Compare commits

..

3 Commits

Author SHA1 Message Date
Sayak Paul
7f1334783f Merge branch 'main' into attention-backend-tests 2025-12-22 09:40:11 +05:30
MatrixTeam-AI
262ce19bff Feature: Add Mambo-G Guidance as Guider (#12862)
* Feature: Add Mambo-G Guidance to Qwen-Image Pipeline

* change to guider implementation

* fix copied code residual

* Update src/diffusers/guiders/magnitude_aware_guidance.py

* Apply style fixes

---------

Co-authored-by: Pscgylotti <pscgylotti@github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-12-19 13:10:40 -10:00
sayakpaul
cc5eaf0429 enhance attention backend tests 2025-12-12 13:25:34 +05:30
13 changed files with 1705 additions and 1527 deletions

View File

@@ -25,6 +25,7 @@ if is_torch_available():
from .classifier_free_zero_star_guidance import ClassifierFreeZeroStarGuidance
from .frequency_decoupled_guidance import FrequencyDecoupledGuidance
from .guider_utils import BaseGuidance
from .magnitude_aware_guidance import MagnitudeAwareGuidance
from .perturbed_attention_guidance import PerturbedAttentionGuidance
from .skip_layer_guidance import SkipLayerGuidance
from .smoothed_energy_guidance import SmoothedEnergyGuidance

View File

@@ -0,0 +1,159 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import torch
from ..configuration_utils import register_to_config
from .guider_utils import BaseGuidance, GuiderOutput, rescale_noise_cfg
if TYPE_CHECKING:
from ..modular_pipelines.modular_pipeline import BlockState
class MagnitudeAwareGuidance(BaseGuidance):
"""
Magnitude-Aware Mitigation for Boosted Guidance (MAMBO-G): https://huggingface.co/papers/2508.03442
Args:
guidance_scale (`float`, defaults to `10.0`):
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
deterioration of image quality.
alpha (`float`, defaults to `8.0`):
The alpha parameter for the magnitude-aware guidance. Higher values cause more aggressive supression of
guidance scale when the magnitude of the guidance update is large.
guidance_rescale (`float`, defaults to `0.0`):
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://huggingface.co/papers/2305.08891).
use_original_formulation (`bool`, defaults to `False`):
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
we use the diffusers-native implementation that has been in the codebase for a long time. See
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
start (`float`, defaults to `0.0`):
The fraction of the total number of denoising steps after which guidance starts.
stop (`float`, defaults to `1.0`):
The fraction of the total number of denoising steps after which guidance stops.
"""
_input_predictions = ["pred_cond", "pred_uncond"]
@register_to_config
def __init__(
self,
guidance_scale: float = 10.0,
alpha: float = 8.0,
guidance_rescale: float = 0.0,
use_original_formulation: bool = False,
start: float = 0.0,
stop: float = 1.0,
enabled: bool = True,
):
super().__init__(start, stop, enabled)
self.guidance_scale = guidance_scale
self.alpha = alpha
self.guidance_rescale = guidance_rescale
self.use_original_formulation = use_original_formulation
def prepare_inputs(self, data: Dict[str, Tuple[torch.Tensor, torch.Tensor]]) -> List["BlockState"]:
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
data_batch = self._prepare_batch(data, tuple_idx, input_prediction)
data_batches.append(data_batch)
return data_batches
def prepare_inputs_from_block_state(
self, data: "BlockState", input_fields: Dict[str, Union[str, Tuple[str, str]]]
) -> List["BlockState"]:
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
data_batches = []
for tuple_idx, input_prediction in zip(tuple_indices, self._input_predictions):
data_batch = self._prepare_batch_from_block_state(input_fields, data, tuple_idx, input_prediction)
data_batches.append(data_batch)
return data_batches
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> GuiderOutput:
pred = None
if not self._is_mambo_g_enabled():
pred = pred_cond
else:
pred = mambo_guidance(
pred_cond,
pred_uncond,
self.guidance_scale,
self.alpha,
self.use_original_formulation,
)
if self.guidance_rescale > 0.0:
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
return GuiderOutput(pred=pred, pred_cond=pred_cond, pred_uncond=pred_uncond)
@property
def is_conditional(self) -> bool:
return self._count_prepared == 1
@property
def num_conditions(self) -> int:
num_conditions = 1
if self._is_mambo_g_enabled():
num_conditions += 1
return num_conditions
def _is_mambo_g_enabled(self) -> bool:
if not self._enabled:
return False
is_within_range = True
if self._num_inference_steps is not None:
skip_start_step = int(self._start * self._num_inference_steps)
skip_stop_step = int(self._stop * self._num_inference_steps)
is_within_range = skip_start_step <= self._step < skip_stop_step
is_close = False
if self.use_original_formulation:
is_close = math.isclose(self.guidance_scale, 0.0)
else:
is_close = math.isclose(self.guidance_scale, 1.0)
return is_within_range and not is_close
def mambo_guidance(
pred_cond: torch.Tensor,
pred_uncond: torch.Tensor,
guidance_scale: float,
alpha: float = 8.0,
use_original_formulation: bool = False,
):
dim = list(range(1, len(pred_cond.shape)))
diff = pred_cond - pred_uncond
ratio = torch.norm(diff, dim=dim, keepdim=True) / torch.norm(pred_uncond, dim=dim, keepdim=True)
guidance_scale_final = (
guidance_scale * torch.exp(-alpha * ratio)
if use_original_formulation
else 1.0 + (guidance_scale - 1.0) * torch.exp(-alpha * ratio)
)
pred = pred_cond if use_original_formulation else pred_uncond
pred = pred + guidance_scale_final * diff
return pred

View File

@@ -231,7 +231,7 @@ class BlockState:
class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
"""
Base class for all Pipeline Blocks: ConditionalPipelineBlocks, AutoPipelineBlocks, SequentialPipelineBlocks,
Base class for all Pipeline Blocks: PipelineBlock, AutoPipelineBlocks, SequentialPipelineBlocks,
LoopSequentialPipelineBlocks
[`ModularPipelineBlocks`] provides method to load and save the definition of pipeline blocks.
@@ -527,10 +527,9 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
)
class ConditionalPipelineBlocks(ModularPipelineBlocks):
class AutoPipelineBlocks(ModularPipelineBlocks):
"""
A Pipeline Blocks that conditionally selects a block to run based on the inputs.
Subclasses must implement the `select_block` method to define the logic for selecting the block.
A Pipeline Blocks that automatically selects a block to run based on the inputs.
This class inherits from [`ModularPipelineBlocks`]. Check the superclass documentation for the generic methods the
library implements for all the pipeline blocks (such as loading or saving etc.)
@@ -540,13 +539,12 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
Attributes:
block_classes: List of block classes to be used
block_names: List of prefixes for each block
block_trigger_inputs: List of input names that select_block() uses to determine which block to run
block_trigger_inputs: List of input names that trigger specific blocks, with None for default
"""
block_classes = []
block_names = []
block_trigger_inputs = []
default_block_name = None # name of the default block if no trigger inputs are provided, if None, this block can be skipped if no trigger inputs are provided
def __init__(self):
sub_blocks = InsertableDict()
@@ -556,15 +554,26 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
else:
sub_blocks[block_name] = block
self.sub_blocks = sub_blocks
if not (len(self.block_classes) == len(self.block_names)):
if not (len(self.block_classes) == len(self.block_names) == len(self.block_trigger_inputs)):
raise ValueError(
f"In {self.__class__.__name__}, the number of block_classes and block_names must be the same."
f"In {self.__class__.__name__}, the number of block_classes, block_names, and block_trigger_inputs must be the same."
)
if self.default_block_name is not None and self.default_block_name not in self.block_names:
default_blocks = [t for t in self.block_trigger_inputs if t is None]
# can only have 1 or 0 default block, and has to put in the last
# the order of blocks matters here because the first block with matching trigger will be dispatched
# e.g. blocks = [inpaint, img2img] and block_trigger_inputs = ["mask", "image"]
# as long as mask is provided, it is inpaint; if only image is provided, it is img2img
if len(default_blocks) > 1 or (len(default_blocks) == 1 and self.block_trigger_inputs[-1] is not None):
raise ValueError(
f"In {self.__class__.__name__}, default_block_name '{self.default_block_name}' must be one of block_names: {self.block_names}"
f"In {self.__class__.__name__}, exactly one None must be specified as the last element "
"in block_trigger_inputs."
)
# Map trigger inputs to block objects
self.trigger_to_block_map = dict(zip(self.block_trigger_inputs, self.sub_blocks.values()))
self.trigger_to_block_name_map = dict(zip(self.block_trigger_inputs, self.sub_blocks.keys()))
self.block_to_trigger_map = dict(zip(self.sub_blocks.keys(), self.block_trigger_inputs))
@property
def model_name(self):
return next(iter(self.sub_blocks.values())).model_name
@@ -593,11 +602,8 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
@property
def required_inputs(self) -> List[str]:
# no default block means this conditional block can be skipped entirely
if self.default_block_name is None:
if None not in self.block_trigger_inputs:
return []
first_block = next(iter(self.sub_blocks.values()))
required_by_all = set(getattr(first_block, "required_inputs", set()))
@@ -608,7 +614,7 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
return list(required_by_all)
# YiYi TODO: add test for this
@property
def inputs(self) -> List[Tuple[str, Any]]:
named_inputs = [(name, block.inputs) for name, block in self.sub_blocks.items()]
@@ -633,69 +639,22 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
combined_outputs = self.combine_outputs(*named_outputs)
return combined_outputs
def _get_trigger_inputs(self) -> set:
"""
Returns a set of all unique trigger input values found in this block and nested blocks.
"""
def fn_recursive_get_trigger(blocks):
trigger_values = set()
if blocks is not None:
for name, block in blocks.items():
# Check if current block has block_trigger_inputs
if hasattr(block, "block_trigger_inputs") and block.block_trigger_inputs is not None:
trigger_values.update(t for t in block.block_trigger_inputs if t is not None)
# If block has sub_blocks, recursively check them
if block.sub_blocks:
nested_triggers = fn_recursive_get_trigger(block.sub_blocks)
trigger_values.update(nested_triggers)
return trigger_values
# Start with this block's block_trigger_inputs
all_triggers = set(t for t in self.block_trigger_inputs if t is not None)
# Add nested triggers
all_triggers.update(fn_recursive_get_trigger(self.sub_blocks))
return all_triggers
@property
def trigger_inputs(self):
"""All trigger inputs including from nested blocks."""
return self._get_trigger_inputs()
def select_block(self, **kwargs) -> Optional[str]:
"""
Select the block to run based on the trigger inputs.
Subclasses must implement this method to define the logic for selecting the block.
Args:
**kwargs: Trigger input names and their values from the state.
Returns:
Optional[str]: The name of the block to run, or None to use default/skip.
"""
raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement the `select_block` method.")
@torch.no_grad()
def __call__(self, pipeline, state: PipelineState) -> PipelineState:
trigger_kwargs = {name: state.get(name) for name in self.block_trigger_inputs if name is not None}
block_name = self.select_block(**trigger_kwargs)
# Find default block first (if any)
if block_name is None:
block_name = self.default_block_name
block = self.trigger_to_block_map.get(None)
for input_name in self.block_trigger_inputs:
if input_name is not None and state.get(input_name) is not None:
block = self.trigger_to_block_map[input_name]
break
if block_name is None:
logger.info(f"skipping conditional block: {self.__class__.__name__}")
if block is None:
logger.info(f"skipping auto block: {self.__class__.__name__}")
return pipeline, state
block = self.sub_blocks[block_name]
try:
logger.info(f"Running block: {block.__class__.__name__}")
logger.info(f"Running block: {block.__class__.__name__}, trigger: {input_name}")
return block(pipeline, state)
except Exception as e:
error_msg = (
@@ -706,6 +665,38 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
logger.error(error_msg)
raise
def _get_trigger_inputs(self):
"""
Returns a set of all unique trigger input values found in the blocks. Returns: Set[str] containing all unique
block_trigger_inputs values
"""
def fn_recursive_get_trigger(blocks):
trigger_values = set()
if blocks is not None:
for name, block in blocks.items():
# Check if current block has trigger inputs(i.e. auto block)
if hasattr(block, "block_trigger_inputs") and block.block_trigger_inputs is not None:
# Add all non-None values from the trigger inputs list
trigger_values.update(t for t in block.block_trigger_inputs if t is not None)
# If block has sub_blocks, recursively check them
if block.sub_blocks:
nested_triggers = fn_recursive_get_trigger(block.sub_blocks)
trigger_values.update(nested_triggers)
return trigger_values
trigger_inputs = set(self.block_trigger_inputs)
trigger_inputs.update(fn_recursive_get_trigger(self.sub_blocks))
return trigger_inputs
@property
def trigger_inputs(self):
return self._get_trigger_inputs()
def __repr__(self):
class_name = self.__class__.__name__
base_class = self.__class__.__bases__[0].__name__
@@ -717,7 +708,7 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
header += "\n"
header += " " + "=" * 100 + "\n"
header += " This pipeline contains blocks that are selected at runtime based on inputs.\n"
header += f" Trigger Inputs: {sorted(self.trigger_inputs)}\n"
header += f" Trigger Inputs: {[inp for inp in self.trigger_inputs if inp is not None]}\n"
header += " " + "=" * 100 + "\n\n"
# Format description with proper indentation
@@ -738,20 +729,31 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
expected_configs = getattr(self, "expected_configs", [])
configs_str = format_configs(expected_configs, indent_level=2, add_empty_lines=False)
# Blocks section
# Blocks section - moved to the end with simplified format
blocks_str = " Sub-Blocks:\n"
for i, (name, block) in enumerate(self.sub_blocks.items()):
if name == self.default_block_name:
addtional_str = " [default]"
# Get trigger input for this block
trigger = None
if hasattr(self, "block_to_trigger_map"):
trigger = self.block_to_trigger_map.get(name)
# Format the trigger info
if trigger is None:
trigger_str = "[default]"
elif isinstance(trigger, (list, tuple)):
trigger_str = f"[trigger: {', '.join(str(t) for t in trigger)}]"
else:
trigger_str = f"[trigger: {trigger}]"
# For AutoPipelineBlocks, add bullet points
blocks_str += f"{name} {trigger_str} ({block.__class__.__name__})\n"
else:
addtional_str = ""
blocks_str += f" {name}{addtional_str} ({block.__class__.__name__})\n"
# For SequentialPipelineBlocks, show execution order
blocks_str += f" [{i}] {name} ({block.__class__.__name__})\n"
# Add block description
block_desc_lines = block.description.split("\n")
indented_desc = block_desc_lines[0]
if len(block_desc_lines) > 1:
indented_desc += "\n" + "\n".join(" " + line for line in block_desc_lines[1:])
desc_lines = block.description.split("\n")
indented_desc = desc_lines[0]
if len(desc_lines) > 1:
indented_desc += "\n" + "\n".join(" " + line for line in desc_lines[1:])
blocks_str += f" Description: {indented_desc}\n\n"
# Build the representation with conditional sections
@@ -782,35 +784,6 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
)
class AutoPipelineBlocks(ConditionalPipelineBlocks):
"""
A Pipeline Blocks that automatically selects a block to run based on the presence of trigger inputs.
"""
def __init__(self):
super().__init__()
if not (len(self.block_classes) == len(self.block_names) == len(self.block_trigger_inputs)):
raise ValueError(
f"In {self.__class__.__name__}, the number of block_classes, block_names, and block_trigger_inputs must be the same."
)
@property
def default_block_name(self) -> Optional[str]:
"""Derive default_block_name from block_trigger_inputs (None entry)."""
if None in self.block_trigger_inputs:
idx = self.block_trigger_inputs.index(None)
return self.block_names[idx]
return None
def select_block(self, **kwargs) -> Optional[str]:
"""Select block based on which trigger input is present (not None)."""
for trigger_input, block_name in zip(self.block_trigger_inputs, self.block_names):
if trigger_input is not None and kwargs.get(trigger_input) is not None:
return block_name
return None
class SequentialPipelineBlocks(ModularPipelineBlocks):
"""
A Pipeline Blocks that combines multiple pipeline block classes into one. When called, it will call each block in
@@ -912,8 +885,7 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
# Only add outputs if the block cannot be skipped
should_add_outputs = True
if isinstance(block, ConditionalPipelineBlocks) and block.default_block_name is None:
# ConditionalPipelineBlocks without default can be skipped
if hasattr(block, "block_trigger_inputs") and None not in block.block_trigger_inputs:
should_add_outputs = False
if should_add_outputs:
@@ -976,7 +948,8 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
def _get_trigger_inputs(self):
"""
Returns a set of all unique trigger input values found in the blocks.
Returns a set of all unique trigger input values found in the blocks. Returns: Set[str] containing all unique
block_trigger_inputs values
"""
def fn_recursive_get_trigger(blocks):
@@ -984,8 +957,9 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
if blocks is not None:
for name, block in blocks.items():
# Check if current block has block_trigger_inputs (ConditionalPipelineBlocks)
# Check if current block has trigger inputs(i.e. auto block)
if hasattr(block, "block_trigger_inputs") and block.block_trigger_inputs is not None:
# Add all non-None values from the trigger inputs list
trigger_values.update(t for t in block.block_trigger_inputs if t is not None)
# If block has sub_blocks, recursively check them
@@ -1001,85 +975,82 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
def trigger_inputs(self):
return self._get_trigger_inputs()
def _traverse_trigger_blocks(self, active_inputs):
"""
Traverse blocks and select which ones would run given the active inputs.
def _traverse_trigger_blocks(self, trigger_inputs):
# Convert trigger_inputs to a set for easier manipulation
active_triggers = set(trigger_inputs)
Args:
active_inputs: Dict of input names to values that are "present"
Returns:
OrderedDict of block_name -> block that would execute
"""
def fn_recursive_traverse(block, block_name, active_inputs):
def fn_recursive_traverse(block, block_name, active_triggers):
result_blocks = OrderedDict()
# ConditionalPipelineBlocks (includes AutoPipelineBlocks)
if isinstance(block, ConditionalPipelineBlocks):
trigger_kwargs = {name: active_inputs.get(name) for name in block.block_trigger_inputs}
selected_block_name = block.select_block(**trigger_kwargs)
if selected_block_name is None:
selected_block_name = block.default_block_name
if selected_block_name is None:
return result_blocks
selected_block = block.sub_blocks[selected_block_name]
if selected_block.sub_blocks:
result_blocks.update(fn_recursive_traverse(selected_block, block_name, active_inputs))
# sequential(include loopsequential) or PipelineBlock
if not hasattr(block, "block_trigger_inputs"):
if block.sub_blocks:
# sequential or LoopSequentialPipelineBlocks (keep traversing)
for sub_block_name, sub_block in block.sub_blocks.items():
blocks_to_update = fn_recursive_traverse(sub_block, sub_block_name, active_triggers)
blocks_to_update = fn_recursive_traverse(sub_block, sub_block_name, active_triggers)
blocks_to_update = {f"{block_name}.{k}": v for k, v in blocks_to_update.items()}
result_blocks.update(blocks_to_update)
else:
result_blocks[block_name] = selected_block
if hasattr(selected_block, "outputs"):
for out in selected_block.outputs:
active_inputs[out.name] = True
# PipelineBlock
result_blocks[block_name] = block
# Add this block's output names to active triggers if defined
if hasattr(block, "outputs"):
active_triggers.update(out.name for out in block.outputs)
return result_blocks
# SequentialPipelineBlocks or LoopSequentialPipelineBlocks
if block.sub_blocks:
for sub_block_name, sub_block in block.sub_blocks.items():
blocks_to_update = fn_recursive_traverse(sub_block, sub_block_name, active_inputs)
blocks_to_update = {f"{block_name}.{k}": v for k, v in blocks_to_update.items()}
result_blocks.update(blocks_to_update)
# auto
else:
result_blocks[block_name] = block
if hasattr(block, "outputs"):
for out in block.outputs:
active_inputs[out.name] = True
# Find first block_trigger_input that matches any value in our active_triggers
this_block = None
for trigger_input in block.block_trigger_inputs:
if trigger_input is not None and trigger_input in active_triggers:
this_block = block.trigger_to_block_map[trigger_input]
break
# If no matches found, try to get the default (None) block
if this_block is None and None in block.block_trigger_inputs:
this_block = block.trigger_to_block_map[None]
if this_block is not None:
# sequential/auto (keep traversing)
if this_block.sub_blocks:
result_blocks.update(fn_recursive_traverse(this_block, block_name, active_triggers))
else:
# PipelineBlock
result_blocks[block_name] = this_block
# Add this block's output names to active triggers if defined
# YiYi TODO: do we need outputs here? can it just be intermediate_outputs? can we get rid of outputs attribute?
if hasattr(this_block, "outputs"):
active_triggers.update(out.name for out in this_block.outputs)
return result_blocks
all_blocks = OrderedDict()
for block_name, block in self.sub_blocks.items():
blocks_to_update = fn_recursive_traverse(block, block_name, active_inputs)
blocks_to_update = fn_recursive_traverse(block, block_name, active_triggers)
all_blocks.update(blocks_to_update)
return all_blocks
def get_execution_blocks(self, **kwargs):
"""
Get the blocks that would execute given the specified inputs.
def get_execution_blocks(self, *trigger_inputs):
trigger_inputs_all = self.trigger_inputs
Args:
**kwargs: Input names and values. Only trigger inputs affect block selection.
Pass any inputs that would be non-None at runtime.
if trigger_inputs is not None:
if not isinstance(trigger_inputs, (list, tuple, set)):
trigger_inputs = [trigger_inputs]
invalid_inputs = [x for x in trigger_inputs if x not in trigger_inputs_all]
if invalid_inputs:
logger.warning(
f"The following trigger inputs will be ignored as they are not supported: {invalid_inputs}"
)
trigger_inputs = [x for x in trigger_inputs if x in trigger_inputs_all]
Returns:
SequentialPipelineBlocks containing only the blocks that would execute
Example:
# Get blocks for inpainting workflow
blocks = pipeline.get_execution_blocks(prompt="a cat", mask=mask, image=image)
# Get blocks for text2image workflow
blocks = pipeline.get_execution_blocks(prompt="a cat")
"""
# Filter out None values
active_inputs = {k: v for k, v in kwargs.items() if v is not None}
blocks_triggered = self._traverse_trigger_blocks(active_inputs)
if trigger_inputs is None:
if None in trigger_inputs_all:
trigger_inputs = [None]
else:
trigger_inputs = [trigger_inputs_all[0]]
blocks_triggered = self._traverse_trigger_blocks(trigger_inputs)
return SequentialPipelineBlocks.from_blocks_dict(blocks_triggered)
def __repr__(self):
@@ -1096,7 +1067,7 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
header += f" Trigger Inputs: {[inp for inp in self.trigger_inputs if inp is not None]}\n"
# Get first trigger input as example
example_input = next(t for t in self.trigger_inputs if t is not None)
header += f" Use `get_execution_blocks()` to see selected blocks (e.g. `get_execution_blocks({example_input}=...)`).\n"
header += f" Use `get_execution_blocks()` with input names to see selected blocks (e.g. `get_execution_blocks('{example_input}')`).\n"
header += " " + "=" * 100 + "\n\n"
# Format description with proper indentation
@@ -1120,9 +1091,22 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
# Blocks section - moved to the end with simplified format
blocks_str = " Sub-Blocks:\n"
for i, (name, block) in enumerate(self.sub_blocks.items()):
# show execution order
blocks_str += f" [{i}] {name} ({block.__class__.__name__})\n"
# Get trigger input for this block
trigger = None
if hasattr(self, "block_to_trigger_map"):
trigger = self.block_to_trigger_map.get(name)
# Format the trigger info
if trigger is None:
trigger_str = "[default]"
elif isinstance(trigger, (list, tuple)):
trigger_str = f"[trigger: {', '.join(str(t) for t in trigger)}]"
else:
trigger_str = f"[trigger: {trigger}]"
# For AutoPipelineBlocks, add bullet points
blocks_str += f"{name} {trigger_str} ({block.__class__.__name__})\n"
else:
# For SequentialPipelineBlocks, show execution order
blocks_str += f" [{i}] {name} ({block.__class__.__name__})\n"
# Add block description
desc_lines = block.description.split("\n")
@@ -1246,9 +1230,15 @@ class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
if inp.name not in outputs and inp not in inputs:
inputs.append(inp)
# Add this block's outputs
block_intermediate_outputs = [out.name for out in block.intermediate_outputs]
outputs.update(block_intermediate_outputs)
# Only add outputs if the block cannot be skipped
should_add_outputs = True
if hasattr(block, "block_trigger_inputs") and None not in block.block_trigger_inputs:
should_add_outputs = False
if should_add_outputs:
# Add this block's outputs
block_intermediate_outputs = [out.name for out in block.intermediate_outputs]
outputs.update(block_intermediate_outputs)
for input_param in inputs:
if input_param.name in self.required_inputs:
@@ -1305,14 +1295,6 @@ class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
sub_blocks[block_name] = block
self.sub_blocks = sub_blocks
# Validate that sub_blocks are only leaf blocks
for block_name, block in self.sub_blocks.items():
if block.sub_blocks:
raise ValueError(
f"In {self.__class__.__name__}, sub_blocks must be leaf blocks (no sub_blocks). "
f"Block '{block_name}' ({block.__class__.__name__}) has sub_blocks."
)
@classmethod
def from_blocks_dict(cls, blocks_dict: Dict[str, Any]) -> "LoopSequentialPipelineBlocks":
"""

View File

@@ -21,16 +21,21 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["modular_blocks_qwenimage"] = [
_import_structure["encoders"] = ["QwenImageTextEncoderStep"]
_import_structure["modular_blocks"] = [
"ALL_BLOCKS",
"AUTO_BLOCKS",
"QwenImageAutoBlocks",
]
_import_structure["modular_blocks_qwenimage_edit"] = [
"CONTROLNET_BLOCKS",
"EDIT_AUTO_BLOCKS",
"QwenImageEditAutoBlocks",
]
_import_structure["modular_blocks_qwenimage_edit_plus"] = [
"EDIT_BLOCKS",
"EDIT_INPAINT_BLOCKS",
"EDIT_PLUS_AUTO_BLOCKS",
"EDIT_PLUS_BLOCKS",
"IMAGE2IMAGE_BLOCKS",
"INPAINT_BLOCKS",
"TEXT2IMAGE_BLOCKS",
"QwenImageAutoBlocks",
"QwenImageEditAutoBlocks",
"QwenImageEditPlusAutoBlocks",
]
_import_structure["modular_pipeline"] = [
@@ -46,16 +51,23 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .modular_blocks_qwenimage import (
from .encoders import (
QwenImageTextEncoderStep,
)
from .modular_blocks import (
ALL_BLOCKS,
AUTO_BLOCKS,
QwenImageAutoBlocks,
)
from .modular_blocks_qwenimage_edit import (
CONTROLNET_BLOCKS,
EDIT_AUTO_BLOCKS,
QwenImageEditAutoBlocks,
)
from .modular_blocks_qwenimage_edit_plus import (
EDIT_BLOCKS,
EDIT_INPAINT_BLOCKS,
EDIT_PLUS_AUTO_BLOCKS,
EDIT_PLUS_BLOCKS,
IMAGE2IMAGE_BLOCKS,
INPAINT_BLOCKS,
TEXT2IMAGE_BLOCKS,
QwenImageAutoBlocks,
QwenImageEditAutoBlocks,
QwenImageEditPlusAutoBlocks,
)
from .modular_pipeline import (
@@ -74,4 +86,4 @@ else:
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
setattr(sys.modules[__name__], name, value)

View File

@@ -639,65 +639,19 @@ class QwenImageEditRoPEInputsStep(ModularPipelineBlocks):
return components, state
class QwenImageEditPlusRoPEInputsStep(ModularPipelineBlocks):
"""RoPE inputs step for Edit Plus that handles lists of image heights/widths."""
class QwenImageEditPlusRoPEInputsStep(QwenImageEditRoPEInputsStep):
model_name = "qwenimage-edit-plus"
@property
def description(self) -> str:
return (
"Step that prepares the RoPE inputs for denoising process. This is used in QwenImage Edit Plus.\n"
"Unlike Edit, Edit Plus handles lists of image_height/image_width for multiple reference images.\n"
"Should be placed after prepare_latents step."
)
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(name="batch_size", required=True),
InputParam(name="image_height", required=True, type_hint=List[int]),
InputParam(name="image_width", required=True, type_hint=List[int]),
InputParam(name="height", required=True),
InputParam(name="width", required=True),
InputParam(name="prompt_embeds_mask"),
InputParam(name="negative_prompt_embeds_mask"),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
name="img_shapes",
type_hint=List[List[Tuple[int, int, int]]],
description="The shapes of the image latents, used for RoPE calculation",
),
OutputParam(
name="txt_seq_lens",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the prompt embeds, used for RoPE calculation",
),
OutputParam(
name="negative_txt_seq_lens",
kwargs_type="denoiser_input_fields",
type_hint=List[int],
description="The sequence lengths of the negative prompt embeds, used for RoPE calculation",
),
]
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
vae_scale_factor = components.vae_scale_factor
# Edit Plus: image_height and image_width are lists
block_state.img_shapes = [
[
(1, block_state.height // vae_scale_factor // 2, block_state.width // vae_scale_factor // 2),
*[
(1, img_height // vae_scale_factor // 2, img_width // vae_scale_factor // 2)
for img_height, img_width in zip(block_state.image_height, block_state.image_width)
(1, vae_height // vae_scale_factor // 2, vae_width // vae_scale_factor // 2)
for vae_height, vae_width in zip(block_state.image_height, block_state.image_width)
],
]
] * block_state.batch_size

View File

@@ -244,19 +244,18 @@ def encode_vae_image(
class QwenImageEditResizeDynamicStep(ModularPipelineBlocks):
model_name = "qwenimage"
def __init__(
self,
input_name: str = "image",
output_name: str = "resized_image",
target_area: int = 1024 * 1024,
):
"""Create a configurable step for resizing images to the target area while maintaining the aspect ratio.
def __init__(self, input_name: str = "image", output_name: str = "resized_image"):
"""Create a configurable step for resizing images to the target area (1024 * 1024) while maintaining the aspect ratio.
This block resizes an input image tensor and exposes the resized result under configurable input and output
names. Use this when you need to wire the resize step to different image fields (e.g., "image",
"control_image")
Args:
input_name (str, optional): Name of the image field to read from the
pipeline state. Defaults to "image".
output_name (str, optional): Name of the resized image field to write
back to the pipeline state. Defaults to "resized_image".
target_area (int, optional): Target area in pixels. Defaults to 1024*1024.
"""
if not isinstance(input_name, str) or not isinstance(output_name, str):
raise ValueError(
@@ -264,12 +263,11 @@ class QwenImageEditResizeDynamicStep(ModularPipelineBlocks):
)
self._image_input_name = input_name
self._resized_image_output_name = output_name
self._target_area = target_area
super().__init__()
@property
def description(self) -> str:
return f"Image Resize step that resize the {self._image_input_name} to the target area {self._target_area} while maintaining the aspect ratio."
return f"Image Resize step that resize the {self._image_input_name} to the target area (1024 * 1024) while maintaining the aspect ratio."
@property
def expected_components(self) -> List[ComponentSpec]:
@@ -322,67 +320,48 @@ class QwenImageEditResizeDynamicStep(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
class QwenImageEditPlusResizeDynamicStep(ModularPipelineBlocks):
"""Resize each image independently based on its own aspect ratio. For QwenImage Edit Plus."""
model_name = "qwenimage-edit-plus"
class QwenImageEditPlusResizeDynamicStep(QwenImageEditResizeDynamicStep):
model_name = "qwenimage"
def __init__(
self,
input_name: str = "image",
self,
input_name: str = "image",
output_name: str = "resized_image",
target_area: int = 1024 * 1024,
vae_image_output_name: str = "vae_image",
):
"""Create a step for resizing images to a target area.
"""Create a configurable step for resizing images to the target area (384 * 384) while maintaining the aspect ratio.
Each image is resized independently based on its own aspect ratio.
This is suitable for Edit Plus where multiple reference images can have different dimensions.
This block resizes an input image or a list input images and exposes the resized result under configurable
input and output names. Use this when you need to wire the resize step to different image fields (e.g.,
"image", "control_image")
Args:
input_name (str, optional): Name of the image field to read. Defaults to "image".
output_name (str, optional): Name of the resized image field to write. Defaults to "resized_image".
target_area (int, optional): Target area in pixels. Defaults to 1024*1024.
input_name (str, optional): Name of the image field to read from the
pipeline state. Defaults to "image".
output_name (str, optional): Name of the resized image field to write
back to the pipeline state. Defaults to "resized_image".
vae_image_output_name (str, optional): Name of the image field
to write back to the pipeline state. This is used by the VAE encoder step later on. QwenImage Edit Plus
processes the input image(s) differently for the VL and the VAE.
"""
if not isinstance(input_name, str) or not isinstance(output_name, str):
raise ValueError(
f"input_name and output_name must be strings but are {type(input_name)} and {type(output_name)}"
)
self.condition_image_size = 384 * 384
self._image_input_name = input_name
self._resized_image_output_name = output_name
self._target_area = target_area
self._vae_image_output_name = vae_image_output_name
super().__init__()
@property
def description(self) -> str:
return (
f"Image Resize step that resizes {self._image_input_name} to target area {self._target_area}.\n"
"Each image is resized independently based on its own aspect ratio."
)
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec(
"image_resize_processor",
VaeImageProcessor,
config=FrozenDict({"vae_scale_factor": 16}),
default_creation_method="from_config",
),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(
name=self._image_input_name, required=True, type_hint=torch.Tensor, description="The image(s) to resize"
),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
return super().intermediate_outputs + [
OutputParam(
name=self._resized_image_output_name, type_hint=List[PIL.Image.Image], description="The resized images"
name=self._vae_image_output_name,
type_hint=List[PIL.Image.Image],
description="The images to be processed which will be further used by the VAE encoder.",
),
]
@@ -395,21 +374,26 @@ class QwenImageEditPlusResizeDynamicStep(ModularPipelineBlocks):
if not is_valid_image_imagelist(images):
raise ValueError(f"Images must be image or list of images but are {type(images)}")
if is_valid_image(images):
if (
not isinstance(images, torch.Tensor)
and isinstance(images, PIL.Image.Image)
and not isinstance(images, list)
):
images = [images]
# Resize each image independently based on its own aspect ratio
resized_images = []
for image in images:
image_width, image_height = image.size
calculated_width, calculated_height, _ = calculate_dimensions(
self._target_area, image_width / image_height
)
resized_images.append(
components.image_resize_processor.resize(image, height=calculated_height, width=calculated_width)
# TODO (sayakpaul): revisit this when the inputs are `torch.Tensor`s
condition_images = []
vae_images = []
for img in images:
image_width, image_height = img.size
condition_width, condition_height, _ = calculate_dimensions(
self.condition_image_size, image_width / image_height
)
condition_images.append(components.image_resize_processor.resize(img, condition_height, condition_width))
vae_images.append(img)
setattr(block_state, self._resized_image_output_name, resized_images)
setattr(block_state, self._resized_image_output_name, condition_images)
setattr(block_state, self._vae_image_output_name, vae_images)
self.set_block_state(state, block_state)
return components, state
@@ -663,30 +647,8 @@ class QwenImageEditTextEncoderStep(ModularPipelineBlocks):
return components, state
class QwenImageEditPlusTextEncoderStep(ModularPipelineBlocks):
"""Text encoder for QwenImage Edit Plus that handles multiple reference images."""
model_name = "qwenimage-edit-plus"
@property
def description(self) -> str:
return (
"Text Encoder step for QwenImage Edit Plus that processes prompt and multiple images together "
"to generate text embeddings for guiding image generation."
)
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("text_encoder", Qwen2_5_VLForConditionalGeneration),
ComponentSpec("processor", Qwen2VLProcessor),
ComponentSpec(
"guider",
ClassifierFreeGuidance,
config=FrozenDict({"guidance_scale": 4.0}),
default_creation_method="from_config",
),
]
class QwenImageEditPlusTextEncoderStep(QwenImageEditTextEncoderStep):
model_name = "qwenimage"
@property
def expected_configs(self) -> List[ConfigSpec]:
@@ -702,60 +664,6 @@ class QwenImageEditPlusTextEncoderStep(ModularPipelineBlocks):
ConfigSpec(name="prompt_template_encode_start_idx", default=64),
]
@property
def inputs(self) -> List[InputParam]:
return [
InputParam(name="prompt", required=True, type_hint=str, description="The prompt to encode"),
InputParam(name="negative_prompt", type_hint=str, description="The negative prompt to encode"),
InputParam(
name="resized_cond_image",
required=True,
type_hint=torch.Tensor,
description="The image(s) to encode, can be a single image or list of images, should be resized to 384x384 using resize step",
),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(
name="prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="The prompt embeddings",
),
OutputParam(
name="prompt_embeds_mask",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="The encoder attention mask",
),
OutputParam(
name="negative_prompt_embeds",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="The negative prompt embeddings",
),
OutputParam(
name="negative_prompt_embeds_mask",
kwargs_type="denoiser_input_fields",
type_hint=torch.Tensor,
description="The negative prompt embeddings mask",
),
]
@staticmethod
def check_inputs(prompt, negative_prompt):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if (
negative_prompt is not None
and not isinstance(negative_prompt, str)
and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
@torch.no_grad()
def __call__(self, components: QwenImageModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
@@ -768,7 +676,7 @@ class QwenImageEditPlusTextEncoderStep(ModularPipelineBlocks):
components.text_encoder,
components.processor,
prompt=block_state.prompt,
image=block_state.resized_cond_image,
image=block_state.resized_image,
prompt_template_encode=components.config.prompt_template_encode,
img_template_encode=components.config.img_template_encode,
prompt_template_encode_start_idx=components.config.prompt_template_encode_start_idx,
@@ -784,7 +692,7 @@ class QwenImageEditPlusTextEncoderStep(ModularPipelineBlocks):
components.text_encoder,
components.processor,
prompt=negative_prompt,
image=block_state.resized_cond_image,
image=block_state.resized_image,
prompt_template_encode=components.config.prompt_template_encode,
img_template_encode=components.config.img_template_encode,
prompt_template_encode_start_idx=components.config.prompt_template_encode_start_idx,
@@ -938,60 +846,60 @@ class QwenImageProcessImagesInputStep(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
class QwenImageEditPlusProcessImagesInputStep(ModularPipelineBlocks):
class QwenImageEditPlusProcessImagesInputStep(QwenImageProcessImagesInputStep):
model_name = "qwenimage-edit-plus"
def __init__(self):
self.vae_image_size = 1024 * 1024
super().__init__()
@property
def description(self) -> str:
return "Image Preprocess step. Images can be resized first using QwenImageEditResizeDynamicStep."
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec(
"image_processor",
VaeImageProcessor,
config=FrozenDict({"vae_scale_factor": 16}),
default_creation_method="from_config",
),
]
return "Image Preprocess step for QwenImage Edit Plus. Unlike QwenImage Edit, QwenImage Edit Plus doesn't use the same resized image for further preprocessing."
@property
def inputs(self) -> List[InputParam]:
return [InputParam("resized_image")]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [OutputParam(name="processed_image")]
return [InputParam("vae_image"), InputParam("image"), InputParam("height"), InputParam("width")]
@torch.no_grad()
def __call__(self, components: QwenImageModularPipeline, state: PipelineState):
block_state = self.get_block_state(state)
if block_state.vae_image is None and block_state.image is None:
raise ValueError("`vae_image` and `image` cannot be None at the same time")
image = block_state.resized_image
is_image_list = isinstance(image, list)
if not is_image_list:
image = [image]
processed_images = []
for img in image:
img_width, img_height = img.size
processed_images.append(components.image_processor.preprocess(image=img, height=img_height, width=img_width))
block_state.processed_image = processed_images
if is_image_list:
block_state.processed_image = processed_images
vae_image_sizes = None
if block_state.vae_image is None:
image = block_state.image
self.check_inputs(
height=block_state.height, width=block_state.width, vae_scale_factor=components.vae_scale_factor
)
height = block_state.height or components.default_height
width = block_state.width or components.default_width
block_state.processed_image = components.image_processor.preprocess(
image=image, height=height, width=width
)
else:
block_state.processed_image = processed_images[0]
# QwenImage Edit Plus can allow multiple input images with varied resolutions
processed_images = []
vae_image_sizes = []
for img in block_state.vae_image:
width, height = img.size
vae_width, vae_height, _ = calculate_dimensions(self.vae_image_size, width / height)
vae_image_sizes.append((vae_width, vae_height))
processed_images.append(
components.image_processor.preprocess(image=img, height=vae_height, width=vae_width)
)
block_state.processed_image = processed_images
block_state.vae_image_sizes = vae_image_sizes
self.set_block_state(state, block_state)
return components, state
class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
"""VAE encoder that handles both single images and lists of images with varied resolutions."""
class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
model_name = "qwenimage"
def __init__(
@@ -1001,12 +909,21 @@ class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
):
"""Initialize a VAE encoder step for converting images to latent representations.
Handles both single images and lists of images. When input is a list, outputs a list of latents.
When input is a single tensor, outputs a single latent tensor.
Both the input and output names are configurable so this block can be configured to process to different image
inputs (e.g., "processed_image" -> "image_latents", "processed_control_image" -> "control_image_latents").
Args:
input_name (str, optional): Name of the input image tensor or list. Defaults to "processed_image".
output_name (str, optional): Name of the output latent tensor or list. Defaults to "image_latents".
input_name (str, optional): Name of the input image tensor. Defaults to "processed_image".
Examples: "processed_image" or "processed_control_image"
output_name (str, optional): Name of the output latent tensor. Defaults to "image_latents".
Examples: "image_latents" or "control_image_latents"
Examples:
# Basic usage with default settings (includes image processor) QwenImageVaeEncoderDynamicStep()
# Custom input/output names for control image QwenImageVaeEncoderDynamicStep(
input_name="processed_control_image", output_name="control_image_latents"
)
"""
self._image_input_name = input_name
self._image_latents_output_name = output_name
@@ -1014,18 +931,17 @@ class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
@property
def description(self) -> str:
return (
f"VAE Encoder step that converts {self._image_input_name} into latent representations {self._image_latents_output_name}.\n"
"Handles both single images and lists of images with varied resolutions."
)
return f"Dynamic VAE Encoder step that converts {self._image_input_name} into latent representations {self._image_latents_output_name}.\n"
@property
def expected_components(self) -> List[ComponentSpec]:
return [ComponentSpec("vae", AutoencoderKLQwenImage)]
components = [ComponentSpec("vae", AutoencoderKLQwenImage)]
return components
@property
def inputs(self) -> List[InputParam]:
return [InputParam(self._image_input_name, required=True), InputParam("generator")]
inputs = [InputParam(self._image_input_name, required=True), InputParam("generator")]
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
@@ -1033,7 +949,7 @@ class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
OutputParam(
self._image_latents_output_name,
type_hint=torch.Tensor,
description="The latents representing the reference image(s). Single tensor or list depending on input.",
description="The latents representing the reference image",
)
]
@@ -1045,11 +961,47 @@ class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
dtype = components.vae.dtype
image = getattr(block_state, self._image_input_name)
is_image_list = isinstance(image, list)
if not is_image_list:
image = [image]
# Handle both single image and list of images
# Encode image into latents
image_latents = encode_vae_image(
image=image,
vae=components.vae,
generator=block_state.generator,
device=device,
dtype=dtype,
latent_channels=components.num_channels_latents,
)
setattr(block_state, self._image_latents_output_name, image_latents)
self.set_block_state(state, block_state)
return components, state
class QwenImageEditPlusVaeEncoderDynamicStep(QwenImageVaeEncoderDynamicStep):
model_name = "qwenimage-edit-plus"
@property
def intermediate_outputs(self) -> List[OutputParam]:
# Each reference image latent can have varied resolutions hence we return this as a list.
return [
OutputParam(
self._image_latents_output_name,
type_hint=List[torch.Tensor],
description="The latents representing the reference image(s).",
)
]
@torch.no_grad()
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
device = components._execution_device
dtype = components.vae.dtype
image = getattr(block_state, self._image_input_name)
# Encode image into latents
image_latents = []
for img in image:
image_latents.append(
@@ -1062,12 +1014,9 @@ class QwenImageVaeEncoderDynamicStep(ModularPipelineBlocks):
latent_channels=components.num_channels_latents,
)
)
if not is_image_list:
image_latents = image_latents[0]
setattr(block_state, self._image_latents_output_name, image_latents)
self.set_block_state(state, block_state)
return components, state

View File

@@ -222,15 +222,36 @@ class QwenImageTextInputsStep(ModularPipelineBlocks):
class QwenImageInputsDynamicStep(ModularPipelineBlocks):
"""Input step for QwenImage: update height/width, expand batch, patchify."""
model_name = "qwenimage"
def __init__(
self,
image_latent_inputs: List[str] = ["image_latents"],
additional_batch_inputs: List[str] = [],
):
def __init__(self, image_latent_inputs: List[str] = ["image_latents"], additional_batch_inputs: List[str] = []):
"""Initialize a configurable step that standardizes the inputs for the denoising step. It:\n"
This step handles multiple common tasks to prepare inputs for the denoising step:
1. For encoded image latents, use it update height/width if None, patchifies, and expands batch size
2. For additional_batch_inputs: Only expands batch dimensions to match final batch size
This is a dynamic block that allows you to configure which inputs to process.
Args:
image_latent_inputs (List[str], optional): Names of image latent tensors to process.
These will be used to determine height/width, patchified, and batch-expanded. Can be a single string or
list of strings. Defaults to ["image_latents"]. Examples: ["image_latents"], ["control_image_latents"]
additional_batch_inputs (List[str], optional):
Names of additional conditional input tensors to expand batch size. These tensors will only have their
batch dimensions adjusted to match the final batch size. Can be a single string or list of strings.
Defaults to []. Examples: ["processed_mask_image"]
Examples:
# Configure to process image_latents (default behavior) QwenImageInputsDynamicStep()
# Configure to process multiple image latent inputs
QwenImageInputsDynamicStep(image_latent_inputs=["image_latents", "control_image_latents"])
# Configure to process image latents and additional batch inputs QwenImageInputsDynamicStep(
image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"]
)
"""
if not isinstance(image_latent_inputs, list):
image_latent_inputs = [image_latent_inputs]
if not isinstance(additional_batch_inputs, list):
@@ -242,12 +263,14 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
@property
def description(self) -> str:
# Functionality section
summary_section = (
"Input processing step that:\n"
" 1. For image latent inputs: Updates height/width if None, patchifies, and expands batch size\n"
" 1. For image latent inputs: Updates height/width if None, patchifies latents, and expands batch size\n"
" 2. For additional batch inputs: Expands batch dimensions to match final batch size"
)
# Inputs info
inputs_info = ""
if self._image_latent_inputs or self._additional_batch_inputs:
inputs_info = "\n\nConfigured inputs:"
@@ -256,16 +279,11 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
if self._additional_batch_inputs:
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
# Placement guidance
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
return summary_section + inputs_info + placement_section
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("pachifier", QwenImagePachifier, default_creation_method="from_config"),
]
@property
def inputs(self) -> List[InputParam]:
inputs = [
@@ -275,9 +293,11 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
InputParam(name="width"),
]
# Add image latent inputs
for image_latent_input_name in self._image_latent_inputs:
inputs.append(InputParam(name=image_latent_input_name))
# Add additional batch inputs
for input_name in self._additional_batch_inputs:
inputs.append(InputParam(name=input_name))
@@ -290,16 +310,22 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
OutputParam(name="image_width", type_hint=int, description="The width of the image latents"),
]
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("pachifier", QwenImagePachifier, default_creation_method="from_config"),
]
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
# Process image latent inputs
# Process image latent inputs (height/width calculation, patchify, and batch expansion)
for image_latent_input_name in self._image_latent_inputs:
image_latent_tensor = getattr(block_state, image_latent_input_name)
if image_latent_tensor is None:
continue
# 1. Calculate height/width from latents and update if not provided
# 1. Calculate height/width from latents
height, width = calculate_dimension_from_latents(image_latent_tensor, components.vae_scale_factor)
block_state.height = block_state.height or height
block_state.width = block_state.width or width
@@ -309,7 +335,7 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
if not hasattr(block_state, "image_width"):
block_state.image_width = width
# 2. Patchify
# 2. Patchify the image latent tensor
image_latent_tensor = components.pachifier.pack_latents(image_latent_tensor)
# 3. Expand batch size
@@ -328,6 +354,7 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
if input_tensor is None:
continue
# Only expand batch size
input_tensor = repeat_tensor_to_batch_size(
input_name=input_name,
input_tensor=input_tensor,
@@ -341,130 +368,63 @@ class QwenImageInputsDynamicStep(ModularPipelineBlocks):
return components, state
class QwenImageEditPlusInputsDynamicStep(ModularPipelineBlocks):
"""Input step for QwenImage Edit Plus: handles list of latents with different sizes."""
class QwenImageEditPlusInputsDynamicStep(QwenImageInputsDynamicStep):
model_name = "qwenimage-edit-plus"
def __init__(
self,
image_latent_inputs: List[str] = ["image_latents"],
additional_batch_inputs: List[str] = [],
):
if not isinstance(image_latent_inputs, list):
image_latent_inputs = [image_latent_inputs]
if not isinstance(additional_batch_inputs, list):
additional_batch_inputs = [additional_batch_inputs]
self._image_latent_inputs = image_latent_inputs
self._additional_batch_inputs = additional_batch_inputs
super().__init__()
@property
def description(self) -> str:
summary_section = (
"Input processing step for Edit Plus that:\n"
" 1. For image latent inputs (list): Collects heights/widths, patchifies each, concatenates, expands batch\n"
" 2. For additional batch inputs: Expands batch dimensions to match final batch size\n"
" Height/width defaults to last image in the list."
)
inputs_info = ""
if self._image_latent_inputs or self._additional_batch_inputs:
inputs_info = "\n\nConfigured inputs:"
if self._image_latent_inputs:
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
if self._additional_batch_inputs:
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
return summary_section + inputs_info + placement_section
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("pachifier", QwenImagePachifier, default_creation_method="from_config"),
]
@property
def inputs(self) -> List[InputParam]:
inputs = [
InputParam(name="num_images_per_prompt", default=1),
InputParam(name="batch_size", required=True),
InputParam(name="height"),
InputParam(name="width"),
]
for image_latent_input_name in self._image_latent_inputs:
inputs.append(InputParam(name=image_latent_input_name))
for input_name in self._additional_batch_inputs:
inputs.append(InputParam(name=input_name))
return inputs
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
OutputParam(name="image_height", type_hint=List[int], description="The heights of the image latents"),
OutputParam(name="image_width", type_hint=List[int], description="The widths of the image latents"),
OutputParam(name="image_height", type_hint=List[int], description="The height of the image latents"),
OutputParam(name="image_width", type_hint=List[int], description="The width of the image latents"),
]
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
block_state = self.get_block_state(state)
# Process image latent inputs
# Process image latent inputs (height/width calculation, patchify, and batch expansion)
for image_latent_input_name in self._image_latent_inputs:
image_latent_tensor = getattr(block_state, image_latent_input_name)
if image_latent_tensor is None:
continue
is_list = isinstance(image_latent_tensor, list)
if not is_list:
image_latent_tensor = [image_latent_tensor]
# Each image latent can have different size in QwenImage Edit Plus.
image_heights = []
image_widths = []
packed_image_latent_tensors = []
for i, img_latent_tensor in enumerate(image_latent_tensor):
for img_latent_tensor in image_latent_tensor:
# 1. Calculate height/width from latents
height, width = calculate_dimension_from_latents(img_latent_tensor, components.vae_scale_factor)
image_heights.append(height)
image_widths.append(width)
# 2. Patchify
# 2. Patchify the image latent tensor
img_latent_tensor = components.pachifier.pack_latents(img_latent_tensor)
# 3. Expand batch size
img_latent_tensor = repeat_tensor_to_batch_size(
input_name=f"{image_latent_input_name}[{i}]",
input_name=image_latent_input_name,
input_tensor=img_latent_tensor,
num_images_per_prompt=block_state.num_images_per_prompt,
batch_size=block_state.batch_size,
)
packed_image_latent_tensors.append(img_latent_tensor)
# Concatenate all packed latents along dim=1
packed_image_latent_tensors = torch.cat(packed_image_latent_tensors, dim=1)
# Output lists of heights/widths
block_state.image_height = image_heights
block_state.image_width = image_widths
setattr(block_state, image_latent_input_name, packed_image_latent_tensors)
# Default height/width from last image
block_state.height = block_state.height or image_heights[-1]
block_state.width = block_state.width or image_widths[-1]
setattr(block_state, image_latent_input_name, packed_image_latent_tensors)
# Process additional batch inputs (only batch expansion)
for input_name in self._additional_batch_inputs:
input_tensor = getattr(block_state, input_name)
if input_tensor is None:
continue
# Only expand batch size
input_tensor = repeat_tensor_to_batch_size(
input_name=input_name,
input_tensor=input_tensor,
@@ -476,6 +436,8 @@ class QwenImageEditPlusInputsDynamicStep(ModularPipelineBlocks):
self.set_block_state(state, block_state)
return components, state
class QwenImageControlNetInputsStep(ModularPipelineBlocks):
model_name = "qwenimage"

File diff suppressed because it is too large Load Diff

View File

@@ -1,465 +0,0 @@
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks, ConditionalPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
QwenImageControlNetBeforeDenoiserStep,
QwenImageCreateMaskLatentsStep,
QwenImagePrepareLatentsStep,
QwenImagePrepareLatentsWithStrengthStep,
QwenImageRoPEInputsStep,
QwenImageSetTimestepsStep,
QwenImageSetTimestepsWithStrengthStep,
)
from .decoders import (
QwenImageAfterDenoiseStep,
QwenImageDecoderStep,
QwenImageInpaintProcessImagesOutputStep,
QwenImageProcessImagesOutputStep,
)
from .denoise import (
QwenImageControlNetDenoiseStep,
QwenImageDenoiseStep,
QwenImageInpaintControlNetDenoiseStep,
QwenImageInpaintDenoiseStep,
QwenImageLoopBeforeDenoiserControlNet,
)
from .encoders import (
QwenImageControlNetVaeEncoderStep,
QwenImageInpaintProcessImagesInputStep,
QwenImageProcessImagesInputStep,
QwenImageTextEncoderStep,
QwenImageVaeEncoderDynamicStep,
)
from .inputs import (
QwenImageControlNetInputsStep,
QwenImageInputsDynamicStep,
QwenImageTextInputsStep,
)
logger = logging.get_logger(__name__)
# 1. VAE ENCODER
# inpaint vae encoder
class QwenImageInpaintVaeEncoderStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImageInpaintProcessImagesInputStep(), QwenImageVaeEncoderDynamicStep()]
block_names = ["preprocess", "encode"]
@property
def description(self) -> str:
return (
"This step is used for processing image and mask inputs for inpainting tasks. It:\n"
" - Resizes the image to the target size, based on `height` and `width`.\n"
" - Processes and updates `image` and `mask_image`.\n"
" - Creates `image_latents`."
)
# img2img vae encoder
class QwenImageImg2ImgVaeEncoderStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImageProcessImagesInputStep(), QwenImageVaeEncoderDynamicStep()]
block_names = ["preprocess", "encode"]
@property
def description(self) -> str:
return "Vae encoder step that preprocess andencode the image inputs into their latent representations."
# auto vae encoder
class QwenImageAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [QwenImageInpaintVaeEncoderStep, QwenImageImg2ImgVaeEncoderStep]
block_names = ["inpaint", "img2img"]
block_trigger_inputs = ["mask_image", "image"]
@property
def description(self):
return (
"Vae encoder step that encode the image inputs into their latent representations.\n"
+ "This is an auto pipeline block.\n"
+ " - `QwenImageInpaintVaeEncoderStep` (inpaint) is used when `mask_image` is provided.\n"
+ " - `QwenImageImg2ImgVaeEncoderStep` (img2img) is used when `image` is provided.\n"
+ " - if `mask_image` or `image` is not provided, step will be skipped."
)
# optional controlnet vae encoder
class QwenImageOptionalControlNetVaeEncoderStep(AutoPipelineBlocks):
block_classes = [QwenImageControlNetVaeEncoderStep]
block_names = ["controlnet"]
block_trigger_inputs = ["control_image"]
@property
def description(self):
return (
"Vae encoder step that encode the image inputs into their latent representations.\n"
+ "This is an auto pipeline block.\n"
+ " - `QwenImageControlNetVaeEncoderStep` (controlnet) is used when `control_image` is provided.\n"
+ " - if `control_image` is not provided, step will be skipped."
)
# 2. DENOISE
# input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise
# img2img input
class QwenImageImg2ImgInputStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImageTextInputsStep(), QwenImageInputsDynamicStep(image_latent_inputs=["image_latents"])]
block_names = ["text_inputs", "additional_inputs"]
@property
def description(self):
return "Input step that prepares the inputs for the img2img denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents`).\n"
" - update height/width based `image_latents`, patchify `image_latents`."
# inpaint input
class QwenImageInpaintInputStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImageTextInputsStep(), QwenImageInputsDynamicStep(image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"])]
block_names = ["text_inputs", "additional_inputs"]
@property
def description(self):
return "Input step that prepares the inputs for the inpainting denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs (`image_latents` and `processed_mask_image`).\n"
" - update height/width based `image_latents`, patchify `image_latents`."
# inpaint prepare latents
class QwenImageInpaintPrepareLatentsStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImagePrepareLatentsWithStrengthStep(), QwenImageCreateMaskLatentsStep()]
block_names = ["add_noise_to_latents", "create_mask_latents"]
@property
def description(self) -> str:
return (
"This step prepares the latents/image_latents and mask inputs for the inpainting denoising step. It:\n"
" - Add noise to the image latents to create the latents input for the denoiser.\n"
" - Create the pachified latents `mask` based on the processedmask image.\n"
)
# CoreDenoiseStep:
# (input + prepare_latents + set_timesteps + prepare_rope_inputs + denoise + after_denoise)
# 1. text2image
class QwenImageCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [
QwenImageTextInputsStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsStep(),
QwenImageRoPEInputsStep(),
QwenImageDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"prepare_latents",
"set_timesteps",
"prepare_rope_inputs",
"denoise",
"after_denoise",
]
@property
def description(self):
return "step that denoise noise into image for text2image task. It includes the denoise loop, as well as prepare the inputs (timesteps, latents, rope inputs etc.)."
# 2.inpaint
class QwenImageInpaintCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [
QwenImageInpaintInputStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsWithStrengthStep(),
QwenImageInpaintPrepareLatentsStep(),
QwenImageRoPEInputsStep(),
QwenImageInpaintDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"prepare_latents",
"set_timesteps",
"prepare_inpaint_latents",
"prepare_rope_inputs",
"denoise",
"after_denoise",
]
@property
def description(self):
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint task."
# 3. img2img
class QwenImageImg2ImgCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [
QwenImageImg2ImgInputStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsWithStrengthStep(),
QwenImagePrepareLatentsWithStrengthStep(),
QwenImageRoPEInputsStep(),
QwenImageDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"prepare_latents",
"set_timesteps",
"prepare_img2img_latents",
"prepare_rope_inputs",
"denoise",
"after_denoise",
]
@property
def description(self):
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img task."
# 4. text2image + controlnet
class QwenImageControlNetCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [
QwenImageTextInputsStep(),
QwenImageControlNetInputsStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsStep(),
QwenImageRoPEInputsStep(),
QwenImageControlNetBeforeDenoiserStep(),
QwenImageControlNetDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"controlnet_input",
"prepare_latents",
"set_timesteps",
"prepare_rope_inputs",
"controlnet_before_denoise",
"controlnet_denoise",
"after_denoise",
]
@property
def description(self):
return "step that denoise noise into image for text2image task. It includes the denoise loop, as well as prepare the inputs (timesteps, latents, rope inputs etc.)."
# 5. inpaint + controlnet
class QwenImageControlNetInpaintCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [
QwenImageInpaintInputStep(),
QwenImageControlNetInputsStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsWithStrengthStep(),
QwenImageInpaintPrepareLatentsStep(),
QwenImageRoPEInputsStep(),
QwenImageControlNetBeforeDenoiserStep(),
QwenImageInpaintControlNetDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"controlnet_input",
"prepare_latents",
"set_timesteps",
"prepare_inpaint_latents",
"prepare_rope_inputs",
"controlnet_before_denoise",
"controlnet_denoise",
"after_denoise",
]
@property
def description(self):
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint task."
# 6. img2img + controlnet
class QwenImageControlNetImg2ImgCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [
QwenImageImg2ImgInputStep(),
QwenImageControlNetInputsStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsWithStrengthStep(),
QwenImagePrepareLatentsWithStrengthStep(),
QwenImageRoPEInputsStep(),
QwenImageControlNetBeforeDenoiserStep(),
QwenImageControlNetDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"controlnet_input",
"prepare_latents",
"set_timesteps",
"prepare_img2img_latents",
"prepare_rope_inputs",
"controlnet_before_denoise",
"controlnet_denoise",
"after_denoise",
]
@property
def description(self):
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img task."
# auto denoise
# auto denoise step for controlnet tasks: works for all tasks with controlnet
class QwenImageAutoCoreDenoiseStep(ConditionalPipelineBlocks):
block_classes = [
QwenImageCoreDenoiseStep,
QwenImageInpaintCoreDenoiseStep,
QwenImageImg2ImgCoreDenoiseStep,
QwenImageControlNetCoreDenoiseStep,
QwenImageControlNetInpaintCoreDenoiseStep,
QwenImageControlNetImg2ImgCoreDenoiseStep,
]
block_names = [
"text2image",
"inpaint",
"img2img",
"controlnet_text2image",
"controlnet_inpaint",
"controlnet_img2img"]
block_trigger_inputs = ["control_image_latents", "processed_mask_image", "image_latents"]
default_block_name = "text2image"
def select_block(self, control_image_latents=None, processed_mask_image=None, image_latents=None):
if control_image_latents is not None:
if processed_mask_image is not None:
return "controlnet_inpaint"
elif image_latents is not None:
return "controlnet_img2img"
else:
return "controlnet_text2image"
else:
if processed_mask_image is not None:
return "inpaint"
elif image_latents is not None:
return "img2img"
else:
return "text2image"
@property
def description(self):
return (
"Core step that performs the denoising process. \n"
+ " - `QwenImageCoreDenoiseStep` (text2image) for text2image tasks.\n"
+ " - `QwenImageInpaintCoreDenoiseStep` (inpaint) for inpaint tasks.\n"
+ " - `QwenImageImg2ImgCoreDenoiseStep` (img2img) for img2img tasks.\n"
+ " - `QwenImageControlNetCoreDenoiseStep` (controlnet_text2image) for text2image tasks with controlnet.\n"
+ " - `QwenImageControlNetInpaintCoreDenoiseStep` (controlnet_inpaint) for inpaint tasks with controlnet.\n"
+ " - `QwenImageControlNetImg2ImgCoreDenoiseStep` (controlnet_img2img) for img2img tasks with controlnet.\n"
+ "This step support text-to-image, image-to-image, inpainting, and controlnet tasks for QwenImage:\n"
+ " - for image-to-image generation, you need to provide `image_latents`\n"
+ " - for inpainting, you need to provide `processed_mask_image` and `image_latents`\n"
+ " - to run the controlnet workflow, you need to provide `control_image_latents`\n"
+ " - for text-to-image generation, all you need to provide is prompt embeddings"
)
# 4. DECODE
## 1.1 text2image
#### decode
#### (standard decode step works for most tasks except for inpaint)
class QwenImageDecodeStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImageDecoderStep(), QwenImageProcessImagesOutputStep()]
block_names = ["decode", "postprocess"]
@property
def description(self):
return "Decode step that decodes the latents to images and postprocess the generated image."
#### inpaint decode
class QwenImageInpaintDecodeStep(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = [QwenImageDecoderStep(), QwenImageInpaintProcessImagesOutputStep()]
block_names = ["decode", "postprocess"]
@property
def description(self):
return "Decode step that decodes the latents to images and postprocess the generated image, optional apply the mask overally to the original image."
# auto decode step for inpaint and text2image tasks
class QwenImageAutoDecodeStep(AutoPipelineBlocks):
block_classes = [QwenImageInpaintDecodeStep, QwenImageDecodeStep]
block_names = ["inpaint_decode", "decode"]
block_trigger_inputs = ["mask", None]
@property
def description(self):
return (
"Decode step that decode the latents into images. \n"
" This is an auto pipeline block that works for inpaint/text2image/img2img tasks, for both QwenImage and QwenImage-Edit.\n"
+ " - `QwenImageInpaintDecodeStep` (inpaint) is used when `mask` is provided.\n"
+ " - `QwenImageDecodeStep` (text2image/img2img) is used when `mask` is not provided.\n"
)
## 1.10 QwenImage/auto block & presets
AUTO_BLOCKS = InsertableDict(
[
("text_encoder", QwenImageTextEncoderStep()),
("vae_encoder", QwenImageAutoVaeEncoderStep()),
("controlnet_vae_encoder", QwenImageOptionalControlNetVaeEncoderStep()),
("denoise", QwenImageAutoCoreDenoiseStep()),
("decode", QwenImageAutoDecodeStep()),
]
)
class QwenImageAutoBlocks(SequentialPipelineBlocks):
model_name = "qwenimage"
block_classes = AUTO_BLOCKS.values()
block_names = AUTO_BLOCKS.keys()
@property
def description(self):
return (
"Auto Modular pipeline for text-to-image, image-to-image, inpainting, and controlnet tasks using QwenImage.\n"
+ "- for image-to-image generation, you need to provide `image`\n"
+ "- for inpainting, you need to provide `mask_image` and `image`, optionally you can provide `padding_mask_crop` \n"
+ "- to run the controlnet workflow, you need to provide `control_image`\n"
+ "- for text-to-image generation, all you need to provide is `prompt`"
)

View File

@@ -1,329 +0,0 @@
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, ConditionalPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
QwenImageCreateMaskLatentsStep,
QwenImageEditRoPEInputsStep,
QwenImagePrepareLatentsStep,
QwenImagePrepareLatentsWithStrengthStep,
QwenImageSetTimestepsStep,
QwenImageSetTimestepsWithStrengthStep,
)
from .decoders import (
QwenImageAfterDenoiseStep,
QwenImageDecoderStep,
QwenImageInpaintProcessImagesOutputStep,
QwenImageProcessImagesOutputStep,
)
from .denoise import (
QwenImageEditDenoiseStep,
QwenImageEditInpaintDenoiseStep,
)
from .encoders import (
QwenImageEditResizeDynamicStep,
QwenImageEditTextEncoderStep,
QwenImageInpaintProcessImagesInputStep,
QwenImageProcessImagesInputStep,
QwenImageVaeEncoderDynamicStep,
)
from .inputs import (
QwenImageInputsDynamicStep,
QwenImageTextInputsStep,
)
logger = logging.get_logger(__name__)
# ====================
# 1. TEXT ENCODER
# ====================
class QwenImageEditVLEncoderStep(SequentialPipelineBlocks):
"""VL encoder that takes both image and text prompts."""
model_name = "qwenimage-edit"
block_classes = [
QwenImageEditResizeDynamicStep(),
QwenImageEditTextEncoderStep(),
]
block_names = ["resize", "encode"]
@property
def description(self) -> str:
return "QwenImage-Edit VL encoder step that encode the image and text prompts together."
# ====================
# 2. VAE ENCODER
# ====================
# Edit VAE encoder
class QwenImageEditVaeEncoderStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [
QwenImageEditResizeDynamicStep(),
QwenImageProcessImagesInputStep(),
QwenImageVaeEncoderDynamicStep(),
]
block_names = ["resize", "preprocess", "encode"]
@property
def description(self) -> str:
return "Vae encoder step that encode the image inputs into their latent representations."
# Edit Inpaint VAE encoder
class QwenImageEditInpaintVaeEncoderStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [
QwenImageEditResizeDynamicStep(),
QwenImageInpaintProcessImagesInputStep(),
QwenImageVaeEncoderDynamicStep(input_name="processed_image", output_name="image_latents"),
]
block_names = ["resize", "preprocess", "encode"]
@property
def description(self) -> str:
return (
"This step is used for processing image and mask inputs for QwenImage-Edit inpaint tasks. It:\n"
" - resize the image for target area (1024 * 1024) while maintaining the aspect ratio.\n"
" - process the resized image and mask image.\n"
" - create image latents."
)
# Auto VAE encoder
class QwenImageEditAutoVaeEncoderStep(AutoPipelineBlocks):
block_classes = [QwenImageEditInpaintVaeEncoderStep, QwenImageEditVaeEncoderStep]
block_names = ["edit_inpaint", "edit"]
block_trigger_inputs = ["mask_image", "image"]
@property
def description(self):
return (
"Vae encoder step that encode the image inputs into their latent representations.\n"
"This is an auto pipeline block.\n"
" - `QwenImageEditInpaintVaeEncoderStep` (edit_inpaint) is used when `mask_image` is provided.\n"
" - `QwenImageEditVaeEncoderStep` (edit) is used when `image` is provided.\n"
" - if `mask_image` or `image` is not provided, step will be skipped."
)
# ====================
# 3. DENOISE - input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise
# ====================
# Edit input step
class QwenImageEditInputStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [
QwenImageTextInputsStep(),
QwenImageInputsDynamicStep(image_latent_inputs=["image_latents"]),
]
block_names = ["text_inputs", "additional_inputs"]
@property
def description(self):
return (
"Input step that prepares the inputs for the edit denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs.\n"
" - update height/width based `image_latents`, patchify `image_latents`."
)
# Edit Inpaint input step
class QwenImageEditInpaintInputStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [
QwenImageTextInputsStep(),
QwenImageInputsDynamicStep(image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"]),
]
block_names = ["text_inputs", "additional_inputs"]
@property
def description(self):
return (
"Input step that prepares the inputs for the edit inpaint denoising step. It:\n"
" - make sure the text embeddings have consistent batch size as well as the additional inputs.\n"
" - update height/width based `image_latents`, patchify `image_latents`."
)
# Edit Inpaint prepare latents step
class QwenImageEditInpaintPrepareLatentsStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [QwenImagePrepareLatentsWithStrengthStep(), QwenImageCreateMaskLatentsStep()]
block_names = ["add_noise_to_latents", "create_mask_latents"]
@property
def description(self) -> str:
return (
"This step prepares the latents/image_latents and mask inputs for the edit inpainting denoising step. It:\n"
" - Add noise to the image latents to create the latents input for the denoiser.\n"
" - Create the patchified latents `mask` based on the processed mask image.\n"
)
# 1. Edit (img2img) core denoise
class QwenImageEditCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [
QwenImageEditInputStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsStep(),
QwenImageEditRoPEInputsStep(),
QwenImageEditDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"prepare_latents",
"set_timesteps",
"prepare_rope_inputs",
"denoise",
"after_denoise",
]
@property
def description(self):
return "Core denoising workflow for QwenImage-Edit edit (img2img) task."
# 2. Edit Inpaint core denoise
class QwenImageEditInpaintCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [
QwenImageEditInpaintInputStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsWithStrengthStep(),
QwenImageEditInpaintPrepareLatentsStep(),
QwenImageEditRoPEInputsStep(),
QwenImageEditInpaintDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"prepare_latents",
"set_timesteps",
"prepare_inpaint_latents",
"prepare_rope_inputs",
"denoise",
"after_denoise",
]
@property
def description(self):
return "Core denoising workflow for QwenImage-Edit edit inpaint task."
# Auto core denoise step
class QwenImageEditAutoCoreDenoiseStep(ConditionalPipelineBlocks):
block_classes = [
QwenImageEditInpaintCoreDenoiseStep,
QwenImageEditCoreDenoiseStep,
]
block_names = ["edit_inpaint", "edit"]
block_trigger_inputs = ["processed_mask_image", "image_latents"]
default_block_name = "edit"
def select_block(self, processed_mask_image=None, image_latents=None) -> Optional[str]:
if processed_mask_image is not None:
return "edit_inpaint"
elif image_latents is not None:
return "edit"
return None
@property
def description(self):
return (
"Auto core denoising step that selects the appropriate workflow based on inputs.\n"
" - `QwenImageEditInpaintCoreDenoiseStep` when `processed_mask_image` is provided\n"
" - `QwenImageEditCoreDenoiseStep` when `image_latents` is provided\n"
"Supports edit (img2img) and edit inpainting tasks for QwenImage-Edit."
)
# ====================
# 4. DECODE
# ====================
# Decode step (standard)
class QwenImageEditDecodeStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [QwenImageDecoderStep(), QwenImageProcessImagesOutputStep()]
block_names = ["decode", "postprocess"]
@property
def description(self):
return "Decode step that decodes the latents to images and postprocess the generated image."
# Inpaint decode step
class QwenImageEditInpaintDecodeStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = [QwenImageDecoderStep(), QwenImageInpaintProcessImagesOutputStep()]
block_names = ["decode", "postprocess"]
@property
def description(self):
return "Decode step that decodes the latents to images and postprocess the generated image, optionally apply the mask overlay to the original image."
# Auto decode step
class QwenImageEditAutoDecodeStep(AutoPipelineBlocks):
block_classes = [QwenImageEditInpaintDecodeStep, QwenImageEditDecodeStep]
block_names = ["inpaint_decode", "decode"]
block_trigger_inputs = ["mask", None]
@property
def description(self):
return (
"Decode step that decode the latents into images.\n"
"This is an auto pipeline block.\n"
" - `QwenImageEditInpaintDecodeStep` (inpaint) is used when `mask` is provided.\n"
" - `QwenImageEditDecodeStep` (edit) is used when `mask` is not provided.\n"
)
# ====================
# 5. AUTO BLOCKS & PRESETS
# ====================
EDIT_AUTO_BLOCKS = InsertableDict(
[
("text_encoder", QwenImageEditVLEncoderStep()),
("vae_encoder", QwenImageEditAutoVaeEncoderStep()),
("denoise", QwenImageEditAutoCoreDenoiseStep()),
("decode", QwenImageEditAutoDecodeStep()),
]
)
class QwenImageEditAutoBlocks(SequentialPipelineBlocks):
model_name = "qwenimage-edit"
block_classes = EDIT_AUTO_BLOCKS.values()
block_names = EDIT_AUTO_BLOCKS.keys()
@property
def description(self):
return (
"Auto Modular pipeline for edit (img2img) and edit inpaint tasks using QwenImage-Edit.\n"
"- for edit (img2img) generation, you need to provide `image`\n"
"- for edit inpainting, you need to provide `mask_image` and `image`, optionally you can provide `padding_mask_crop`\n"
)

View File

@@ -1,175 +0,0 @@
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
QwenImageEditPlusRoPEInputsStep,
QwenImagePrepareLatentsStep,
QwenImageSetTimestepsStep,
)
from .decoders import (
QwenImageAfterDenoiseStep,
QwenImageDecoderStep,
QwenImageProcessImagesOutputStep,
)
from .denoise import (
QwenImageEditDenoiseStep,
)
from .encoders import (
QwenImageEditPlusResizeDynamicStep,
QwenImageEditPlusTextEncoderStep,
QwenImageEditPlusProcessImagesInputStep,
QwenImageVaeEncoderDynamicStep,
)
from .inputs import (
QwenImageEditPlusInputsDynamicStep,
QwenImageTextInputsStep,
)
logger = logging.get_logger(__name__)
# ====================
# 1. TEXT ENCODER
# ====================
class QwenImageEditPlusVLEncoderStep(SequentialPipelineBlocks):
"""VL encoder that takes both image and text prompts. Uses 384x384 target area."""
model_name = "qwenimage-edit-plus"
block_classes = [
QwenImageEditPlusResizeDynamicStep(target_area=384 * 384, output_name="resized_cond_image"),
QwenImageEditPlusTextEncoderStep(),
]
block_names = ["resize", "encode"]
@property
def description(self) -> str:
return "QwenImage-Edit Plus VL encoder step that encodes the image and text prompts together."
# ====================
# 2. VAE ENCODER
# ====================
class QwenImageEditPlusVaeEncoderStep(SequentialPipelineBlocks):
"""VAE encoder that handles multiple images with different sizes. Uses 1024x1024 target area."""
model_name = "qwenimage-edit-plus"
block_classes = [
QwenImageEditPlusResizeDynamicStep(target_area=1024 * 1024, output_name="resized_image"),
QwenImageEditPlusProcessImagesInputStep(),
QwenImageVaeEncoderDynamicStep(),
]
block_names = ["resize", "preprocess", "encode"]
@property
def description(self) -> str:
return (
"VAE encoder step that encodes image inputs into latent representations.\n"
"Each image is resized independently based on its own aspect ratio to 1024x1024 target area."
)
# ====================
# 3. DENOISE - input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise
# ====================
# Edit Plus input step
class QwenImageEditPlusInputStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = [
QwenImageTextInputsStep(),
QwenImageEditPlusInputsDynamicStep(image_latent_inputs=["image_latents"]),
]
block_names = ["text_inputs", "additional_inputs"]
@property
def description(self):
return (
"Input step that prepares the inputs for the Edit Plus denoising step. It:\n"
" - Standardizes text embeddings batch size.\n"
" - Processes list of image latents: patchifies, concatenates along dim=1, expands batch.\n"
" - Outputs lists of image_height/image_width for RoPE calculation.\n"
" - Defaults height/width from last image in the list."
)
# Edit Plus core denoise
class QwenImageEditPlusCoreDenoiseStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = [
QwenImageEditPlusInputStep(),
QwenImagePrepareLatentsStep(),
QwenImageSetTimestepsStep(),
QwenImageEditPlusRoPEInputsStep(),
QwenImageEditDenoiseStep(),
QwenImageAfterDenoiseStep(),
]
block_names = [
"input",
"prepare_latents",
"set_timesteps",
"prepare_rope_inputs",
"denoise",
"after_denoise",
]
@property
def description(self):
return "Core denoising workflow for QwenImage-Edit Plus edit (img2img) task."
# ====================
# 4. DECODE
# ====================
class QwenImageEditPlusDecodeStep(SequentialPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = [QwenImageDecoderStep(), QwenImageProcessImagesOutputStep()]
block_names = ["decode", "postprocess"]
@property
def description(self):
return "Decode step that decodes the latents to images and postprocesses the generated image."
# ====================
# 5. AUTO BLOCKS & PRESETS
# ====================
EDIT_PLUS_AUTO_BLOCKS = InsertableDict(
[
("text_encoder", QwenImageEditPlusVLEncoderStep()),
("vae_encoder", QwenImageEditPlusVaeEncoderStep()),
("denoise", QwenImageEditPlusCoreDenoiseStep()),
("decode", QwenImageEditPlusDecodeStep()),
]
)
class QwenImageEditPlusAutoBlocks(SequentialPipelineBlocks):
model_name = "qwenimage-edit-plus"
block_classes = EDIT_PLUS_AUTO_BLOCKS.values()
block_names = EDIT_PLUS_AUTO_BLOCKS.keys()
@property
def description(self):
return (
"Auto Modular pipeline for edit (img2img) tasks using QwenImage-Edit Plus.\n"
"- `image` is required input (can be single image or list of images).\n"
"- Each image is resized independently based on its own aspect ratio.\n"
"- VL encoder uses 384x384 target area, VAE encoder uses 1024x1024 target area."
)

View File

@@ -11,8 +11,7 @@ export RUN_ATTENTION_BACKEND_TESTS=yes
pytest tests/others/test_attention_backends.py
```
Tests were conducted on an H100 with PyTorch 2.8.0 (CUDA 12.9). Slices for the compilation tests in
"native" variants were obtained with a torch nightly version (2.10.0.dev20250924+cu128).
Tests were conducted on an H100 with PyTorch 2.9.1 (CUDA 12.9).
Tests for aiter backend were conducted and slices for the aiter backend tests collected on a MI355X
with torch 2025-09-25 nightly version (ad2f7315ca66b42497047bb7951f696b50f1e81b) and
@@ -24,6 +23,8 @@ import os
import pytest
import torch
from ..testing_utils import numpy_cosine_similarity_distance
pytestmark = pytest.mark.skipif(
os.getenv("RUN_ATTENTION_BACKEND_TESTS", "false") == "false", reason="Feature not mature enough."
@@ -36,23 +37,28 @@ from diffusers.utils import is_torch_version # noqa: E402
FORWARD_CASES = [
(
"flash_hub",
torch.tensor([0.0820, 0.0859, 0.0918, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2461, 0.2422, 0.2695], dtype=torch.bfloat16)
torch.tensor([0.0820, 0.0859, 0.0918, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2461, 0.2422, 0.2695], dtype=torch.bfloat16),
1e-4
),
(
"_flash_3_hub",
torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0977, 0.0996, 0.1016, 0.1016, 0.2188, 0.2246, 0.2344, 0.2480, 0.2539, 0.2480, 0.2441, 0.2715], dtype=torch.bfloat16),
1e-4
),
(
"native",
torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2480, 0.2461, 0.2734], dtype=torch.bfloat16)
),
torch.tensor([0.0820, 0.0859, 0.0938, 0.1016, 0.0957, 0.0996, 0.0996, 0.1016, 0.2188, 0.2266, 0.2363, 0.2500, 0.2539, 0.2480, 0.2461, 0.2734], dtype=torch.bfloat16),
1e-4
),
(
"_native_cudnn",
torch.tensor([0.0781, 0.0840, 0.0879, 0.0957, 0.0898, 0.0957, 0.0957, 0.0977, 0.2168, 0.2246, 0.2324, 0.2500, 0.2539, 0.2480, 0.2441, 0.2695], dtype=torch.bfloat16),
5e-4
),
(
"aiter",
torch.tensor([0.0781, 0.0820, 0.0879, 0.0957, 0.0898, 0.0938, 0.0957, 0.0957, 0.2285, 0.2363, 0.2461, 0.2637, 0.2695, 0.2617, 0.2617, 0.2891], dtype=torch.bfloat16),
1e-4
)
]
@@ -60,27 +66,32 @@ COMPILE_CASES = [
(
"flash_hub",
torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0488, 0.0586, 0.0605, 0.0586, 0.2324, 0.2422, 0.2539, 0.2734, 0.2832, 0.2812, 0.2773, 0.3047], dtype=torch.bfloat16),
True
True,
1e-4
),
(
"_flash_3_hub",
torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0625, 0.0605, 0.2344, 0.2461, 0.2578, 0.2734, 0.2852, 0.2812, 0.2773, 0.3047], dtype=torch.bfloat16),
True,
1e-4
),
(
"native",
torch.tensor([0.0410, 0.0410, 0.0449, 0.0508, 0.0508, 0.0605, 0.0605, 0.0605, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2773, 0.3066], dtype=torch.bfloat16),
True,
1e-4
),
(
"_native_cudnn",
torch.tensor([0.0410, 0.0410, 0.0430, 0.0508, 0.0488, 0.0586, 0.0605, 0.0586, 0.2344, 0.2461, 0.2578, 0.2773, 0.2871, 0.2832, 0.2793, 0.3086], dtype=torch.bfloat16),
True,
5e-4,
),
(
"aiter",
torch.tensor([0.0391, 0.0391, 0.0430, 0.0488, 0.0469, 0.0566, 0.0586, 0.0566, 0.2402, 0.2539, 0.2637, 0.2812, 0.2930, 0.2910, 0.2891, 0.3164], dtype=torch.bfloat16),
True,
1e-4
)
]
# fmt: on
@@ -104,11 +115,11 @@ def _backend_is_probably_supported(pipe, name: str):
return False
def _check_if_slices_match(output, expected_slice):
def _check_if_slices_match(output, expected_slice, expected_diff=1e-4):
img = output.images.detach().cpu()
generated_slice = img.flatten()
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
assert torch.allclose(generated_slice, expected_slice, atol=1e-4)
assert numpy_cosine_similarity_distance(generated_slice, expected_slice) < expected_diff
@pytest.fixture(scope="session")
@@ -126,23 +137,23 @@ def pipe(device):
return pipe
@pytest.mark.parametrize("backend_name,expected_slice", FORWARD_CASES, ids=[c[0] for c in FORWARD_CASES])
def test_forward(pipe, backend_name, expected_slice):
@pytest.mark.parametrize("backend_name,expected_slice,expected_diff", FORWARD_CASES, ids=[c[0] for c in FORWARD_CASES])
def test_forward(pipe, backend_name, expected_slice, expected_diff):
out = _backend_is_probably_supported(pipe, backend_name)
if isinstance(out, bool):
pytest.xfail(f"Backend '{backend_name}' not supported in this environment.")
modified_pipe = out[0]
out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0))
_check_if_slices_match(out, expected_slice)
_check_if_slices_match(out, expected_slice, expected_diff)
@pytest.mark.parametrize(
"backend_name,expected_slice,error_on_recompile",
"backend_name,expected_slice,error_on_recompile,expected_diff",
COMPILE_CASES,
ids=[c[0] for c in COMPILE_CASES],
)
def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recompile):
def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recompile, expected_diff):
if "native" in backend_name and error_on_recompile and not is_torch_version(">=", "2.9.0"):
pytest.xfail(f"Test with {backend_name=} is compatible with a higher version of torch.")
@@ -160,4 +171,4 @@ def test_forward_with_compile(pipe, backend_name, expected_slice, error_on_recom
):
out = modified_pipe(**INFER_KW, generator=torch.manual_seed(0))
_check_if_slices_match(out, expected_slice)
_check_if_slices_match(out, expected_slice, expected_diff)

View File

@@ -131,6 +131,10 @@ def torch_all_close(a, b, *args, **kwargs):
def numpy_cosine_similarity_distance(a, b):
if isinstance(a, torch.Tensor):
a = a.detach().cpu().float().numpy()
if isinstance(b, torch.Tensor):
b = b.detach().cpu().float().numpy()
similarity = np.dot(a, b) / (norm(a) * norm(b))
distance = 1.0 - similarity.mean()