Compare commits

...

3 Commits

Author SHA1 Message Date
Sayak Paul
8902bba118 Merge branch 'main' into xfail-failing-tests-pipeline 2025-05-01 17:19:23 +05:30
Sayak Paul
d59ecfcf85 Merge branch 'main' into xfail-failing-tests-pipeline 2025-05-01 11:26:13 +08:00
sayakpaul
305cd2f909 xfail recent pipeline tests for specific methods. 2025-04-30 20:09:22 +08:00
2 changed files with 14 additions and 1 deletions

View File

@@ -18,6 +18,7 @@ import gc
import unittest
import numpy as np
import pytest
import torch
from transformers import (
ClapAudioConfig,
@@ -44,7 +45,7 @@ from diffusers import (
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils.testing_utils import enable_full_determinism, nightly, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, is_torch_version, nightly, torch_device
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
@@ -474,6 +475,11 @@ class AudioLDM2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
# increase tolerance from 1e-4 -> 3e-4 to account for large composite model
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-4)
@pytest.mark.xfail(
condition=is_torch_version(">=", "2.7"),
reason="Test currently fails on PyTorch 2.7.",
strict=False,
)
def test_inference_batch_single_identical(self):
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
self._test_inference_batch_single_identical(expected_max_diff=2e-4)

View File

@@ -18,6 +18,7 @@ import random
import unittest
import numpy as np
import pytest
import torch
from transformers import (
CLIPImageProcessor,
@@ -39,6 +40,7 @@ from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
floats_tensor,
is_torch_version,
numpy_cosine_similarity_distance,
require_torch_accelerator,
skip_mps,
@@ -180,6 +182,11 @@ class I2VGenXLPipelineFastTests(SDFunctionTesterMixin, PipelineTesterMixin, unit
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@pytest.mark.xfail(
condition=is_torch_version(">=", "2.7"),
reason="Test currently fails on PyTorch 2.7.",
strict=False,
)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=0.006)