Compare commits

...

21 Commits

Author SHA1 Message Date
yiyixuxu
a81893c407 add tests 2026-01-21 13:55:38 +01:00
yiyixuxu
eb221d5bc1 up up 2026-01-21 12:43:37 +01:00
yiyixuxu
a232cd9d30 up 2026-01-21 12:29:12 +01:00
yiyixuxu
1c500c8eeb flux2-dev work in modular setting 2026-01-21 08:06:32 +01:00
yiyixuxu
f49c68cecf style 2026-01-21 01:01:56 +01:00
yiyixuxu
5c1fc4489f remove guidannce to its own block 2026-01-21 00:59:56 +01:00
yiyixuxu
e13377e841 style 2026-01-20 23:14:59 +01:00
yiyixuxu
dea47aa24c Merge branch 'modular-klein' of github.com:huggingface/diffusers into modular-klein 2026-01-20 23:14:05 +01:00
yiyixuxu
c10041e57e a few fix: unpack latents before decoder etc 2026-01-20 23:13:53 +01:00
YiYi Xu
e1e162918d Merge branch 'main' into modular-klein 2026-01-20 10:37:49 -10:00
David El Malih
ec37629371 Improve docstrings and type hints in scheduling_ddim_cogvideox.py (#12992)
docs: improve docstring scheduling_ddim_cogvideox.py
2026-01-20 12:33:50 -08:00
YiYi Xu
d2953678ad Update src/diffusers/modular_pipelines/flux2/encoders.py 2026-01-20 09:25:29 -10:00
YiYi Xu
3c7494a651 Apply suggestions from code review
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2026-01-20 08:09:03 -10:00
Guillaume Besson
4b843c8430 Fix variable name in docstring for PeftAdapterMixin.set_adapters (#13003)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-20 15:43:59 +05:30
yiyi@huggingface.co
9357d8f4f7 copies 2026-01-20 01:32:08 +00:00
yiyi@huggingface.co
fb2cb18f73 style 2026-01-20 01:31:41 +00:00
yiyi@huggingface.co
618a8a9897 support klein 2026-01-20 01:20:14 +00:00
Gal Davidi
d7a1c31f4f Fibo edit pipeline (#12930)
* Feature: Add BriaFiboEditPipeline to diffusers

* Introduced BriaFiboEditPipeline class with necessary backend requirements.
* Updated import structures in relevant modules to include BriaFiboEditPipeline.
* Ensured compatibility with existing pipelines and type checking.

* Feature: Introduce Bria Fibo Edit Pipeline

* Added BriaFiboEditPipeline class for structured JSON-native image editing.
* Created documentation for the new pipeline in bria_fibo_edit.md.
* Updated import structures to include the new pipeline and its components.
* Added unit tests for the BriaFiboEditPipeline to ensure functionality and correctness.

* Enhancement: Update Bria Fibo Edit Pipeline and Documentation

* Refined the Bria Fibo Edit model description for clarity and detail.
* Added usage instructions for model authentication and login.
* Implemented mask handling functions in the BriaFiboEditPipeline for improved image editing capabilities.
* Updated unit tests to cover new mask functionalities and ensure input validation.
* Adjusted example code in documentation to reflect changes in the pipeline's usage.

* Update Bria Fibo Edit documentation with corrected Hugging Face page link

* add dreambooth training script

* style and quality

* Delete temp.py

* Enhancement: Improve JSON caption validation in DreamBoothDataset

* Updated the clean_json_caption function to handle both string and dictionary inputs for captions.
* Added error handling to raise a ValueError for invalid caption types, ensuring better input validation.

* Add datasets dependency to requirements_fibo_edit.txt

* Add bria_fibo_edit to docs table of contents

* Fix dummy objects ordering

* Fix BriaFiboEditPipeline to use passed generator parameter

The pipeline was ignoring the generator parameter and only using
the seed parameter. This caused non-deterministic outputs in tests
that pass a seeded generator.

* Remove fibo_edit training script and related files

---------

Co-authored-by: kfirbria <kfir@bria.ai>
2026-01-19 22:09:53 +05:30
Sayak Paul
29b15f41c7 [chore] make style to push new changes. (#12998)
make style to push new changes.
2026-01-19 16:02:13 +05:30
sayakpaul
75edff93a0 Revert "make style && make quality"
This reverts commit 76f51a5e92.
2026-01-19 15:35:20 +05:30
sayakpaul
76f51a5e92 make style && make quality 2026-01-19 15:34:29 +05:30
53 changed files with 2958 additions and 226 deletions

View File

@@ -496,6 +496,8 @@
title: Bria 3.2
- local: api/pipelines/bria_fibo
title: Bria Fibo
- local: api/pipelines/bria_fibo_edit
title: Bria Fibo Edit
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogview3

View File

@@ -0,0 +1,33 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Bria Fibo Edit
Fibo Edit is an 8B parameter image-to-image model that introduces a new paradigm of structured control, operating on JSON inputs paired with source images to enable deterministic and repeatable editing workflows.
Featuring native masking for granular precision, it moves beyond simple prompt-based diffusion to offer explicit, interpretable control optimized for production environments.
Its lightweight architecture is designed for deep customization, empowering researchers to build specialized "Edit" models for domain-specific tasks while delivering top-tier aesthetic quality
## Usage
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/Fibo-Edit), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
```bash
hf auth login
```
## BriaFiboEditPipeline
[[autodoc]] BriaFiboEditPipeline
- all
- __call__

View File

@@ -413,6 +413,9 @@ else:
_import_structure["modular_pipelines"].extend(
[
"Flux2AutoBlocks",
"Flux2KleinAutoBlocks",
"Flux2KleinBaseAutoBlocks",
"Flux2KleinModularPipeline",
"Flux2ModularPipeline",
"FluxAutoBlocks",
"FluxKontextAutoBlocks",
@@ -457,6 +460,7 @@ else:
"AuraFlowPipeline",
"BlipDiffusionControlNetPipeline",
"BlipDiffusionPipeline",
"BriaFiboEditPipeline",
"BriaFiboPipeline",
"BriaPipeline",
"ChromaImg2ImgPipeline",
@@ -1145,6 +1149,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else:
from .modular_pipelines import (
Flux2AutoBlocks,
Flux2KleinAutoBlocks,
Flux2KleinBaseAutoBlocks,
Flux2KleinModularPipeline,
Flux2ModularPipeline,
FluxAutoBlocks,
FluxKontextAutoBlocks,
@@ -1185,6 +1192,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AudioLDM2UNet2DConditionModel,
AudioLDMPipeline,
AuraFlowPipeline,
BriaFiboEditPipeline,
BriaFiboPipeline,
BriaPipeline,
ChromaImg2ImgPipeline,

View File

@@ -478,7 +478,7 @@ class PeftAdapterMixin:
Args:
adapter_names (`List[str]` or `str`):
The names of the adapters to use.
adapter_weights (`Union[List[float], float]`, *optional*):
weights (`Union[List[float], float]`, *optional*):
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
adapters.
@@ -495,7 +495,7 @@ class PeftAdapterMixin:
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
)
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.unet.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
pipeline.unet.set_adapters(["cinematic", "pixel"], weights=[0.5, 0.5])
```
"""
if not USE_PEFT_BACKEND:

View File

@@ -54,7 +54,10 @@ else:
]
_import_structure["flux2"] = [
"Flux2AutoBlocks",
"Flux2KleinAutoBlocks",
"Flux2KleinBaseAutoBlocks",
"Flux2ModularPipeline",
"Flux2KleinModularPipeline",
]
_import_structure["qwenimage"] = [
"QwenImageAutoBlocks",
@@ -81,7 +84,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else:
from .components_manager import ComponentsManager
from .flux import FluxAutoBlocks, FluxKontextAutoBlocks, FluxKontextModularPipeline, FluxModularPipeline
from .flux2 import Flux2AutoBlocks, Flux2ModularPipeline
from .flux2 import (
Flux2AutoBlocks,
Flux2KleinAutoBlocks,
Flux2KleinBaseAutoBlocks,
Flux2KleinModularPipeline,
Flux2ModularPipeline,
)
from .modular_pipeline import (
AutoPipelineBlocks,
BlockState,

View File

@@ -43,7 +43,7 @@ else:
"Flux2ProcessImagesInputStep",
"Flux2TextInputStep",
]
_import_structure["modular_blocks"] = [
_import_structure["modular_blocks_flux2"] = [
"ALL_BLOCKS",
"AUTO_BLOCKS",
"REMOTE_AUTO_BLOCKS",
@@ -51,10 +51,11 @@ else:
"IMAGE_CONDITIONED_BLOCKS",
"Flux2AutoBlocks",
"Flux2AutoVaeEncoderStep",
"Flux2BeforeDenoiseStep",
"Flux2CoreDenoiseStep",
"Flux2VaeEncoderSequentialStep",
]
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline"]
_import_structure["modular_blocks_flux2_klein"] = ["Flux2KleinAutoBlocks", "Flux2KleinBaseAutoBlocks"]
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline", "Flux2KleinModularPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -85,7 +86,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
Flux2ProcessImagesInputStep,
Flux2TextInputStep,
)
from .modular_blocks import (
from .modular_blocks_flux2 import (
ALL_BLOCKS,
AUTO_BLOCKS,
IMAGE_CONDITIONED_BLOCKS,
@@ -93,10 +94,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
TEXT2IMAGE_BLOCKS,
Flux2AutoBlocks,
Flux2AutoVaeEncoderStep,
Flux2BeforeDenoiseStep,
Flux2CoreDenoiseStep,
Flux2VaeEncoderSequentialStep,
)
from .modular_pipeline import Flux2ModularPipeline
from .modular_blocks_flux2_klein import (
Flux2KleinAutoBlocks,
Flux2KleinBaseAutoBlocks,
)
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
else:
import sys

View File

@@ -129,17 +129,9 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
InputParam("num_inference_steps", default=50),
InputParam("timesteps"),
InputParam("sigmas"),
InputParam("guidance_scale", default=4.0),
InputParam("latents", type_hint=torch.Tensor),
InputParam("num_images_per_prompt", default=1),
InputParam("height", type_hint=int),
InputParam("width", type_hint=int),
InputParam(
"batch_size",
required=True,
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`.",
),
]
@property
@@ -151,13 +143,12 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
type_hint=int,
description="The number of denoising steps to perform at inference time",
),
OutputParam("guidance", type_hint=torch.Tensor, description="Guidance scale tensor"),
]
@torch.no_grad()
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.device = components._execution_device
device = components._execution_device
scheduler = components.scheduler
@@ -183,7 +174,7 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
timesteps, num_inference_steps = retrieve_timesteps(
scheduler,
num_inference_steps,
block_state.device,
device,
timesteps=timesteps,
sigmas=sigmas,
mu=mu,
@@ -191,11 +182,6 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
block_state.timesteps = timesteps
block_state.num_inference_steps = num_inference_steps
batch_size = block_state.batch_size * block_state.num_images_per_prompt
guidance = torch.full([1], block_state.guidance_scale, device=block_state.device, dtype=torch.float32)
guidance = guidance.expand(batch_size)
block_state.guidance = guidance
components.scheduler.set_begin_index(0)
self.set_block_state(state, block_state)
@@ -353,7 +339,6 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
def inputs(self) -> List[InputParam]:
return [
InputParam(name="prompt_embeds", required=True),
InputParam(name="latent_ids"),
]
@property
@@ -365,12 +350,6 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
type_hint=torch.Tensor,
description="4D position IDs (T, H, W, L) for text tokens, used for RoPE calculation.",
),
OutputParam(
name="latent_ids",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="4D position IDs (T, H, W, L) for image latents, used for RoPE calculation.",
),
]
@staticmethod
@@ -403,6 +382,72 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
return components, state
class Flux2KleinBaseRoPEInputsStep(ModularPipelineBlocks):
model_name = "flux2-klein"
@property
def description(self) -> str:
return "Step that prepares the 4D RoPE position IDs for Flux2-Klein base model denoising. Should be placed after text encoder and latent preparation steps."
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(name="prompt_embeds", required=True),
InputParam(name="negative_prompt_embeds", required=False),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
name="txt_ids",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="4D position IDs (T, H, W, L) for text tokens, used for RoPE calculation.",
),
OutputParam(
name="negative_txt_ids",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="4D position IDs (T, H, W, L) for negative text tokens, used for RoPE calculation.",
),
]
@staticmethod
def _prepare_text_ids(x: torch.Tensor, t_coord: Optional[torch.Tensor] = None):
"""Prepare 4D position IDs for text tokens."""
B, L, _ = x.shape
out_ids = []
for i in range(B):
t = torch.arange(1) if t_coord is None else t_coord[i]
h = torch.arange(1)
w = torch.arange(1)
seq_l = torch.arange(L)
coords = torch.cartesian_prod(t, h, w, seq_l)
out_ids.append(coords)
return torch.stack(out_ids)
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
prompt_embeds = block_state.prompt_embeds
device = prompt_embeds.device
block_state.txt_ids = self._prepare_text_ids(prompt_embeds)
block_state.txt_ids = block_state.txt_ids.to(device)
block_state.negative_txt_ids = None
if block_state.negative_prompt_embeds is not None:
block_state.negative_txt_ids = self._prepare_text_ids(block_state.negative_prompt_embeds)
block_state.negative_txt_ids = block_state.negative_txt_ids.to(device)
self.set_block_state(state, block_state)
return components, state
class Flux2PrepareImageLatentsStep(ModularPipelineBlocks):
model_name = "flux2"
@@ -506,3 +551,42 @@ class Flux2PrepareImageLatentsStep(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
class Flux2PrepareGuidanceStep(ModularPipelineBlocks):
model_name = "flux2"
@property
def description(self) -> str:
return "Step that prepares the guidance scale tensor for Flux2 inference"
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("guidance_scale", default=4.0),
InputParam("num_images_per_prompt", default=1),
InputParam(
"batch_size",
required=True,
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`.",
),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam("guidance", type_hint=torch.Tensor, description="Guidance scale tensor"),
]
@torch.no_grad()
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
device = components._execution_device
batch_size = block_state.batch_size * block_state.num_images_per_prompt
guidance = torch.full([1], block_state.guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(batch_size)
block_state.guidance = guidance
self.set_block_state(state, block_state)
return components, state

View File

@@ -29,29 +29,16 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class Flux2DecodeStep(ModularPipelineBlocks):
class Flux2UnpackLatentsStep(ModularPipelineBlocks):
model_name = "flux2"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKLFlux2),
ComponentSpec(
"image_processor",
Flux2ImageProcessor,
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 32}),
default_creation_method="from_config",
),
]
@property
def description(self) -> str:
return "Step that decodes the denoised latents into images using Flux2 VAE with batch norm denormalization"
return "Step that unpacks the latents from the denoising step"
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("output_type", default="pil"),
InputParam(
"latents",
required=True,
@@ -70,9 +57,9 @@ class Flux2DecodeStep(ModularPipelineBlocks):
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"images",
type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
"latents",
type_hint=torch.Tensor,
description="The denoise latents from denoising step, unpacked with position IDs.",
)
]
@@ -107,6 +94,62 @@ class Flux2DecodeStep(ModularPipelineBlocks):
return torch.stack(x_list, dim=0)
@torch.no_grad()
def __call__(self, components, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
latents = block_state.latents
latent_ids = block_state.latent_ids
latents = self._unpack_latents_with_ids(latents, latent_ids)
block_state.latents = latents
self.set_block_state(state, block_state)
return components, state
class Flux2DecodeStep(ModularPipelineBlocks):
model_name = "flux2"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKLFlux2),
ComponentSpec(
"image_processor",
Flux2ImageProcessor,
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 32}),
default_creation_method="from_config",
),
]
@property
def description(self) -> str:
return "Step that decodes the denoised latents into images using Flux2 VAE with batch norm denormalization"
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("output_type", default="pil"),
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The denoised latents from the denoising step",
),
]
@property
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"images",
type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
)
]
@staticmethod
def _unpatchify_latents(latents):
"""Convert patchified latents back to regular format."""
@@ -121,26 +164,20 @@ class Flux2DecodeStep(ModularPipelineBlocks):
block_state = self.get_block_state(state)
vae = components.vae
if block_state.output_type == "latent":
block_state.images = block_state.latents
else:
latents = block_state.latents
latent_ids = block_state.latent_ids
latents = block_state.latents
latents = self._unpack_latents_with_ids(latents, latent_ids)
latents_bn_mean = vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
latents_bn_std = torch.sqrt(vae.bn.running_var.view(1, -1, 1, 1) + vae.config.batch_norm_eps).to(
latents.device, latents.dtype
)
latents = latents * latents_bn_std + latents_bn_mean
latents_bn_mean = vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
latents_bn_std = torch.sqrt(vae.bn.running_var.view(1, -1, 1, 1) + vae.config.batch_norm_eps).to(
latents.device, latents.dtype
)
latents = latents * latents_bn_std + latents_bn_mean
latents = self._unpatchify_latents(latents)
latents = self._unpatchify_latents(latents)
block_state.images = vae.decode(latents, return_dict=False)[0]
block_state.images = components.image_processor.postprocess(
block_state.images, output_type=block_state.output_type
)
block_state.images = vae.decode(latents, return_dict=False)[0]
block_state.images = components.image_processor.postprocess(
block_state.images, output_type=block_state.output_type
)
self.set_block_state(state, block_state)
return components, state

View File

@@ -16,6 +16,8 @@ from typing import Any, List, Tuple
import torch
from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance
from ...models import Flux2Transformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging
@@ -25,8 +27,8 @@ from ..modular_pipeline import (
ModularPipelineBlocks,
PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import Flux2ModularPipeline
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
if is_torch_xla_available():
@@ -134,6 +136,229 @@ class Flux2LoopDenoiser(ModularPipelineBlocks):
return components, block_state
# same as Flux2LoopDenoiser but guidance=None
class Flux2KleinLoopDenoiser(ModularPipelineBlocks):
model_name = "flux2-klein"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("transformer", Flux2Transformer2DModel)]
@property
def description(self) -> str:
return (
"Step within the denoising loop that denoises the latents for Flux2. "
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
"object (e.g. `Flux2DenoiseLoopWrapper`)"
)
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("joint_attention_kwargs"),
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The latents to denoise. Shape: (B, seq_len, C)",
),
InputParam(
"image_latents",
type_hint=torch.Tensor,
description="Packed image latents for conditioning. Shape: (B, img_seq_len, C)",
),
InputParam(
"image_latent_ids",
type_hint=torch.Tensor,
description="Position IDs for image latents. Shape: (B, img_seq_len, 4)",
),
InputParam(
"prompt_embeds",
required=True,
type_hint=torch.Tensor,
description="Text embeddings from Qwen3",
),
InputParam(
"txt_ids",
required=True,
type_hint=torch.Tensor,
description="4D position IDs for text tokens (T, H, W, L)",
),
InputParam(
"latent_ids",
required=True,
type_hint=torch.Tensor,
description="4D position IDs for latent tokens (T, H, W, L)",
),
]
@torch.no_grad()
def __call__(
self, components: Flux2KleinModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
) -> PipelineState:
latents = block_state.latents
latent_model_input = latents.to(components.transformer.dtype)
img_ids = block_state.latent_ids
image_latents = getattr(block_state, "image_latents", None)
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1).to(components.transformer.dtype)
image_latent_ids = block_state.image_latent_ids
img_ids = torch.cat([img_ids, image_latent_ids], dim=1)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = components.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=None,
encoder_hidden_states=block_state.prompt_embeds,
txt_ids=block_state.txt_ids,
img_ids=img_ids,
joint_attention_kwargs=block_state.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1)]
block_state.noise_pred = noise_pred
return components, block_state
# support CFG for Flux2-Klein base model
class Flux2KleinBaseLoopDenoiser(ModularPipelineBlocks):
model_name = "flux2-klein"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("transformer", Flux2Transformer2DModel),
ComponentSpec(
"guider",
ClassifierFreeGuidance,
config=FrozenDict({"guidance_scale": 4.0}),
default_creation_method="from_config",
),
]
@property
def expected_configs(self) -> List[ConfigSpec]:
return [
ConfigSpec(name="is_distilled", default=False),
]
@property
def description(self) -> str:
return (
"Step within the denoising loop that denoises the latents for Flux2. "
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
"object (e.g. `Flux2DenoiseLoopWrapper`)"
)
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("joint_attention_kwargs"),
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The latents to denoise. Shape: (B, seq_len, C)",
),
InputParam(
"image_latents",
type_hint=torch.Tensor,
description="Packed image latents for conditioning. Shape: (B, img_seq_len, C)",
),
InputParam(
"image_latent_ids",
type_hint=torch.Tensor,
description="Position IDs for image latents. Shape: (B, img_seq_len, 4)",
),
InputParam(
"prompt_embeds",
required=True,
type_hint=torch.Tensor,
description="Text embeddings from Qwen3",
),
InputParam(
"negative_prompt_embeds",
required=False,
type_hint=torch.Tensor,
description="Negative text embeddings from Qwen3",
),
InputParam(
"txt_ids",
required=True,
type_hint=torch.Tensor,
description="4D position IDs for text tokens (T, H, W, L)",
),
InputParam(
"negative_txt_ids",
required=False,
type_hint=torch.Tensor,
description="4D position IDs for negative text tokens (T, H, W, L)",
),
InputParam(
"latent_ids",
required=True,
type_hint=torch.Tensor,
description="4D position IDs for latent tokens (T, H, W, L)",
),
]
@torch.no_grad()
def __call__(
self, components: Flux2KleinModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
) -> PipelineState:
latents = block_state.latents
latent_model_input = latents.to(components.transformer.dtype)
img_ids = block_state.latent_ids
image_latents = getattr(block_state, "image_latents", None)
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1).to(components.transformer.dtype)
image_latent_ids = block_state.image_latent_ids
img_ids = torch.cat([img_ids, image_latent_ids], dim=1)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
guider_inputs = {
"encoder_hidden_states": (
getattr(block_state, "prompt_embeds", None),
getattr(block_state, "negative_prompt_embeds", None),
),
"txt_ids": (
getattr(block_state, "txt_ids", None),
getattr(block_state, "negative_txt_ids", None),
),
}
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
guider_state = components.guider.prepare_inputs(guider_inputs)
for guider_state_batch in guider_state:
components.guider.prepare_models(components.transformer)
cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()}
noise_pred = components.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=None,
img_ids=img_ids,
joint_attention_kwargs=block_state.joint_attention_kwargs,
return_dict=False,
**cond_kwargs,
)[0]
guider_state_batch.noise_pred = noise_pred[:, : latents.size(1)]
components.guider.cleanup_models(components.transformer)
# perform guidance
block_state.noise_pred = components.guider(guider_state)[0]
return components, block_state
class Flux2LoopAfterDenoiser(ModularPipelineBlocks):
model_name = "flux2"
@@ -250,3 +475,35 @@ class Flux2DenoiseStep(Flux2DenoiseLoopWrapper):
" - `Flux2LoopAfterDenoiser`\n"
"This block supports both text-to-image and image-conditioned generation."
)
class Flux2KleinDenoiseStep(Flux2DenoiseLoopWrapper):
block_classes = [Flux2KleinLoopDenoiser, Flux2LoopAfterDenoiser]
block_names = ["denoiser", "after_denoiser"]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoises the latents for Flux2. \n"
"Its loop logic is defined in `Flux2DenoiseLoopWrapper.__call__` method \n"
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
" - `Flux2KleinLoopDenoiser`\n"
" - `Flux2LoopAfterDenoiser`\n"
"This block supports both text-to-image and image-conditioned generation."
)
class Flux2KleinBaseDenoiseStep(Flux2DenoiseLoopWrapper):
block_classes = [Flux2KleinBaseLoopDenoiser, Flux2LoopAfterDenoiser]
block_names = ["denoiser", "after_denoiser"]
@property
def description(self) -> str:
return (
"Denoise step that iteratively denoises the latents for Flux2. \n"
"Its loop logic is defined in `Flux2DenoiseLoopWrapper.__call__` method \n"
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
" - `Flux2KleinBaseLoopDenoiser`\n"
" - `Flux2LoopAfterDenoiser`\n"
"This block supports both text-to-image and image-conditioned generation."
)

View File

@@ -15,13 +15,15 @@
from typing import List, Optional, Tuple, Union
import torch
from transformers import AutoProcessor, Mistral3ForConditionalGeneration
from transformers import AutoProcessor, Mistral3ForConditionalGeneration, Qwen2TokenizerFast, Qwen3ForCausalLM
from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance
from ...models import AutoencoderKLFlux2
from ...utils import logging
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import Flux2ModularPipeline
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@@ -79,10 +81,8 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt_embeds", type_hint=torch.Tensor, required=False),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(10, 20, 30), required=False),
InputParam("joint_attention_kwargs"),
]
@property
@@ -99,14 +99,7 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
@staticmethod
def check_inputs(block_state):
prompt = block_state.prompt
prompt_embeds = getattr(block_state, "prompt_embeds", None)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. "
"Please make sure to only forward one of the two."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@staticmethod
@@ -165,10 +158,6 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
block_state.device = components._execution_device
if block_state.prompt_embeds is not None:
self.set_block_state(state, block_state)
return components, state
prompt = block_state.prompt
if prompt is None:
prompt = ""
@@ -205,7 +194,6 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("prompt_embeds", type_hint=torch.Tensor, required=False),
]
@property
@@ -222,15 +210,8 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
@staticmethod
def check_inputs(block_state):
prompt = block_state.prompt
prompt_embeds = getattr(block_state, "prompt_embeds", None)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. "
"Please make sure to only forward one of the two."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}")
@torch.no_grad()
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
@@ -244,10 +225,6 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
block_state.device = components._execution_device
if block_state.prompt_embeds is not None:
self.set_block_state(state, block_state)
return components, state
prompt = block_state.prompt
if prompt is None:
prompt = ""
@@ -270,6 +247,289 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
return components, state
class Flux2KleinTextEncoderStep(ModularPipelineBlocks):
model_name = "flux2-klein"
@property
def description(self) -> str:
return "Text Encoder step that generates text embeddings using Qwen3 to guide the image generation"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("text_encoder", Qwen3ForCausalLM),
ComponentSpec("tokenizer", Qwen2TokenizerFast),
]
@property
def expected_configs(self) -> List[ConfigSpec]:
return [
ConfigSpec(name="is_distilled", default=True),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Text embeddings from qwen3 used to guide the image generation",
),
]
@staticmethod
def check_inputs(block_state):
prompt = block_state.prompt
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2_klein.Flux2KleinPipeline._get_qwen3_prompt_embeds
def _get_qwen3_prompt_embeds(
text_encoder: Qwen3ForCausalLM,
tokenizer: Qwen2TokenizerFast,
prompt: Union[str, List[str]],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
max_sequence_length: int = 512,
hidden_states_layers: List[int] = (9, 18, 27),
):
dtype = text_encoder.dtype if dtype is None else dtype
device = text_encoder.device if device is None else device
prompt = [prompt] if isinstance(prompt, str) else prompt
all_input_ids = []
all_attention_masks = []
for single_prompt in prompt:
messages = [{"role": "user", "content": single_prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
inputs = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_sequence_length,
)
all_input_ids.append(inputs["input_ids"])
all_attention_masks.append(inputs["attention_mask"])
input_ids = torch.cat(all_input_ids, dim=0).to(device)
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
# Forward pass through the model
output = text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
use_cache=False,
)
# Only use outputs from intermediate layers and stack them
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
out = out.to(dtype=dtype, device=device)
batch_size, num_channels, seq_len, hidden_dim = out.shape
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
return prompt_embeds
@torch.no_grad()
def __call__(self, components: Flux2KleinModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
self.check_inputs(block_state)
device = components._execution_device
prompt = block_state.prompt
if prompt is None:
prompt = ""
prompt = [prompt] if isinstance(prompt, str) else prompt
block_state.prompt_embeds = self._get_qwen3_prompt_embeds(
text_encoder=components.text_encoder,
tokenizer=components.tokenizer,
prompt=prompt,
device=device,
max_sequence_length=block_state.max_sequence_length,
hidden_states_layers=block_state.text_encoder_out_layers,
)
self.set_block_state(state, block_state)
return components, state
class Flux2KleinBaseTextEncoderStep(ModularPipelineBlocks):
model_name = "flux2-klein"
@property
def description(self) -> str:
return "Text Encoder step that generates text embeddings using Qwen3 to guide the image generation"
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("text_encoder", Qwen3ForCausalLM),
ComponentSpec("tokenizer", Qwen2TokenizerFast),
ComponentSpec(
"guider",
ClassifierFreeGuidance,
config=FrozenDict({"guidance_scale": 4.0}),
default_creation_method="from_config",
),
]
@property
def expected_configs(self) -> List[ConfigSpec]:
return [
ConfigSpec(name="is_distilled", default=False),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("prompt"),
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
"prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Text embeddings from qwen3 used to guide the image generation",
),
OutputParam(
"negative_prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Negative text embeddings from qwen3 used to guide the image generation",
),
]
@staticmethod
def check_inputs(block_state):
prompt = block_state.prompt
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2_klein.Flux2KleinPipeline._get_qwen3_prompt_embeds
def _get_qwen3_prompt_embeds(
text_encoder: Qwen3ForCausalLM,
tokenizer: Qwen2TokenizerFast,
prompt: Union[str, List[str]],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
max_sequence_length: int = 512,
hidden_states_layers: List[int] = (9, 18, 27),
):
dtype = text_encoder.dtype if dtype is None else dtype
device = text_encoder.device if device is None else device
prompt = [prompt] if isinstance(prompt, str) else prompt
all_input_ids = []
all_attention_masks = []
for single_prompt in prompt:
messages = [{"role": "user", "content": single_prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
inputs = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_sequence_length,
)
all_input_ids.append(inputs["input_ids"])
all_attention_masks.append(inputs["attention_mask"])
input_ids = torch.cat(all_input_ids, dim=0).to(device)
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
# Forward pass through the model
output = text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
use_cache=False,
)
# Only use outputs from intermediate layers and stack them
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
out = out.to(dtype=dtype, device=device)
batch_size, num_channels, seq_len, hidden_dim = out.shape
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
return prompt_embeds
@torch.no_grad()
def __call__(self, components: Flux2KleinModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
self.check_inputs(block_state)
device = components._execution_device
prompt = block_state.prompt
if prompt is None:
prompt = ""
prompt = [prompt] if isinstance(prompt, str) else prompt
block_state.prompt_embeds = self._get_qwen3_prompt_embeds(
text_encoder=components.text_encoder,
tokenizer=components.tokenizer,
prompt=prompt,
device=device,
max_sequence_length=block_state.max_sequence_length,
hidden_states_layers=block_state.text_encoder_out_layers,
)
if components.requires_unconditional_embeds:
negative_prompt = [""] * len(prompt)
block_state.negative_prompt_embeds = self._get_qwen3_prompt_embeds(
text_encoder=components.text_encoder,
tokenizer=components.tokenizer,
prompt=negative_prompt,
device=device,
max_sequence_length=block_state.max_sequence_length,
hidden_states_layers=block_state.text_encoder_out_layers,
)
else:
block_state.negative_prompt_embeds = None
self.set_block_state(state, block_state)
return components, state
class Flux2VaeEncoderStep(ModularPipelineBlocks):
model_name = "flux2"

View File

@@ -47,7 +47,7 @@ class Flux2TextInputStep(ModularPipelineBlocks):
required=True,
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated text embeddings from Mistral3. Can be generated from text_encoder step.",
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
]
@@ -89,6 +89,90 @@ class Flux2TextInputStep(ModularPipelineBlocks):
return components, state
class Flux2KleinBaseTextInputStep(ModularPipelineBlocks):
model_name = "flux2-klein"
@property
def description(self) -> str:
return (
"This step:\n"
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
" 2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)"
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
InputParam(
"prompt_embeds",
required=True,
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
),
InputParam(
"negative_prompt_embeds",
required=False,
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="Pre-generated negative text embeddings. Can be generated from text_encoder step.",
),
]
@property
def intermediate_outputs(self) -> List[str]:
return [
OutputParam(
"batch_size",
type_hint=int,
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
),
OutputParam(
"dtype",
type_hint=torch.dtype,
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
),
OutputParam(
"prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="Text embeddings used to guide the image generation",
),
OutputParam(
"negative_prompt_embeds",
type_hint=torch.Tensor,
kwargs_type="denoiser_input_fields",
description="Negative text embeddings used to guide the image generation",
),
]
@torch.no_grad()
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
block_state.batch_size = block_state.prompt_embeds.shape[0]
block_state.dtype = block_state.prompt_embeds.dtype
_, seq_len, _ = block_state.prompt_embeds.shape
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
block_state.prompt_embeds = block_state.prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
if block_state.negative_prompt_embeds is not None:
_, seq_len, _ = block_state.negative_prompt_embeds.shape
block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.repeat(
1, block_state.num_images_per_prompt, 1
)
block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.view(
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
)
self.set_block_state(state, block_state)
return components, state
class Flux2ProcessImagesInputStep(ModularPipelineBlocks):
model_name = "flux2"

View File

@@ -12,16 +12,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import PIL.Image
import torch
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from ..modular_pipeline_utils import InsertableDict, OutputParam
from .before_denoise import (
Flux2PrepareGuidanceStep,
Flux2PrepareImageLatentsStep,
Flux2PrepareLatentsStep,
Flux2RoPEInputsStep,
Flux2SetTimestepsStep,
)
from .decoders import Flux2DecodeStep
from .decoders import Flux2DecodeStep, Flux2UnpackLatentsStep
from .denoise import Flux2DenoiseStep
from .encoders import (
Flux2RemoteTextEncoderStep,
@@ -41,7 +47,6 @@ Flux2VaeEncoderBlocks = InsertableDict(
[
("preprocess", Flux2ProcessImagesInputStep()),
("encode", Flux2VaeEncoderStep()),
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
]
)
@@ -72,33 +77,56 @@ class Flux2AutoVaeEncoderStep(AutoPipelineBlocks):
)
Flux2BeforeDenoiseBlocks = InsertableDict(
Flux2CoreDenoiseBlocks = InsertableDict(
[
("input", Flux2TextInputStep()),
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
("prepare_latents", Flux2PrepareLatentsStep()),
("set_timesteps", Flux2SetTimestepsStep()),
("prepare_guidance", Flux2PrepareGuidanceStep()),
("prepare_rope_inputs", Flux2RoPEInputsStep()),
("denoise", Flux2DenoiseStep()),
("after_denoise", Flux2UnpackLatentsStep()),
]
)
class Flux2BeforeDenoiseStep(SequentialPipelineBlocks):
class Flux2CoreDenoiseStep(SequentialPipelineBlocks):
model_name = "flux2"
block_classes = Flux2BeforeDenoiseBlocks.values()
block_names = Flux2BeforeDenoiseBlocks.keys()
block_classes = Flux2CoreDenoiseBlocks.values()
block_names = Flux2CoreDenoiseBlocks.keys()
@property
def description(self):
return "Before denoise step that prepares the inputs for the denoise step in Flux2 generation."
return (
"Core denoise step that performs the denoising process for Flux2-dev.\n"
" - `Flux2TextInputStep` (input) standardizes the text inputs (prompt_embeds) for the denoising step.\n"
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
" - `Flux2PrepareGuidanceStep` (prepare_guidance) prepares the guidance tensor for the denoising step.\n"
" - `Flux2RoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids) for the denoising step.\n"
" - `Flux2DenoiseStep` (denoise) iteratively denoises the latents.\n"
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
)
@property
def outputs(self):
return [
OutputParam(
name="latents",
type_hint=torch.Tensor,
description="The latents from the denoising step.",
)
]
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", Flux2TextEncoderStep()),
("text_input", Flux2TextInputStep()),
("vae_image_encoder", Flux2AutoVaeEncoderStep()),
("before_denoise", Flux2BeforeDenoiseStep()),
("denoise", Flux2DenoiseStep()),
("vae_encoder", Flux2AutoVaeEncoderStep()),
("denoise", Flux2CoreDenoiseStep()),
("decode", Flux2DecodeStep()),
]
)
@@ -107,10 +135,8 @@ AUTO_BLOCKS = InsertableDict(
REMOTE_AUTO_BLOCKS = InsertableDict(
[
("text_encoder", Flux2RemoteTextEncoderStep()),
("text_input", Flux2TextInputStep()),
("vae_image_encoder", Flux2AutoVaeEncoderStep()),
("before_denoise", Flux2BeforeDenoiseStep()),
("denoise", Flux2DenoiseStep()),
("vae_encoder", Flux2AutoVaeEncoderStep()),
("denoise", Flux2CoreDenoiseStep()),
("decode", Flux2DecodeStep()),
]
)
@@ -130,6 +156,16 @@ class Flux2AutoBlocks(SequentialPipelineBlocks):
"- For image-conditioned generation, you need to provide `image` (list of PIL images)."
)
@property
def outputs(self):
return [
OutputParam(
name="images",
type_hint=List[PIL.Image.Image],
description="The images from the decoding step.",
)
]
TEXT2IMAGE_BLOCKS = InsertableDict(
[
@@ -137,8 +173,10 @@ TEXT2IMAGE_BLOCKS = InsertableDict(
("text_input", Flux2TextInputStep()),
("prepare_latents", Flux2PrepareLatentsStep()),
("set_timesteps", Flux2SetTimestepsStep()),
("prepare_guidance", Flux2PrepareGuidanceStep()),
("prepare_rope_inputs", Flux2RoPEInputsStep()),
("denoise", Flux2DenoiseStep()),
("after_denoise", Flux2UnpackLatentsStep()),
("decode", Flux2DecodeStep()),
]
)
@@ -152,8 +190,10 @@ IMAGE_CONDITIONED_BLOCKS = InsertableDict(
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
("prepare_latents", Flux2PrepareLatentsStep()),
("set_timesteps", Flux2SetTimestepsStep()),
("prepare_guidance", Flux2PrepareGuidanceStep()),
("prepare_rope_inputs", Flux2RoPEInputsStep()),
("denoise", Flux2DenoiseStep()),
("after_denoise", Flux2UnpackLatentsStep()),
("decode", Flux2DecodeStep()),
]
)

View File

@@ -0,0 +1,232 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import PIL.Image
import torch
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict, OutputParam
from .before_denoise import (
Flux2KleinBaseRoPEInputsStep,
Flux2PrepareImageLatentsStep,
Flux2PrepareLatentsStep,
Flux2RoPEInputsStep,
Flux2SetTimestepsStep,
)
from .decoders import Flux2DecodeStep, Flux2UnpackLatentsStep
from .denoise import Flux2KleinBaseDenoiseStep, Flux2KleinDenoiseStep
from .encoders import (
Flux2KleinBaseTextEncoderStep,
Flux2KleinTextEncoderStep,
Flux2VaeEncoderStep,
)
from .inputs import (
Flux2KleinBaseTextInputStep,
Flux2ProcessImagesInputStep,
Flux2TextInputStep,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
################
# VAE encoder
################
Flux2KleinVaeEncoderBlocks = InsertableDict(
[
("preprocess", Flux2ProcessImagesInputStep()),
("encode", Flux2VaeEncoderStep()),
]
)
class Flux2KleinVaeEncoderSequentialStep(SequentialPipelineBlocks):
model_name = "flux2"
block_classes = Flux2KleinVaeEncoderBlocks.values()
block_names = Flux2KleinVaeEncoderBlocks.keys()
@property
def description(self) -> str:
return "VAE encoder step that preprocesses and encodes the image inputs into their latent representations."
class Flux2KleinAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [Flux2KleinVaeEncoderSequentialStep]
block_names = ["img_conditioning"]
block_trigger_inputs = ["image"]
@property
def description(self):
return (
"VAE encoder step that encodes the image inputs into their latent representations.\n"
"This is an auto pipeline block that works for image conditioning tasks.\n"
" - `Flux2KleinVaeEncoderSequentialStep` is used when `image` is provided.\n"
" - If `image` is not provided, step will be skipped."
)
###
### Core denoise
###
Flux2KleinCoreDenoiseBlocks = InsertableDict(
[
("input", Flux2TextInputStep()),
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
("prepare_latents", Flux2PrepareLatentsStep()),
("set_timesteps", Flux2SetTimestepsStep()),
("prepare_rope_inputs", Flux2RoPEInputsStep()),
("denoise", Flux2KleinDenoiseStep()),
("after_denoise", Flux2UnpackLatentsStep()),
]
)
class Flux2KleinCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "flux2-klein"
block_classes = Flux2KleinCoreDenoiseBlocks.values()
block_names = Flux2KleinCoreDenoiseBlocks.keys()
@property
def description(self):
return (
"Core denoise step that performs the denoising process for Flux2-Klein (distilled model).\n"
" - `Flux2KleinTextInputStep` (input) standardizes the text inputs (prompt_embeds) for the denoising step.\n"
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
" - `Flux2RoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids) for the denoising step.\n"
" - `Flux2KleinDenoiseStep` (denoise) iteratively denoises the latents.\n"
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
)
@property
def outputs(self):
return [
OutputParam(
name="latents",
type_hint=torch.Tensor,
description="The latents from the denoising step.",
)
]
Flux2KleinBaseCoreDenoiseBlocks = InsertableDict(
[
("input", Flux2KleinBaseTextInputStep()),
("prepare_latents", Flux2PrepareLatentsStep()),
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
("set_timesteps", Flux2SetTimestepsStep()),
("prepare_rope_inputs", Flux2KleinBaseRoPEInputsStep()),
("denoise", Flux2KleinBaseDenoiseStep()),
("after_denoise", Flux2UnpackLatentsStep()),
]
)
class Flux2KleinBaseCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "flux2-klein"
block_classes = Flux2KleinBaseCoreDenoiseBlocks.values()
block_names = Flux2KleinBaseCoreDenoiseBlocks.keys()
@property
def description(self):
return "Core denoise step that performs the denoising process for Flux2-Klein (base model)."
return (
"Core denoise step that performs the denoising process for Flux2-Klein (base model).\n"
" - `Flux2KleinBaseTextInputStep` (input) standardizes the text inputs (prompt_embeds + negative_prompt_embeds) for the denoising step.\n"
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
" - `Flux2KleinBaseRoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids + negative_txt_ids) for the denoising step.\n"
" - `Flux2KleinBaseDenoiseStep` (denoise) iteratively denoises the latents using Classifier-Free Guidance.\n"
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
)
@property
def outputs(self):
return [
OutputParam(
name="latents",
type_hint=torch.Tensor,
description="The latents from the denoising step.",
)
]
###
### Auto blocks
###
class Flux2KleinAutoBlocks(SequentialPipelineBlocks):
model_name = "flux2-klein"
block_classes = [
Flux2KleinTextEncoderStep(),
Flux2KleinAutoVaeEncoderStep(),
Flux2KleinCoreDenoiseStep(),
Flux2DecodeStep(),
]
block_names = ["text_encoder", "vae_encoder", "denoise", "decode"]
@property
def description(self):
return (
"Auto blocks that perform the text-to-image and image-conditioned generation using Flux2-Klein.\n"
+ " - for image-conditioned generation, you need to provide `image` (list of PIL images).\n"
+ " - for text-to-image generation, all you need to provide is `prompt`.\n"
)
@property
def outputs(self):
return [
OutputParam(
name="images",
type_hint=List[PIL.Image.Image],
description="The images from the decoding step.",
)
]
class Flux2KleinBaseAutoBlocks(SequentialPipelineBlocks):
model_name = "flux2-klein"
block_classes = [
Flux2KleinBaseTextEncoderStep(),
Flux2KleinAutoVaeEncoderStep(),
Flux2KleinBaseCoreDenoiseStep(),
Flux2DecodeStep(),
]
block_names = ["text_encoder", "vae_encoder", "denoise", "decode"]
@property
def description(self):
return (
"Auto blocks that perform the text-to-image and image-conditioned generation using Flux2-Klein (base model).\n"
+ " - for image-conditioned generation, you need to provide `image` (list of PIL images).\n"
+ " - for text-to-image generation, all you need to provide is `prompt`.\n"
)
@property
def outputs(self):
return [
OutputParam(
name="images",
type_hint=List[PIL.Image.Image],
description="The images from the decoding step.",
)
]

View File

@@ -13,6 +13,8 @@
# limitations under the License.
from typing import Any, Dict, Optional
from ...loaders import Flux2LoraLoaderMixin
from ...utils import logging
from ..modular_pipeline import ModularPipeline
@@ -55,3 +57,56 @@ class Flux2ModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
if getattr(self, "transformer", None):
num_channels_latents = self.transformer.config.in_channels // 4
return num_channels_latents
class Flux2KleinModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
"""
A ModularPipeline for Flux2-Klein.
> [!WARNING] > This is an experimental feature and is likely to change in the future.
"""
default_blocks_name = "Flux2KleinBaseAutoBlocks"
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
if config_dict is not None and "is_distilled" in config_dict and config_dict["is_distilled"]:
return "Flux2KleinAutoBlocks"
else:
return "Flux2KleinBaseAutoBlocks"
@property
def default_height(self):
return self.default_sample_size * self.vae_scale_factor
@property
def default_width(self):
return self.default_sample_size * self.vae_scale_factor
@property
def default_sample_size(self):
return 128
@property
def vae_scale_factor(self):
vae_scale_factor = 8
if getattr(self, "vae", None) is not None:
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
return vae_scale_factor
@property
def num_channels_latents(self):
num_channels_latents = 32
if getattr(self, "transformer", None):
num_channels_latents = self.transformer.config.in_channels // 4
return num_channels_latents
@property
def requires_unconditional_embeds(self):
if hasattr(self.config, "is_distilled") and self.config.is_distilled:
return False
requires_unconditional_embeds = False
if hasattr(self, "guider") and self.guider is not None:
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
return requires_unconditional_embeds

View File

@@ -59,6 +59,7 @@ MODULAR_PIPELINE_MAPPING = OrderedDict(
("flux", "FluxModularPipeline"),
("flux-kontext", "FluxKontextModularPipeline"),
("flux2", "Flux2ModularPipeline"),
("flux2-klein", "Flux2KleinModularPipeline"),
("qwenimage", "QwenImageModularPipeline"),
("qwenimage-edit", "QwenImageEditModularPipeline"),
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),

View File

@@ -129,7 +129,7 @@ else:
"AnimateDiffVideoToVideoControlNetPipeline",
]
_import_structure["bria"] = ["BriaPipeline"]
_import_structure["bria_fibo"] = ["BriaFiboPipeline"]
_import_structure["bria_fibo"] = ["BriaFiboPipeline", "BriaFiboEditPipeline"]
_import_structure["flux2"] = ["Flux2Pipeline", "Flux2KleinPipeline"]
_import_structure["flux"] = [
"FluxControlPipeline",
@@ -597,7 +597,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .aura_flow import AuraFlowPipeline
from .blip_diffusion import BlipDiffusionPipeline
from .bria import BriaPipeline
from .bria_fibo import BriaFiboPipeline
from .bria_fibo import BriaFiboEditPipeline, BriaFiboPipeline
from .chroma import ChromaImg2ImgPipeline, ChromaInpaintPipeline, ChromaPipeline
from .chronoedit import ChronoEditPipeline
from .cogvideo import (

View File

@@ -23,6 +23,8 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_bria_fibo"] = ["BriaFiboPipeline"]
_import_structure["pipeline_bria_fibo_edit"] = ["BriaFiboEditPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -33,6 +35,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_bria_fibo import BriaFiboPipeline
from .pipeline_bria_fibo_edit import BriaFiboEditPipeline
else:
import sys

File diff suppressed because it is too large Load Diff

View File

@@ -84,7 +84,6 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(

View File

@@ -53,7 +53,6 @@ EXAMPLE_DOC_STRING = """
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> from diffusers import HiDreamImagePipeline
>>> tokenizer_4 = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
... "meta-llama/Meta-Llama-3.1-8B-Instruct",

View File

@@ -85,7 +85,6 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetPAGImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(

View File

@@ -459,7 +459,6 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
>>> import torch
>>> pipeline = StableDiffusionPipeline.from_pretrained(
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
... )

View File

@@ -14,7 +14,7 @@ from .scheduling_utils import SchedulerMixin
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -28,8 +28,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -100,14 +100,13 @@ def betas_for_alpha_bar(
return torch.tensor(betas, dtype=torch.float32)
def rescale_zero_terminal_snr(alphas_cumprod):
def rescale_zero_terminal_snr(alphas_cumprod: torch.Tensor) -> torch.Tensor:
"""
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
Rescales betas to have zero terminal SNR Based on (Algorithm 1)[https://huggingface.co/papers/2305.08891]
Args:
betas (`torch.Tensor`):
the betas that the scheduler is being initialized with.
alphas_cumprod (`torch.Tensor`):
The alphas cumulative products that the scheduler is being initialized with.
Returns:
`torch.Tensor`: rescaled betas with zero terminal SNR
@@ -142,11 +141,11 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
beta_start (`float`, defaults to 0.00085):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
beta_end (`float`, defaults to 0.0120):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
beta_schedule (`str`, defaults to `"scaled_linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
@@ -179,6 +178,8 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
snr_shift_scale (`float`, defaults to 3.0):
Shift scale for SNR.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
@@ -190,15 +191,15 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.00085,
beta_end: float = 0.0120,
beta_schedule: str = "scaled_linear",
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "scaled_linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
clip_sample: bool = True,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
clip_sample_range: float = 1.0,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
rescale_betas_zero_snr: bool = False,
snr_shift_scale: float = 3.0,
):
@@ -208,7 +209,15 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float64,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -238,7 +247,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
def _get_variance(self, timestep, prev_timestep):
def _get_variance(self, timestep: int, prev_timestep: int) -> torch.Tensor:
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
@@ -265,7 +274,11 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
def set_timesteps(
self,
num_inference_steps: int,
device: Optional[Union[str, torch.device]] = None,
) -> None:
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -317,7 +330,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
generator: Optional[torch.Generator] = None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DDIMSchedulerOutput, Tuple]:
@@ -328,7 +341,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
@@ -487,5 +500,5 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -49,7 +49,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class DDIMParallelSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -48,7 +48,7 @@ class DDPMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -192,7 +192,12 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: Literal[
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
] = "fixed_small",
clip_sample: bool = True,
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
@@ -210,7 +215,15 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -337,7 +350,14 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
t: int,
predicted_variance: Optional[torch.Tensor] = None,
variance_type: Optional[
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
Literal[
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
]
] = None,
) -> torch.Tensor:
"""
@@ -472,7 +492,10 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [
"learned",
"learned_range",
]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
@@ -521,7 +544,10 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
if t > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=device,
dtype=model_output.dtype,
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise

View File

@@ -50,7 +50,7 @@ class DDPMParallelSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -64,8 +64,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:
@@ -202,7 +202,12 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: Literal[
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
] = "fixed_small",
clip_sample: bool = True,
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
@@ -220,7 +225,15 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -350,7 +363,14 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
t: int,
predicted_variance: Optional[torch.Tensor] = None,
variance_type: Optional[
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
Literal[
"fixed_small",
"fixed_small_log",
"fixed_large",
"fixed_large_log",
"learned",
"learned_range",
]
] = None,
) -> torch.Tensor:
"""

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -52,7 +52,7 @@ class DDIMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -117,7 +117,7 @@ class BrownianTreeNoiseSampler:
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -131,8 +131,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -36,7 +36,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -50,8 +50,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -54,7 +54,7 @@ class EulerDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -68,8 +68,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class HeunDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -52,7 +52,7 @@ class KDPM2AncestralDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -51,7 +51,7 @@ class KDPM2DiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -53,7 +53,7 @@ class LCMSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -67,8 +67,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -49,7 +49,7 @@ class LMSDiscreteSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -28,7 +28,7 @@ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, Schedul
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -42,8 +42,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -47,7 +47,7 @@ class RePaintSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -61,8 +61,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -35,7 +35,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -49,8 +49,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -52,7 +52,7 @@ class TCDSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -48,7 +48,7 @@ class UnCLIPSchedulerOutput(BaseOutput):
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -34,7 +34,7 @@ if is_scipy_available():
def betas_for_alpha_bar(
num_diffusion_timesteps: int,
max_beta: float = 0.999,
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
The number of betas to produce.
max_beta (`float`, defaults to `0.999`):
The maximum beta to use; use values lower than 1 to avoid numerical instability.
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
alpha_transform_type (`str`, defaults to `"cosine"`):
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
Returns:
`torch.Tensor`:

View File

@@ -17,6 +17,51 @@ class Flux2AutoBlocks(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class Flux2KleinAutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Flux2KleinBaseAutoBlocks(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Flux2KleinModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Flux2ModularPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -587,6 +632,21 @@ class AuraFlowPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class BriaFiboEditPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class BriaFiboPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -0,0 +1,91 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import PIL
import pytest
from diffusers.modular_pipelines import (
Flux2KleinAutoBlocks,
Flux2KleinModularPipeline,
)
from ...testing_utils import floats_tensor, torch_device
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
params = frozenset(["prompt", "height", "width", "image"])
batch_params = frozenset(["prompt", "image"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
inputs["image"] = init_image
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
@pytest.mark.skip(reason="batched inference is currently not supported")
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
return

View File

@@ -0,0 +1,91 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import numpy as np
import PIL
import pytest
from diffusers.modular_pipelines import (
Flux2KleinBaseAutoBlocks,
Flux2KleinModularPipeline,
)
from ...testing_utils import floats_tensor, torch_device
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = Flux2KleinModularPipeline
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
params = frozenset(["prompt", "height", "width", "image"])
batch_params = frozenset(["prompt", "image"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
"text_encoder_out_layers": (1,),
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"output_type": "pt",
}
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
inputs["image"] = init_image
return inputs
def test_float16_inference(self):
super().test_float16_inference(9e-2)
@pytest.mark.skip(reason="batched inference is currently not supported")
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
return

View File

@@ -0,0 +1,192 @@
# Copyright 2024 Bria AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer
from transformers.models.smollm3.modeling_smollm3 import SmolLM3Config, SmolLM3ForCausalLM
from diffusers import (
AutoencoderKLWan,
BriaFiboEditPipeline,
FlowMatchEulerDiscreteScheduler,
)
from diffusers.models.transformers.transformer_bria_fibo import BriaFiboTransformer2DModel
from tests.pipelines.test_pipelines_common import PipelineTesterMixin
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
enable_full_determinism()
class BriaFiboPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BriaFiboEditPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
test_layerwise_casting = False
test_group_offloading = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
transformer = BriaFiboTransformer2DModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=8,
num_attention_heads=2,
joint_attention_dim=64,
text_encoder_dim=32,
pooled_projection_dim=None,
axes_dims_rope=[0, 4, 4],
)
vae = AutoencoderKLWan(
base_dim=80,
decoder_base_dim=128,
dim_mult=[1, 2, 4, 4],
dropout=0.0,
in_channels=12,
latents_mean=[0.0] * 16,
latents_std=[1.0] * 16,
is_residual=True,
num_res_blocks=2,
out_channels=12,
patch_size=2,
scale_factor_spatial=16,
scale_factor_temporal=4,
temperal_downsample=[False, True, True],
z_dim=16,
)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = SmolLM3ForCausalLM(SmolLM3Config(hidden_size=32))
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"transformer": transformer,
"vae": vae,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": '{"text": "A painting of a squirrel eating a burger","edit_instruction": "A painting of a squirrel eating a burger"}',
"negative_prompt": "bad, ugly",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 192,
"width": 336,
"output_type": "np",
}
image = Image.new("RGB", (336, 192), (255, 255, 255))
inputs["image"] = image
return inputs
@unittest.skip(reason="will not be supported due to dim-fusion")
def test_encode_prompt_works_in_isolation(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_num_images_per_prompt(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_inference_batch_consistent(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_inference_batch_single_identical(self):
pass
def test_bria_fibo_different_prompts(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_same_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = {"edit_instruction": "a different prompt"}
output_different_prompts = pipe(**inputs).images[0]
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
assert max_diff > 1e-6
def test_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (64, 64), (32, 64)]
for height, width in height_width_pairs:
expected_height = height
expected_width = width
inputs.update({"height": height, "width": width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
assert (output_height, output_width) == (expected_height, expected_width)
def test_bria_fibo_edit_mask(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((192, 336)) * 255).astype(np.uint8), mode="L")
inputs.update({"mask": mask})
output = pipe(**inputs).images[0]
assert output.shape == (192, 336, 3)
def test_bria_fibo_edit_mask_image_size_mismatch(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((64, 64)) * 255).astype(np.uint8), mode="L")
inputs.update({"mask": mask})
with self.assertRaisesRegex(ValueError, "Mask and image must have the same size"):
pipe(**inputs)
def test_bria_fibo_edit_mask_no_image(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((32, 32)) * 255).astype(np.uint8), mode="L")
# Remove image from inputs if it's there (it shouldn't be by default from get_dummy_inputs)
inputs.pop("image", None)
inputs.update({"mask": mask})
with self.assertRaisesRegex(ValueError, "If mask is provided, image must also be provided"):
pipe(**inputs)