Compare commits

...

6 Commits

Author SHA1 Message Date
DN6
568dbaa5cf update 2025-03-10 16:52:24 +05:30
DN6
fa273fd179 update 2025-03-10 16:47:18 +05:30
DN6
6a0ae75b55 update 2025-03-10 16:35:49 +05:30
DN6
08b8503ffb update 2025-03-10 16:29:41 +05:30
DN6
56ec287e8a update 2025-03-10 16:02:48 +05:30
Dhruv Nair
8db89e7453 update 2025-03-10 06:55:44 +01:00
5 changed files with 57 additions and 3 deletions

View File

@@ -126,7 +126,7 @@ image = pipe(prompt, num_inference_steps=30, guidance_scale=7.0).images[0]
image.save("output.png")
```
Some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
If you are using `torch<=2.6.0`, some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
```python
import torch

View File

@@ -54,7 +54,6 @@ _CLASS_REMAPPING_DICT = {
}
}
if is_accelerate_available():
from accelerate import infer_auto_device_map
from accelerate.utils import get_balanced_memory, get_max_memory, offload_weight, set_module_tensor_to_device

View File

@@ -23,7 +23,14 @@ from typing import TYPE_CHECKING, Any, Dict, List, Union
from packaging import version
from ...utils import get_module_from_name, is_torch_available, is_torch_version, is_torchao_available, logging
from ...utils import (
get_module_from_name,
is_torch_available,
is_torch_version,
is_torchao_version,
is_torchao_available,
logging,
)
from ..base import DiffusersQuantizer
@@ -62,6 +69,38 @@ if is_torchao_available():
from torchao.quantization import quantize_
def _update_torch_safe_globals():
safe_globals = [
(torch.uint1, "torch.uint1"),
(torch.uint2, "torch.uint2"),
(torch.uint3, "torch.uint3"),
(torch.uint4, "torch.uint4"),
(torch.uint5, "torch.uint5"),
(torch.uint6, "torch.uint6"),
(torch.uint7, "torch.uint7"),
]
try:
from torchao.dtypes import NF4Tensor
from torchao.dtypes.floatx.float8_layout import Float8AQTTensorImpl
from torchao.dtypes.uintx.uint4_layout import UInt4Tensor
from torchao.dtypes.uintx.uintx_layout import UintxAQTTensorImpl, UintxTensor
safe_globals.extend([UintxTensor, UInt4Tensor, UintxAQTTensorImpl, Float8AQTTensorImpl, NF4Tensor])
except (ImportError, ModuleNotFoundError) as e:
logger.warning(
"Unable to import `torchao` Tensor objects. This may affect loading checkpoints serialized with `torchao`"
)
logger.debug(e)
finally:
torch.serialization.add_safe_globals(safe_globals=safe_globals)
if is_torch_version(">=", "2.6") and is_torchao_available() and is_torchao_version(">=", "0.7.0"):
_update_torch_safe_globals()
logger = logging.get_logger(__name__)

View File

@@ -92,6 +92,7 @@ from .import_utils import (
is_torch_xla_available,
is_torch_xla_version,
is_torchao_available,
is_torchao_version,
is_torchsde_available,
is_torchvision_available,
is_transformers_available,

View File

@@ -849,6 +849,21 @@ def is_gguf_version(operation: str, version: str):
return compare_versions(parse(_gguf_version), operation, version)
def is_torchao_version(operation: str, version: str):
"""
Compares the current torchao version to a given reference with an operation.
Args:
operation (`str`):
A string representation of an operator, such as `">"` or `"<="`
version (`str`):
A version string
"""
if not _is_torchao_available:
return False
return compare_versions(parse(is_torch_version), operation, version)
def is_k_diffusion_version(operation: str, version: str):
"""
Compares the current k-diffusion version to a given reference with an operation.