Compare commits

..

2 Commits

Author SHA1 Message Date
Sayak Paul
2461933857 Merge branch 'main' into test-fixes 2023-12-21 17:48:39 +05:30
Dhruv Nair
11190ed09a update 2023-12-21 09:47:57 +00:00
71 changed files with 234 additions and 6224 deletions

View File

@@ -244,8 +244,6 @@
- sections:
- local: api/pipelines/overview
title: Overview
- local: api/pipelines/amused
title: aMUSEd
- local: api/pipelines/animatediff
title: AnimateDiff
- local: api/pipelines/attend_and_excite

View File

@@ -1,30 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# aMUSEd
Amused is a lightweight text to image model based off of the [muse](https://arxiv.org/pdf/2301.00704.pdf) architecture. Amused is particularly useful in applications that require a lightweight and fast model such as generating many images quickly at once.
Amused is a vqvae token based transformer that can generate an image in fewer forward passes than many diffusion models. In contrast with muse, it uses the smaller text encoder CLIP-L/14 instead of t5-xxl. Due to its small parameter count and few forward pass generation process, amused can generate many images quickly. This benefit is seen particularly at larger batch sizes.
| Model | Params |
|-------|--------|
| [amused-256](https://huggingface.co/huggingface/amused-256) | 603M |
| [amused-512](https://huggingface.co/huggingface/amused-512) | 608M |
## AmusedPipeline
[[autodoc]] AmusedPipeline
- __call__
- all
- enable_xformers_memory_efficient_attention
- disable_xformers_memory_efficient_attention

View File

@@ -31,14 +31,14 @@ Make sure to check out the Stable Diffusion [Tips](overview#tips) section to lea
## StableDiffusionLDM3DPipeline
[[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline
[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.StableDiffusionLDM3DPipeline
- all
- __call__
## LDM3DPipelineOutput
[[autodoc]] pipelines.stable_diffusion_ldm3d.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
[[autodoc]] pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d.LDM3DPipelineOutput
- all
- __call__

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# T2I-Adapter
[T2I-Adapter](https://hf.co/papers/2302.08453) is a lightweight adapter model that provides an additional conditioning input image (line art, canny, sketch, depth, pose) to better control image generation. It is similar to a ControlNet, but it is a lot smaller (~77M parameters and ~300MB file size) because its only inserts weights into the UNet instead of copying and training it.
[T2I-Adapter]((https://hf.co/papers/2302.08453)) is a lightweight adapter model that provides an additional conditioning input image (line art, canny, sketch, depth, pose) to better control image generation. It is similar to a ControlNet, but it is a lot smaller (~77M parameters and ~300MB file size) because its only inserts weights into the UNet instead of copying and training it.
The T2I-Adapter is only available for training with the Stable Diffusion XL (SDXL) model.

View File

@@ -63,42 +63,3 @@ With callbacks, you can implement features such as dynamic CFG without having to
🤗 Diffusers currently only supports `callback_on_step_end`, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you have a cool use-case and require a callback function with a different execution point!
</Tip>
## Using Callbacks to interrupt the Diffusion Process
The following Pipelines support interrupting the diffusion process via callback
- [StableDiffusionPipeline](../api/pipelines/stable_diffusion/overview.md)
- [StableDiffusionImg2ImgPipeline](..api/pipelines/stable_diffusion/img2img.md)
- [StableDiffusionInpaintPipeline](..api/pipelines/stable_diffusion/inpaint.md)
- [StableDiffusionXLPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl.md)
- [StableDiffusionXLImg2ImgPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl.md)
- [StableDiffusionXLInpaintPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl.md)
Interrupting the diffusion process is particularly useful when building UIs that work with Diffusers because it allows users to stop the generation process if they're unhappy with the intermediate results. You can incorporate this into your pipeline with a callback.
This callback function should take the following arguments: `pipe`, `i`, `t`, and `callback_kwargs` (this must be returned). Set the pipeline's `_interrupt` attribute to `True` to stop the diffusion process after a certain number of steps. You are also free to implement your own custom stopping logic inside the callback.
In this example, the diffusion process is stopped after 10 steps even though `num_inference_steps` is set to 50.
```python
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe.enable_model_cpu_offload()
num_inference_steps = 50
def interrupt_callback(pipe, i, t, callback_kwargs):
stop_idx = 10
if i == stop_idx:
pipe._interrupt = True
return callback_kwargs
pipe(
"A photo of a cat",
num_inference_steps=num_inference_steps,
callback_on_step_end=interrupt_callback,
)
```

View File

@@ -1,326 +0,0 @@
## Amused training
Amused can be finetuned on simple datasets relatively cheaply and quickly. Using 8bit optimizers, lora, and gradient accumulation, amused can be finetuned with as little as 5.5 GB. Here are a set of examples for finetuning amused on some relatively simple datasets. These training recipies are aggressively oriented towards minimal resources and fast verification -- i.e. the batch sizes are quite low and the learning rates are quite high. For optimal quality, you will probably want to increase the batch sizes and decrease learning rates.
All training examples use fp16 mixed precision and gradient checkpointing. We don't show 8 bit adam + lora as its about the same memory use as just using lora (bitsandbytes uses full precision optimizer states for weights below a minimum size).
### Finetuning the 256 checkpoint
These examples finetune on this [nouns](https://huggingface.co/datasets/m1guelpf/nouns) dataset.
Example results:
![noun1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun1.png) ![noun2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun2.png) ![noun3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/noun3.png)
#### Full finetuning
Batch size: 8, Learning rate: 1e-4, Gives decent results in 750-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 19.7 GB |
| 4 | 2 | 8 | 18.3 GB |
| 1 | 8 | 8 | 17.9 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 1e-4 \
--pretrained_model_name_or_path huggingface/amused-256 \
--instance_data_dataset 'm1guelpf/nouns' \
--image_key image \
--prompt_key text \
--resolution 256 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
'a pixel art character with square red glasses' \
'a pixel art character' \
'square red glasses on a pixel art character' \
'square red glasses on a pixel art character with a baseball-shaped head' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + 8 bit adam
Note that this training config keeps the batch size low and the learning rate high to get results fast with low resources. However, due to 8 bit adam, it will diverge eventually. If you want to train for longer, you will have to up the batch size and lower the learning rate.
Batch size: 16, Learning rate: 2e-5, Gives decent results in ~750 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 16 | 1 | 16 | 20.1 GB |
| 8 | 2 | 16 | 15.6 GB |
| 1 | 16 | 16 | 10.7 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 2e-5 \
--use_8bit_adam \
--pretrained_model_name_or_path huggingface/amused-256 \
--instance_data_dataset 'm1guelpf/nouns' \
--image_key image \
--prompt_key text \
--resolution 256 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
'a pixel art character with square red glasses' \
'a pixel art character' \
'square red glasses on a pixel art character' \
'square red glasses on a pixel art character with a baseball-shaped head' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + lora
Batch size: 16, Learning rate: 8e-4, Gives decent results in 1000-1250 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 16 | 1 | 16 | 14.1 GB |
| 8 | 2 | 16 | 10.1 GB |
| 1 | 16 | 16 | 6.5 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 8e-4 \
--use_lora \
--pretrained_model_name_or_path huggingface/amused-256 \
--instance_data_dataset 'm1guelpf/nouns' \
--image_key image \
--prompt_key text \
--resolution 256 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'a pixel art character with square red glasses, a baseball-shaped head and a orange-colored body on a dark background' \
'a pixel art character with square orange glasses, a lips-shaped head and a red-colored body on a light background' \
'a pixel art character with square blue glasses, a microwave-shaped head and a purple-colored body on a sunny background' \
'a pixel art character with square red glasses, a baseball-shaped head and a blue-colored body on an orange background' \
'a pixel art character with square red glasses' \
'a pixel art character' \
'square red glasses on a pixel art character' \
'square red glasses on a pixel art character with a baseball-shaped head' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
### Finetuning the 512 checkpoint
These examples finetune on this [minecraft](https://huggingface.co/monadical-labs/minecraft-preview) dataset.
Example results:
![minecraft1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft1.png) ![minecraft2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft2.png) ![minecraft3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/minecraft3.png)
#### Full finetuning
Batch size: 8, Learning rate: 8e-5, Gives decent results in 500-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 24.2 GB |
| 4 | 2 | 8 | 19.7 GB |
| 1 | 8 | 8 | 16.99 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 8e-5 \
--pretrained_model_name_or_path huggingface/amused-512 \
--instance_data_dataset 'monadical-labs/minecraft-preview' \
--prompt_prefix 'minecraft ' \
--image_key image \
--prompt_key text \
--resolution 512 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'minecraft Avatar' \
'minecraft character' \
'minecraft' \
'minecraft president' \
'minecraft pig' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + 8 bit adam
Batch size: 8, Learning rate: 5e-6, Gives decent results in 500-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 21.2 GB |
| 4 | 2 | 8 | 13.3 GB |
| 1 | 8 | 8 | 9.9 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 5e-6 \
--pretrained_model_name_or_path huggingface/amused-512 \
--instance_data_dataset 'monadical-labs/minecraft-preview' \
--prompt_prefix 'minecraft ' \
--image_key image \
--prompt_key text \
--resolution 512 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'minecraft Avatar' \
'minecraft character' \
'minecraft' \
'minecraft president' \
'minecraft pig' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
#### Full finetuning + lora
Batch size: 8, Learning rate: 1e-4, Gives decent results in 500-1000 steps
| Batch Size | Gradient Accumulation Steps | Effective Total Batch Size | Memory Used |
|------------|-----------------------------|------------------|-------------|
| 8 | 1 | 8 | 12.7 GB |
| 4 | 2 | 8 | 9.0 GB |
| 1 | 8 | 8 | 5.6 GB |
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--train_batch_size <batch size> \
--gradient_accumulation_steps <gradient accumulation steps> \
--learning_rate 1e-4 \
--use_lora \
--pretrained_model_name_or_path huggingface/amused-512 \
--instance_data_dataset 'monadical-labs/minecraft-preview' \
--prompt_prefix 'minecraft ' \
--image_key image \
--prompt_key text \
--resolution 512 \
--mixed_precision fp16 \
--lr_scheduler constant \
--validation_prompts \
'minecraft Avatar' \
'minecraft character' \
'minecraft' \
'minecraft president' \
'minecraft pig' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 250 \
--gradient_checkpointing
```
### Styledrop
[Styledrop](https://arxiv.org/abs/2306.00983) is an efficient finetuning method for learning a new style from just one or very few images. It has an optional first stage to generate human picked additional training samples. The additional training samples can be used to augment the initial images. Our examples exclude the optional additional image selection stage and instead we just finetune on a single image.
This is our example style image:
![example](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png)
Download it to your local directory with
```sh
wget https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/A%20mushroom%20in%20%5BV%5D%20style.png
```
#### 256
Example results:
![glowing_256_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_1.png) ![glowing_256_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_2.png) ![glowing_256_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_256_3.png)
Learning rate: 4e-4, Gives decent results in 1500-2000 steps
Memory used: 6.5 GB
```sh
accelerate launch train_amused.py \
--output_dir <output path> \
--mixed_precision fp16 \
--report_to wandb \
--use_lora \
--pretrained_model_name_or_path huggingface/amused-256 \
--train_batch_size 1 \
--lr_scheduler constant \
--learning_rate 4e-4 \
--validation_prompts \
'A chihuahua walking on the street in [V] style' \
'A banana on the table in [V] style' \
'A church on the street in [V] style' \
'A tabby cat walking in the forest in [V] style' \
--instance_data_image 'A mushroom in [V] style.png' \
--max_train_steps 10000 \
--checkpointing_steps 500 \
--validation_steps 100 \
--resolution 256
```
#### 512
Example results:
![glowing_512_1](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_1.png) ![glowing_512_2](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_2.png) ![glowing_512_3](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/amused/glowing_512_3.png)
Learning rate: 1e-3, Lora alpha 1, Gives decent results in 1500-2000 steps
Memory used: 5.6 GB
```
accelerate launch train_amused.py \
--output_dir <output path> \
--mixed_precision fp16 \
--report_to wandb \
--use_lora \
--pretrained_model_name_or_path huggingface/amused-512 \
--train_batch_size 1 \
--lr_scheduler constant \
--learning_rate 1e-3 \
--validation_prompts \
'A chihuahua walking on the street in [V] style' \
'A banana on the table in [V] style' \
'A church on the street in [V] style' \
'A tabby cat walking in the forest in [V] style' \
--instance_data_image 'A mushroom in [V] style.png' \
--max_train_steps 100000 \
--checkpointing_steps 500 \
--validation_steps 100 \
--resolution 512 \
--lora_alpha 1
```

View File

@@ -1,972 +0,0 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path
import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import DataLoader, Dataset, default_collate
from torchvision import transforms
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
)
import diffusers.optimization
from diffusers import AmusedPipeline, AmusedScheduler, EMAModel, UVit2DModel, VQModel
from diffusers.loaders import LoraLoaderMixin
from diffusers.utils import is_wandb_available
if is_wandb_available():
import wandb
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--instance_data_dataset",
type=str,
default=None,
required=False,
help="A Hugging Face dataset containing the training images",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--instance_data_image", type=str, default=None, required=False, help="A single training image"
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--ema_decay", type=float, default=0.9999)
parser.add_argument("--ema_update_after_step", type=int, default=0)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument(
"--output_dir",
type=str,
default="muse_training",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
"--logging_steps",
type=int,
default=50,
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more details"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=0.0003,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--validation_steps",
type=int,
default=100,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--validation_prompts", type=str, nargs="*")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
parser.add_argument("--min_masking_rate", type=float, default=0.0)
parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.", required=False)
parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
parser.add_argument("--lora_r", default=16, type=int)
parser.add_argument("--lora_alpha", default=32, type=int)
parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
parser.add_argument("--text_encoder_lora_r", default=16, type=int)
parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
parser.add_argument("--train_text_encoder", action="store_true")
parser.add_argument("--image_key", type=str, required=False)
parser.add_argument("--prompt_key", type=str, required=False)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument("--prompt_prefix", type=str, required=False, default=None)
args = parser.parse_args()
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
num_datasources = sum(
[x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]]
)
if num_datasources != 1:
raise ValueError(
"provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
)
if args.instance_data_dir is not None:
if not os.path.exists(args.instance_data_dir):
raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")
if args.instance_data_image is not None:
if not os.path.exists(args.instance_data_image):
raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")
if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None):
raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`")
return args
class InstanceDataRootDataset(Dataset):
def __init__(
self,
instance_data_root,
tokenizer,
size=512,
):
self.size = size
self.tokenizer = tokenizer
self.instance_images_path = list(Path(instance_data_root).iterdir())
def __len__(self):
return len(self.instance_images_path)
def __getitem__(self, index):
image_path = self.instance_images_path[index % len(self.instance_images_path)]
instance_image = Image.open(image_path)
rv = process_image(instance_image, self.size)
prompt = os.path.splitext(os.path.basename(image_path))[0]
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
return rv
class InstanceDataImageDataset(Dataset):
def __init__(
self,
instance_data_image,
train_batch_size,
size=512,
):
self.value = process_image(Image.open(instance_data_image), size)
self.train_batch_size = train_batch_size
def __len__(self):
# Needed so a full batch of the data can be returned. Otherwise will return
# batches of size 1
return self.train_batch_size
def __getitem__(self, index):
return self.value
class HuggingFaceDataset(Dataset):
def __init__(
self,
hf_dataset,
tokenizer,
image_key,
prompt_key,
prompt_prefix=None,
size=512,
):
self.size = size
self.image_key = image_key
self.prompt_key = prompt_key
self.tokenizer = tokenizer
self.hf_dataset = hf_dataset
self.prompt_prefix = prompt_prefix
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, index):
item = self.hf_dataset[index]
rv = process_image(item[self.image_key], self.size)
prompt = item[self.prompt_key]
if self.prompt_prefix is not None:
prompt = self.prompt_prefix + prompt
rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
return rv
def process_image(image, size):
image = exif_transpose(image)
if not image.mode == "RGB":
image = image.convert("RGB")
orig_height = image.height
orig_width = image.width
image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image)
c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size))
image = transforms.functional.crop(image, c_top, c_left, size, size)
image = transforms.ToTensor()(image)
micro_conds = torch.tensor(
[orig_width, orig_height, c_top, c_left, 6.0],
)
return {"image": image, "micro_conds": micro_conds}
def tokenize_prompt(tokenizer, prompt):
return tokenizer(
prompt,
truncation=True,
padding="max_length",
max_length=77,
return_tensors="pt",
).input_ids
def encode_prompt(text_encoder, input_ids):
outputs = text_encoder(input_ids, return_dict=True, output_hidden_states=True)
encoder_hidden_states = outputs.hidden_states[-2]
cond_embeds = outputs[0]
return encoder_hidden_states, cond_embeds
def main(args):
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
if accelerator.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_main_process:
accelerator.init_trackers("amused", config=vars(copy.deepcopy(args)))
if args.seed is not None:
set_seed(args.seed)
# TODO - will have to fix loading if training text encoder
text_encoder = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant
)
vq_model = VQModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
)
if args.train_text_encoder:
if args.text_encoder_use_lora:
lora_config = LoraConfig(
r=args.text_encoder_lora_r,
lora_alpha=args.text_encoder_lora_alpha,
target_modules=args.text_encoder_lora_target_modules,
)
text_encoder.add_adapter(lora_config)
text_encoder.train()
text_encoder.requires_grad_(True)
else:
text_encoder.eval()
text_encoder.requires_grad_(False)
vq_model.requires_grad_(False)
model = UVit2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
)
if args.use_lora:
lora_config = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=args.lora_target_modules,
)
model.add_adapter(lora_config)
model.train()
if args.gradient_checkpointing:
model.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.use_ema:
ema = EMAModel(
model.parameters(),
decay=args.ema_decay,
update_after_step=args.ema_update_after_step,
model_cls=UVit2DModel,
model_config=model.config,
)
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
transformer_lora_layers_to_save = None
text_encoder_lora_layers_to_save = None
for model_ in models:
if isinstance(model_, type(accelerator.unwrap_model(model))):
if args.use_lora:
transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
else:
model_.save_pretrained(os.path.join(output_dir, "transformer"))
elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
if args.text_encoder_use_lora:
text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
else:
model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
else:
raise ValueError(f"unexpected save model: {model_.__class__}")
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
LoraLoaderMixin.save_lora_weights(
output_dir,
transformer_lora_layers=transformer_lora_layers_to_save,
text_encoder_lora_layers=text_encoder_lora_layers_to_save,
)
if args.use_ema:
ema.save_pretrained(os.path.join(output_dir, "ema_model"))
def load_model_hook(models, input_dir):
transformer = None
text_encoder_ = None
while len(models) > 0:
model_ = models.pop()
if isinstance(model_, type(accelerator.unwrap_model(model))):
if args.use_lora:
transformer = model_
else:
load_model = UVit2DModel.from_pretrained(os.path.join(input_dir, "transformer"))
model_.load_state_dict(load_model.state_dict())
del load_model
elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
if args.text_encoder_use_lora:
text_encoder_ = model_
else:
load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
model_.load_state_dict(load_model.state_dict())
del load_model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
if transformer is not None or text_encoder_ is not None:
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
LoraLoaderMixin.load_lora_into_text_encoder(
lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
)
LoraLoaderMixin.load_lora_into_transformer(
lora_state_dict, network_alphas=network_alphas, transformer=transformer
)
if args.use_ema:
load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=UVit2DModel)
ema.load_state_dict(load_from.state_dict())
del load_from
accelerator.register_load_state_pre_hook(load_model_hook)
accelerator.register_save_state_pre_hook(save_model_hook)
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
)
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
# no decay on bias and layernorm and embedding
no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.adam_weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if args.train_text_encoder:
optimizer_grouped_parameters.append(
{"params": text_encoder.parameters(), "weight_decay": args.adam_weight_decay}
)
optimizer = optimizer_cls(
optimizer_grouped_parameters,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
logger.info("Creating dataloaders and lr_scheduler")
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
if args.instance_data_dir is not None:
dataset = InstanceDataRootDataset(
instance_data_root=args.instance_data_dir,
tokenizer=tokenizer,
size=args.resolution,
)
elif args.instance_data_image is not None:
dataset = InstanceDataImageDataset(
instance_data_image=args.instance_data_image,
train_batch_size=args.train_batch_size,
size=args.resolution,
)
elif args.instance_data_dataset is not None:
dataset = HuggingFaceDataset(
hf_dataset=load_dataset(args.instance_data_dataset, split="train"),
tokenizer=tokenizer,
image_key=args.image_key,
prompt_key=args.prompt_key,
prompt_prefix=args.prompt_prefix,
size=args.resolution,
)
else:
assert False
train_dataloader = DataLoader(
dataset,
batch_size=args.train_batch_size,
shuffle=True,
num_workers=args.dataloader_num_workers,
collate_fn=default_collate,
)
train_dataloader.num_batches = len(train_dataloader)
lr_scheduler = diffusers.optimization.get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
)
logger.info("Preparing model, optimizer and dataloaders")
if args.train_text_encoder:
model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare(
model, optimizer, lr_scheduler, train_dataloader, text_encoder
)
else:
model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
model, optimizer, lr_scheduler, train_dataloader
)
train_dataloader.num_batches = len(train_dataloader)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if not args.train_text_encoder:
text_encoder.to(device=accelerator.device, dtype=weight_dtype)
vq_model.to(device=accelerator.device)
if args.use_ema:
ema.to(accelerator.device)
with nullcontext() if args.train_text_encoder else torch.no_grad():
empty_embeds, empty_clip_embeds = encode_prompt(
text_encoder, tokenize_prompt(tokenizer, "").to(text_encoder.device, non_blocking=True)
)
# There is a single image, we can just pre-encode the single prompt
if args.instance_data_image is not None:
prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0]
encoder_hidden_states, cond_embeds = encode_prompt(
text_encoder, tokenize_prompt(tokenizer, prompt).to(text_encoder.device, non_blocking=True)
)
encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1)
cond_embeds = cond_embeds.repeat(args.train_batch_size, 1)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs.
# Note: We are not doing epoch based training here, but just using this for book keeping and being able to
# reuse the same training loop with other datasets/loaders.
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
logger.info("***** Running training *****")
logger.info(f" Num training steps = {args.max_train_steps}")
logger.info(f" Instantaneous batch size per device = { args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
resume_from_checkpoint = args.resume_from_checkpoint
if resume_from_checkpoint:
if resume_from_checkpoint == "latest":
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
if len(dirs) > 0:
resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
else:
resume_from_checkpoint = None
if resume_from_checkpoint is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
else:
accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")
if resume_from_checkpoint is None:
global_step = 0
first_epoch = 0
else:
accelerator.load_state(resume_from_checkpoint)
global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
# As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
# reuse the same training loop with other datasets/loaders.
for epoch in range(first_epoch, num_train_epochs):
for batch in train_dataloader:
with torch.no_grad():
micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
pixel_values = batch["image"].to(accelerator.device, non_blocking=True)
batch_size = pixel_values.shape[0]
split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
num_splits = math.ceil(batch_size / split_batch_size)
image_tokens = []
for i in range(num_splits):
start_idx = i * split_batch_size
end_idx = min((i + 1) * split_batch_size, batch_size)
bs = pixel_values.shape[0]
image_tokens.append(
vq_model.quantize(vq_model.encode(pixel_values[start_idx:end_idx]).latents)[2][2].reshape(
bs, -1
)
)
image_tokens = torch.cat(image_tokens, dim=0)
batch_size, seq_len = image_tokens.shape
timesteps = torch.rand(batch_size, device=image_tokens.device)
mask_prob = torch.cos(timesteps * math.pi * 0.5)
mask_prob = mask_prob.clip(args.min_masking_rate)
num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
mask = batch_randperm < num_token_masked.unsqueeze(-1)
mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
input_ids = torch.where(mask, mask_id, image_tokens)
labels = torch.where(mask, image_tokens, -100)
if args.cond_dropout_prob > 0.0:
assert encoder_hidden_states is not None
batch_size = encoder_hidden_states.shape[0]
mask = (
torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
< args.cond_dropout_prob
)
empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
encoder_hidden_states = torch.where(
(encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
)
empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)
bs = input_ids.shape[0]
vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
resolution = args.resolution // vae_scale_factor
input_ids = input_ids.reshape(bs, resolution, resolution)
if "prompt_input_ids" in batch:
with nullcontext() if args.train_text_encoder else torch.no_grad():
encoder_hidden_states, cond_embeds = encode_prompt(
text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)
)
# Train Step
with accelerator.accumulate(model):
codebook_size = accelerator.unwrap_model(model).config.codebook_size
logits = (
model(
input_ids=input_ids,
encoder_hidden_states=encoder_hidden_states,
micro_conds=micro_conds,
pooled_text_emb=cond_embeds,
)
.reshape(bs, codebook_size, -1)
.permute(0, 2, 1)
.reshape(-1, codebook_size)
)
loss = F.cross_entropy(
logits,
labels.view(-1),
ignore_index=-100,
reduction="mean",
)
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean()
accelerator.backward(loss)
if args.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if args.use_ema:
ema.step(model.parameters())
if (global_step + 1) % args.logging_steps == 0:
logs = {
"step_loss": avg_loss.item(),
"lr": lr_scheduler.get_last_lr()[0],
"avg_masking_rate": avg_masking_rate.item(),
}
accelerator.log(logs, step=global_step + 1)
logger.info(
f"Step: {global_step + 1} "
f"Loss: {avg_loss.item():0.4f} "
f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
)
if (global_step + 1) % args.checkpointing_steps == 0:
save_checkpoint(args, accelerator, global_step + 1)
if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
if args.use_ema:
ema.store(model.parameters())
ema.copy_to(model.parameters())
with torch.no_grad():
logger.info("Generating images...")
model.eval()
if args.train_text_encoder:
text_encoder.eval()
scheduler = AmusedScheduler.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="scheduler",
revision=args.revision,
variant=args.variant,
)
pipe = AmusedPipeline(
transformer=accelerator.unwrap_model(model),
tokenizer=tokenizer,
text_encoder=text_encoder,
vqvae=vq_model,
scheduler=scheduler,
)
pil_images = pipe(prompt=args.validation_prompts).images
wandb_images = [
wandb.Image(image, caption=args.validation_prompts[i])
for i, image in enumerate(pil_images)
]
wandb.log({"generated_images": wandb_images}, step=global_step + 1)
model.train()
if args.train_text_encoder:
text_encoder.train()
if args.use_ema:
ema.restore(model.parameters())
global_step += 1
# Stop training if max steps is reached
if global_step >= args.max_train_steps:
break
# End for
accelerator.wait_for_everyone()
# Evaluate and save checkpoint at the end of training
save_checkpoint(args, accelerator, global_step)
# Save the final trained checkpoint
if accelerator.is_main_process:
model = accelerator.unwrap_model(model)
if args.use_ema:
ema.copy_to(model.parameters())
model.save_pretrained(args.output_dir)
accelerator.end_training()
def save_checkpoint(args, accelerator, global_step):
output_dir = args.output_dir
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if accelerator.is_main_process and args.checkpoints_total_limit is not None:
checkpoints = os.listdir(output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = Path(output_dir) / f"checkpoint-{global_step}"
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if __name__ == "__main__":
main(parse_args())

View File

@@ -8,7 +8,6 @@ If a community doesn't work as expected, please open an issue and ping the autho
| Example | Description | Code Example | Colab | Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
| Marigold Monocular Depth Estimation | A universal monocular depth estimator, utilizing Stable Diffusion, delivering sharp predictions in the wild. (See the [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) for more details.) | [Marigold Depth Estimation](#marigold-depth-estimation) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) | [Bingxin Ke](https://github.com/markkua) and [Anton Obukhov](https://github.com/toshas) |
| LLM-grounded Diffusion (LMD+) | LMD greatly improves the prompt following ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion) | [LLM-grounded Diffusion (LMD+)](#llm-grounded-diffusion) | [Huggingface Demo](https://huggingface.co/spaces/longlian/llm-grounded-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SXzMSeAB-LJYISb2yrUOdypLz4OYWUKj) | [Long (Tony) Lian](https://tonylian.com/) |
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) | [Suraj Patil](https://github.com/patil-suraj/) |
| One Step U-Net (Dummy) | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841) | [One Step U-Net](#one-step-unet) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
@@ -62,53 +61,6 @@ pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custo
## Example usages
### Marigold Depth Estimation
Marigold is a universal monocular depth estimator that delivers accurate and sharp predictions in the wild. Based on Stable Diffusion, it is trained exclusively with synthetic depth data and excels in zero-shot adaptation to real-world imagery. This pipeline is an official implementation of the inference process. More details can be found on our [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) (also implemented with diffusers).
![Marigold Teaser](https://marigoldmonodepth.github.io/images/teaser_collage_compressed.jpg)
This depth estimation pipeline processes a single input image through multiple diffusion denoising stages to estimate depth maps. These maps are subsequently merged to produce the final output. Below is an example code snippet, including optional arguments:
```python
import numpy as np
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
pipe = DiffusionPipeline.from_pretrained(
"Bingxin/Marigold",
custom_pipeline="marigold_depth_estimation"
# torch_dtype=torch.float16, # (optional) Run with half-precision (16-bit float).
)
pipe.to("cuda")
img_path_or_url = "https://share.phys.ethz.ch/~pf/bingkedata/marigold/pipeline_example.jpg"
image: Image.Image = load_image(img_path_or_url)
pipeline_output = pipe(
image, # Input image.
# denoising_steps=10, # (optional) Number of denoising steps of each inference pass. Default: 10.
# ensemble_size=10, # (optional) Number of inference passes in the ensemble. Default: 10.
# processing_res=768, # (optional) Maximum resolution of processing. If set to 0: will not resize at all. Defaults to 768.
# match_input_res=True, # (optional) Resize depth prediction to match input resolution.
# batch_size=0, # (optional) Inference batch size, no bigger than `num_ensemble`. If set to 0, the script will automatically decide the proper batch size. Defaults to 0.
# color_map="Spectral", # (optional) Colormap used to colorize the depth map. Defaults to "Spectral".
# show_progress_bar=True, # (optional) If true, will show progress bars of the inference progress.
)
depth: np.ndarray = pipeline_output.depth_np # Predicted depth map
depth_colored: Image.Image = pipeline_output.depth_colored # Colorized prediction
# Save as uint16 PNG
depth_uint16 = (depth * 65535.0).astype(np.uint16)
Image.fromarray(depth_uint16).save("./depth_map.png", mode="I;16")
# Save colorized depth map
depth_colored.save("./depth_colored.png")
```
### LLM-grounded Diffusion
LMD and LMD+ greatly improves the prompt understanding ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. It improves spatial reasoning, the understanding of negation, attribute binding, generative numeracy, etc. in a unified manner without explicitly aiming for each. LMD is completely training-free (i.e., uses SD model off-the-shelf). LMD+ takes in additional adapters for better control. This is a reproduction of LMD+ model used in our work. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)

View File

@@ -1,602 +0,0 @@
# Copyright 2023 Bingxin Ke, ETH Zurich and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import math
from typing import Dict, Union
import matplotlib
import numpy as np
import torch
from PIL import Image
from scipy.optimize import minimize
from torch.utils.data import DataLoader, TensorDataset
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.utils import BaseOutput, check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.20.1.dev0")
class MarigoldDepthOutput(BaseOutput):
"""
Output class for Marigold monocular depth prediction pipeline.
Args:
depth_np (`np.ndarray`):
Predicted depth map, with depth values in the range of [0, 1].
depth_colored (`PIL.Image.Image`):
Colorized depth map, with the shape of [3, H, W] and values in [0, 1].
uncertainty (`None` or `np.ndarray`):
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling.
"""
depth_np: np.ndarray
depth_colored: Image.Image
uncertainty: Union[None, np.ndarray]
class MarigoldPipeline(DiffusionPipeline):
"""
Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
unet (`UNet2DConditionModel`):
Conditional U-Net to denoise the depth latent, conditioned on image latent.
vae (`AutoencoderKL`):
Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps
to and from latent representations.
scheduler (`DDIMScheduler`):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
text_encoder (`CLIPTextModel`):
Text-encoder, for empty text embedding.
tokenizer (`CLIPTokenizer`):
CLIP tokenizer.
"""
rgb_latent_scale_factor = 0.18215
depth_latent_scale_factor = 0.18215
def __init__(
self,
unet: UNet2DConditionModel,
vae: AutoencoderKL,
scheduler: DDIMScheduler,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
):
super().__init__()
self.register_modules(
unet=unet,
vae=vae,
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
self.empty_text_embed = None
@torch.no_grad()
def __call__(
self,
input_image: Image,
denoising_steps: int = 10,
ensemble_size: int = 10,
processing_res: int = 768,
match_input_res: bool = True,
batch_size: int = 0,
color_map: str = "Spectral",
show_progress_bar: bool = True,
ensemble_kwargs: Dict = None,
) -> MarigoldDepthOutput:
"""
Function invoked when calling the pipeline.
Args:
input_image (`Image`):
Input RGB (or gray-scale) image.
processing_res (`int`, *optional*, defaults to `768`):
Maximum resolution of processing.
If set to 0: will not resize at all.
match_input_res (`bool`, *optional*, defaults to `True`):
Resize depth prediction to match input resolution.
Only valid if `limit_input_res` is not None.
denoising_steps (`int`, *optional*, defaults to `10`):
Number of diffusion denoising steps (DDIM) during inference.
ensemble_size (`int`, *optional*, defaults to `10`):
Number of predictions to be ensembled.
batch_size (`int`, *optional*, defaults to `0`):
Inference batch size, no bigger than `num_ensemble`.
If set to 0, the script will automatically decide the proper batch size.
show_progress_bar (`bool`, *optional*, defaults to `True`):
Display a progress bar of diffusion denoising.
color_map (`str`, *optional*, defaults to `"Spectral"`):
Colormap used to colorize the depth map.
ensemble_kwargs (`dict`, *optional*, defaults to `None`):
Arguments for detailed ensembling settings.
Returns:
`MarigoldDepthOutput`: Output class for Marigold monocular depth prediction pipeline, including:
- **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1]
- **depth_colored** (`PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and values in [0, 1]
- **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation)
coming from ensembling. None if `ensemble_size = 1`
"""
device = self.device
input_size = input_image.size
if not match_input_res:
assert processing_res is not None, "Value error: `resize_output_back` is only valid with "
assert processing_res >= 0
assert denoising_steps >= 1
assert ensemble_size >= 1
# ----------------- Image Preprocess -----------------
# Resize image
if processing_res > 0:
input_image = self.resize_max_res(input_image, max_edge_resolution=processing_res)
# Convert the image to RGB, to 1.remove the alpha channel 2.convert B&W to 3-channel
input_image = input_image.convert("RGB")
image = np.asarray(input_image)
# Normalize rgb values
rgb = np.transpose(image, (2, 0, 1)) # [H, W, rgb] -> [rgb, H, W]
rgb_norm = rgb / 255.0
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype)
rgb_norm = rgb_norm.to(device)
assert rgb_norm.min() >= 0.0 and rgb_norm.max() <= 1.0
# ----------------- Predicting depth -----------------
# Batch repeated input image
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size)
single_rgb_dataset = TensorDataset(duplicated_rgb)
if batch_size > 0:
_bs = batch_size
else:
_bs = self._find_batch_size(
ensemble_size=ensemble_size,
input_res=max(rgb_norm.shape[1:]),
dtype=self.dtype,
)
single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False)
# Predict depth maps (batched)
depth_pred_ls = []
if show_progress_bar:
iterable = tqdm(single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False)
else:
iterable = single_rgb_loader
for batch in iterable:
(batched_img,) = batch
depth_pred_raw = self.single_infer(
rgb_in=batched_img,
num_inference_steps=denoising_steps,
show_pbar=show_progress_bar,
)
depth_pred_ls.append(depth_pred_raw.detach().clone())
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze()
torch.cuda.empty_cache() # clear vram cache for ensembling
# ----------------- Test-time ensembling -----------------
if ensemble_size > 1:
depth_pred, pred_uncert = self.ensemble_depths(depth_preds, **(ensemble_kwargs or {}))
else:
depth_pred = depth_preds
pred_uncert = None
# ----------------- Post processing -----------------
# Scale prediction to [0, 1]
min_d = torch.min(depth_pred)
max_d = torch.max(depth_pred)
depth_pred = (depth_pred - min_d) / (max_d - min_d)
# Convert to numpy
depth_pred = depth_pred.cpu().numpy().astype(np.float32)
# Resize back to original resolution
if match_input_res:
pred_img = Image.fromarray(depth_pred)
pred_img = pred_img.resize(input_size)
depth_pred = np.asarray(pred_img)
# Clip output range
depth_pred = depth_pred.clip(0, 1)
# Colorize
depth_colored = self.colorize_depth_maps(
depth_pred, 0, 1, cmap=color_map
).squeeze() # [3, H, W], value in (0, 1)
depth_colored = (depth_colored * 255).astype(np.uint8)
depth_colored_hwc = self.chw2hwc(depth_colored)
depth_colored_img = Image.fromarray(depth_colored_hwc)
return MarigoldDepthOutput(
depth_np=depth_pred,
depth_colored=depth_colored_img,
uncertainty=pred_uncert,
)
def _encode_empty_text(self):
"""
Encode text embedding for empty prompt.
"""
prompt = ""
text_inputs = self.tokenizer(
prompt,
padding="do_not_pad",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device)
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype)
@torch.no_grad()
def single_infer(self, rgb_in: torch.Tensor, num_inference_steps: int, show_pbar: bool) -> torch.Tensor:
"""
Perform an individual depth prediction without ensembling.
Args:
rgb_in (`torch.Tensor`):
Input RGB image.
num_inference_steps (`int`):
Number of diffusion denoisign steps (DDIM) during inference.
show_pbar (`bool`):
Display a progress bar of diffusion denoising.
Returns:
`torch.Tensor`: Predicted depth map.
"""
device = rgb_in.device
# Set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps # [T]
# Encode image
rgb_latent = self._encode_rgb(rgb_in)
# Initial depth map (noise)
depth_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype) # [B, 4, h, w]
# Batched empty text embedding
if self.empty_text_embed is None:
self._encode_empty_text()
batch_empty_text_embed = self.empty_text_embed.repeat((rgb_latent.shape[0], 1, 1)) # [B, 2, 1024]
# Denoising loop
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
unet_input = torch.cat([rgb_latent, depth_latent], dim=1) # this order is important
# predict the noise residual
noise_pred = self.unet(unet_input, t, encoder_hidden_states=batch_empty_text_embed).sample # [B, 4, h, w]
# compute the previous noisy sample x_t -> x_t-1
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
torch.cuda.empty_cache()
depth = self._decode_depth(depth_latent)
# clip prediction
depth = torch.clip(depth, -1.0, 1.0)
# shift to [0, 1]
depth = (depth + 1.0) / 2.0
return depth
def _encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor:
"""
Encode RGB image into latent.
Args:
rgb_in (`torch.Tensor`):
Input RGB image to be encoded.
Returns:
`torch.Tensor`: Image latent.
"""
# encode
h = self.vae.encoder(rgb_in)
moments = self.vae.quant_conv(h)
mean, logvar = torch.chunk(moments, 2, dim=1)
# scale latent
rgb_latent = mean * self.rgb_latent_scale_factor
return rgb_latent
def _decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor:
"""
Decode depth latent into depth map.
Args:
depth_latent (`torch.Tensor`):
Depth latent to be decoded.
Returns:
`torch.Tensor`: Decoded depth map.
"""
# scale latent
depth_latent = depth_latent / self.depth_latent_scale_factor
# decode
z = self.vae.post_quant_conv(depth_latent)
stacked = self.vae.decoder(z)
# mean of output channels
depth_mean = stacked.mean(dim=1, keepdim=True)
return depth_mean
@staticmethod
def resize_max_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
"""
Resize image to limit maximum edge length while keeping aspect ratio.
Args:
img (`Image.Image`):
Image to be resized.
max_edge_resolution (`int`):
Maximum edge length (pixel).
Returns:
`Image.Image`: Resized image.
"""
original_width, original_height = img.size
downscale_factor = min(max_edge_resolution / original_width, max_edge_resolution / original_height)
new_width = int(original_width * downscale_factor)
new_height = int(original_height * downscale_factor)
resized_img = img.resize((new_width, new_height))
return resized_img
@staticmethod
def colorize_depth_maps(depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None):
"""
Colorize depth maps.
"""
assert len(depth_map.shape) >= 2, "Invalid dimension"
if isinstance(depth_map, torch.Tensor):
depth = depth_map.detach().clone().squeeze().numpy()
elif isinstance(depth_map, np.ndarray):
depth = depth_map.copy().squeeze()
# reshape to [ (B,) H, W ]
if depth.ndim < 3:
depth = depth[np.newaxis, :, :]
# colorize
cm = matplotlib.colormaps[cmap]
depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
img_colored_np = np.rollaxis(img_colored_np, 3, 1)
if valid_mask is not None:
if isinstance(depth_map, torch.Tensor):
valid_mask = valid_mask.detach().numpy()
valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
if valid_mask.ndim < 3:
valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
else:
valid_mask = valid_mask[:, np.newaxis, :, :]
valid_mask = np.repeat(valid_mask, 3, axis=1)
img_colored_np[~valid_mask] = 0
if isinstance(depth_map, torch.Tensor):
img_colored = torch.from_numpy(img_colored_np).float()
elif isinstance(depth_map, np.ndarray):
img_colored = img_colored_np
return img_colored
@staticmethod
def chw2hwc(chw):
assert 3 == len(chw.shape)
if isinstance(chw, torch.Tensor):
hwc = torch.permute(chw, (1, 2, 0))
elif isinstance(chw, np.ndarray):
hwc = np.moveaxis(chw, 0, -1)
return hwc
@staticmethod
def _find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int:
"""
Automatically search for suitable operating batch size.
Args:
ensemble_size (`int`):
Number of predictions to be ensembled.
input_res (`int`):
Operating resolution of the input image.
Returns:
`int`: Operating batch size.
"""
# Search table for suggested max. inference batch size
bs_search_table = [
# tested on A100-PCIE-80GB
{"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32},
{"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32},
# tested on A100-PCIE-40GB
{"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32},
{"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32},
{"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16},
{"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16},
# tested on RTX3090, RTX4090
{"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32},
{"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32},
{"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32},
{"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16},
{"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16},
{"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16},
# tested on GTX1080Ti
{"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32},
{"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32},
{"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16},
{"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16},
{"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16},
]
if not torch.cuda.is_available():
return 1
total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3
filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype]
for settings in sorted(
filtered_bs_search_table,
key=lambda k: (k["res"], -k["total_vram"]),
):
if input_res <= settings["res"] and total_vram >= settings["total_vram"]:
bs = settings["bs"]
if bs > ensemble_size:
bs = ensemble_size
elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size:
bs = math.ceil(ensemble_size / 2)
return bs
return 1
@staticmethod
def ensemble_depths(
input_images: torch.Tensor,
regularizer_strength: float = 0.02,
max_iter: int = 2,
tol: float = 1e-3,
reduction: str = "median",
max_res: int = None,
):
"""
To ensemble multiple affine-invariant depth images (up to scale and shift),
by aligning estimating the scale and shift
"""
def inter_distances(tensors: torch.Tensor):
"""
To calculate the distance between each two depth maps.
"""
distances = []
for i, j in torch.combinations(torch.arange(tensors.shape[0])):
arr1 = tensors[i : i + 1]
arr2 = tensors[j : j + 1]
distances.append(arr1 - arr2)
dist = torch.concatenate(distances, dim=0)
return dist
device = input_images.device
dtype = input_images.dtype
np_dtype = np.float32
original_input = input_images.clone()
n_img = input_images.shape[0]
ori_shape = input_images.shape
if max_res is not None:
scale_factor = torch.min(max_res / torch.tensor(ori_shape[-2:]))
if scale_factor < 1:
downscaler = torch.nn.Upsample(scale_factor=scale_factor, mode="nearest")
input_images = downscaler(torch.from_numpy(input_images)).numpy()
# init guess
_min = np.min(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1)
_max = np.max(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1)
s_init = 1.0 / (_max - _min).reshape((-1, 1, 1))
t_init = (-1 * s_init.flatten() * _min.flatten()).reshape((-1, 1, 1))
x = np.concatenate([s_init, t_init]).reshape(-1).astype(np_dtype)
input_images = input_images.to(device)
# objective function
def closure(x):
l = len(x)
s = x[: int(l / 2)]
t = x[int(l / 2) :]
s = torch.from_numpy(s).to(dtype=dtype).to(device)
t = torch.from_numpy(t).to(dtype=dtype).to(device)
transformed_arrays = input_images * s.view((-1, 1, 1)) + t.view((-1, 1, 1))
dists = inter_distances(transformed_arrays)
sqrt_dist = torch.sqrt(torch.mean(dists**2))
if "mean" == reduction:
pred = torch.mean(transformed_arrays, dim=0)
elif "median" == reduction:
pred = torch.median(transformed_arrays, dim=0).values
else:
raise ValueError
near_err = torch.sqrt((0 - torch.min(pred)) ** 2)
far_err = torch.sqrt((1 - torch.max(pred)) ** 2)
err = sqrt_dist + (near_err + far_err) * regularizer_strength
err = err.detach().cpu().numpy().astype(np_dtype)
return err
res = minimize(
closure,
x,
method="BFGS",
tol=tol,
options={"maxiter": max_iter, "disp": False},
)
x = res.x
l = len(x)
s = x[: int(l / 2)]
t = x[int(l / 2) :]
# Prediction
s = torch.from_numpy(s).to(dtype=dtype).to(device)
t = torch.from_numpy(t).to(dtype=dtype).to(device)
transformed_arrays = original_input * s.view(-1, 1, 1) + t.view(-1, 1, 1)
if "mean" == reduction:
aligned_images = torch.mean(transformed_arrays, dim=0)
std = torch.std(transformed_arrays, dim=0)
uncertainty = std
elif "median" == reduction:
aligned_images = torch.median(transformed_arrays, dim=0).values
# MAD (median absolute deviation) as uncertainty indicator
abs_dev = torch.abs(transformed_arrays - aligned_images)
mad = torch.median(abs_dev, dim=0).values
uncertainty = mad
else:
raise ValueError(f"Unknown reduction method: {reduction}")
# Scale and shift to [0, 1]
_min = torch.min(aligned_images)
_max = torch.max(aligned_images)
aligned_images = (aligned_images - _min) / (_max - _min)
uncertainty /= _max - _min
return aligned_images, uncertainty

View File

@@ -1004,7 +1004,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(StableDiffusionImg2ImgPipeline):
"""
self.generator = generator
self.denoising_steps = num_inference_steps
self._guidance_scale = guidance_scale
self.guidance_scale = guidance_scale
# Pre-compute latent input scales and linear multistep coefficients
self.scheduler.set_timesteps(self.denoising_steps, device=self.torch_device)

View File

@@ -94,7 +94,7 @@ accelerate launch train_lcm_distill_lora_sd_wds.py \
--mixed_precision=fp16 \
--resolution=512 \
--lora_rank=64 \
--learning_rate=1e-4 --loss_type="huber" --adam_weight_decay=0.0 \
--learning_rate=1e-6 --loss_type="huber" --adam_weight_decay=0.0 \
--max_train_steps=1000 \
--max_train_samples=4000000 \
--dataloader_num_workers=8 \

View File

@@ -96,7 +96,7 @@ accelerate launch train_lcm_distill_lora_sdxl_wds.py \
--mixed_precision=fp16 \
--resolution=1024 \
--lora_rank=64 \
--learning_rate=1e-4 --loss_type="huber" --use_fix_crop_and_size --adam_weight_decay=0.0 \
--learning_rate=1e-6 --loss_type="huber" --use_fix_crop_and_size --adam_weight_decay=0.0 \
--max_train_steps=1000 \
--max_train_samples=4000000 \
--dataloader_num_workers=8 \

View File

@@ -65,7 +65,7 @@ class ControlNet(ExamplesTestsAccelerate):
--train_batch_size=1
--gradient_accumulation_steps=1
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet
--max_train_steps=6
--max_train_steps=9
--checkpointing_steps=2
""".split()
@@ -73,7 +73,7 @@ class ControlNet(ExamplesTestsAccelerate):
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4", "checkpoint-6"},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
resume_run_args = f"""
@@ -85,15 +85,18 @@ class ControlNet(ExamplesTestsAccelerate):
--train_batch_size=1
--gradient_accumulation_steps=1
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet
--max_train_steps=8
--max_train_steps=11
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-6
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-8", "checkpoint-10", "checkpoint-12"},
)
class ControlNetSDXL(ExamplesTestsAccelerate):
@@ -108,7 +111,7 @@ class ControlNetSDXL(ExamplesTestsAccelerate):
--train_batch_size=1
--gradient_accumulation_steps=1
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet-sdxl
--max_train_steps=4
--max_train_steps=9
--checkpointing_steps=2
""".split()

View File

@@ -76,7 +76,10 @@ class CustomDiffusion(ExamplesTestsAccelerate):
run_command(self._launch_args + test_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-6"},
)
def test_custom_diffusion_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
with tempfile.TemporaryDirectory() as tmpdir:
@@ -90,7 +93,7 @@ class CustomDiffusion(ExamplesTestsAccelerate):
--train_batch_size=1
--modifier_token=<new1>
--dataloader_num_workers=0
--max_train_steps=4
--max_train_steps=9
--checkpointing_steps=2
--no_safe_serialization
""".split()
@@ -99,7 +102,7 @@ class CustomDiffusion(ExamplesTestsAccelerate):
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
resume_run_args = f"""
@@ -112,13 +115,16 @@ class CustomDiffusion(ExamplesTestsAccelerate):
--train_batch_size=1
--modifier_token=<new1>
--dataloader_num_workers=0
--max_train_steps=8
--max_train_steps=11
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
--no_safe_serialization
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-6", "checkpoint-8", "checkpoint-10"},
)

View File

@@ -89,7 +89,7 @@ class DreamBooth(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# max_train_steps == 5, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args = f"""
@@ -100,7 +100,7 @@ class DreamBooth(ExamplesTestsAccelerate):
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 4
--max_train_steps 5
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -114,7 +114,7 @@ class DreamBooth(ExamplesTestsAccelerate):
# check can run the original fully trained output pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=1)
pipe(instance_prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
@@ -123,7 +123,7 @@ class DreamBooth(ExamplesTestsAccelerate):
# check can run an intermediate checkpoint
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
pipe(instance_prompt, num_inference_steps=1)
pipe(instance_prompt, num_inference_steps=2)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
@@ -138,7 +138,7 @@ class DreamBooth(ExamplesTestsAccelerate):
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -153,7 +153,7 @@ class DreamBooth(ExamplesTestsAccelerate):
# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(instance_prompt, num_inference_steps=1)
pipe(instance_prompt, num_inference_steps=2)
# check old checkpoints do not exist
self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2")))
@@ -196,7 +196,7 @@ class DreamBooth(ExamplesTestsAccelerate):
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=4
--max_train_steps=9
--checkpointing_steps=2
""".split()
@@ -204,7 +204,7 @@ class DreamBooth(ExamplesTestsAccelerate):
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
resume_run_args = f"""
@@ -216,12 +216,15 @@ class DreamBooth(ExamplesTestsAccelerate):
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=8
--max_train_steps=11
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-6", "checkpoint-8", "checkpoint-10"},
)

View File

@@ -135,13 +135,16 @@ class DreamBoothLoRA(ExamplesTestsAccelerate):
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=4
--max_train_steps=9
--checkpointing_steps=2
""".split()
run_command(self._launch_args + test_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
resume_run_args = f"""
examples/dreambooth/train_dreambooth_lora.py
@@ -152,15 +155,18 @@ class DreamBoothLoRA(ExamplesTestsAccelerate):
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=8
--max_train_steps=11
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-6", "checkpoint-8", "checkpoint-10"},
)
def test_dreambooth_lora_if_model(self):
with tempfile.TemporaryDirectory() as tmpdir:
@@ -322,7 +328,7 @@ class DreamBoothLoRASDXL(ExamplesTestsAccelerate):
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--max_train_steps 7
--checkpointing_steps=2
--checkpoints_total_limit=2
--learning_rate 5.0e-04
@@ -336,11 +342,14 @@ class DreamBoothLoRASDXL(ExamplesTestsAccelerate):
pipe = DiffusionPipeline.from_pretrained(pipeline_path)
pipe.load_lora_weights(tmpdir)
pipe("a prompt", num_inference_steps=1)
pipe("a prompt", num_inference_steps=2)
# check checkpoint directories exist
# checkpoint-2 should have been deleted
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
# checkpoint-2 should have been deleted
{"checkpoint-4", "checkpoint-6"},
)
def test_dreambooth_lora_sdxl_text_encoder_checkpointing_checkpoints_total_limit(self):
pipeline_path = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"

View File

@@ -827,7 +827,6 @@ def main(args):
# now we will add new LoRA weights to the attention layers
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0", "add_k_proj", "add_v_proj"],
)
@@ -836,10 +835,7 @@ def main(args):
# The text encoder comes from 🤗 transformers, we will also attach adapters to it.
if args.train_text_encoder:
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
)
text_encoder.add_adapter(text_lora_config)

View File

@@ -978,10 +978,7 @@ def main(args):
# now we will add new LoRA weights to the attention layers
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
)
unet.add_adapter(unet_lora_config)
@@ -989,10 +986,7 @@ def main(args):
# So, instead, we monkey-patch the forward calls of its attention-blocks.
if args.train_text_encoder:
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)
@@ -1150,26 +1144,10 @@ def main(args):
optimizer_class = prodigyopt.Prodigy
if args.learning_rate <= 0.1:
logger.warn(
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
)
if args.train_text_encoder and args.text_encoder_lr:
logger.warn(
f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:"
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
f"When using prodigy only learning_rate is used as the initial learning rate."
)
# changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be
# --learning_rate
params_to_optimize[1]["lr"] = args.learning_rate
params_to_optimize[2]["lr"] = args.learning_rate
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
beta3=args.prodigy_beta3,
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
decouple=args.prodigy_decouple,

View File

@@ -40,7 +40,7 @@ class InstructPix2Pix(ExamplesTestsAccelerate):
--resolution=64
--random_flip
--train_batch_size=1
--max_train_steps=6
--max_train_steps=7
--checkpointing_steps=2
--checkpoints_total_limit=2
--output_dir {tmpdir}
@@ -63,7 +63,7 @@ class InstructPix2Pix(ExamplesTestsAccelerate):
--resolution=64
--random_flip
--train_batch_size=1
--max_train_steps=4
--max_train_steps=9
--checkpointing_steps=2
--output_dir {tmpdir}
--seed=0
@@ -74,7 +74,7 @@ class InstructPix2Pix(ExamplesTestsAccelerate):
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
resume_run_args = f"""
@@ -84,12 +84,12 @@ class InstructPix2Pix(ExamplesTestsAccelerate):
--resolution=64
--random_flip
--train_batch_size=1
--max_train_steps=8
--max_train_steps=11
--checkpointing_steps=2
--output_dir {tmpdir}
--seed=0
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
""".split()
run_command(self._launch_args + resume_run_args)
@@ -97,5 +97,5 @@ class InstructPix2Pix(ExamplesTestsAccelerate):
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-6", "checkpoint-8"},
{"checkpoint-6", "checkpoint-8", "checkpoint-10"},
)

View File

@@ -64,7 +64,7 @@ class TextToImage(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# max_train_steps == 5, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args = f"""
@@ -76,7 +76,7 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 4
--max_train_steps 5
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -89,7 +89,7 @@ class TextToImage(ExamplesTestsAccelerate):
run_command(self._launch_args + initial_run_args)
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertEqual(
@@ -100,12 +100,12 @@ class TextToImage(ExamplesTestsAccelerate):
# check can run an intermediate checkpoint
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
# Run training script for 2 total steps resuming from checkpoint 4
# Run training script for 7 total steps resuming from checkpoint 4
resume_run_args = f"""
examples/text_to_image/train_text_to_image.py
@@ -116,13 +116,13 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=1
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--seed=0
""".split()
@@ -131,13 +131,16 @@ class TextToImage(ExamplesTestsAccelerate):
# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# no checkpoint-2 -> check old checkpoints do not exist
# check new checkpoints exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-5"},
{
# no checkpoint-2 -> check old checkpoints do not exist
# check new checkpoints exist
"checkpoint-4",
"checkpoint-6",
},
)
def test_text_to_image_checkpointing_use_ema(self):
@@ -146,7 +149,7 @@ class TextToImage(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# max_train_steps == 5, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
initial_run_args = f"""
@@ -158,7 +161,7 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 4
--max_train_steps 5
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -183,12 +186,12 @@ class TextToImage(ExamplesTestsAccelerate):
# check can run an intermediate checkpoint
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
# Run training script for 2 total steps resuming from checkpoint 4
# Run training script for 7 total steps resuming from checkpoint 4
resume_run_args = f"""
examples/text_to_image/train_text_to_image.py
@@ -199,13 +202,13 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=1
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--use_ema
--seed=0
@@ -215,13 +218,16 @@ class TextToImage(ExamplesTestsAccelerate):
# check can run new fully trained pipeline
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# no checkpoint-2 -> check old checkpoints do not exist
# check new checkpoints exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-5"},
{
# no checkpoint-2 -> check old checkpoints do not exist
# check new checkpoints exist
"checkpoint-4",
"checkpoint-6",
},
)
def test_text_to_image_checkpointing_checkpoints_total_limit(self):
@@ -230,7 +236,7 @@ class TextToImage(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2
# Should create checkpoints at steps 2, 4, 6
# with checkpoint at step 2 deleted
@@ -243,7 +249,7 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -257,11 +263,14 @@ class TextToImage(ExamplesTestsAccelerate):
run_command(self._launch_args + initial_run_args)
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
# checkpoint-2 should have been deleted
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
# checkpoint-2 should have been deleted
{"checkpoint-4", "checkpoint-6"},
)
def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
@@ -269,8 +278,8 @@ class TextToImage(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
# max_train_steps == 9, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4, 6, 8
initial_run_args = f"""
examples/text_to_image/train_text_to_image.py
@@ -281,7 +290,7 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 4
--max_train_steps 9
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -294,15 +303,15 @@ class TextToImage(ExamplesTestsAccelerate):
run_command(self._launch_args + initial_run_args)
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
# resume and we should try to checkpoint at 6, where we'll have to remove
# resume and we should try to checkpoint at 10, where we'll have to remove
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint
resume_run_args = f"""
@@ -314,27 +323,27 @@ class TextToImage(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 8
--max_train_steps 11
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
--seed=0
""".split()
run_command(self._launch_args + resume_run_args)
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-6", "checkpoint-8"},
{"checkpoint-6", "checkpoint-8", "checkpoint-10"},
)

View File

@@ -41,7 +41,7 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2
# Should create checkpoints at steps 2, 4, 6
# with checkpoint at step 2 deleted
@@ -52,7 +52,7 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -66,11 +66,14 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
pipe = DiffusionPipeline.from_pretrained(pipeline_path)
pipe.load_lora_weights(tmpdir)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
# checkpoint-2 should have been deleted
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
# checkpoint-2 should have been deleted
{"checkpoint-4", "checkpoint-6"},
)
def test_text_to_image_lora_checkpointing_checkpoints_total_limit(self):
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
@@ -78,7 +81,7 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2
# Should create checkpoints at steps 2, 4, 6
# with checkpoint at step 2 deleted
@@ -91,7 +94,7 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -109,11 +112,14 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
)
pipe.load_lora_weights(tmpdir)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
# checkpoint-2 should have been deleted
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
# checkpoint-2 should have been deleted
{"checkpoint-4", "checkpoint-6"},
)
def test_text_to_image_lora_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
@@ -121,8 +127,8 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 4, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4
# max_train_steps == 9, checkpointing_steps == 2
# Should create checkpoints at steps 2, 4, 6, 8
initial_run_args = f"""
examples/text_to_image/train_text_to_image_lora.py
@@ -133,7 +139,7 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 4
--max_train_steps 9
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -150,15 +156,15 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
)
pipe.load_lora_weights(tmpdir)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4"},
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"},
)
# resume and we should try to checkpoint at 6, where we'll have to remove
# resume and we should try to checkpoint at 10, where we'll have to remove
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint
resume_run_args = f"""
@@ -170,15 +176,15 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
--random_flip
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 8
--max_train_steps 11
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--resume_from_checkpoint=checkpoint-8
--checkpoints_total_limit=3
--seed=0
--num_validation_images=0
""".split()
@@ -189,12 +195,12 @@ class TextToImageLoRA(ExamplesTestsAccelerate):
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None
)
pipe.load_lora_weights(tmpdir)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-6", "checkpoint-8"},
{"checkpoint-6", "checkpoint-8", "checkpoint-10"},
)
@@ -266,7 +272,7 @@ class TextToImageLoRASDXL(ExamplesTestsAccelerate):
with tempfile.TemporaryDirectory() as tmpdir:
# Run training script with checkpointing
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
# max_train_steps == 7, checkpointing_steps == 2, checkpoints_total_limit == 2
# Should create checkpoints at steps 2, 4, 6
# with checkpoint at step 2 deleted
@@ -277,7 +283,7 @@ class TextToImageLoRASDXL(ExamplesTestsAccelerate):
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 6
--max_train_steps 7
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -292,8 +298,11 @@ class TextToImageLoRASDXL(ExamplesTestsAccelerate):
pipe = DiffusionPipeline.from_pretrained(pipeline_path)
pipe.load_lora_weights(tmpdir)
pipe(prompt, num_inference_steps=1)
pipe(prompt, num_inference_steps=2)
# check checkpoint directories exist
# checkpoint-2 should have been deleted
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
# checkpoint-2 should have been deleted
{"checkpoint-4", "checkpoint-6"},
)

View File

@@ -452,10 +452,7 @@ def main():
param.requires_grad_(False)
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
)
# Move unet, vae and text_encoder to device and cast to weight_dtype
@@ -847,11 +844,10 @@ def main():
if args.seed is not None:
generator = generator.manual_seed(args.seed)
images = []
with torch.cuda.amp.autocast():
for _ in range(args.num_validation_images):
images.append(
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]
)
for _ in range(args.num_validation_images):
images.append(
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]
)
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
@@ -917,11 +913,8 @@ def main():
if args.seed is not None:
generator = generator.manual_seed(args.seed)
images = []
with torch.cuda.amp.autocast():
for _ in range(args.num_validation_images):
images.append(
pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0]
)
for _ in range(args.num_validation_images):
images.append(pipeline(args.validation_prompt, num_inference_steps=30, generator=generator).images[0])
for tracker in accelerator.trackers:
if len(images) != 0:

View File

@@ -609,10 +609,7 @@ def main(args):
# now we will add new LoRA weights to the attention layers
# Set correct lora layers
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
)
unet.add_adapter(unet_lora_config)
@@ -621,10 +618,7 @@ def main(args):
if args.train_text_encoder:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)

View File

@@ -40,6 +40,8 @@ class TextualInversion(ExamplesTestsAccelerate):
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--validation_prompt <cat-toy>
--validation_steps 1
--save_steps 1
--num_vectors 2
--resolution 64
@@ -66,6 +68,8 @@ class TextualInversion(ExamplesTestsAccelerate):
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--validation_prompt <cat-toy>
--validation_steps 1
--save_steps 1
--num_vectors 2
--resolution 64
@@ -98,12 +102,14 @@ class TextualInversion(ExamplesTestsAccelerate):
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--validation_prompt <cat-toy>
--validation_steps 1
--save_steps 1
--num_vectors 2
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--max_train_steps 3
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
@@ -117,7 +123,7 @@ class TextualInversion(ExamplesTestsAccelerate):
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-1", "checkpoint-2"},
{"checkpoint-1", "checkpoint-2", "checkpoint-3"},
)
resume_run_args = f"""
@@ -127,19 +133,21 @@ class TextualInversion(ExamplesTestsAccelerate):
--learnable_property object
--placeholder_token <cat-toy>
--initializer_token a
--validation_prompt <cat-toy>
--validation_steps 1
--save_steps 1
--num_vectors 2
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--max_train_steps 4
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--output_dir {tmpdir}
--checkpointing_steps=1
--resume_from_checkpoint=checkpoint-2
--resume_from_checkpoint=checkpoint-3
--checkpoints_total_limit=2
""".split()
@@ -148,5 +156,5 @@ class TextualInversion(ExamplesTestsAccelerate):
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-3"},
{"checkpoint-3", "checkpoint-4"},
)

View File

@@ -90,10 +90,10 @@ class Unconditional(ExamplesTestsAccelerate):
--train_batch_size 1
--num_epochs 1
--gradient_accumulation_steps 1
--ddpm_num_inference_steps 1
--ddpm_num_inference_steps 2
--learning_rate 1e-3
--lr_warmup_steps 5
--checkpointing_steps=2
--checkpointing_steps=1
""".split()
run_command(self._launch_args + initial_run_args)
@@ -101,7 +101,7 @@ class Unconditional(ExamplesTestsAccelerate):
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-2", "checkpoint-4", "checkpoint-6"},
{"checkpoint-1", "checkpoint-2", "checkpoint-3", "checkpoint-4", "checkpoint-5", "checkpoint-6"},
)
resume_run_args = f"""
@@ -113,12 +113,12 @@ class Unconditional(ExamplesTestsAccelerate):
--train_batch_size 1
--num_epochs 2
--gradient_accumulation_steps 1
--ddpm_num_inference_steps 1
--ddpm_num_inference_steps 2
--learning_rate 1e-3
--lr_warmup_steps 5
--resume_from_checkpoint=checkpoint-6
--checkpointing_steps=2
--checkpoints_total_limit=2
--checkpoints_total_limit=3
""".split()
run_command(self._launch_args + resume_run_args)
@@ -126,5 +126,5 @@ class Unconditional(ExamplesTestsAccelerate):
# check checkpoint directories exist
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-10", "checkpoint-12"},
{"checkpoint-8", "checkpoint-10", "checkpoint-12"},
)

View File

@@ -1,523 +0,0 @@
import inspect
import os
from argparse import ArgumentParser
import numpy as np
import torch
from muse import MaskGiTUViT, VQGANModel
from muse import PipelineMuse as OldPipelineMuse
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import VQModel
from diffusers.models.attention_processor import AttnProcessor
from diffusers.models.uvit_2d import UVit2DModel
from diffusers.pipelines.amused.pipeline_amused import AmusedPipeline
from diffusers.schedulers import AmusedScheduler
torch.backends.cuda.enable_flash_sdp(False)
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_math_sdp(True)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = False
device = "cuda"
def main():
args = ArgumentParser()
args.add_argument("--model_256", action="store_true")
args.add_argument("--write_to", type=str, required=False, default=None)
args.add_argument("--transformer_path", type=str, required=False, default=None)
args = args.parse_args()
transformer_path = args.transformer_path
subfolder = "transformer"
if transformer_path is None:
if args.model_256:
transformer_path = "openMUSE/muse-256"
else:
transformer_path = (
"../research-run-512-checkpoints/research-run-512-with-downsample-checkpoint-554000/unwrapped_model/"
)
subfolder = None
old_transformer = MaskGiTUViT.from_pretrained(transformer_path, subfolder=subfolder)
old_transformer.to(device)
old_vae = VQGANModel.from_pretrained("openMUSE/muse-512", subfolder="vae")
old_vae.to(device)
vqvae = make_vqvae(old_vae)
tokenizer = CLIPTokenizer.from_pretrained("openMUSE/muse-512", subfolder="text_encoder")
text_encoder = CLIPTextModelWithProjection.from_pretrained("openMUSE/muse-512", subfolder="text_encoder")
text_encoder.to(device)
transformer = make_transformer(old_transformer, args.model_256)
scheduler = AmusedScheduler(mask_token_id=old_transformer.config.mask_token_id)
new_pipe = AmusedPipeline(
vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler
)
old_pipe = OldPipelineMuse(
vae=old_vae, transformer=old_transformer, text_encoder=text_encoder, tokenizer=tokenizer
)
old_pipe.to(device)
if args.model_256:
transformer_seq_len = 256
orig_size = (256, 256)
else:
transformer_seq_len = 1024
orig_size = (512, 512)
old_out = old_pipe(
"dog",
generator=torch.Generator(device).manual_seed(0),
transformer_seq_len=transformer_seq_len,
orig_size=orig_size,
timesteps=12,
)[0]
new_out = new_pipe("dog", generator=torch.Generator(device).manual_seed(0)).images[0]
old_out = np.array(old_out)
new_out = np.array(new_out)
diff = np.abs(old_out.astype(np.float64) - new_out.astype(np.float64))
# assert diff diff.sum() == 0
print("skipping pipeline full equivalence check")
print(f"max diff: {diff.max()}, diff.sum() / diff.size {diff.sum() / diff.size}")
if args.model_256:
assert diff.max() <= 3
assert diff.sum() / diff.size < 0.7
else:
assert diff.max() <= 1
assert diff.sum() / diff.size < 0.4
if args.write_to is not None:
new_pipe.save_pretrained(args.write_to)
def make_transformer(old_transformer, model_256):
args = dict(old_transformer.config)
force_down_up_sample = args["force_down_up_sample"]
signature = inspect.signature(UVit2DModel.__init__)
args_ = {
"downsample": force_down_up_sample,
"upsample": force_down_up_sample,
"block_out_channels": args["block_out_channels"][0],
"sample_size": 16 if model_256 else 32,
}
for s in list(signature.parameters.keys()):
if s in ["self", "downsample", "upsample", "sample_size", "block_out_channels"]:
continue
args_[s] = args[s]
new_transformer = UVit2DModel(**args_)
new_transformer.to(device)
new_transformer.set_attn_processor(AttnProcessor())
state_dict = old_transformer.state_dict()
state_dict["cond_embed.linear_1.weight"] = state_dict.pop("cond_embed.0.weight")
state_dict["cond_embed.linear_2.weight"] = state_dict.pop("cond_embed.2.weight")
for i in range(22):
state_dict[f"transformer_layers.{i}.norm1.norm.weight"] = state_dict.pop(
f"transformer_layers.{i}.attn_layer_norm.weight"
)
state_dict[f"transformer_layers.{i}.norm1.linear.weight"] = state_dict.pop(
f"transformer_layers.{i}.self_attn_adaLN_modulation.mapper.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_q.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.query.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_k.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.key.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_v.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.value.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_out.0.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.out.weight"
)
state_dict[f"transformer_layers.{i}.norm2.norm.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattn_layer_norm.weight"
)
state_dict[f"transformer_layers.{i}.norm2.linear.weight"] = state_dict.pop(
f"transformer_layers.{i}.cross_attn_adaLN_modulation.mapper.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_q.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.query.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_k.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.key.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_v.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.value.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_out.0.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.out.weight"
)
state_dict[f"transformer_layers.{i}.norm3.norm.weight"] = state_dict.pop(
f"transformer_layers.{i}.ffn.pre_mlp_layer_norm.weight"
)
state_dict[f"transformer_layers.{i}.norm3.linear.weight"] = state_dict.pop(
f"transformer_layers.{i}.ffn.adaLN_modulation.mapper.weight"
)
wi_0_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_0.weight")
wi_1_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_1.weight")
proj_weight = torch.concat([wi_1_weight, wi_0_weight], dim=0)
state_dict[f"transformer_layers.{i}.ff.net.0.proj.weight"] = proj_weight
state_dict[f"transformer_layers.{i}.ff.net.2.weight"] = state_dict.pop(f"transformer_layers.{i}.ffn.wo.weight")
if force_down_up_sample:
state_dict["down_block.downsample.norm.weight"] = state_dict.pop("down_blocks.0.downsample.0.norm.weight")
state_dict["down_block.downsample.conv.weight"] = state_dict.pop("down_blocks.0.downsample.1.weight")
state_dict["up_block.upsample.norm.weight"] = state_dict.pop("up_blocks.0.upsample.0.norm.weight")
state_dict["up_block.upsample.conv.weight"] = state_dict.pop("up_blocks.0.upsample.1.weight")
state_dict["mlm_layer.layer_norm.weight"] = state_dict.pop("mlm_layer.layer_norm.norm.weight")
for i in range(3):
state_dict[f"down_block.res_blocks.{i}.norm.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.norm.norm.weight"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.0.weight"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.2.gamma"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.2.beta"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.4.weight"
)
state_dict[f"down_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight"
)
state_dict[f"down_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attn_layer_norm.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.query.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.key.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.value.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.out.weight"
)
state_dict[f"down_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.query.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.key.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.value.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.out.weight"
)
state_dict[f"up_block.res_blocks.{i}.norm.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.norm.norm.weight"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.0.weight"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.2.gamma"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.2.beta"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.4.weight"
)
state_dict[f"up_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight"
)
state_dict[f"up_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attn_layer_norm.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.query.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.key.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.value.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.out.weight"
)
state_dict[f"up_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.query.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.key.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.value.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.out.weight"
)
for key in list(state_dict.keys()):
if key.startswith("up_blocks.0"):
key_ = "up_block." + ".".join(key.split(".")[2:])
state_dict[key_] = state_dict.pop(key)
if key.startswith("down_blocks.0"):
key_ = "down_block." + ".".join(key.split(".")[2:])
state_dict[key_] = state_dict.pop(key)
new_transformer.load_state_dict(state_dict)
input_ids = torch.randint(0, 10, (1, 32, 32), device=old_transformer.device)
encoder_hidden_states = torch.randn((1, 77, 768), device=old_transformer.device)
cond_embeds = torch.randn((1, 768), device=old_transformer.device)
micro_conds = torch.tensor([[512, 512, 0, 0, 6]], dtype=torch.float32, device=old_transformer.device)
old_out = old_transformer(input_ids.reshape(1, -1), encoder_hidden_states, cond_embeds, micro_conds)
old_out = old_out.reshape(1, 32, 32, 8192).permute(0, 3, 1, 2)
new_out = new_transformer(input_ids, encoder_hidden_states, cond_embeds, micro_conds)
# NOTE: these differences are solely due to using the geglu block that has a single linear layer of
# double output dimension instead of two different linear layers
max_diff = (old_out - new_out).abs().max()
total_diff = (old_out - new_out).abs().sum()
print(f"Transformer max_diff: {max_diff} total_diff: {total_diff}")
assert max_diff < 0.01
assert total_diff < 1500
return new_transformer
def make_vqvae(old_vae):
new_vae = VQModel(
act_fn="silu",
block_out_channels=[128, 256, 256, 512, 768],
down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=64,
layers_per_block=2,
norm_num_groups=32,
num_vq_embeddings=8192,
out_channels=3,
sample_size=32,
up_block_types=[
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
],
mid_block_add_attention=False,
lookup_from_codebook=True,
)
new_vae.to(device)
# fmt: off
new_state_dict = {}
old_state_dict = old_vae.state_dict()
new_state_dict["encoder.conv_in.weight"] = old_state_dict.pop("encoder.conv_in.weight")
new_state_dict["encoder.conv_in.bias"] = old_state_dict.pop("encoder.conv_in.bias")
convert_vae_block_state_dict(old_state_dict, "encoder.down.0", new_state_dict, "encoder.down_blocks.0")
convert_vae_block_state_dict(old_state_dict, "encoder.down.1", new_state_dict, "encoder.down_blocks.1")
convert_vae_block_state_dict(old_state_dict, "encoder.down.2", new_state_dict, "encoder.down_blocks.2")
convert_vae_block_state_dict(old_state_dict, "encoder.down.3", new_state_dict, "encoder.down_blocks.3")
convert_vae_block_state_dict(old_state_dict, "encoder.down.4", new_state_dict, "encoder.down_blocks.4")
new_state_dict["encoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("encoder.mid.block_1.norm1.weight")
new_state_dict["encoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("encoder.mid.block_1.norm1.bias")
new_state_dict["encoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("encoder.mid.block_1.conv1.weight")
new_state_dict["encoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("encoder.mid.block_1.conv1.bias")
new_state_dict["encoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("encoder.mid.block_1.norm2.weight")
new_state_dict["encoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("encoder.mid.block_1.norm2.bias")
new_state_dict["encoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("encoder.mid.block_1.conv2.weight")
new_state_dict["encoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("encoder.mid.block_1.conv2.bias")
new_state_dict["encoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("encoder.mid.block_2.norm1.weight")
new_state_dict["encoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("encoder.mid.block_2.norm1.bias")
new_state_dict["encoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("encoder.mid.block_2.conv1.weight")
new_state_dict["encoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("encoder.mid.block_2.conv1.bias")
new_state_dict["encoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("encoder.mid.block_2.norm2.weight")
new_state_dict["encoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("encoder.mid.block_2.norm2.bias")
new_state_dict["encoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("encoder.mid.block_2.conv2.weight")
new_state_dict["encoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("encoder.mid.block_2.conv2.bias")
new_state_dict["encoder.conv_norm_out.weight"] = old_state_dict.pop("encoder.norm_out.weight")
new_state_dict["encoder.conv_norm_out.bias"] = old_state_dict.pop("encoder.norm_out.bias")
new_state_dict["encoder.conv_out.weight"] = old_state_dict.pop("encoder.conv_out.weight")
new_state_dict["encoder.conv_out.bias"] = old_state_dict.pop("encoder.conv_out.bias")
new_state_dict["quant_conv.weight"] = old_state_dict.pop("quant_conv.weight")
new_state_dict["quant_conv.bias"] = old_state_dict.pop("quant_conv.bias")
new_state_dict["quantize.embedding.weight"] = old_state_dict.pop("quantize.embedding.weight")
new_state_dict["post_quant_conv.weight"] = old_state_dict.pop("post_quant_conv.weight")
new_state_dict["post_quant_conv.bias"] = old_state_dict.pop("post_quant_conv.bias")
new_state_dict["decoder.conv_in.weight"] = old_state_dict.pop("decoder.conv_in.weight")
new_state_dict["decoder.conv_in.bias"] = old_state_dict.pop("decoder.conv_in.bias")
new_state_dict["decoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("decoder.mid.block_1.norm1.weight")
new_state_dict["decoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("decoder.mid.block_1.norm1.bias")
new_state_dict["decoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("decoder.mid.block_1.conv1.weight")
new_state_dict["decoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("decoder.mid.block_1.conv1.bias")
new_state_dict["decoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("decoder.mid.block_1.norm2.weight")
new_state_dict["decoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("decoder.mid.block_1.norm2.bias")
new_state_dict["decoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("decoder.mid.block_1.conv2.weight")
new_state_dict["decoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("decoder.mid.block_1.conv2.bias")
new_state_dict["decoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("decoder.mid.block_2.norm1.weight")
new_state_dict["decoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("decoder.mid.block_2.norm1.bias")
new_state_dict["decoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("decoder.mid.block_2.conv1.weight")
new_state_dict["decoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("decoder.mid.block_2.conv1.bias")
new_state_dict["decoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("decoder.mid.block_2.norm2.weight")
new_state_dict["decoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("decoder.mid.block_2.norm2.bias")
new_state_dict["decoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("decoder.mid.block_2.conv2.weight")
new_state_dict["decoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("decoder.mid.block_2.conv2.bias")
convert_vae_block_state_dict(old_state_dict, "decoder.up.0", new_state_dict, "decoder.up_blocks.4")
convert_vae_block_state_dict(old_state_dict, "decoder.up.1", new_state_dict, "decoder.up_blocks.3")
convert_vae_block_state_dict(old_state_dict, "decoder.up.2", new_state_dict, "decoder.up_blocks.2")
convert_vae_block_state_dict(old_state_dict, "decoder.up.3", new_state_dict, "decoder.up_blocks.1")
convert_vae_block_state_dict(old_state_dict, "decoder.up.4", new_state_dict, "decoder.up_blocks.0")
new_state_dict["decoder.conv_norm_out.weight"] = old_state_dict.pop("decoder.norm_out.weight")
new_state_dict["decoder.conv_norm_out.bias"] = old_state_dict.pop("decoder.norm_out.bias")
new_state_dict["decoder.conv_out.weight"] = old_state_dict.pop("decoder.conv_out.weight")
new_state_dict["decoder.conv_out.bias"] = old_state_dict.pop("decoder.conv_out.bias")
# fmt: on
assert len(old_state_dict.keys()) == 0
new_vae.load_state_dict(new_state_dict)
input = torch.randn((1, 3, 512, 512), device=device)
input = input.clamp(-1, 1)
old_encoder_output = old_vae.quant_conv(old_vae.encoder(input))
new_encoder_output = new_vae.quant_conv(new_vae.encoder(input))
assert (old_encoder_output == new_encoder_output).all()
old_decoder_output = old_vae.decoder(old_vae.post_quant_conv(old_encoder_output))
new_decoder_output = new_vae.decoder(new_vae.post_quant_conv(new_encoder_output))
# assert (old_decoder_output == new_decoder_output).all()
print("kipping vae decoder equivalence check")
print(f"vae decoder diff {(old_decoder_output - new_decoder_output).float().abs().sum()}")
old_output = old_vae(input)[0]
new_output = new_vae(input)[0]
# assert (old_output == new_output).all()
print("skipping full vae equivalence check")
print(f"vae full diff { (old_output - new_output).float().abs().sum()}")
return new_vae
def convert_vae_block_state_dict(old_state_dict, prefix_from, new_state_dict, prefix_to):
# fmt: off
new_state_dict[f"{prefix_to}.resnets.0.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.weight")
new_state_dict[f"{prefix_to}.resnets.0.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.bias")
new_state_dict[f"{prefix_to}.resnets.0.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.weight")
new_state_dict[f"{prefix_to}.resnets.0.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.bias")
new_state_dict[f"{prefix_to}.resnets.0.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.weight")
new_state_dict[f"{prefix_to}.resnets.0.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.bias")
new_state_dict[f"{prefix_to}.resnets.0.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.weight")
new_state_dict[f"{prefix_to}.resnets.0.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.bias")
if f"{prefix_from}.block.0.nin_shortcut.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.weight")
new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.bias")
new_state_dict[f"{prefix_to}.resnets.1.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.weight")
new_state_dict[f"{prefix_to}.resnets.1.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.bias")
new_state_dict[f"{prefix_to}.resnets.1.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.weight")
new_state_dict[f"{prefix_to}.resnets.1.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.bias")
new_state_dict[f"{prefix_to}.resnets.1.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.weight")
new_state_dict[f"{prefix_to}.resnets.1.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.bias")
new_state_dict[f"{prefix_to}.resnets.1.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.weight")
new_state_dict[f"{prefix_to}.resnets.1.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.bias")
if f"{prefix_from}.downsample.conv.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.downsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.weight")
new_state_dict[f"{prefix_to}.downsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.bias")
if f"{prefix_from}.upsample.conv.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.upsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.weight")
new_state_dict[f"{prefix_to}.upsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.bias")
if f"{prefix_from}.block.2.norm1.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.resnets.2.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.weight")
new_state_dict[f"{prefix_to}.resnets.2.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.bias")
new_state_dict[f"{prefix_to}.resnets.2.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.weight")
new_state_dict[f"{prefix_to}.resnets.2.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.bias")
new_state_dict[f"{prefix_to}.resnets.2.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.weight")
new_state_dict[f"{prefix_to}.resnets.2.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.bias")
new_state_dict[f"{prefix_to}.resnets.2.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.weight")
new_state_dict[f"{prefix_to}.resnets.2.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.bias")
# fmt: on
if __name__ == "__main__":
main()

View File

@@ -95,7 +95,6 @@ else:
"UNet3DConditionModel",
"UNetMotionModel",
"UNetSpatioTemporalConditionModel",
"UVit2DModel",
"VQModel",
]
)
@@ -132,7 +131,6 @@ else:
)
_import_structure["schedulers"].extend(
[
"AmusedScheduler",
"CMStochasticIterativeScheduler",
"DDIMInverseScheduler",
"DDIMParallelScheduler",
@@ -204,9 +202,6 @@ else:
[
"AltDiffusionImg2ImgPipeline",
"AltDiffusionPipeline",
"AmusedImg2ImgPipeline",
"AmusedInpaintPipeline",
"AmusedPipeline",
"AnimateDiffPipeline",
"AudioLDM2Pipeline",
"AudioLDM2ProjectionModel",
@@ -477,7 +472,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
UNet3DConditionModel,
UNetMotionModel,
UNetSpatioTemporalConditionModel,
UVit2DModel,
VQModel,
)
from .optimization import (
@@ -512,7 +506,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
ScoreSdeVePipeline,
)
from .schedulers import (
AmusedScheduler,
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
@@ -567,9 +560,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipelines import (
AltDiffusionImg2ImgPipeline,
AltDiffusionPipeline,
AmusedImg2ImgPipeline,
AmusedInpaintPipeline,
AmusedPipeline,
AnimateDiffPipeline,
AudioLDM2Pipeline,
AudioLDM2ProjectionModel,

View File

@@ -59,7 +59,6 @@ logger = logging.get_logger(__name__)
TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"
TRANSFORMER_NAME = "transformer"
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
@@ -75,7 +74,6 @@ class LoraLoaderMixin:
text_encoder_name = TEXT_ENCODER_NAME
unet_name = UNET_NAME
transformer_name = TRANSFORMER_NAME
num_fused_loras = 0
def load_lora_weights(
@@ -663,89 +661,6 @@ class LoraLoaderMixin:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
@classmethod
def load_lora_into_transformer(
cls, state_dict, network_alphas, transformer, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
See `LoRALinearLayer` for more details.
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
"""
low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
keys = list(state_dict.keys())
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
state_dict = {
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
}
if network_alphas is not None:
alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)]
network_alphas = {
k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
if len(state_dict.keys()) > 0:
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
if adapter_name in getattr(transformer, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict)
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(transformer)
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
@property
def lora_scale(self) -> float:
# property function that returns the lora scale which can be set at run time by the pipeline.
@@ -871,7 +786,6 @@ class LoraLoaderMixin:
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
transformer_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
@@ -906,10 +820,8 @@ class LoraLoaderMixin:
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
if not (unet_lora_layers or text_encoder_lora_layers or transformer_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `transformer_lora_layers`."
)
if not (unet_lora_layers or text_encoder_lora_layers):
raise ValueError("You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`.")
if unet_lora_layers:
state_dict.update(pack_weights(unet_lora_layers, "unet"))
@@ -917,9 +829,6 @@ class LoraLoaderMixin:
if text_encoder_lora_layers:
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
if transformer_lora_layers:
state_dict.update(pack_weights(transformer_lora_layers, "transformer"))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,

View File

@@ -47,7 +47,6 @@ if is_torch_available():
_import_structure["unet_kandinsky3"] = ["Kandinsky3UNet"]
_import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
_import_structure["unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
_import_structure["uvit_2d"] = ["UVit2DModel"]
_import_structure["vq_model"] = ["VQModel"]
if is_flax_available():
@@ -82,7 +81,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .unet_kandinsky3 import Kandinsky3UNet
from .unet_motion_model import MotionAdapter, UNetMotionModel
from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
from .uvit_2d import UVit2DModel
from .vq_model import VQModel
if is_flax_available():

View File

@@ -14,7 +14,6 @@
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import USE_PEFT_BACKEND
@@ -23,7 +22,7 @@ from .activations import GEGLU, GELU, ApproximateGELU
from .attention_processor import Attention
from .embeddings import SinusoidalPositionalEmbedding
from .lora import LoRACompatibleLinear
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
from .normalization import AdaLayerNorm, AdaLayerNormZero
def _chunked_feed_forward(
@@ -149,11 +148,6 @@ class BasicTransformerBlock(nn.Module):
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
ada_norm_bias: Optional[int] = None,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
self.only_cross_attention = only_cross_attention
@@ -162,7 +156,6 @@ class BasicTransformerBlock(nn.Module):
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
self.use_layer_norm = norm_type == "layer_norm"
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
@@ -186,15 +179,6 @@ class BasicTransformerBlock(nn.Module):
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_zero:
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_continuous:
self.norm1 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
else:
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
@@ -206,7 +190,6 @@ class BasicTransformerBlock(nn.Module):
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
# 2. Cross-Attn
@@ -214,20 +197,11 @@ class BasicTransformerBlock(nn.Module):
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
if self.use_ada_layer_norm:
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
elif self.use_ada_layer_norm_continuous:
self.norm2 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"rms_norm",
)
else:
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.norm2 = (
AdaLayerNorm(dim, num_embeds_ada_norm)
if self.use_ada_layer_norm
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
@@ -236,32 +210,20 @@ class BasicTransformerBlock(nn.Module):
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
) # is self-attn if encoder_hidden_states is none
else:
self.norm2 = None
self.attn2 = None
# 3. Feed-forward
if self.use_ada_layer_norm_continuous:
self.norm3 = AdaLayerNormContinuous(
dim,
ada_norm_continous_conditioning_embedding_dim,
norm_elementwise_affine,
norm_eps,
ada_norm_bias,
"layer_norm",
)
elif not self.use_ada_layer_norm_single:
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
if not self.use_ada_layer_norm_single:
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
# 4. Fuser
@@ -290,7 +252,6 @@ class BasicTransformerBlock(nn.Module):
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
@@ -304,8 +265,6 @@ class BasicTransformerBlock(nn.Module):
)
elif self.use_layer_norm:
norm_hidden_states = self.norm1(hidden_states)
elif self.use_ada_layer_norm_continuous:
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.use_ada_layer_norm_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
@@ -355,8 +314,6 @@ class BasicTransformerBlock(nn.Module):
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.use_ada_layer_norm_continuous:
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
@@ -372,9 +329,7 @@ class BasicTransformerBlock(nn.Module):
hidden_states = attn_output + hidden_states
# 4. Feed-forward
if self.use_ada_layer_norm_continuous:
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.use_ada_layer_norm_single:
if not self.use_ada_layer_norm_single:
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
@@ -535,78 +490,6 @@ class TemporalBasicTransformerBlock(nn.Module):
return hidden_states
class SkipFFTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
kv_input_dim: int,
kv_input_dim_proj_use_bias: bool,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
attention_out_bias: bool = True,
):
super().__init__()
if kv_input_dim != dim:
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
else:
self.kv_mapper = None
self.norm1 = RMSNorm(dim, 1e-06)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim,
out_bias=attention_out_bias,
)
self.norm2 = RMSNorm(dim, 1e-06)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
out_bias=attention_out_bias,
)
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
if self.kv_mapper is not None:
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
norm_hidden_states = self.norm2(hidden_states)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
@@ -629,12 +512,10 @@ class FeedForward(nn.Module):
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear

View File

@@ -77,7 +77,6 @@ class Encoder(nn.Module):
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
mid_block_add_attention=True,
):
super().__init__()
self.layers_per_block = layers_per_block
@@ -125,7 +124,6 @@ class Encoder(nn.Module):
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
add_attention=mid_block_add_attention,
)
# out
@@ -215,7 +213,6 @@ class Decoder(nn.Module):
norm_num_groups: int = 32,
act_fn: str = "silu",
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
):
super().__init__()
self.layers_per_block = layers_per_block
@@ -243,7 +240,6 @@ class Decoder(nn.Module):
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
add_attention=mid_block_add_attention,
)
# up

View File

@@ -20,7 +20,6 @@ import torch.nn.functional as F
from ..utils import USE_PEFT_BACKEND
from .lora import LoRACompatibleConv
from .normalization import RMSNorm
from .upsampling import upfirdn2d_native
@@ -90,11 +89,6 @@ class Downsample2D(nn.Module):
out_channels: Optional[int] = None,
padding: int = 1,
name: str = "conv",
kernel_size=3,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
):
super().__init__()
self.channels = channels
@@ -105,19 +99,8 @@ class Downsample2D(nn.Module):
self.name = name
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps, elementwise_affine)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
if use_conv:
conv = conv_cls(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
)
conv = conv_cls(self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
@@ -134,9 +117,6 @@ class Downsample2D(nn.Module):
def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)

View File

@@ -197,12 +197,11 @@ class TimestepEmbedding(nn.Module):
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
):
super().__init__()
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias)
self.linear_1 = linear_cls(in_channels, time_embed_dim)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
@@ -215,7 +214,7 @@ class TimestepEmbedding(nn.Module):
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias)
self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out)
if post_act_fn is None:
self.post_act = None

View File

@@ -13,14 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
from typing import Dict, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import is_torch_version
from .activations import get_activation
from .embeddings import CombinedTimestepLabelEmbeddings, PixArtAlphaCombinedTimestepSizeEmbeddings
@@ -148,107 +146,3 @@ class AdaGroupNorm(nn.Module):
x = F.group_norm(x, self.num_groups, eps=self.eps)
x = x * (1 + scale) + shift
return x
class AdaLayerNormContinuous(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
# However, this is how it was implemented in the original code, and it's rather likely you should
# set `elementwise_affine` to False.
elementwise_affine=True,
eps=1e-5,
bias=True,
norm_type="layer_norm",
):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
elif norm_type == "rms_norm":
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear(self.silu(conditioning_embedding))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
if is_torch_version(">=", "2.1.0"):
LayerNorm = nn.LayerNorm
else:
# Has optional bias parameter compared to torch layer norm
# TODO: replace with torch layernorm once min required torch version >= 2.1
class LayerNorm(nn.Module):
def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True):
super().__init__()
self.eps = eps
if isinstance(dim, numbers.Integral):
dim = (dim,)
self.dim = torch.Size(dim)
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
self.bias = nn.Parameter(torch.zeros(dim)) if bias else None
else:
self.weight = None
self.bias = None
def forward(self, input):
return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps)
class RMSNorm(nn.Module):
def __init__(self, dim, eps: float, elementwise_affine: bool = True):
super().__init__()
self.eps = eps
if isinstance(dim, numbers.Integral):
dim = (dim,)
self.dim = torch.Size(dim)
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.weight = None
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
if self.weight is not None:
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
hidden_states = hidden_states * self.weight
else:
hidden_states = hidden_states.to(input_dtype)
return hidden_states
class GlobalResponseNorm(nn.Module):
# Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * nx) + self.beta + x

View File

@@ -20,7 +20,6 @@ import torch.nn.functional as F
from ..utils import USE_PEFT_BACKEND
from .lora import LoRACompatibleConv
from .normalization import RMSNorm
class Upsample1D(nn.Module):
@@ -96,13 +95,6 @@ class Upsample2D(nn.Module):
use_conv_transpose: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = None,
padding=1,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
interpolate=True,
):
super().__init__()
self.channels = channels
@@ -110,29 +102,13 @@ class Upsample2D(nn.Module):
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.interpolate = interpolate
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps, elementwise_affine)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
conv = None
if use_conv_transpose:
if kernel_size is None:
kernel_size = 4
conv = nn.ConvTranspose2d(
channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias
)
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
elif use_conv:
if kernel_size is None:
kernel_size = 3
conv = conv_cls(self.channels, self.out_channels, kernel_size=kernel_size, padding=padding, bias=bias)
conv = conv_cls(self.channels, self.out_channels, 3, padding=1)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
@@ -148,9 +124,6 @@ class Upsample2D(nn.Module):
) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
if self.use_conv_transpose:
return self.conv(hidden_states)
@@ -167,11 +140,10 @@ class Upsample2D(nn.Module):
# if `output_size` is passed we force the interpolation output
# size and do not make use of `scale_factor=2`
if self.interpolate:
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
if output_size is None:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
else:
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:

View File

@@ -1,471 +0,0 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Union
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint
from ..configuration_utils import ConfigMixin, register_to_config
from .attention import BasicTransformerBlock, SkipFFTransformerBlock
from .attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from .embeddings import TimestepEmbedding, get_timestep_embedding
from .modeling_utils import ModelMixin
from .normalization import GlobalResponseNorm, RMSNorm
from .resnet import Downsample2D, Upsample2D
class UVit2DModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
# global config
hidden_size: int = 1024,
use_bias: bool = False,
hidden_dropout: float = 0.0,
# conditioning dimensions
cond_embed_dim: int = 768,
micro_cond_encode_dim: int = 256,
micro_cond_embed_dim: int = 1280,
encoder_hidden_size: int = 768,
# num tokens
vocab_size: int = 8256, # codebook_size + 1 (for the mask token) rounded
codebook_size: int = 8192,
# `UVit2DConvEmbed`
in_channels: int = 768,
block_out_channels: int = 768,
num_res_blocks: int = 3,
downsample: bool = False,
upsample: bool = False,
block_num_heads: int = 12,
# `TransformerLayer`
num_hidden_layers: int = 22,
num_attention_heads: int = 16,
# `Attention`
attention_dropout: float = 0.0,
# `FeedForward`
intermediate_size: int = 2816,
# `Norm`
layer_norm_eps: float = 1e-6,
ln_elementwise_affine: bool = True,
sample_size: int = 64,
):
super().__init__()
self.encoder_proj = nn.Linear(encoder_hidden_size, hidden_size, bias=use_bias)
self.encoder_proj_layer_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
self.embed = UVit2DConvEmbed(
in_channels, block_out_channels, vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
)
self.cond_embed = TimestepEmbedding(
micro_cond_embed_dim + cond_embed_dim, hidden_size, sample_proj_bias=use_bias
)
self.down_block = UVitBlock(
block_out_channels,
num_res_blocks,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample,
False,
)
self.project_to_hidden_norm = RMSNorm(block_out_channels, layer_norm_eps, ln_elementwise_affine)
self.project_to_hidden = nn.Linear(block_out_channels, hidden_size, bias=use_bias)
self.transformer_layers = nn.ModuleList(
[
BasicTransformerBlock(
dim=hidden_size,
num_attention_heads=num_attention_heads,
attention_head_dim=hidden_size // num_attention_heads,
dropout=hidden_dropout,
cross_attention_dim=hidden_size,
attention_bias=use_bias,
norm_type="ada_norm_continuous",
ada_norm_continous_conditioning_embedding_dim=hidden_size,
norm_elementwise_affine=ln_elementwise_affine,
norm_eps=layer_norm_eps,
ada_norm_bias=use_bias,
ff_inner_dim=intermediate_size,
ff_bias=use_bias,
attention_out_bias=use_bias,
)
for _ in range(num_hidden_layers)
]
)
self.project_from_hidden_norm = RMSNorm(hidden_size, layer_norm_eps, ln_elementwise_affine)
self.project_from_hidden = nn.Linear(hidden_size, block_out_channels, bias=use_bias)
self.up_block = UVitBlock(
block_out_channels,
num_res_blocks,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample=False,
upsample=upsample,
)
self.mlm_layer = ConvMlmLayer(
block_out_channels, in_channels, use_bias, ln_elementwise_affine, layer_norm_eps, codebook_size
)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
pass
def forward(self, input_ids, encoder_hidden_states, pooled_text_emb, micro_conds, cross_attention_kwargs=None):
encoder_hidden_states = self.encoder_proj(encoder_hidden_states)
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
micro_cond_embeds = get_timestep_embedding(
micro_conds.flatten(), self.config.micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
)
micro_cond_embeds = micro_cond_embeds.reshape((input_ids.shape[0], -1))
pooled_text_emb = torch.cat([pooled_text_emb, micro_cond_embeds], dim=1)
pooled_text_emb = pooled_text_emb.to(dtype=self.dtype)
pooled_text_emb = self.cond_embed(pooled_text_emb).to(encoder_hidden_states.dtype)
hidden_states = self.embed(input_ids)
hidden_states = self.down_block(
hidden_states,
pooled_text_emb=pooled_text_emb,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
batch_size, channels, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
hidden_states = self.project_to_hidden_norm(hidden_states)
hidden_states = self.project_to_hidden(hidden_states)
for layer in self.transformer_layers:
if self.training and self.gradient_checkpointing:
def layer_(*args):
return checkpoint(layer, *args)
else:
layer_ = layer
hidden_states = layer_(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs={"pooled_text_emb": pooled_text_emb},
)
hidden_states = self.project_from_hidden_norm(hidden_states)
hidden_states = self.project_from_hidden(hidden_states)
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
hidden_states = self.up_block(
hidden_states,
pooled_text_emb=pooled_text_emb,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
logits = self.mlm_layer(hidden_states)
return logits
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor, _remove_lora=_remove_lora)
else:
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor, _remove_lora=True)
class UVit2DConvEmbed(nn.Module):
def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
super().__init__()
self.embeddings = nn.Embedding(vocab_size, in_channels)
self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
def forward(self, input_ids):
embeddings = self.embeddings(input_ids)
embeddings = self.layer_norm(embeddings)
embeddings = embeddings.permute(0, 3, 1, 2)
embeddings = self.conv(embeddings)
return embeddings
class UVitBlock(nn.Module):
def __init__(
self,
channels,
num_res_blocks: int,
hidden_size,
hidden_dropout,
ln_elementwise_affine,
layer_norm_eps,
use_bias,
block_num_heads,
attention_dropout,
downsample: bool,
upsample: bool,
):
super().__init__()
if downsample:
self.downsample = Downsample2D(
channels,
use_conv=True,
padding=0,
name="Conv2d_0",
kernel_size=2,
norm_type="rms_norm",
eps=layer_norm_eps,
elementwise_affine=ln_elementwise_affine,
bias=use_bias,
)
else:
self.downsample = None
self.res_blocks = nn.ModuleList(
[
ConvNextBlock(
channels,
layer_norm_eps,
ln_elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
)
for i in range(num_res_blocks)
]
)
self.attention_blocks = nn.ModuleList(
[
SkipFFTransformerBlock(
channels,
block_num_heads,
channels // block_num_heads,
hidden_size,
use_bias,
attention_dropout,
channels,
attention_bias=use_bias,
attention_out_bias=use_bias,
)
for _ in range(num_res_blocks)
]
)
if upsample:
self.upsample = Upsample2D(
channels,
use_conv_transpose=True,
kernel_size=2,
padding=0,
name="conv",
norm_type="rms_norm",
eps=layer_norm_eps,
elementwise_affine=ln_elementwise_affine,
bias=use_bias,
interpolate=False,
)
else:
self.upsample = None
def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
if self.downsample is not None:
x = self.downsample(x)
for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
x = res_block(x, pooled_text_emb)
batch_size, channels, height, width = x.shape
x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
x = attention_block(
x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
)
x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
if self.upsample is not None:
x = self.upsample(x)
return x
class ConvNextBlock(nn.Module):
def __init__(
self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
):
super().__init__()
self.depthwise = nn.Conv2d(
channels,
channels,
kernel_size=3,
padding=1,
groups=channels,
bias=use_bias,
)
self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
self.channelwise_act = nn.GELU()
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
self.channelwise_dropout = nn.Dropout(hidden_dropout)
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
def forward(self, x, cond_embeds):
x_res = x
x = self.depthwise(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.channelwise_linear_1(x)
x = self.channelwise_act(x)
x = self.channelwise_norm(x)
x = self.channelwise_linear_2(x)
x = self.channelwise_dropout(x)
x = x.permute(0, 3, 1, 2)
x = x + x_res
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
return x
class ConvMlmLayer(nn.Module):
def __init__(
self,
block_out_channels: int,
in_channels: int,
use_bias: bool,
ln_elementwise_affine: bool,
layer_norm_eps: float,
codebook_size: int,
):
super().__init__()
self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
def forward(self, hidden_states):
hidden_states = self.conv1(hidden_states)
hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
logits = self.conv2(hidden_states)
return logits

View File

@@ -88,9 +88,6 @@ class VQModel(ModelMixin, ConfigMixin):
vq_embed_dim: Optional[int] = None,
scaling_factor: float = 0.18215,
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
lookup_from_codebook=False,
force_upcast=False,
):
super().__init__()
@@ -104,7 +101,6 @@ class VQModel(ModelMixin, ConfigMixin):
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=False,
mid_block_add_attention=mid_block_add_attention,
)
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
@@ -123,7 +119,6 @@ class VQModel(ModelMixin, ConfigMixin):
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_type=norm_type,
mid_block_add_attention=mid_block_add_attention,
)
@apply_forward_hook
@@ -138,13 +133,11 @@ class VQModel(ModelMixin, ConfigMixin):
@apply_forward_hook
def decode(
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True
) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
quant, _, _ = self.quantize(h)
elif self.config.lookup_from_codebook:
quant = self.quantize.get_codebook_entry(h, shape)
else:
quant = h
quant2 = self.post_quant_conv(quant)

View File

@@ -108,7 +108,6 @@ else:
"VersatileDiffusionTextToImagePipeline",
]
)
_import_structure["amused"] = ["AmusedImg2ImgPipeline", "AmusedInpaintPipeline", "AmusedPipeline"]
_import_structure["animatediff"] = ["AnimateDiffPipeline"]
_import_structure["audioldm"] = ["AudioLDMPipeline"]
_import_structure["audioldm2"] = [
@@ -186,11 +185,12 @@ else:
"StableDiffusionInpaintPipeline",
"StableDiffusionInstructPix2PixPipeline",
"StableDiffusionLatentUpscalePipeline",
"StableDiffusionLDM3DPipeline",
"StableDiffusionPanoramaPipeline",
"StableDiffusionPipeline",
"StableDiffusionUpscalePipeline",
"StableUnCLIPImg2ImgPipeline",
"StableUnCLIPPipeline",
"StableDiffusionLDM3DPipeline",
]
)
_import_structure["stable_diffusion_attend_and_excite"] = ["StableDiffusionAttendAndExcitePipeline"]
@@ -210,8 +210,6 @@ else:
]
)
_import_structure["stable_diffusion_diffedit"] = ["StableDiffusionDiffEditPipeline"]
_import_structure["stable_diffusion_ldm3d"] = ["StableDiffusionLDM3DPipeline"]
_import_structure["stable_diffusion_panorama"] = ["StableDiffusionPanoramaPipeline"]
_import_structure["t2i_adapter"] = [
"StableDiffusionAdapterPipeline",
"StableDiffusionXLAdapterPipeline",
@@ -343,7 +341,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_transformers_objects import *
else:
from .amused import AmusedImg2ImgPipeline, AmusedInpaintPipeline, AmusedPipeline
from .animatediff import AnimateDiffPipeline
from .audioldm import AudioLDMPipeline
from .audioldm2 import (
@@ -430,6 +427,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
StableDiffusionInpaintPipeline,
StableDiffusionInstructPix2PixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDM3DPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImg2ImgPipeline,
@@ -438,8 +437,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .stable_diffusion_gligen import StableDiffusionGLIGENPipeline, StableDiffusionGLIGENTextImagePipeline
from .stable_diffusion_ldm3d import StableDiffusionLDM3DPipeline
from .stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .stable_diffusion_safe import StableDiffusionPipelineSafe
from .stable_diffusion_sag import StableDiffusionSAGPipeline
from .stable_diffusion_xl import (

View File

@@ -1,62 +0,0 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
AmusedImg2ImgPipeline,
AmusedInpaintPipeline,
AmusedPipeline,
)
_dummy_objects.update(
{
"AmusedPipeline": AmusedPipeline,
"AmusedImg2ImgPipeline": AmusedImg2ImgPipeline,
"AmusedInpaintPipeline": AmusedInpaintPipeline,
}
)
else:
_import_structure["pipeline_amused"] = ["AmusedPipeline"]
_import_structure["pipeline_amused_img2img"] = ["AmusedImg2ImgPipeline"]
_import_structure["pipeline_amused_inpaint"] = ["AmusedInpaintPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
AmusedPipeline,
)
else:
from .pipeline_amused import AmusedPipeline
from .pipeline_amused_img2img import AmusedImg2ImgPipeline
from .pipeline_amused_inpaint import AmusedInpaintPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -1,328 +0,0 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import VaeImageProcessor
from ...models import UVit2DModel, VQModel
from ...schedulers import AmusedScheduler
from ...utils import replace_example_docstring
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import AmusedPipeline
>>> pipe = AmusedPipeline.from_pretrained(
... "huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt).images[0]
```
"""
class AmusedPipeline(DiffusionPipeline):
image_processor: VaeImageProcessor
vqvae: VQModel
tokenizer: CLIPTokenizer
text_encoder: CLIPTextModelWithProjection
transformer: UVit2DModel
scheduler: AmusedScheduler
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
def __init__(
self,
vqvae: VQModel,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
transformer: UVit2DModel,
scheduler: AmusedScheduler,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[List[str], str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 12,
guidance_scale: float = 10.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.IntTensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
output_type="pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
micro_conditioning_aesthetic_score: int = 6,
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
):
"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.transformer.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 16):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.IntTensor`, *optional*):
Pre-generated tokens representing latent vectors in `self.vqvae`, to be used as inputs for image
gneration. If not provided, the starting latents will be completely masked.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
pooled and projected final hidden states.
encoder_hidden_states (`torch.FloatTensor`, *optional*):
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_encoder_hidden_states (`torch.FloatTensor`, *optional*):
Analogous to `encoder_hidden_states` for the positive prompt.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/
and the micro-conditioning section of https://arxiv.org/abs/2307.01952.
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952.
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
Examples:
Returns:
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
`tuple` is returned where the first element is a list with the generated images.
"""
if (prompt_embeds is not None and encoder_hidden_states is None) or (
prompt_embeds is None and encoder_hidden_states is not None
):
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
):
raise ValueError(
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
)
if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
raise ValueError("pass only one of `prompt` or `prompt_embeds`")
if isinstance(prompt, str):
prompt = [prompt]
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
batch_size = batch_size * num_images_per_prompt
if height is None:
height = self.transformer.config.sample_size * self.vae_scale_factor
if width is None:
width = self.transformer.config.sample_size * self.vae_scale_factor
if prompt_embeds is None:
input_ids = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
encoder_hidden_states = outputs.hidden_states[-2]
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
if guidance_scale > 1.0:
if negative_prompt_embeds is None:
if negative_prompt is None:
negative_prompt = [""] * len(prompt)
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
negative_encoder_hidden_states = outputs.hidden_states[-2]
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
# Note that the micro conditionings _do_ flip the order of width, height for the original size
# and the crop coordinates. This is how it was done in the original code base
micro_conds = torch.tensor(
[
width,
height,
micro_conditioning_crop_coord[0],
micro_conditioning_crop_coord[1],
micro_conditioning_aesthetic_score,
],
device=self._execution_device,
dtype=encoder_hidden_states.dtype,
)
micro_conds = micro_conds.unsqueeze(0)
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
shape = (batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor)
if latents is None:
latents = torch.full(
shape, self.scheduler.config.mask_token_id, dtype=torch.long, device=self._execution_device
)
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
num_warmup_steps = len(self.scheduler.timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, timestep in enumerate(self.scheduler.timesteps):
if guidance_scale > 1.0:
model_input = torch.cat([latents] * 2)
else:
model_input = latents
model_output = self.transformer(
model_input,
micro_conds=micro_conds,
pooled_text_emb=prompt_embeds,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
if guidance_scale > 1.0:
uncond_logits, cond_logits = model_output.chunk(2)
model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
latents = self.scheduler.step(
model_output=model_output,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
if i == len(self.scheduler.timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, timestep, latents)
if output_type == "latent":
output = latents
else:
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
if needs_upcasting:
self.vqvae.float()
output = self.vqvae.decode(
latents,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.image_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
self.maybe_free_model_hooks()
if not return_dict:
return (output,)
return ImagePipelineOutput(output)

View File

@@ -1,347 +0,0 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...models import UVit2DModel, VQModel
from ...schedulers import AmusedScheduler
from ...utils import replace_example_docstring
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import AmusedImg2ImgPipeline
>>> from diffusers.utils import load_image
>>> pipe = AmusedImg2ImgPipeline.from_pretrained(
... "huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "winter mountains"
>>> input_image = (
... load_image(
... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg"
... )
... .resize((512, 512))
... .convert("RGB")
... )
>>> image = pipe(prompt, input_image).images[0]
```
"""
class AmusedImg2ImgPipeline(DiffusionPipeline):
image_processor: VaeImageProcessor
vqvae: VQModel
tokenizer: CLIPTokenizer
text_encoder: CLIPTextModelWithProjection
transformer: UVit2DModel
scheduler: AmusedScheduler
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
# TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
# the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
# off the meta device. There should be a way to fix this instead of just not offloading it
_exclude_from_cpu_offload = ["vqvae"]
def __init__(
self,
vqvae: VQModel,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
transformer: UVit2DModel,
scheduler: AmusedScheduler,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[List[str], str]] = None,
image: PipelineImageInput = None,
strength: float = 0.5,
num_inference_steps: int = 12,
guidance_scale: float = 10.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[torch.Generator] = None,
prompt_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
output_type="pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
micro_conditioning_aesthetic_score: int = 6,
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
):
"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
strength (`float`, *optional*, defaults to 0.5):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 16):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
pooled and projected final hidden states.
encoder_hidden_states (`torch.FloatTensor`, *optional*):
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_encoder_hidden_states (`torch.FloatTensor`, *optional*):
Analogous to `encoder_hidden_states` for the positive prompt.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/
and the micro-conditioning section of https://arxiv.org/abs/2307.01952.
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952.
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
Examples:
Returns:
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
`tuple` is returned where the first element is a list with the generated images.
"""
if (prompt_embeds is not None and encoder_hidden_states is None) or (
prompt_embeds is None and encoder_hidden_states is not None
):
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
):
raise ValueError(
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
)
if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
raise ValueError("pass only one of `prompt` or `prompt_embeds`")
if isinstance(prompt, str):
prompt = [prompt]
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
batch_size = batch_size * num_images_per_prompt
if prompt_embeds is None:
input_ids = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
encoder_hidden_states = outputs.hidden_states[-2]
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
if guidance_scale > 1.0:
if negative_prompt_embeds is None:
if negative_prompt is None:
negative_prompt = [""] * len(prompt)
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
negative_encoder_hidden_states = outputs.hidden_states[-2]
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
image = self.image_processor.preprocess(image)
height, width = image.shape[-2:]
# Note that the micro conditionings _do_ flip the order of width, height for the original size
# and the crop coordinates. This is how it was done in the original code base
micro_conds = torch.tensor(
[
width,
height,
micro_conditioning_crop_coord[0],
micro_conditioning_crop_coord[1],
micro_conditioning_aesthetic_score,
],
device=self._execution_device,
dtype=encoder_hidden_states.dtype,
)
micro_conds = micro_conds.unsqueeze(0)
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
num_inference_steps = int(len(self.scheduler.timesteps) * strength)
start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
if needs_upcasting:
self.vqvae.float()
latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
latents_bsz, channels, latents_height, latents_width = latents.shape
latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
latents = self.scheduler.add_noise(
latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator
)
latents = latents.repeat(num_images_per_prompt, 1, 1)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
timestep = self.scheduler.timesteps[i]
if guidance_scale > 1.0:
model_input = torch.cat([latents] * 2)
else:
model_input = latents
model_output = self.transformer(
model_input,
micro_conds=micro_conds,
pooled_text_emb=prompt_embeds,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
if guidance_scale > 1.0:
uncond_logits, cond_logits = model_output.chunk(2)
model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
latents = self.scheduler.step(
model_output=model_output,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, timestep, latents)
if output_type == "latent":
output = latents
else:
output = self.vqvae.decode(
latents,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.image_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
self.maybe_free_model_hooks()
if not return_dict:
return (output,)
return ImagePipelineOutput(output)

View File

@@ -1,378 +0,0 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...models import UVit2DModel, VQModel
from ...schedulers import AmusedScheduler
from ...utils import replace_example_docstring
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import AmusedInpaintPipeline
>>> from diffusers.utils import load_image
>>> pipe = AmusedInpaintPipeline.from_pretrained(
... "huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> prompt = "fall mountains"
>>> input_image = (
... load_image(
... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg"
... )
... .resize((512, 512))
... .convert("RGB")
... )
>>> mask = (
... load_image(
... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
... )
... .resize((512, 512))
... .convert("L")
... )
>>> pipe(prompt, input_image, mask).images[0].save("out.png")
```
"""
class AmusedInpaintPipeline(DiffusionPipeline):
image_processor: VaeImageProcessor
vqvae: VQModel
tokenizer: CLIPTokenizer
text_encoder: CLIPTextModelWithProjection
transformer: UVit2DModel
scheduler: AmusedScheduler
model_cpu_offload_seq = "text_encoder->transformer->vqvae"
# TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before
# the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter
# off the meta device. There should be a way to fix this instead of just not offloading it
_exclude_from_cpu_offload = ["vqvae"]
def __init__(
self,
vqvae: VQModel,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModelWithProjection,
transformer: UVit2DModel,
scheduler: AmusedScheduler,
):
super().__init__()
self.register_modules(
vqvae=vqvae,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True,
do_resize=True,
)
self.scheduler.register_to_config(masking_schedule="linear")
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[List[str], str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
strength: float = 1.0,
num_inference_steps: int = 12,
guidance_scale: float = 10.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[torch.Generator] = None,
prompt_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_encoder_hidden_states: Optional[torch.Tensor] = None,
output_type="pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
micro_conditioning_aesthetic_score: int = 6,
micro_conditioning_crop_coord: Tuple[int, int] = (0, 0),
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
):
"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
1)`, or `(H, W)`.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 16):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument. A single vector from the
pooled and projected final hidden states.
encoder_hidden_states (`torch.FloatTensor`, *optional*):
Pre-generated penultimate hidden states from the text encoder providing additional text conditioning.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_encoder_hidden_states (`torch.FloatTensor`, *optional*):
Analogous to `encoder_hidden_states` for the positive prompt.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6):
The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/
and the micro-conditioning section of https://arxiv.org/abs/2307.01952.
micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)):
The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952.
temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)):
Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`.
Examples:
Returns:
[`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a
`tuple` is returned where the first element is a list with the generated images.
"""
if (prompt_embeds is not None and encoder_hidden_states is None) or (
prompt_embeds is None and encoder_hidden_states is not None
):
raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither")
if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or (
negative_prompt_embeds is None and negative_encoder_hidden_states is not None
):
raise ValueError(
"pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither"
)
if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None):
raise ValueError("pass only one of `prompt` or `prompt_embeds`")
if isinstance(prompt, str):
prompt = [prompt]
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
batch_size = batch_size * num_images_per_prompt
if prompt_embeds is None:
input_ids = self.tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
prompt_embeds = outputs.text_embeds
encoder_hidden_states = outputs.hidden_states[-2]
prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1)
encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
if guidance_scale > 1.0:
if negative_prompt_embeds is None:
if negative_prompt is None:
negative_prompt = [""] * len(prompt)
if isinstance(negative_prompt, str):
negative_prompt = [negative_prompt]
input_ids = self.tokenizer(
negative_prompt,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids.to(self._execution_device)
outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True)
negative_prompt_embeds = outputs.text_embeds
negative_encoder_hidden_states = outputs.hidden_states[-2]
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1)
negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1)
prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds])
encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states])
image = self.image_processor.preprocess(image)
height, width = image.shape[-2:]
# Note that the micro conditionings _do_ flip the order of width, height for the original size
# and the crop coordinates. This is how it was done in the original code base
micro_conds = torch.tensor(
[
width,
height,
micro_conditioning_crop_coord[0],
micro_conditioning_crop_coord[1],
micro_conditioning_aesthetic_score,
],
device=self._execution_device,
dtype=encoder_hidden_states.dtype,
)
micro_conds = micro_conds.unsqueeze(0)
micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1)
self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device)
num_inference_steps = int(len(self.scheduler.timesteps) * strength)
start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps
needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast
if needs_upcasting:
self.vqvae.float()
latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents
latents_bsz, channels, latents_height, latents_width = latents.shape
latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width)
mask = self.mask_processor.preprocess(
mask_image, height // self.vae_scale_factor, width // self.vae_scale_factor
)
mask = mask.reshape(mask.shape[0], latents_height, latents_width).bool().to(latents.device)
latents[mask] = self.scheduler.config.mask_token_id
starting_mask_ratio = mask.sum() / latents.numel()
latents = latents.repeat(num_images_per_prompt, 1, 1)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i in range(start_timestep_idx, len(self.scheduler.timesteps)):
timestep = self.scheduler.timesteps[i]
if guidance_scale > 1.0:
model_input = torch.cat([latents] * 2)
else:
model_input = latents
model_output = self.transformer(
model_input,
micro_conds=micro_conds,
pooled_text_emb=prompt_embeds,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
)
if guidance_scale > 1.0:
uncond_logits, cond_logits = model_output.chunk(2)
model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
latents = self.scheduler.step(
model_output=model_output,
timestep=timestep,
sample=latents,
generator=generator,
starting_mask_ratio=starting_mask_ratio,
).prev_sample
if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, timestep, latents)
if output_type == "latent":
output = latents
else:
output = self.vqvae.decode(
latents,
force_not_quantize=True,
shape=(
batch_size,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
self.vqvae.config.latent_channels,
),
).sample.clip(0, 1)
output = self.image_processor.postprocess(output, output_type)
if needs_upcasting:
self.vqvae.half()
self.maybe_free_model_hooks()
if not return_dict:
return (output,)
return ImagePipelineOutput(output)

View File

@@ -633,7 +633,7 @@ class StableDiffusionControlNetPipeline(
# When `image` is a nested list:
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
elif any(isinstance(i, list) for i in image):
raise ValueError("A single batch of multiple conditionings is not supported at the moment.")
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif len(image) != len(self.controlnet.nets):
raise ValueError(
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
@@ -659,7 +659,7 @@ class StableDiffusionControlNetPipeline(
):
if isinstance(controlnet_conditioning_scale, list):
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
raise ValueError("A single batch of multiple conditionings is not supported at the moment.")
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
self.controlnet.nets
):

View File

@@ -40,7 +40,9 @@ else:
_import_structure["pipeline_stable_diffusion_inpaint_legacy"] = ["StableDiffusionInpaintPipelineLegacy"]
_import_structure["pipeline_stable_diffusion_instruct_pix2pix"] = ["StableDiffusionInstructPix2PixPipeline"]
_import_structure["pipeline_stable_diffusion_latent_upscale"] = ["StableDiffusionLatentUpscalePipeline"]
_import_structure["pipeline_stable_diffusion_ldm3d"] = ["StableDiffusionLDM3DPipeline"]
_import_structure["pipeline_stable_diffusion_model_editing"] = ["StableDiffusionModelEditingPipeline"]
_import_structure["pipeline_stable_diffusion_panorama"] = ["StableDiffusionPanoramaPipeline"]
_import_structure["pipeline_stable_diffusion_paradigms"] = ["StableDiffusionParadigmsPipeline"]
_import_structure["pipeline_stable_diffusion_upscale"] = ["StableDiffusionUpscalePipeline"]
_import_structure["pipeline_stable_unclip"] = ["StableUnCLIPPipeline"]
@@ -64,15 +66,18 @@ try:
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepth2ImgPipeline,
StableDiffusionPix2PixZeroPipeline,
)
_dummy_objects.update(
{
"StableDiffusionDepth2ImgPipeline": StableDiffusionDepth2ImgPipeline,
"StableDiffusionPix2PixZeroPipeline": StableDiffusionPix2PixZeroPipeline,
}
)
else:
_import_structure["pipeline_stable_diffusion_depth2img"] = ["StableDiffusionDepth2ImgPipeline"]
_import_structure["pipeline_stable_diffusion_pix2pix_zero"] = ["StableDiffusionPix2PixZeroPipeline"]
try:
if not (is_transformers_available() and is_onnx_available()):
@@ -123,6 +128,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .pipeline_stable_diffusion_latent_upscale import (
StableDiffusionLatentUpscalePipeline,
)
from .pipeline_stable_diffusion_ldm3d import StableDiffusionLDM3DPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_img2img import StableUnCLIPImg2ImgPipeline
@@ -145,7 +152,10 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.26.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionDepth2ImgPipeline
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepth2ImgPipeline,
StableDiffusionPix2PixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depth2img import (
StableDiffusionDepth2ImgPipeline,

View File

@@ -768,10 +768,6 @@ class StableDiffusionPipeline(
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -913,7 +909,6 @@ class StableDiffusionPipeline(
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@@ -991,9 +986,6 @@ class StableDiffusionPipeline(
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

View File

@@ -832,10 +832,6 @@ class StableDiffusionImg2ImgPipeline(
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -967,7 +963,6 @@ class StableDiffusionImg2ImgPipeline(
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@@ -1046,9 +1041,6 @@ class StableDiffusionImg2ImgPipeline(
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

View File

@@ -958,10 +958,6 @@ class StableDiffusionInpaintPipeline(
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
@@ -1148,7 +1144,6 @@ class StableDiffusionInpaintPipeline(
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@@ -1293,9 +1288,6 @@ class StableDiffusionInpaintPipeline(
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

View File

@@ -37,7 +37,7 @@ from ...utils import (
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .safety_checker import StableDiffusionSafetyChecker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name

View File

@@ -33,8 +33,8 @@ from ...utils import (
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from . import StableDiffusionPipelineOutput
from .safety_checker import StableDiffusionSafetyChecker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name

View File

@@ -1,48 +0,0 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_stable_diffusion_ldm3d"] = ["StableDiffusionLDM3DPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_stable_diffusion_ldm3d import StableDiffusionLDM3DPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -1,48 +0,0 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
)
_dummy_objects = {}
_import_structure = {}
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_stable_diffusion_panorama"] = ["StableDiffusionPanoramaPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -849,10 +849,6 @@ class StableDiffusionXLPipeline(
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -1071,7 +1067,6 @@ class StableDiffusionXLPipeline(
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@@ -1201,9 +1196,6 @@ class StableDiffusionXLPipeline(
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

View File

@@ -990,10 +990,6 @@ class StableDiffusionXLImg2ImgPipeline(
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -1225,7 +1221,6 @@ class StableDiffusionXLImg2ImgPipeline(
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@@ -1381,9 +1376,6 @@ class StableDiffusionXLImg2ImgPipeline(
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

View File

@@ -1210,10 +1210,6 @@ class StableDiffusionXLInpaintPipeline(
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
@@ -1466,7 +1462,6 @@ class StableDiffusionXLInpaintPipeline(
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
@@ -1689,8 +1684,6 @@ class StableDiffusionXLInpaintPipeline(
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

View File

@@ -39,7 +39,6 @@ except OptionalDependencyNotAvailable:
else:
_import_structure["deprecated"] = ["KarrasVeScheduler", "ScoreSdeVpScheduler"]
_import_structure["scheduling_amused"] = ["AmusedScheduler"]
_import_structure["scheduling_consistency_decoder"] = ["ConsistencyDecoderScheduler"]
_import_structure["scheduling_consistency_models"] = ["CMStochasticIterativeScheduler"]
_import_structure["scheduling_ddim"] = ["DDIMScheduler"]
@@ -130,7 +129,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .deprecated import KarrasVeScheduler, ScoreSdeVpScheduler
from .scheduling_amused import AmusedScheduler
from .scheduling_consistency_decoder import ConsistencyDecoderScheduler
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler

View File

@@ -1,162 +0,0 @@
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin
def gumbel_noise(t, generator=None):
device = generator.device if generator is not None else t.device
noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
sorted_confidence = torch.sort(confidence, dim=-1).values
cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
masking = confidence < cut_off
return masking
@dataclass
class AmusedSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: torch.FloatTensor = None
class AmusedScheduler(SchedulerMixin, ConfigMixin):
order = 1
temperatures: torch.Tensor
@register_to_config
def __init__(
self,
mask_token_id: int,
masking_schedule: str = "cosine",
):
self.temperatures = None
self.timesteps = None
def set_timesteps(
self,
num_inference_steps: int,
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
device: Union[str, torch.device] = None,
):
self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)
if isinstance(temperature, (tuple, list)):
self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
else:
self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)
def step(
self,
model_output: torch.FloatTensor,
timestep: torch.long,
sample: torch.LongTensor,
starting_mask_ratio: int = 1,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[AmusedSchedulerOutput, Tuple]:
two_dim_input = sample.ndim == 3 and model_output.ndim == 4
if two_dim_input:
batch_size, codebook_size, height, width = model_output.shape
sample = sample.reshape(batch_size, height * width)
model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)
unknown_map = sample == self.config.mask_token_id
probs = model_output.softmax(dim=-1)
device = probs.device
probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU
if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
probs_ = probs_.float() # multinomial is not implemented for cpu half precision
probs_ = probs_.reshape(-1, probs.size(-1))
pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)
if timestep == 0:
prev_sample = pred_original_sample
else:
seq_len = sample.shape[1]
step_idx = (self.timesteps == timestep).nonzero()
ratio = (step_idx + 1) / len(self.timesteps)
if self.config.masking_schedule == "cosine":
mask_ratio = torch.cos(ratio * math.pi / 2)
elif self.config.masking_schedule == "linear":
mask_ratio = 1 - ratio
else:
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
mask_ratio = starting_mask_ratio * mask_ratio
mask_len = (seq_len * mask_ratio).floor()
# do not mask more than amount previously masked
mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
# mask at least one
mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)
selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
# Ignores the tokens given in the input by overwriting their confidence.
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)
# Masks tokens with lower confidence.
prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)
if two_dim_input:
prev_sample = prev_sample.reshape(batch_size, height, width)
pred_original_sample = pred_original_sample.reshape(batch_size, height, width)
if not return_dict:
return (prev_sample, pred_original_sample)
return AmusedSchedulerOutput(prev_sample, pred_original_sample)
def add_noise(self, sample, timesteps, generator=None):
step_idx = (self.timesteps == timesteps).nonzero()
ratio = (step_idx + 1) / len(self.timesteps)
if self.config.masking_schedule == "cosine":
mask_ratio = torch.cos(ratio * math.pi / 2)
elif self.config.masking_schedule == "linear":
mask_ratio = 1 - ratio
else:
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
mask_indices = (
torch.rand(
sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
).to(sample.device)
< mask_ratio
)
masked_sample = sample.clone()
masked_sample[mask_indices] = self.config.mask_token_id
return masked_sample

View File

@@ -317,21 +317,6 @@ class UNetSpatioTemporalConditionModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class UVit2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class VQModel(metaclass=DummyObject):
_backends = ["torch"]
@@ -675,21 +660,6 @@ class ScoreSdeVePipeline(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class AmusedScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class CMStochasticIterativeScheduler(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -32,51 +32,6 @@ class AltDiffusionPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class AmusedImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AmusedInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AmusedPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class AnimateDiffPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -89,7 +89,7 @@ def is_compiled_module(module) -> bool:
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)
def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
def fourier_filter(x_in: torch.Tensor, threshold: int, scale: int) -> torch.Tensor:
"""Fourier filter as introduced in FreeU (https://arxiv.org/abs/2309.11497).
This version of the method comes from here:
@@ -121,8 +121,8 @@ def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.T
def apply_freeu(
resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs
) -> Tuple["torch.Tensor", "torch.Tensor"]:
resolution_idx: int, hidden_states: torch.Tensor, res_hidden_states: torch.Tensor, **freeu_kwargs
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Applies the FreeU mechanism as introduced in https:
//arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.

View File

@@ -111,16 +111,12 @@ class PeftLoraLoaderMixinTests:
def get_dummy_components(self, scheduler_cls=None):
scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler
rank = 4
torch.manual_seed(0)
unet = UNet2DConditionModel(**self.unet_kwargs)
scheduler = scheduler_cls(**self.scheduler_kwargs)
torch.manual_seed(0)
vae = AutoencoderKL(**self.vae_kwargs)
text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
@@ -129,14 +125,11 @@ class PeftLoraLoaderMixinTests:
tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")
text_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
init_lora_weights=False,
r=4, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False
)
unet_lora_config = LoraConfig(
r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
r=4, lora_alpha=4, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
)
unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
@@ -1404,36 +1397,7 @@ class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
@slow
@require_torch_gpu
class LoraIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
pipeline_class = StableDiffusionPipeline
scheduler_cls = DDIMScheduler
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 1,
}
unet_kwargs = {
"block_out_channels": (32, 64),
"layers_per_block": 2,
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
"cross_attention_dim": 32,
}
vae_kwargs = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
}
class LoraIntegrationTests(unittest.TestCase):
def tearDown(self):
import gc
@@ -1686,43 +1650,7 @@ class LoraIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
@slow
@require_torch_gpu
class LoraSDXLIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
has_two_text_encoders = True
pipeline_class = StableDiffusionXLPipeline
scheduler_cls = EulerDiscreteScheduler
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
unet_kwargs = {
"block_out_channels": (32, 64),
"layers_per_block": 2,
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
"up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
"attention_head_dim": (2, 4),
"use_linear_projection": True,
"addition_embed_type": "text_time",
"addition_time_embed_dim": 8,
"transformer_layers_per_block": (1, 2),
"projection_class_embeddings_input_dim": 80, # 6 * 8 + 32
"cross_attention_dim": 64,
}
vae_kwargs = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
"sample_size": 128,
}
class LoraSDXLIntegrationTests(unittest.TestCase):
def tearDown(self):
import gc
@@ -1949,9 +1877,7 @@ class LoraSDXLIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
).images
images_without_fusion = images.flatten()
max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
assert max_diff < 1e-4
self.assertTrue(np.allclose(images_with_fusion, images_without_fusion, atol=1e-3))
release_memory(pipe)
def test_sdxl_1_0_lora_unfusion_effectivity(self):

View File

@@ -1,181 +0,0 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AmusedPipeline
params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
transformer = UVit2DModel(
hidden_size=32,
use_bias=False,
hidden_dropout=0.0,
cond_embed_dim=32,
micro_cond_encode_dim=2,
micro_cond_embed_dim=10,
encoder_hidden_size=32,
vocab_size=32,
codebook_size=32,
in_channels=32,
block_out_channels=32,
num_res_blocks=1,
downsample=True,
upsample=True,
block_num_heads=1,
num_hidden_layers=1,
num_attention_heads=1,
attention_dropout=0.0,
intermediate_size=32,
layer_norm_eps=1e-06,
ln_elementwise_affine=True,
)
scheduler = AmusedScheduler(mask_token_id=31)
torch.manual_seed(0)
vqvae = VQModel(
act_fn="silu",
block_out_channels=[32],
down_block_types=[
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=32,
layers_per_block=2,
norm_num_groups=32,
num_vq_embeddings=32,
out_channels=3,
sample_size=32,
up_block_types=[
"UpDecoderBlock2D",
],
mid_block_add_attention=False,
lookup_from_codebook=True,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=64,
layer_norm_eps=1e-05,
num_attention_heads=8,
num_hidden_layers=3,
pad_token_id=1,
vocab_size=1000,
projection_dim=32,
)
text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"transformer": transformer,
"scheduler": scheduler,
"vqvae": vqvae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
"height": 4,
"width": 4,
}
return inputs
def test_inference_batch_consistent(self, batch_sizes=[2]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)
@unittest.skip("aMUSEd does not support lists of generators")
def test_inference_batch_single_identical(self):
...
@slow
@require_torch_gpu
class AmusedPipelineSlowTests(unittest.TestCase):
def test_amused_256(self):
pipe = AmusedPipeline.from_pretrained("huggingface/amused-256")
pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.4011, 0.3992, 0.3790, 0.3856, 0.3772, 0.3711, 0.3919, 0.3850, 0.3625])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_amused_256_fp16(self):
pipe = AmusedPipeline.from_pretrained("huggingface/amused-256", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
assert np.abs(image_slice - expected_slice).max() < 7e-3
def test_amused_512(self):
pipe = AmusedPipeline.from_pretrained("huggingface/amused-512")
pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9960, 0.9960, 0.9946, 0.9980, 0.9947, 0.9932, 0.9960, 0.9961, 0.9947])
assert np.abs(image_slice - expected_slice).max() < 3e-3
def test_amused_512_fp16(self):
pipe = AmusedPipeline.from_pretrained("huggingface/amused-512", variant="fp16", torch_dtype=torch.float16)
pipe.to(torch_device)
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.9983, 1.0, 1.0, 1.0, 1.0, 0.9989, 0.9994, 0.9976, 0.9977])
assert np.abs(image_slice - expected_slice).max() < 3e-3

View File

@@ -1,239 +0,0 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import AmusedImg2ImgPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AmusedImg2ImgPipeline
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "latents"}
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"latents",
}
def get_dummy_components(self):
torch.manual_seed(0)
transformer = UVit2DModel(
hidden_size=32,
use_bias=False,
hidden_dropout=0.0,
cond_embed_dim=32,
micro_cond_encode_dim=2,
micro_cond_embed_dim=10,
encoder_hidden_size=32,
vocab_size=32,
codebook_size=32,
in_channels=32,
block_out_channels=32,
num_res_blocks=1,
downsample=True,
upsample=True,
block_num_heads=1,
num_hidden_layers=1,
num_attention_heads=1,
attention_dropout=0.0,
intermediate_size=32,
layer_norm_eps=1e-06,
ln_elementwise_affine=True,
)
scheduler = AmusedScheduler(mask_token_id=31)
torch.manual_seed(0)
vqvae = VQModel(
act_fn="silu",
block_out_channels=[32],
down_block_types=[
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=32,
layers_per_block=2,
norm_num_groups=32,
num_vq_embeddings=32,
out_channels=3,
sample_size=32,
up_block_types=[
"UpDecoderBlock2D",
],
mid_block_add_attention=False,
lookup_from_codebook=True,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=64,
layer_norm_eps=1e-05,
num_attention_heads=8,
num_hidden_layers=3,
pad_token_id=1,
vocab_size=1000,
projection_dim=32,
)
text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"transformer": transformer,
"scheduler": scheduler,
"vqvae": vqvae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = torch.full((1, 3, 4, 4), 1.0, dtype=torch.float32, device=device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
"image": image,
}
return inputs
def test_inference_batch_consistent(self, batch_sizes=[2]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)
@unittest.skip("aMUSEd does not support lists of generators")
def test_inference_batch_single_identical(self):
...
@slow
@require_torch_gpu
class AmusedImg2ImgPipelineSlowTests(unittest.TestCase):
def test_amused_256(self):
pipe = AmusedImg2ImgPipeline.from_pretrained("huggingface/amused-256")
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((256, 256))
.convert("RGB")
)
image = pipe(
"winter mountains",
image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.9993, 1.0, 0.9996, 1.0, 0.9995, 0.9925, 0.9990, 0.9954, 1.0])
assert np.abs(image_slice - expected_slice).max() < 1e-2
def test_amused_256_fp16(self):
pipe = AmusedImg2ImgPipeline.from_pretrained(
"huggingface/amused-256", torch_dtype=torch.float16, variant="fp16"
)
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((256, 256))
.convert("RGB")
)
image = pipe(
"winter mountains",
image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.9980, 0.9980, 0.9940, 0.9944, 0.9960, 0.9908, 1.0, 1.0, 0.9986])
assert np.abs(image_slice - expected_slice).max() < 1e-2
def test_amused_512(self):
pipe = AmusedImg2ImgPipeline.from_pretrained("huggingface/amused-512")
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((512, 512))
.convert("RGB")
)
image = pipe(
"winter mountains",
image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1344, 0.0985, 0.0, 0.1194, 0.1809, 0.0765, 0.0854, 0.1371, 0.0933])
assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_512_fp16(self):
pipe = AmusedImg2ImgPipeline.from_pretrained(
"huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg")
.resize((512, 512))
.convert("RGB")
)
image = pipe(
"winter mountains",
image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.1536, 0.1767, 0.0227, 0.1079, 0.2400, 0.1427, 0.1511, 0.1564, 0.1542])
assert np.abs(image_slice - expected_slice).max() < 0.1

View File

@@ -1,277 +0,0 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import AmusedInpaintPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class AmusedInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AmusedInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"latents",
}
def get_dummy_components(self):
torch.manual_seed(0)
transformer = UVit2DModel(
hidden_size=32,
use_bias=False,
hidden_dropout=0.0,
cond_embed_dim=32,
micro_cond_encode_dim=2,
micro_cond_embed_dim=10,
encoder_hidden_size=32,
vocab_size=32,
codebook_size=32,
in_channels=32,
block_out_channels=32,
num_res_blocks=1,
downsample=True,
upsample=True,
block_num_heads=1,
num_hidden_layers=1,
num_attention_heads=1,
attention_dropout=0.0,
intermediate_size=32,
layer_norm_eps=1e-06,
ln_elementwise_affine=True,
)
scheduler = AmusedScheduler(mask_token_id=31)
torch.manual_seed(0)
vqvae = VQModel(
act_fn="silu",
block_out_channels=[32],
down_block_types=[
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=32,
layers_per_block=2,
norm_num_groups=32,
num_vq_embeddings=32,
out_channels=3,
sample_size=32,
up_block_types=[
"UpDecoderBlock2D",
],
mid_block_add_attention=False,
lookup_from_codebook=True,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=64,
layer_norm_eps=1e-05,
num_attention_heads=8,
num_hidden_layers=3,
pad_token_id=1,
vocab_size=1000,
projection_dim=32,
)
text_encoder = CLIPTextModelWithProjection(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"transformer": transformer,
"scheduler": scheduler,
"vqvae": vqvae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
image = torch.full((1, 3, 4, 4), 1.0, dtype=torch.float32, device=device)
mask_image = torch.full((1, 1, 4, 4), 1.0, dtype=torch.float32, device=device)
mask_image[0, 0, 0, 0] = 0
mask_image[0, 0, 0, 1] = 0
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
"image": image,
"mask_image": mask_image,
}
return inputs
def test_inference_batch_consistent(self, batch_sizes=[2]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)
@unittest.skip("aMUSEd does not support lists of generators")
def test_inference_batch_single_identical(self):
...
@slow
@require_torch_gpu
class AmusedInpaintPipelineSlowTests(unittest.TestCase):
def test_amused_256(self):
pipe = AmusedInpaintPipeline.from_pretrained("huggingface/amused-256")
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((256, 256))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((256, 256))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0699, 0.0716, 0.0608, 0.0715, 0.0797, 0.0638, 0.0802, 0.0924, 0.0634])
assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_256_fp16(self):
pipe = AmusedInpaintPipeline.from_pretrained(
"huggingface/amused-256", variant="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((256, 256))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((256, 256))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0735, 0.0749, 0.0650, 0.0739, 0.0805, 0.0667, 0.0802, 0.0923, 0.0622])
assert np.abs(image_slice - expected_slice).max() < 0.1
def test_amused_512(self):
pipe = AmusedInpaintPipeline.from_pretrained("huggingface/amused-512")
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((512, 512))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((512, 512))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0])
assert np.abs(image_slice - expected_slice).max() < 0.05
def test_amused_512_fp16(self):
pipe = AmusedInpaintPipeline.from_pretrained(
"huggingface/amused-512", variant="fp16", torch_dtype=torch.float16
)
pipe.to(torch_device)
image = (
load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1.jpg")
.resize((512, 512))
.convert("RGB")
)
mask_image = (
load_image(
"https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains_1_mask.png"
)
.resize((512, 512))
.convert("L")
)
image = pipe(
"winter mountains",
image,
mask_image,
generator=torch.Generator().manual_seed(0),
num_inference_steps=2,
output_type="np",
).images
image_slice = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0025, 0.0])
assert np.abs(image_slice - expected_slice).max() < 3e-3

View File

@@ -692,58 +692,6 @@ class StableDiffusionPipelineFastTests(
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Original outputs should match when fused QKV projections are disabled."
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "hey"
num_inference_steps = 3
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
@slow
@require_torch_gpu

View File

@@ -320,62 +320,6 @@ class StableDiffusionImg2ImgPipelineFastTests(
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=5e-1)
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = "hey"
num_inference_steps = 3
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
image=inputs["image"],
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
image=inputs["image"],
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
@slow
@require_torch_gpu

View File

@@ -319,64 +319,6 @@ class StableDiffusionInpaintPipelineFastTests(
out_1 = sd_pipe(**inputs).images
assert np.abs(out_0 - out_1).max() < 1e-2
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = "hey"
num_inference_steps = 3
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
image=inputs["image"],
mask_image=inputs["mask_image"],
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
image=inputs["image"],
mask_image=inputs["mask_image"],
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
pipeline_class = StableDiffusionInpaintPipeline

View File

@@ -969,58 +969,6 @@ class StableDiffusionXLPipelineFastTests(
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
), "Original outputs should match when fused QKV projections are disabled."
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "hey"
num_inference_steps = 3
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
@slow
class StableDiffusionXLPipelineIntegrationTests(unittest.TestCase):

View File

@@ -439,64 +439,6 @@ class StableDiffusionXLImg2ImgPipelineFastTests(PipelineLatentTesterMixin, Pipel
> 1e-4
)
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLImg2ImgPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = "hey"
num_inference_steps = 5
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
image=inputs["image"],
strength=0.8,
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
image=inputs["image"],
strength=0.8,
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
class StableDiffusionXLImg2ImgRefinerOnlyPipelineFastTests(
PipelineLatentTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase

View File

@@ -746,63 +746,3 @@ class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, Pipel
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = "hey"
num_inference_steps = 5
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
image=inputs["image"],
mask_image=inputs["mask_image"],
strength=0.8,
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
image=inputs["image"],
mask_image=inputs["mask_image"],
strength=0.8,
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

View File

@@ -437,7 +437,7 @@ class PipelineTesterMixin:
self._test_inference_batch_consistent(batch_sizes=batch_sizes)
def _test_inference_batch_consistent(
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"]
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
@@ -472,7 +472,7 @@ class PipelineTesterMixin:
else:
batched_input[name] = batch_size * [value]
if batch_generator and "generator" in inputs:
if "generator" in inputs:
batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs: