Compare commits

...

7 Commits

Author SHA1 Message Date
Sayak Paul
c30acad259 Merge branch 'main' into video-processor-accept-imagelike-inputs 2026-02-05 10:46:04 +05:30
Sayak Paul
a3dcd9882f [core] make qwen hidden states contiguous to make torchao happy. (#13081)
make qwen hidden states contiguous to make torchao happy.
2026-02-05 09:02:32 +05:30
Sayak Paul
9fe0a9cac4 [core] make flux hidden states contiguous (#13068)
* make flux hidden states contiguous

* make fix-copies
2026-02-05 08:39:44 +05:30
Daniel Gu
4ebcdb6ecb Allow VideoProcessor.preprocess_video to accept single-image inputs 2026-02-05 03:39:06 +01:00
Daniel Gu
8a913577d9 Forward kwargs from preprocess/postprocess_video to preprocess/postprocess 2026-02-05 02:52:24 +01:00
David El Malih
03af690b60 docs: improve docstring scheduling_dpmsolver_multistep_inverse.py (#13083)
Improve docstring scheduling dpmsolver multistep inverse
2026-02-04 09:21:57 -08:00
Sayak Paul
90818e82b3 [docs] Fix syntax error in quantization configuration (#13076)
Fix syntax error in quantization configuration
2026-02-04 08:31:03 -08:00
13 changed files with 207 additions and 64 deletions

View File

@@ -66,7 +66,7 @@ from diffusers import DiffusionPipeline, PipelineQuantizationConfig, TorchAoConf
from torchao.quantization import Int4WeightOnlyConfig
pipeline_quant_config = PipelineQuantizationConfig(
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128)))}
quant_mapping={"transformer": TorchAoConfig(Int4WeightOnlyConfig(group_size=128))}
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",

View File

@@ -125,9 +125,9 @@ class BriaFiboAttnProcessor:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[0](hidden_states.contiguous())
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states.contiguous())
return hidden_states, encoder_hidden_states
else:

View File

@@ -130,9 +130,9 @@ class FluxAttnProcessor:
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
)
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[0](hidden_states.contiguous())
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states.contiguous())
return hidden_states, encoder_hidden_states
else:

View File

@@ -561,11 +561,11 @@ class QwenDoubleStreamAttnProcessor2_0:
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
# Apply output projections
img_attn_output = attn.to_out[0](img_attn_output)
img_attn_output = attn.to_out[0](img_attn_output.contiguous())
if len(attn.to_out) > 1:
img_attn_output = attn.to_out[1](img_attn_output) # dropout
txt_attn_output = attn.to_add_out(txt_attn_output)
txt_attn_output = attn.to_add_out(txt_attn_output.contiguous())
return img_attn_output, txt_attn_output

View File

@@ -545,7 +545,9 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -867,7 +867,9 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -245,13 +245,26 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
deprecate(
"algorithm_types dpmsolver and sde-dpmsolver",
"1.0.0",
deprecation_message,
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -259,7 +272,15 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -287,7 +308,12 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type not in [
"dpmsolver",
"dpmsolver++",
"sde-dpmsolver",
"sde-dpmsolver++",
]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
@@ -724,7 +750,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -738,7 +764,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -822,7 +848,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -832,8 +858,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -860,7 +888,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -891,7 +922,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -901,7 +932,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -1014,7 +1045,7 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -1024,8 +1055,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -1106,7 +1139,9 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
return x_t
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.
@@ -1216,7 +1251,10 @@ class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
sample = sample.to(torch.float32)
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
model_output.shape,
generator=generator,
device=model_output.device,
dtype=torch.float32,
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise.to(device=model_output.device, dtype=torch.float32)

View File

@@ -141,6 +141,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
use_flow_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
flow_shift (`float`, *optional*, defaults to 1.0):
The flow shift factor. Valid only when `use_flow_sigmas=True`.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
@@ -163,15 +167,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
prediction_type: Literal["epsilon", "sample", "v_prediction", "flow_prediction"] = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
algorithm_type: Literal["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"] = "dpmsolver++",
solver_type: Literal["midpoint", "heun"] = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
use_karras_sigmas: Optional[bool] = False,
@@ -180,19 +184,32 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
timestep_spacing: str = "linspace",
variance_type: Optional[Literal["learned", "learned_range"]] = None,
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
if (
sum(
[
self.config.use_beta_sigmas,
self.config.use_exponential_sigmas,
self.config.use_karras_sigmas,
]
)
> 1
):
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
deprecate(
"algorithm_types dpmsolver and sde-dpmsolver",
"1.0.0",
deprecation_message,
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
@@ -200,7 +217,15 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
@@ -219,7 +244,12 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type not in [
"dpmsolver",
"dpmsolver++",
"sde-dpmsolver",
"sde-dpmsolver++",
]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
@@ -250,7 +280,11 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"""
return self._step_index
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
@@ -382,7 +416,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -419,7 +453,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Convert sigma values to alpha_t and sigma_t values.
@@ -441,7 +475,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""
Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
Models](https://huggingface.co/papers/2206.00364).
@@ -567,7 +601,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
@@ -581,7 +615,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -666,7 +700,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -676,8 +710,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -704,7 +740,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
sigma_t, sigma_s = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
@@ -736,7 +775,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -746,7 +785,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by the diffusion process.
Returns:
@@ -860,7 +899,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
sample: Optional[torch.Tensor] = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
@@ -870,8 +909,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
sample (`torch.Tensor`, *optional*):
A current instance of a sample created by diffusion process.
noise (`torch.Tensor`, *optional*):
The noise tensor.
Returns:
`torch.Tensor`:
@@ -951,7 +992,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
)
return x_t
def _init_step_index(self, timestep):
def _init_step_index(self, timestep: Union[int, torch.Tensor]):
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
@@ -975,7 +1016,7 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
generator: Optional[torch.Generator] = None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
@@ -1027,7 +1068,10 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise
@@ -1074,6 +1118,21 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
"""
Add noise to the clean `original_samples` using the scheduler's equivalent function.
Args:
original_samples (`torch.Tensor`):
The original samples to add noise to.
noise (`torch.Tensor`):
The noise tensor.
timesteps (`torch.IntTensor`):
The timesteps at which to add noise.
Returns:
`torch.Tensor`:
The noisy samples.
"""
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
@@ -1103,5 +1162,5 @@ class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self):
def __len__(self) -> int:
return self.config.num_train_timesteps

View File

@@ -1120,7 +1120,9 @@ class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -662,7 +662,9 @@ class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -1122,7 +1122,9 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -1083,7 +1083,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(
self, timestep: Union[int, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
self,
timestep: Union[int, torch.Tensor],
schedule_timesteps: Optional[torch.Tensor] = None,
) -> int:
"""
Find the index for a given timestep in the schedule.

View File

@@ -16,7 +16,7 @@ import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import PIL.Image
import torch
import torch.nn.functional as F
@@ -26,9 +26,11 @@ from .image_processor import VaeImageProcessor, is_valid_image, is_valid_image_i
class VideoProcessor(VaeImageProcessor):
r"""Simple video processor."""
def preprocess_video(self, video, height: Optional[int] = None, width: Optional[int] = None) -> torch.Tensor:
def preprocess_video(
self, video, height: Optional[int] = None, width: Optional[int] = None, **kwargs
) -> torch.Tensor:
r"""
Preprocesses input video(s).
Preprocesses input video(s). Keyword arguments will be forwarded to `VaeImageProcessor.preprocess`.
Args:
video (`List[PIL.Image]`, `List[List[PIL.Image]]`, `torch.Tensor`, `np.array`, `List[torch.Tensor]`, `List[np.array]`):
@@ -50,6 +52,10 @@ class VideoProcessor(VaeImageProcessor):
width (`int`, *optional*`, defaults to `None`):
The width in preprocessed frames of the video. If `None`, will use get_default_height_width()` to get
the default width.
Returns:
`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`:
A 5D tensor holding the batched channels-first video(s).
"""
if isinstance(video, list) and isinstance(video[0], np.ndarray) and video[0].ndim == 5:
warnings.warn(
@@ -67,20 +73,47 @@ class VideoProcessor(VaeImageProcessor):
video = torch.cat(video, axis=0)
# ensure the input is a list of videos:
# - if it is a batch of videos (5d torch.Tensor or np.ndarray), it is converted to a list of videos (a list of 4d torch.Tensor or np.ndarray)
# - if it is a single video, it is converted to a list of one video.
# - if it is a batched array of videos (5d torch.Tensor or np.ndarray), it is converted to a list of video
# arrays (a list of 4d torch.Tensor or np.ndarray). `VaeImageProcessor.preprocess` will then treat the first
# (frame) dim as a batch dim.
# - if it is a single video, it is converted to a list of one video. (A single video is a list of images or a
# single imagelist.)
# - if it is a list of imagelists, it will be kept as is (already a list of videos).
# - if it is a single image, it is expanded to a single frame video and then to a list of one video. The
# expansion will depend on the image type:
# - PIL.Image.Image --> one element list of PIL.Image.Image
# - 3D np.ndarray --> interpret as (H, W, C), expand to (F=1, H, W, C)
# - 3D torch.Tensor --> interpret as (C, H, W), expand to (F=1, C, H, W)
if isinstance(video, (np.ndarray, torch.Tensor)) and video.ndim == 5:
video = list(video)
elif isinstance(video, list) and is_valid_image(video[0]) or is_valid_image_imagelist(video):
video = [video]
elif isinstance(video, list) and is_valid_image_imagelist(video[0]):
video = video
elif is_valid_image(video):
if isinstance(video, PIL.Image.Image):
video = [video]
elif isinstance(video, np.ndarray):
if video.ndim == 2:
video = np.expand_dims(video, axis=-1) # Unsqueeze channel dim in last axis
if video.ndim == 3:
video = np.expand_dims(video, axis=0)
else:
raise ValueError(f"Input numpy.ndarray is expected to have 2 or 3 dims but got {video.ndim} dims")
elif isinstance(video, torch.Tensor):
if video.ndim == 2:
video = torch.unsqueeze(video, dim=0) # Unsqueeze channel dim in first dim
if video.ndim == 3:
video = torch.unsqueeze(video, dim=0)
else:
raise ValueError(f"Input torch.Tensor is expected to have 2 or 3 dims but got {video.ndim} dims")
video = [video]
else:
raise ValueError(
"Input is in incorrect format. Currently, we only support numpy.ndarray, torch.Tensor, PIL.Image.Image"
)
video = torch.stack([self.preprocess(img, height=height, width=width) for img in video], dim=0)
video = torch.stack([self.preprocess(img, height=height, width=width, **kwargs) for img in video], dim=0)
# move the number of channels before the number of frames.
video = video.permute(0, 2, 1, 3, 4)
@@ -88,10 +121,11 @@ class VideoProcessor(VaeImageProcessor):
return video
def postprocess_video(
self, video: torch.Tensor, output_type: str = "np"
self, video: torch.Tensor, output_type: str = "np", **kwargs
) -> Union[np.ndarray, torch.Tensor, List[PIL.Image.Image]]:
r"""
Converts a video tensor to a list of frames for export.
Converts a video tensor to a list of frames for export. Keyword arguments will be forwarded to
`VaeImageProcessor.postprocess`.
Args:
video (`torch.Tensor`): The video as a tensor.
@@ -101,7 +135,7 @@ class VideoProcessor(VaeImageProcessor):
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = self.postprocess(batch_vid, output_type)
batch_output = self.postprocess(batch_vid, output_type, **kwargs)
outputs.append(batch_output)
if output_type == "np":