"axes_dims_rope": [4, 4, 4, 4],
}
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
batch_size = 1
num_latent_channels = 4
sequence_length = 48
embedding_dim = 32
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
hidden_states = randn_tensor(
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
@@ -82,81 +122,244 @@ class Flux2TransformerTests(ModelTesterMixin, unittest.TestCase):
"guidance": guidance,
}
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"timestep_guidance_channels": 256, # Hardcoded in original code
"axes_dims_rope": [4, 4, 4, 4],
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
class TestFlux2Transformer(Flux2TransformerTesterConfig, ModelTesterMixin):
pass
# TODO (Daniel, Sayak): We can remove this test.
def test_flux2_consistency(self, seed=0):
torch.manual_seed(seed)
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
torch.manual_seed(seed)
model = self.model_class(**init_dict)
# state_dict = model.state_dict()
# for key, param in state_dict.items():
# print(f"{key} | {param.shape}")
# torch.save(state_dict, "/raid/daniel_gu/test_flux2_params/diffusers.pt")
model.to(torch_device)
model.eval()
class TestFlux2TransformerMemory(Flux2TransformerTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Flux2 Transformer."""
with attention_backend("native"):
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
# input & output have to have the same shape
input_tensor = inputs_dict[self.main_input_name]
expected_shape = input_tensor.shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
# Check against expected slice
# fmt: off
expected_slice = torch.tensor([-0.3662, 0.4844, 0.6334, -0.3497, 0.2162, 0.0188, 0.0521, -0.2061, -0.2041, -0.0342, -0.7107, 0.4797, -0.3280, 0.7059, -0.0849, 0.4416])
# fmt: on
flat_output = output.cpu().flatten()
generated_slice = torch.cat([flat_output[:8], flat_output[-8:]])
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-4))
class TestFlux2TransformerTraining(Flux2TransformerTesterConfig, TrainingTesterMixin):
"""Training tests for Flux2 Transformer."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"Flux2Transformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class Flux2TransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = Flux2Transformer2DModel
different_shapes_for_compilation = [(4, 4), (4, 8), (8, 8)]
def prepare_init_args_and_inputs_for_common(self):
return Flux2TransformerTests().prepare_init_args_and_inputs_for_common()
def prepare_dummy_input(self, height, width):
return Flux2TransformerTests().prepare_dummy_input(height=height, width=width)
class TestFlux2TransformerAttention(Flux2TransformerTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Flux2 Transformer."""
class Flux2TransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
model_class = Flux2Transformer2DModel
different_shapes_for_compilation = [(4, 4), (4, 8), (8, 8)]
class TestFlux2TransformerContextParallel(Flux2TransformerTesterConfig, ContextParallelTesterMixin):
"""Context Parallel inference tests for Flux2 Transformer."""
def prepare_init_args_and_inputs_for_common(self):
return Flux2TransformerTests().prepare_init_args_and_inputs_for_common()
def prepare_dummy_input(self, height, width):
return Flux2TransformerTests().prepare_dummy_input(height=height, width=width)
class TestFlux2TransformerLoRA(Flux2TransformerTesterConfig, LoraTesterMixin):
"""LoRA adapter tests for Flux2 Transformer."""
class TestFlux2TransformerLoRAHotSwap(Flux2TransformerTesterConfig, LoraHotSwappingForModelTesterMixin):
"""LoRA hot-swapping tests for Flux2 Transformer."""
@property
def different_shapes_for_compilation(self):
return [(4, 4), (4, 8), (8, 8)]
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
"""Override to support dynamic height/width for LoRA hotswap tests."""
batch_size = 1
num_latent_channels = 4
sequence_length = 48
embedding_dim = 32
hidden_states = randn_tensor(
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
guidance = torch.tensor([1.0]).to(torch_device).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
class TestFlux2TransformerCompile(Flux2TransformerTesterConfig, TorchCompileTesterMixin):
@property
def different_shapes_for_compilation(self):
return [(4, 4), (4, 8), (8, 8)]
def get_dummy_inputs(self, height: int = 4, width: int = 4) -> dict[str, torch.Tensor]:
"""Override to support dynamic height/width for compilation tests."""
batch_size = 1
num_latent_channels = 4
sequence_length = 48
embedding_dim = 32
hidden_states = randn_tensor(
(batch_size, height * width, num_latent_channels), generator=self.generator, device=torch_device
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, embedding_dim), generator=self.generator, device=torch_device
)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
guidance = torch.tensor([1.0]).to(torch_device).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
class TestFlux2TransformerBitsAndBytes(Flux2TransformerTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Flux2 Transformer."""
class TestFlux2TransformerTorchAo(Flux2TransformerTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Flux2 Transformer."""
class TestFlux2TransformerGGUF(Flux2TransformerTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Flux2 Transformer."""
@property
def gguf_filename(self):
return "https://huggingface.co/unsloth/FLUX.2-dev-GGUF/blob/main/flux2-dev-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real FLUX2 model dimensions.
Flux2 defaults: in_channels=128, joint_attention_dim=15360
"""
batch_size = 1
height = 64
width = 64
sequence_length = 512
hidden_states = randn_tensor(
(batch_size, height * width, 128), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, 15360), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
# Flux2 uses 4D image/text IDs (t, h, w, l)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device, self.torch_dtype)
guidance = torch.tensor([3.5]).to(torch_device, self.torch_dtype)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}
class TestFlux2TransformerGGUFCompile(Flux2TransformerTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Flux2 Transformer."""
@property
def gguf_filename(self):
return "https://huggingface.co/unsloth/FLUX.2-dev-GGUF/blob/main/flux2-dev-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real FLUX2 model dimensions.
Flux2 defaults: in_channels=128, joint_attention_dim=15360
"""
batch_size = 1
height = 64
width = 64
sequence_length = 512
hidden_states = randn_tensor(
(batch_size, height * width, 128), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
encoder_hidden_states = randn_tensor(
(batch_size, sequence_length, 15360), generator=self.generator, device=torch_device, dtype=self.torch_dtype
)
# Flux2 uses 4D image/text IDs (t, h, w, l)
t_coords = torch.arange(1)
h_coords = torch.arange(height)
w_coords = torch.arange(width)
l_coords = torch.arange(1)
image_ids = torch.cartesian_prod(t_coords, h_coords, w_coords, l_coords)
image_ids = image_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
text_t_coords = torch.arange(1)
text_h_coords = torch.arange(1)
text_w_coords = torch.arange(1)
text_l_coords = torch.arange(sequence_length)
text_ids = torch.cartesian_prod(text_t_coords, text_h_coords, text_w_coords, text_l_coords)
text_ids = text_ids.unsqueeze(0).expand(batch_size, -1, -1).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device, self.torch_dtype)
guidance = torch.tensor([3.5]).to(torch_device, self.torch_dtype)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
"guidance": guidance,
}