mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 04:54:47 +08:00
Compare commits
1 Commits
poc_branch
...
add-compon
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
44fb2fd6ae |
365
src/diffusers/pipelines/components_manager.py
Normal file
365
src/diffusers/pipelines/components_manager.py
Normal file
@@ -0,0 +1,365 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import OrderedDict
|
||||
from itertools import combinations
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from ..utils import (
|
||||
is_accelerate_available,
|
||||
logging,
|
||||
)
|
||||
|
||||
|
||||
if is_accelerate_available():
|
||||
from accelerate.hooks import ModelHook, add_hook_to_module, remove_hook_from_module
|
||||
from accelerate.state import PartialState
|
||||
from accelerate.utils import send_to_device
|
||||
from accelerate.utils.memory import clear_device_cache
|
||||
from accelerate.utils.modeling import convert_file_size_to_int
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# YiYi Notes: copied from modeling_utils.py (decide later where to put this)
|
||||
def get_memory_footprint(self, return_buffers=True):
|
||||
r"""
|
||||
Get the memory footprint of a model. This will return the memory footprint of the current model in bytes. Useful to
|
||||
benchmark the memory footprint of the current model and design some tests. Solution inspired from the PyTorch
|
||||
discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
|
||||
|
||||
Arguments:
|
||||
return_buffers (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers are
|
||||
tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch norm
|
||||
layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
|
||||
"""
|
||||
mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
|
||||
if return_buffers:
|
||||
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
|
||||
mem = mem + mem_bufs
|
||||
return mem
|
||||
|
||||
|
||||
class CustomOffloadHook(ModelHook):
|
||||
"""
|
||||
A hook that offloads a model on the CPU until its forward pass is called. It ensures the model and its inputs are
|
||||
on the given device. Optionally offloads other models to the CPU before the forward pass is called.
|
||||
|
||||
Args:
|
||||
execution_device(`str`, `int` or `torch.device`, *optional*):
|
||||
The device on which the model should be executed. Will default to the MPS device if it's available, then
|
||||
GPU 0 if there is a GPU, and finally to the CPU.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
execution_device: Optional[Union[str, int, torch.device]] = None,
|
||||
other_hooks: Optional[List["UserCustomOffloadHook"]] = None,
|
||||
offload_strategy: Optional["AutoOffloadStrategy"] = None,
|
||||
):
|
||||
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
|
||||
self.other_hooks = other_hooks
|
||||
self.offload_strategy = offload_strategy
|
||||
self.model_id = None
|
||||
|
||||
def set_strategy(self, offload_strategy: "AutoOffloadStrategy"):
|
||||
self.offload_strategy = offload_strategy
|
||||
|
||||
def add_other_hook(self, hook: "UserCustomOffloadHook"):
|
||||
"""
|
||||
Add a hook to the list of hooks to consider for offloading.
|
||||
"""
|
||||
if self.other_hooks is None:
|
||||
self.other_hooks = []
|
||||
self.other_hooks.append(hook)
|
||||
|
||||
def init_hook(self, module):
|
||||
return module.to("cpu")
|
||||
|
||||
def pre_forward(self, module, *args, **kwargs):
|
||||
if module.device != self.execution_device:
|
||||
if self.other_hooks is not None:
|
||||
hooks_to_offload = [hook for hook in self.other_hooks if hook.model.device == self.execution_device]
|
||||
# offload all other hooks
|
||||
import time
|
||||
|
||||
# YiYi Notes: only logging time for now to monitor the overhead of offloading strategy (remove later)
|
||||
start_time = time.perf_counter()
|
||||
if self.offload_strategy is not None:
|
||||
hooks_to_offload = self.offload_strategy(
|
||||
hooks=hooks_to_offload,
|
||||
model_id=self.model_id,
|
||||
model=module,
|
||||
execution_device=self.execution_device,
|
||||
)
|
||||
end_time = time.perf_counter()
|
||||
logger.info(
|
||||
f" time taken to apply offload strategy for {self.model_id}: {(end_time - start_time):.2f} seconds"
|
||||
)
|
||||
|
||||
for hook in hooks_to_offload:
|
||||
logger.info(
|
||||
f"moving {self.model_id} to {self.execution_device}, offloading {hook.model_id} to cpu"
|
||||
)
|
||||
hook.offload()
|
||||
|
||||
if hooks_to_offload:
|
||||
clear_device_cache()
|
||||
module.to(self.execution_device)
|
||||
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
|
||||
|
||||
|
||||
class UserCustomOffloadHook:
|
||||
"""
|
||||
A simple hook grouping a model and a `CustomOffloadHook`, which provides easy APIs for to call the init method of
|
||||
the hook or remove it entirely.
|
||||
"""
|
||||
|
||||
def __init__(self, model_id, model, hook):
|
||||
self.model_id = model_id
|
||||
self.model = model
|
||||
self.hook = hook
|
||||
|
||||
def offload(self):
|
||||
self.hook.init_hook(self.model)
|
||||
|
||||
def attach(self):
|
||||
add_hook_to_module(self.model, self.hook)
|
||||
self.hook.model_id = self.model_id
|
||||
|
||||
def remove(self):
|
||||
remove_hook_from_module(self.model)
|
||||
self.hook.model_id = None
|
||||
|
||||
def add_other_hook(self, hook: "UserCustomOffloadHook"):
|
||||
self.hook.add_other_hook(hook)
|
||||
|
||||
|
||||
def custom_offload_with_hook(
|
||||
model_id: str,
|
||||
model: torch.nn.Module,
|
||||
execution_device: Union[str, int, torch.device] = None,
|
||||
offload_strategy: Optional["AutoOffloadStrategy"] = None,
|
||||
):
|
||||
hook = CustomOffloadHook(execution_device=execution_device, offload_strategy=offload_strategy)
|
||||
user_hook = UserCustomOffloadHook(model_id=model_id, model=model, hook=hook)
|
||||
user_hook.attach()
|
||||
return user_hook
|
||||
|
||||
|
||||
class AutoOffloadStrategy:
|
||||
"""
|
||||
Offload strategy that should be used with `CustomOffloadHook` to automatically offload models to the CPU based on
|
||||
the available memory on the device.
|
||||
"""
|
||||
|
||||
def __init__(self, memory_reserve_margin="3GB"):
|
||||
self.memory_reserve_margin = convert_file_size_to_int(memory_reserve_margin)
|
||||
|
||||
def __call__(self, hooks, model_id, model, execution_device):
|
||||
if len(hooks) == 0:
|
||||
return []
|
||||
|
||||
current_module_size = get_memory_footprint(model)
|
||||
|
||||
mem_on_device = torch.cuda.mem_get_info(execution_device.index)[0]
|
||||
mem_on_device = mem_on_device - self.memory_reserve_margin
|
||||
if current_module_size < mem_on_device:
|
||||
return []
|
||||
|
||||
min_memory_offload = current_module_size - mem_on_device
|
||||
logger.info(f" search for models to offload in order to free up {min_memory_offload / 1024**3:.2f} GB memory")
|
||||
|
||||
# exlucde models that's not currently loaded on the device
|
||||
module_sizes = dict(
|
||||
sorted(
|
||||
{hook.model_id: get_memory_footprint(hook.model) for hook in hooks}.items(),
|
||||
key=lambda x: x[1],
|
||||
reverse=True,
|
||||
)
|
||||
)
|
||||
|
||||
def search_best_candidate(module_sizes, min_memory_offload):
|
||||
"""
|
||||
search the optimal combination of models to offload to cpu, given a dictionary of module sizes and a
|
||||
minimum memory offload size. the combination of models should add up to the smallest modulesize that is
|
||||
larger than `min_memory_offload`
|
||||
"""
|
||||
model_ids = list(module_sizes.keys())
|
||||
best_candidate = None
|
||||
best_size = float("inf")
|
||||
for r in range(1, len(model_ids) + 1):
|
||||
for candidate_model_ids in combinations(model_ids, r):
|
||||
candidate_size = sum(
|
||||
module_sizes[candidate_model_id] for candidate_model_id in candidate_model_ids
|
||||
)
|
||||
if candidate_size < min_memory_offload:
|
||||
continue
|
||||
else:
|
||||
if best_candidate is None or candidate_size < best_size:
|
||||
best_candidate = candidate_model_ids
|
||||
best_size = candidate_size
|
||||
|
||||
return best_candidate
|
||||
|
||||
best_offload_model_ids = search_best_candidate(module_sizes, min_memory_offload)
|
||||
|
||||
if best_offload_model_ids is None:
|
||||
# if no combination is found, meaning that we cannot meet the memory requirement, offload all models
|
||||
logger.warning("no combination of models to offload to cpu is found, offloading all models")
|
||||
hooks_to_offload = hooks
|
||||
else:
|
||||
hooks_to_offload = [hook for hook in hooks if hook.model_id in best_offload_model_ids]
|
||||
|
||||
return hooks_to_offload
|
||||
|
||||
|
||||
class ComponentsManager:
|
||||
def __init__(self):
|
||||
self.components = OrderedDict()
|
||||
self.model_hooks = None
|
||||
self._auto_offload_enabled = False
|
||||
|
||||
def add(self, name, component):
|
||||
if name not in self.components:
|
||||
self.components[name] = component
|
||||
if self._auto_offload_enabled:
|
||||
self.enable_auto_cpu_offload(self._auto_offload_device)
|
||||
|
||||
def remove(self, name):
|
||||
self.components.pop(name)
|
||||
if self._auto_offload_enabled:
|
||||
self.enable_auto_cpu_offload(self._auto_offload_device)
|
||||
|
||||
def get(self, names: Union[str, List[str]]):
|
||||
if isinstance(names, str):
|
||||
if names not in self.components:
|
||||
raise ValueError(f"Component '{names}' not found in ComponentsManager")
|
||||
return self.components[names]
|
||||
elif isinstance(names, list):
|
||||
return {n: self.components[n] for n in names}
|
||||
else:
|
||||
raise ValueError(f"Invalid type for names: {type(names)}")
|
||||
|
||||
def enable_auto_cpu_offload(self, device, memory_reserve_margin="3GB"):
|
||||
for name, component in self.components.items():
|
||||
if isinstance(component, torch.nn.Module) and hasattr(component, "_hf_hook"):
|
||||
remove_hook_from_module(component, recurse=True)
|
||||
|
||||
self.disable_auto_cpu_offload()
|
||||
offload_strategy = AutoOffloadStrategy(memory_reserve_margin=memory_reserve_margin)
|
||||
device = torch.device(device)
|
||||
if device.index is None:
|
||||
device = torch.device(f"{device.type}:{0}")
|
||||
all_hooks = []
|
||||
for name, component in self.components.items():
|
||||
if isinstance(component, torch.nn.Module):
|
||||
hook = custom_offload_with_hook(name, component, device, offload_strategy=offload_strategy)
|
||||
all_hooks.append(hook)
|
||||
|
||||
for hook in all_hooks:
|
||||
other_hooks = [h for h in all_hooks if h is not hook]
|
||||
for other_hook in other_hooks:
|
||||
if other_hook.hook.execution_device == hook.hook.execution_device:
|
||||
hook.add_other_hook(other_hook)
|
||||
|
||||
self.model_hooks = all_hooks
|
||||
self._auto_offload_enabled = True
|
||||
self._auto_offload_device = device
|
||||
|
||||
def disable_auto_cpu_offload(self):
|
||||
if self.model_hooks is None:
|
||||
self._auto_offload_enabled = False
|
||||
return
|
||||
|
||||
for hook in self.model_hooks:
|
||||
hook.offload()
|
||||
hook.remove()
|
||||
if self.model_hooks:
|
||||
clear_device_cache()
|
||||
self.model_hooks = None
|
||||
self._auto_offload_enabled = False
|
||||
|
||||
def __repr__(self):
|
||||
col_widths = {
|
||||
"id": max(15, max(len(id) for id in self.components.keys())),
|
||||
"class": max(25, max(len(component.__class__.__name__) for component in self.components.values())),
|
||||
"device": 10,
|
||||
"dtype": 15,
|
||||
"size": 10,
|
||||
}
|
||||
|
||||
# Create the header lines
|
||||
sep_line = "=" * (sum(col_widths.values()) + len(col_widths) * 3 - 1) + "\n"
|
||||
dash_line = "-" * (sum(col_widths.values()) + len(col_widths) * 3 - 1) + "\n"
|
||||
|
||||
output = "Components:\n" + sep_line
|
||||
|
||||
# Separate components into models and others
|
||||
models = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}
|
||||
others = {k: v for k, v in self.components.items() if not isinstance(v, torch.nn.Module)}
|
||||
|
||||
# Models section
|
||||
if models:
|
||||
output += "Models:\n" + dash_line
|
||||
# Column headers
|
||||
output += f"{'Model ID':<{col_widths['id']}} | {'Class':<{col_widths['class']}} | "
|
||||
output += f"{'Device':<{col_widths['device']}} | {'Dtype':<{col_widths['dtype']}} | Size (GB) \n"
|
||||
output += dash_line
|
||||
|
||||
# Model entries
|
||||
for name, component in models.items():
|
||||
device = component.device
|
||||
dtype = component.dtype
|
||||
size_bytes = get_memory_footprint(component)
|
||||
size_gb = size_bytes / (1024**3)
|
||||
|
||||
output += f"{name:<{col_widths['id']}} | {component.__class__.__name__:<{col_widths['class']}} | "
|
||||
output += (
|
||||
f"{str(device):<{col_widths['device']}} | {str(dtype):<{col_widths['dtype']}} | {size_gb:.2f}\n"
|
||||
)
|
||||
output += dash_line
|
||||
|
||||
# Other components section
|
||||
if others:
|
||||
if models: # Add extra newline if we had models section
|
||||
output += "\n"
|
||||
output += "Other Components:\n" + dash_line
|
||||
# Column headers for other components
|
||||
output += f"{'Component ID':<{col_widths['id']}} | {'Class':<{col_widths['class']}}\n"
|
||||
output += dash_line
|
||||
|
||||
# Other component entries
|
||||
for name, component in others.items():
|
||||
output += f"{name:<{col_widths['id']}} | {component.__class__.__name__:<{col_widths['class']}}\n"
|
||||
output += dash_line
|
||||
|
||||
return output
|
||||
|
||||
def add_from_pretrained(self, pretrained_model_name_or_path, **kwargs):
|
||||
from ..pipelines.pipeline_utils import DiffusionPipeline
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
||||
for name, component in pipe.components.items():
|
||||
if name not in self.components and component is not None:
|
||||
self.add(name, component)
|
||||
elif name in self.components:
|
||||
logger.warning(
|
||||
f"Component '{name}' already exists in ComponentsManager and will not be added. To add it, either:\n"
|
||||
f"1. remove the existing component with remove('{name}')\n"
|
||||
f"2. Use a different name: add('{name}_2', component)"
|
||||
)
|
||||
Reference in New Issue
Block a user