Compare commits

...

11 Commits

Author SHA1 Message Date
Patrick von Platen
5e80827369 quick fix to make sure sdxl conversion works 2023-07-11 18:54:48 +02:00
Patrick von Platen
6894056e46 Release: v0.18.2 2023-07-11 18:38:27 +02:00
oOraph
c4402daff1 keep _use_default_values as a list type (#4040)
Signed-off-by: Raphael <oOraph@users.noreply.github.com>
Co-authored-by: Raphael <oOraph@users.noreply.github.com>
2023-07-11 18:30:30 +02:00
Patrick von Platen
a2fa787121 Improve single loading file (#4041)
* start improving single file load

* Fix more

* start improving single file load

* Fix sd 2.1

* further improve from_single_file
2023-07-11 18:30:25 +02:00
Lucain
ad7befeb2f FIX force_download in download utility (#4036)
FIX force_download in download utils
2023-07-11 18:30:17 +02:00
Pedro Cuenca
1f392ad45b Remove remaining not in upscale pipeline (#4020)
Remove remaining `not` in upscale pipeline.
2023-07-11 18:30:04 +02:00
Sayak Paul
fe5034c540 minor improvements to the SDXL doc. (#3985)
* minor improvements to the SDXL doc.

* use_refiner variable.

* fix: typo.
2023-07-11 18:29:54 +02:00
Pedro Cuenca
0f5e6454dc Correctly keep vae in float16 when using PyTorch 2 or xFormers (#4019)
* Update pipeline_stable_diffusion_xl.py

fix a bug

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_xl_img2img.py

* Update pipeline_stable_diffusion_upscale.py

* style

---------

Co-authored-by: Hu Ye <xiaohuzc@gmail.com>
2023-07-11 18:29:41 +02:00
Patrick von Platen
638d2bbcd9 [DiffusionPipeline] Deprecate not throwing error when loading non-existant variant (#4011)
* Deprecate variant nicely

* make style

* Apply suggestions from code review

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Apply suggestions from code review

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2023-07-11 18:29:32 +02:00
Patrick von Platen
4dfcfaa137 Make sure torch compile doesn't access unet config (#4008) 2023-07-11 18:29:19 +02:00
Patrick von Platen
1c0f6bb2cf Release: v0.18.1 2023-07-07 16:54:13 +02:00
28 changed files with 278 additions and 80 deletions

View File

@@ -21,7 +21,7 @@ The abstract of the paper is the following:
## Tips
- Stable Diffusion XL works especially well with images between 768 and 1024.
- Stable Diffusion XL output image can be improved by making use of a refiner as shown below
- Stable Diffusion XL output image can be improved by making use of a refiner as shown below.
### Available checkpoints:
@@ -40,7 +40,7 @@ pip install safetensors
pip install invisible-watermark>=2.0
```
### *Text-to-Image*
### Text-to-Image
You can use SDXL as follows for *text-to-image*:
@@ -71,6 +71,7 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
)
pipe.to("cuda")
use_refiner = True
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
)
@@ -82,7 +83,29 @@ image = pipe(prompt=prompt, output_type="latent" if use_refiner else "pil").imag
image = refiner(prompt=prompt, image=image[None, :]).images[0]
```
### Loading single file checkpoitns / original file format
### Image-to-image
```py
import torch
from diffusers import StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
init_image = load_image(url).convert("RGB")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt, image=init_image).images[0]
```
| Original Image | Refined Image |
|---|---|
| ![](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/sd_xl/init_image.png) | ![](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/sd_xl/refined_image.png) |
### Loading single file checkpoints / original file format
By making use of [`~diffusers.loaders.FromSingleFileMixin.from_single_file`] you can also load the
original file format into `diffusers`:
@@ -127,7 +150,7 @@ You can speed up inference by making use of `torch.compile`. This should give yo
+ refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
```
### Running with `torch` < 2.0
### Running with `torch` \< 2.0
**Note** that if you want to run Stable Diffusion XL with `torch` < 2.0, please make sure to enable xformers
attention:

View File

@@ -56,7 +56,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__)

View File

@@ -59,7 +59,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = logging.getLogger(__name__)

View File

@@ -57,7 +57,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__)

View File

@@ -59,7 +59,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__)

View File

@@ -36,7 +36,7 @@ from diffusers.utils import check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
# Cache compiled models across invocations of this script.
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache"))

View File

@@ -65,7 +65,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__)

View File

@@ -52,7 +52,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__, log_level="INFO")

View File

@@ -54,7 +54,7 @@ if is_wandb_available():
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__, log_level="INFO")

View File

@@ -33,7 +33,7 @@ from diffusers.utils import check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = logging.getLogger(__name__)

View File

@@ -48,7 +48,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__, log_level="INFO")

View File

@@ -78,7 +78,7 @@ else:
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__)

View File

@@ -56,7 +56,7 @@ else:
# ------------------------------------------------------------------------------
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = logging.getLogger(__name__)

View File

@@ -29,7 +29,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
check_min_version("0.18.0")
logger = get_logger(__name__, log_level="INFO")

View File

@@ -232,7 +232,7 @@ install_requires = [
setup(
name="diffusers",
version="0.18.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="0.18.2", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="Diffusers",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",

View File

@@ -1,4 +1,4 @@
__version__ = "0.18.0.dev0"
__version__ = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (

View File

@@ -607,7 +607,7 @@ def register_to_config(init):
# Take note of the parameters that were not present in the loaded config
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
new_kwargs["_use_default_values"] = set(new_kwargs.keys()) - set(init_kwargs)
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
new_kwargs = {**config_init_kwargs, **new_kwargs}
getattr(self, "register_to_config")(**new_kwargs)
@@ -655,7 +655,7 @@ def flax_register_to_config(cls):
# Take note of the parameters that were not present in the loaded config
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
new_kwargs["_use_default_values"] = set(new_kwargs.keys()) - set(init_kwargs)
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
getattr(self, "register_to_config")(**new_kwargs)
original_init(self, *args, **kwargs)

View File

@@ -1394,7 +1394,7 @@ class FromSingleFileMixin:
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", 512)
image_size = kwargs.pop("image_size", None)
scheduler_type = kwargs.pop("scheduler_type", "pndm")
num_in_channels = kwargs.pop("num_in_channels", None)
upcast_attention = kwargs.pop("upcast_attention", None)

View File

@@ -1213,6 +1213,15 @@ class DiffusionPipeline(ConfigMixin):
filenames = {sibling.rfilename for sibling in info.siblings}
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)
if len(variant_filenames) == 0 and variant is not None:
deprecation_message = (
f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
"if such variant modeling files are not available. Doing so will lead to an error in v0.22.0 as defaulting to non-variant"
"modeling files is deprecated."
)
deprecate("no variant default", "0.22.0", deprecation_message, standard_warn=False)
# remove ignored filenames
model_filenames = set(model_filenames) - set(ignore_filenames)
variant_filenames = set(variant_filenames) - set(ignore_filenames)
@@ -1302,7 +1311,7 @@ class DiffusionPipeline(ConfigMixin):
snapshot_folder = Path(config_file).parent
pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
if pipeline_is_cached:
if pipeline_is_cached and not force_download:
# if the pipeline is cached, we can directly return it
# else call snapshot_download
return snapshot_folder

View File

@@ -24,6 +24,7 @@ from transformers import (
AutoFeatureExtractor,
BertTokenizerFast,
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
@@ -48,7 +49,7 @@ from ...schedulers import (
PNDMScheduler,
UnCLIPScheduler,
)
from ...utils import is_omegaconf_available, is_safetensors_available, logging
from ...utils import is_accelerate_available, is_omegaconf_available, is_safetensors_available, logging
from ...utils.import_utils import BACKENDS_MAPPING
from ..latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
from ..paint_by_example import PaintByExampleImageEncoder
@@ -57,6 +58,10 @@ from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -770,11 +775,12 @@ def convert_ldm_bert_checkpoint(checkpoint, config):
def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder=None):
text_model = (
CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", local_files_only=local_files_only)
if text_encoder is None
else text_encoder
)
if text_encoder is None:
config_name = "openai/clip-vit-large-patch14"
config = CLIPTextConfig.from_pretrained(config_name)
with init_empty_weights():
text_model = CLIPTextModel(config)
keys = list(checkpoint.keys())
@@ -787,7 +793,8 @@ def convert_ldm_clip_checkpoint(checkpoint, local_files_only=False, text_encoder
if key.startswith(prefix):
text_model_dict[key[len(prefix + ".") :]] = checkpoint[key]
text_model.load_state_dict(text_model_dict)
for param_name, param in text_model_dict.items():
set_module_tensor_to_device(text_model, param_name, "cpu", value=param)
return text_model
@@ -884,14 +891,26 @@ def convert_paint_by_example_checkpoint(checkpoint):
return model
def convert_open_clip_checkpoint(checkpoint, prefix="cond_stage_model.model."):
def convert_open_clip_checkpoint(
checkpoint, config_name, prefix="cond_stage_model.model.", has_projection=False, **config_kwargs
):
# text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
text_model = CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", projection_dim=1280
)
# text_model = CLIPTextModelWithProjection.from_pretrained(
# "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", projection_dim=1280
# )
config = CLIPTextConfig.from_pretrained(config_name, **config_kwargs)
with init_empty_weights():
text_model = CLIPTextModelWithProjection(config) if has_projection else CLIPTextModel(config)
keys = list(checkpoint.keys())
keys_to_ignore = []
if config_name == "stabilityai/stable-diffusion-2" and config.num_hidden_layers == 23:
# make sure to remove all keys > 22
keys_to_ignore += [k for k in keys if k.startswith("cond_stage_model.model.transformer.resblocks.23")]
keys_to_ignore += ["cond_stage_model.model.text_projection"]
text_model_dict = {}
if prefix + "text_projection" in checkpoint:
@@ -902,8 +921,8 @@ def convert_open_clip_checkpoint(checkpoint, prefix="cond_stage_model.model."):
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
for key in keys:
# if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
# continue
if key in keys_to_ignore:
continue
if key[len(prefix) :] in textenc_conversion_map:
if key.endswith("text_projection"):
value = checkpoint[key].T
@@ -931,7 +950,8 @@ def convert_open_clip_checkpoint(checkpoint, prefix="cond_stage_model.model."):
text_model_dict[new_key] = checkpoint[key]
text_model.load_state_dict(text_model_dict)
for param_name, param in text_model_dict.items():
set_module_tensor_to_device(text_model, param_name, "cpu", value=param)
return text_model
@@ -1061,7 +1081,7 @@ def convert_controlnet_checkpoint(
def download_from_original_stable_diffusion_ckpt(
checkpoint_path: str,
original_config_file: str = None,
image_size: int = 512,
image_size: Optional[int] = None,
prediction_type: str = None,
model_type: str = None,
extract_ema: bool = False,
@@ -1144,6 +1164,7 @@ def download_from_original_stable_diffusion_ckpt(
LDMTextToImagePipeline,
PaintByExamplePipeline,
StableDiffusionControlNetPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLPipeline,
@@ -1166,12 +1187,9 @@ def download_from_original_stable_diffusion_ckpt(
if not is_safetensors_available():
raise ValueError(BACKENDS_MAPPING["safetensors"][1])
from safetensors import safe_open
from safetensors.torch import load_file as safe_load
checkpoint = {}
with safe_open(checkpoint_path, framework="pt", device="cpu") as f:
for key in f.keys():
checkpoint[key] = f.get_tensor(key)
checkpoint = safe_load(checkpoint_path, device="cpu")
else:
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -1183,7 +1201,7 @@ def download_from_original_stable_diffusion_ckpt(
if "global_step" in checkpoint:
global_step = checkpoint["global_step"]
else:
logger.warning("global_step key not found in model")
logger.debug("global_step key not found in model")
global_step = None
# NOTE: this while loop isn't great but this controlnet checkpoint has one additional
@@ -1230,8 +1248,15 @@ def download_from_original_stable_diffusion_ckpt(
model_type = "SDXL"
else:
model_type = "SDXL-Refiner"
if image_size is None:
image_size = 1024
if num_in_channels is not None:
if num_in_channels is None and pipeline_class == StableDiffusionInpaintPipeline:
num_in_channels = 9
elif num_in_channels is None:
num_in_channels = 4
if "unet_config" in original_config.model.params:
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
if (
@@ -1263,7 +1288,6 @@ def download_from_original_stable_diffusion_ckpt(
num_train_timesteps = getattr(original_config.model.params, "timesteps", None) or 1000
if model_type in ["SDXL", "SDXL-Refiner"]:
image_size = 1024
scheduler_dict = {
"beta_schedule": "scaled_linear",
"beta_start": 0.00085,
@@ -1279,7 +1303,6 @@ def download_from_original_stable_diffusion_ckpt(
}
scheduler = EulerDiscreteScheduler.from_config(scheduler_dict)
scheduler_type = "euler"
vae_path = "stabilityai/sdxl-vae"
else:
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
@@ -1318,25 +1341,45 @@ def download_from_original_stable_diffusion_ckpt(
# Convert the UNet2DConditionModel model.
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
unet_config["upcast_attention"] = upcast_attention
unet = UNet2DConditionModel(**unet_config)
with init_empty_weights():
unet = UNet2DConditionModel(**unet_config)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
)
unet.load_state_dict(converted_unet_checkpoint)
for param_name, param in converted_unet_checkpoint.items():
set_module_tensor_to_device(unet, param_name, "cpu", value=param)
# Convert the VAE model.
if vae_path is None:
vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
vae = AutoencoderKL(**vae_config)
vae.load_state_dict(converted_vae_checkpoint)
if (
"model" in original_config
and "params" in original_config.model
and "scale_factor" in original_config.model.params
):
vae_scaling_factor = original_config.model.params.scale_factor
else:
vae_scaling_factor = 0.18215 # default SD scaling factor
vae_config["scaling_factor"] = vae_scaling_factor
with init_empty_weights():
vae = AutoencoderKL(**vae_config)
for param_name, param in converted_vae_checkpoint.items():
set_module_tensor_to_device(vae, param_name, "cpu", value=param)
else:
vae = AutoencoderKL.from_pretrained(vae_path)
if model_type == "FrozenOpenCLIPEmbedder":
text_model = convert_open_clip_checkpoint(checkpoint)
config_name = "stabilityai/stable-diffusion-2"
config_kwargs = {"subfolder": "text_encoder"}
text_model = convert_open_clip_checkpoint(checkpoint, config_name, **config_kwargs)
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2", subfolder="tokenizer")
if stable_unclip is None:
@@ -1469,7 +1512,12 @@ def download_from_original_stable_diffusion_ckpt(
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = convert_ldm_clip_checkpoint(checkpoint, local_files_only=local_files_only)
tokenizer_2 = CLIPTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!")
text_encoder_2 = convert_open_clip_checkpoint(checkpoint, prefix="conditioner.embedders.1.model.")
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
config_kwargs = {"projection_dim": 1280}
text_encoder_2 = convert_open_clip_checkpoint(
checkpoint, config_name, prefix="conditioner.embedders.1.model.", has_projection=True, **config_kwargs
)
pipe = StableDiffusionXLPipeline(
vae=vae,
@@ -1485,7 +1533,12 @@ def download_from_original_stable_diffusion_ckpt(
tokenizer = None
text_encoder = None
tokenizer_2 = CLIPTokenizer.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", pad_token="!")
text_encoder_2 = convert_open_clip_checkpoint(checkpoint, prefix="conditioner.embedders.0.model.")
config_name = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
config_kwargs = {"projection_dim": 1280}
text_encoder_2 = convert_open_clip_checkpoint(
checkpoint, config_name, prefix="conditioner.embedders.0.model.", has_projection=True, **config_kwargs
)
pipe = StableDiffusionXLImg2ImgPipeline(
vae=vae,

View File

@@ -24,7 +24,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from ...configuration_utils import FrozenDict
from ...image_processor import VaeImageProcessor
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import deprecate, is_accelerate_available, is_accelerate_version, logging, randn_tensor
@@ -153,7 +153,9 @@ def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool
return mask, masked_image
class StableDiffusionInpaintPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
class StableDiffusionInpaintPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
):
r"""
Pipeline for text-guided image inpainting using Stable Diffusion.

View File

@@ -748,15 +748,19 @@ class StableDiffusionUpscalePipeline(DiffusionPipeline, TextualInversionLoaderMi
# make sure the VAE is in float32 mode, as it overflows in float16
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
]
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if not use_torch_2_0_or_xformers:
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(latents.dtype)
self.vae.decoder.conv_in.to(latents.dtype)
self.vae.decoder.mid_block.to(latents.dtype)

View File

@@ -129,6 +129,7 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin):
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size
self.watermark = StableDiffusionXLWatermarker()
@@ -652,8 +653,8 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin):
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
@@ -785,15 +786,18 @@ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin):
# make sure the VAE is in float32 mode, as it overflows in float16
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
]
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if not use_torch_2_0_or_xformers:
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(latents.dtype)
self.vae.decoder.conv_in.to(latents.dtype)
self.vae.decoder.mid_block.to(latents.dtype)

View File

@@ -859,15 +859,18 @@ class StableDiffusionXLImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin):
# make sure the VAE is in float32 mode, as it overflows in float16
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = self.vae.decoder.mid_block.attentions[0].processor in [
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
]
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if not use_torch_2_0_or_xformers:
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(latents.dtype)
self.vae.decoder.conv_in.to(latents.dtype)
self.vae.decoder.mid_block.to(latents.dtype)

View File

@@ -264,7 +264,7 @@ class ConfigTester(unittest.TestCase):
config_dict = {k: v for k, v in config.config.items() if not k.startswith("_")}
# make sure that default config has all keys in `_use_default_values`
assert set(config_dict.keys()) == config.config._use_default_values
assert set(config_dict.keys()) == set(config.config._use_default_values)
with tempfile.TemporaryDirectory() as tmpdirname:
config.save_config(tmpdirname)

View File

@@ -20,17 +20,20 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
from diffusers.utils.testing_utils import (
@@ -512,6 +515,42 @@ class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
assert np.abs(expected_slice - image_slice).max() < 6e-4
def test_download_local(self):
filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 1
image_out = pipe(**inputs).images[0]
assert image_out.shape == (512, 512, 3)
def test_download_ckpt_diff_format_is_same(self):
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"
pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 5
image_ckpt = pipe(**inputs).images[0]
pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 5
image = pipe(**inputs).images[0]
assert np.max(np.abs(image - image_ckpt)) < 1e-4
@nightly
@require_torch_gpu

View File

@@ -19,6 +19,7 @@ import unittest
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
@@ -29,6 +30,7 @@ from diffusers import (
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.models.attention_processor import AttnProcessor
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
@@ -426,6 +428,40 @@ class StableDiffusion2VPredictionPipelineIntegrationTests(unittest.TestCase):
assert image.shape == (768, 768, 3)
assert np.abs(expected_image - image).max() < 7.5e-1
def test_download_local(self):
filename = hf_hub_download("stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.safetensors")
pipe = StableDiffusionPipeline.from_single_file(filename, torch_dtype=torch.float16)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]
assert image_out.shape == (768, 768, 3)
def test_download_ckpt_diff_format_is_same(self):
single_file_path = (
"https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors"
)
pipe_single = StableDiffusionPipeline.from_single_file(single_file_path)
pipe_single.scheduler = DDIMScheduler.from_config(pipe_single.scheduler.config)
pipe_single.unet.set_attn_processor(AttnProcessor())
pipe_single.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image_ckpt = pipe_single("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.set_attn_processor(AttnProcessor())
pipe.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(0)
image = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]
assert np.max(np.abs(image - image_ckpt)) < 1e-3
def test_stable_diffusion_text2img_intermediate_state_v_pred(self):
number_of_steps = 0

View File

@@ -14,6 +14,7 @@
# limitations under the License.
import gc
import glob
import json
import os
import random
@@ -56,6 +57,7 @@ from diffusers import (
UniPCMultistepScheduler,
logging,
)
from diffusers.pipelines.pipeline_utils import variant_compatible_siblings
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import (
CONFIG_NAME,
@@ -1361,6 +1363,29 @@ class PipelineFastTests(unittest.TestCase):
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
def test_warning_no_variant_available(self):
variant = "fp16"
with self.assertWarns(FutureWarning) as warning_context:
cached_folder = StableDiffusionPipeline.download(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
)
assert "but no such modeling files are available" in str(warning_context.warning)
assert variant in str(warning_context.warning)
def get_all_filenames(directory):
filenames = glob.glob(directory + "/**", recursive=True)
filenames = [f for f in filenames if os.path.isfile(f)]
return filenames
filenames = get_all_filenames(str(cached_folder))
all_model_files, variant_model_files = variant_compatible_siblings(filenames, variant=variant)
# make sure that none of the model names are variant model names
assert len(variant_model_files) == 0
assert len(all_model_files) > 0
@slow
@require_torch_gpu