Compare commits

...

162 Commits

Author SHA1 Message Date
DN6
e1f502fac1 update 2025-09-11 08:52:01 +05:30
DN6
9150ab02f6 update 2025-09-11 08:21:57 +05:30
DN6
93f71d95a2 update 2025-09-11 08:20:00 +05:30
DN6
de4ba0a977 update 2025-09-11 08:14:57 +05:30
DN6
40f12d2aea update 2025-09-11 08:07:04 +05:30
DN6
1e0856616a update 2025-09-10 18:12:00 +05:30
DN6
fa926e78f5 update 2025-09-10 17:40:01 +05:30
DN6
a8c5801e26 update 2025-09-10 17:32:44 +05:30
DN6
2743c9ee3b update 2025-09-10 17:25:58 +05:30
sayakpaul
2c47a2ffd4 Revert "up"
This reverts commit 772c32e433.
2025-09-10 11:24:07 +05:30
sayakpaul
772c32e433 up 2025-09-10 10:34:04 +05:30
sayakpaul
4256de9fea up 2025-09-08 14:09:21 +05:30
sayakpaul
6c0c72de9c up 2025-09-08 12:15:01 +05:30
sayakpaul
c8afd1c8b4 up 2025-09-08 12:05:53 +05:30
sayakpaul
02fd92e38e cache non lora pipeline outputs. 2025-09-08 11:39:11 +05:30
Steven Liu
fc337d5853 [docs] Models (#12248)
* init

* fix

* feedback

* feedback
2025-09-05 11:52:09 -07:00
Steven Liu
32798bf242 [docs] Inference section cleanup (#12281)
init

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-09-05 09:34:37 -07:00
Steven Liu
c2e5ece08b [docs] Sharing pipelines/models (#12280)
init
2025-09-04 11:43:47 -07:00
co63oc
764b62473a fix some typos (#12265)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-09-03 21:28:24 +05:30
Ju Hoon Park
6682956333 Add AttentionMixin to WanVACETransformer3DModel (#12268)
* Add AttentionMixin to WanVACETransformer3DModel

to enable methods like `set_attn_processor()`.

* Import AttentionMixin in transformer_wan_vace.py

Special thanks to @tolgacangoz 🙇‍♂️
2025-09-03 15:05:41 +05:30
Sayak Paul
ffc8c0c1e1 [tests] feat: add AoT compilation tests (#12203)
* feat: add a test for aot.

* up
2025-09-03 11:15:27 +05:30
Ishan Modi
4acbfbf13b [Quantization] Add TRT-ModelOpt as a Backend (#11173)
* initial commit

* update

* updates

* update

* update

* update

* update

* update

* update

* addressed PR comments

* update

* addressed PR comments

* update

* update

* update

* update

* update

* update

* updates

* update

* update

* addressed PR comments

* updates

* code formatting

* update

* addressed PR comments

* addressed PR comments

* addressed PR comments

* addressed PR comments

* fix docs and dependencies

* fixed dependency test

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-09-03 10:14:52 +05:30
Steven Liu
6549b04ec6 [docs] AutoPipeline (#12160)
* refresh

* feedback

* feedback

* supported models

* fix
2025-09-02 21:06:26 -07:00
Sayak Paul
130fd8df54 [core] use kernels to support _flash_3_hub attention backend (#12236)
* feat: try loading fa3 using kernels when available.

* up

* change to Hub.

* up

* up

* up

* switch env var.

* up

* up

* up

* up

* up

* up
2025-09-03 08:48:07 +05:30
Dhruv Nair
bcd4d77ba6 [CI] Remove big accelerator requirements from Quanto Tests (#12266)
update
2025-09-03 08:29:31 +05:30
Linoy Tsaban
006d092751 [Flux LoRA] fix for prior preservation and mixed precision sampling, follow up on #11873 (#12264)
* propagate fixes from https://github.com/huggingface/diffusers/pull/11873/ to flux script

* propagate fixes from https://github.com/huggingface/diffusers/pull/11873/ to flux script

* propagate fixes from https://github.com/huggingface/diffusers/pull/11873/ to flux script

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-09-02 11:30:33 +03:00
Ziheng Zhang
9e4a75b142 [docs] Fix VAE scale factor calculation in distributed inference docs (#12259)
docs: Fix VAE scale factor calculation
2025-09-01 16:34:16 -10:00
Bulat Akhmatov
0ff1aa910c [fix] fix for prior preservation and mixed precision sampling (#11873)
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-09-01 14:12:14 +03:00
apolinário
901da9dccc Fix lora conversion function for ai-toolkit Qwen Image LoRAs (#12261)
* Fix lora conversion function for ai-toolkit Qwen Image LoRAs

* add forgotten parenthesis

* remove space new line

* update pipeline

* detect if arrow or letter

* remove whitespaces

* style

* apply suggestion

* apply suggestion

* apply suggestion

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-09-01 14:24:38 +05:30
Nguyễn Trọng Tuấn
67ffa7031e Add Qwen-Image-Edit Inpainting pipeline (#12225)
* add qwenimage-edit inpaint feature

* stay up to date with main branch

* fix style

* fix docs

* copies

* fix

* again

* copies

---------

Co-authored-by: “Trgtuan10” <“tuannguyentrong.402@gmail.com”>
Co-authored-by: TuanNT-ZenAI <tuannt.zenai@gmail.com>
Co-authored-by: yiyixuxu <yixu310@gmail.com>
2025-08-30 19:49:15 -10:00
Leo Jiang
827fad66a0 Improve performance of NPU FA (#12260)
Co-authored-by: J石页 <jiangshuo9@h-partners.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-31 01:48:51 +05:30
Nguyễn Trọng Tuấn
9b721db205 [QwenImageEditPipeline] Add image entry in __call__ function (#12254)
add  entry

Co-authored-by: TuanNT-ZenAI <tuannt.zenai@gmail.com>
2025-08-29 20:16:43 -10:00
Dhruv Nair
ba0e732eb0 [Modular] Consolidate load_default_components into load_components (#12217)
* update

* Apply style fixes

* update

* update

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-28 19:55:02 +05:30
Dhruv Nair
b2da59b197 [Modular] Provide option to disable custom code loading globally via env variable (#12177)
* update

* update

* update

* update
2025-08-28 19:54:32 +05:30
Dhruv Nair
7aa6af1138 [Refactor] Move testing utils out of src (#12238)
* update

* update

* update

* update

* update

* merge main

* Revert "merge main"

This reverts commit 65efbcead5.
2025-08-28 19:53:02 +05:30
Aryan
87b800e154 [modular diffusers] Fix AutoGuidance validation (#12247)
fix
2025-08-28 15:23:26 +05:30
YiYi Xu
e58711e73c [Modular] support standard repo (#11944)
* make modular pipeline work with model_index.json

* up

* style

* up

* up

* style

* up more

* Fix MultiControlNet import (#12118)

fix

---------

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-08-28 10:18:07 +02:00
Steven Liu
cbecc33570 [docs] Reproducibility (#12237)
* init

* dupe

* feedback
2025-08-27 11:35:31 -07:00
Steven Liu
5237a82a35 [docs] Remove Flax (#12244)
* remove flax

* toctree

* feedback
2025-08-27 11:11:07 -07:00
Parag Ekbote
513dbdb2f3 Fix Table Rendering in ReadME (#12245)
fix table rendering readme issue in readme.
2025-08-27 10:44:49 -07:00
YiYi Xu
865ba102b3 [Qwen-Image] adding validation for guidance_scale, true_cfg_scale and negative_prompt (#12223)
* up
2025-08-27 01:04:33 -10:00
Manith Ratnayake
552c127c05 docs: correct typos in using-diffusers/other-formats (#12243) 2025-08-26 08:48:05 -07:00
Tianqi Tang
4b7fe044e3 Fix typos and inconsistencies (#12204)
Fix typos and test assertions

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-08-26 07:58:08 -07:00
Sayak Paul
532f41c999 Deprecate Flax support (#12151)
* start removing flax stuff.

* add deprecation warning.

* add warning messages.

* more warnings.

* remove dockerfiles.

* remove more.

* Update src/diffusers/models/attention_flax.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* up

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-08-26 09:58:16 +02:00
Tolga Cangöz
5fcd5f560f Propose to update & upgrade SkyReels-V2 (#12167)
* fix: update SkyReels-V2 documentation and moving into attn dispatcher

* Refactors SkyReelsV2's attention implementation

* style

* up

* Fixes formatting in SkyReels-V2 documentation

Wraps the visual demonstration section in a Markdown code block.

This change corrects the rendering of ASCII diagrams and examples, improving the overall readability of the document.

* Docs: Condense example arrays in skyreels_v2 guide

Improves the readability of the `step_matrix` examples by replacing long sequences of repeated numbers with a more compact `value×count` notation.

This change makes the underlying data patterns in the examples easier to understand at a glance.

* Add _repeated_blocks attribute to SkyReelsV2Transformer3DModel

* Refactor rotary embedding calculations in SkyReelsV2 to separate cosine and sine frequencies

* Enhance SkyReels-V2 documentation: update model loading for GPU support and remove outdated notes

* up

* up

* Update model_id in SkyReels-V2 documentation

* up

* refactor: remove device_map parameter for model loading and add pipeline.to("cuda") for GPU allocation

* fix: update copyright year to 2025 in skyreels_v2.md

* docs: enhance parameter examples and formatting in skyreels_v2.md

* docs: update example formatting and add notes on LoRA support in skyreels_v2.md

* refactor: remove copied comments from transformer_wan in SkyReelsV2 classes

* Clean up comments in skyreels_v2.md

Removed comments about acceleration helpers and Flash Attention installation.

* Add deprecation warning for `SkyReelsV2AttnProcessor2_0` class
2025-08-26 12:54:19 +05:30
Leo Jiang
0fd7ee79ea NPU attention refactor for FLUX (#12209)
* NPU attention refactor for FLUX transformer

* Apply style fixes

---------

Co-authored-by: J石页 <jiangshuo9@h-partners.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-26 12:53:55 +05:30
sqt
0d1c5b0c3e Fix typo: 'will ge generated' -> 'will be generated' (#12231) 2025-08-25 12:47:52 -07:00
Meta
0e46c55931 Update README.md (#12193) 2025-08-25 11:35:56 -07:00
Manith Ratnayake
8f8888a76e [docs] typo : corrected 'compile regions' to 'compile_regions' (#12199)
[docs] typo: corrected 'compile regions' to 'compile_regions'
2025-08-25 11:35:48 -07:00
Cyan
afc9721898 Fix typo in LoRA (#12228)
Fix formatting in using_peft_for_inference.md
2025-08-25 11:19:55 -07:00
Steven Liu
2c4ee10b77 [docs] Diffusion pipeline (#12148)
* init

* refactor

* refresh

* fix?

* fix?

* fix

* fix-copies

* feedback

* feedback

* fix

* feedback
2025-08-25 11:06:12 -07:00
Sayak Paul
cf1ca728ea fix title for compile + offload quantized models (#12233)
* up

* up

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-25 17:42:06 +02:00
Sayak Paul
144e6e2540 [docs] change wan2.1 -> wan (#12230)
* change wan2.1 -> wan

* up
2025-08-25 17:30:12 +02:00
Sadhvi
22b229ba66 added a fast test for Qwen-Image Controlnet Pipeline (#12226)
* added test qwen image controlnet

* Apply style fixes

* added test qwenimage multicontrolnet

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-24 15:58:21 -10:00
Aryan
a840c39ad8 [refactor] Make guiders return their inputs (#12213)
* update

* update

* apply review suggestions

* remove guider inputs

* fix tests
2025-08-23 06:48:55 -10:00
Aishwarya Badlani
9a7ae77a4e Fix PyTorch 2.3.1 compatibility: add version guard for torch.library.… (#12206)
* Fix PyTorch 2.3.1 compatibility: add version guard for torch.library.custom_op

- Add hasattr() check for torch.library.custom_op and register_fake
- These functions were added in PyTorch 2.4, causing import failures in 2.3.1
- Both decorators and functions are now properly guarded with version checks
- Maintains backward compatibility while preserving functionality

Fixes #12195

* Use dummy decorators approach for PyTorch version compatibility

- Replace hasattr check with version string comparison
- Add no-op decorator functions for PyTorch < 2.4.0
- Follows pattern from #11941 as suggested by reviewer
- Maintains cleaner code structure without indentation changes

* Update src/diffusers/models/attention_dispatch.py

Update all the decorator usages

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update src/diffusers/models/attention_dispatch.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update src/diffusers/models/attention_dispatch.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Update src/diffusers/models/attention_dispatch.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

* Move version check to top of file and use private naming as requested

* Apply style fixes

---------

Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-23 12:52:09 +05:30
Sayak Paul
673d4357ff add attentionmixin to qwen image (#12219) 2025-08-23 04:48:32 +05:30
Frank (Haofan) Wang
561ab54de3 Support ControlNet for Qwen-Image (#12215)
* support qwen-image-cn-union


---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-08-22 11:00:01 -10:00
Steven Liu
b60faf456b [docs] Pipeline callbacks (#12212)
* init

* review
2025-08-22 13:01:24 -07:00
Steven Liu
3e73dc24a4 [docs] Community pipelines (#12201)
* refresh

* feedback
2025-08-22 10:42:13 -07:00
Vương Đình Minh
d03240801f [Docs] Add documentation for KontextInpaintingPipeline (#12197)
* [Docs] Add documentation for KontextInpaintingPipeline

* Update docs/source/en/api/pipelines/flux.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update kontext inpaint docs with hfoption

* Update docs/source/en/api/pipelines/flux.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/api/pipelines/flux.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-22 00:04:28 -07:00
Yao Matrix
e62804ffbd enable bria integration test on xpu, passed (#12214)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-08-22 09:00:32 +05:30
Steven Liu
bb1d9a8b75 [docs] Optimized code snippets (#12200)
add space
2025-08-21 09:45:04 -07:00
Sam Yuan
91a151b5c6 continue translate document to zh (#12194)
Signed-off-by: SamYuan1990 <yy19902439@126.com>
2025-08-20 08:49:19 -07:00
Sayak Paul
4fcd0bc7eb [chore] remove extra validation check in determine_device_map (#12176)
remove extra validation check in determine_device_map
2025-08-20 15:51:49 +05:30
galbria
7993be9e7f Bria 3 2 pipeline (#12010)
* Add Bria model and pipeline to diffusers

- Introduced `BriaTransformer2DModel` and `BriaPipeline` for enhanced image generation capabilities.
- Updated import structures across various modules to include the new Bria components.
- Added utility functions and output classes specific to the Bria pipeline.
- Implemented tests for the Bria pipeline to ensure functionality and output integrity.

* with working tests

* style and quality pass

* adding docs

* add to overview

* fixes from "make fix-copies"

* Refactor transformer_bria.py and pipeline_bria.py: Introduce new EmbedND class for rotary position embedding, and enhance Timestep and TimestepProjEmbeddings classes. Add utility functions for handling negative prompts and generating original sigmas in pipeline_bria.py.

* remove redundent and duplicates tests and fix bf16
slow test

* style fixes

* small doc update

* Enhance Bria 3.2 documentation and implementation

- Updated the GitHub repository link for Bria 3.2.
- Added usage instructions for the gated model access.
- Introduced the BriaTransformerBlock and BriaAttention classes to the model architecture.
- Refactored existing classes to integrate Bria-specific components, including BriaEmbedND and BriaPipeline.
- Updated the pipeline output class to reflect Bria-specific functionality.
- Adjusted test cases to align with the new Bria model structure.

* Refactor Bria model components and update documentation

- Removed outdated inference example from Bria 3.2 documentation.
- Introduced the BriaTransformerBlock class to enhance model architecture.
- Updated attention handling to use `attention_kwargs` instead of `joint_attention_kwargs`.
- Improved import structure in the Bria pipeline to handle optional dependencies.
- Adjusted test cases to reflect changes in model dtype assertions.

* Update Bria model reference in documentation to reflect new file naming convention

* Update docs/source/en/_toctree.yml

* Refactor BriaPipeline to inherit from DiffusionPipeline instead of FluxPipeline, updating imports accordingly.

* move the __call__ func to the end of file

* Update BriaPipeline example to use bfloat16 for precision sensitivity for better result

* make style && make quality &&  make fix-copiessource

---------

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
2025-08-20 14:57:39 +05:30
Sayak Paul
7a2b78bf0f post release v0.35.0 (#12184)
* post release v0.35.0

* quality
2025-08-19 22:10:08 +05:30
Sam Yuan
f868d4b58b translate document to zh (#12179)
Signed-off-by: SamYuan1990 <yy19902439@126.com>
2025-08-19 08:43:33 -07:00
naykun
cc48b9368f Performance Improve for Qwen Image Edit (#12190)
* fix(qwen-image-edit):
- update condition reshaping logic to improve editing performance

* fix(qwen-image-edit):
- remove _auto_resize
2025-08-19 08:45:18 -04:00
naykun
dba4e007fe Emergency fix for Qwen-Image-Edit (#12188)
fix(qwen-image):
shape calculation fix
2025-08-19 14:42:26 +05:30
Linoy Tsaban
8d1de40891 [Wan 2.2 LoRA] add support for 2nd transformer lora loading + wan 2.2 lightx2v lora (#12074)
* add alpha

* load into 2nd transformer

* Update src/diffusers/loaders/lora_conversion_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/loaders/lora_conversion_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* pr comments

* pr comments

* pr comments

* fix

* fix

* Apply style fixes

* fix copies

* fix

* fix copies

* Update src/diffusers/loaders/lora_pipeline.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* revert change

* revert change

* fix copies

* up

* fix

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: linoy <linoy@hf.co>
2025-08-19 08:32:39 +05:30
Sayak Paul
8cc528c5e7 [chore] add lora button to qwenimage docs (#12183)
up
2025-08-19 07:13:24 +05:30
Taechai
3c50f0cdad Update README.md (#12182)
* Update README.md

Specify the full dir

* Update examples/dreambooth/README.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-18 13:02:49 -07:00
Sayak Paul
555b6cc34f [LoRA] feat: support more Qwen LoRAs from the community. (#12170)
* feat: support more Qwen LoRAs from the community.

* revert unrelated changes.

* Revert "revert unrelated changes."

This reverts commit 82dea555dc.
2025-08-18 20:56:28 +05:30
Sayak Paul
5b53f67f06 [docs] Clarify guidance scale in Qwen pipelines (#12181)
* add clarification regarding guidance_scale in QwenImage

* propagate.
2025-08-18 20:10:23 +05:30
MQY
9918d13eba fix(training_utils): wrap device in list for DiffusionPipeline (#12178)
- Modify offload_models function to handle DiffusionPipeline correctly
- Ensure compatibility with both single and multiple module inputs

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-08-18 13:56:17 +05:30
Sayak Paul
e824660436 fix: caching allocator behaviour for quantization. (#12172)
* fix: caching allocator behaviour for quantization.

* up

* Update src/diffusers/models/model_loading_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-18 13:16:18 +05:30
Leo Jiang
03be15e890 [Docs] typo error in qwen image (#12144)
typo error in qwen image

Co-authored-by: J石页 <jiangshuo9@h-partners.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-18 11:55:42 +05:30
Junyu Chen
85cbe589a7 Minor modification to support DC-AE-turbo (#12169)
* minor modification to support dc-ae-turbo

* minor
2025-08-18 11:37:36 +05:30
Sayak Paul
4d9b82297f [qwen] Qwen image edit followups (#12166)
* add docs.

* more docs.

* xfail full compilation for Qwen for now.

* tests

* up

* up

* up

* reviewer feedback.
2025-08-18 08:33:07 +05:30
Lambert
76c809e2ef remove silu for CogView4 (#12150)
* CogView4: remove SiLU in final AdaLN (match Megatron); add  switch to AdaLayerNormContinuous; split temb_raw/temb_blocks

* CogView4: remove SiLU in final AdaLN (match Megatron); add  switch to AdaLayerNormContinuous; split temb_raw/temb_blocks

* CogView4: remove SiLU in final AdaLN (match Megatron); add  switch to AdaLayerNormContinuous; split temb_raw/temb_blocks

* CogView4: use local final AdaLN (no SiLU) per review; keep generic AdaLN unchanged

* re-add configs as normal files (no LFS)

* Apply suggestions from code review

* Apply style fixes

---------

Co-authored-by: 武嘉涵 <lambert@wujiahandeMacBook-Pro.local>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-18 08:02:01 +05:30
naykun
e682af2027 Qwen Image Edit Support (#12164)
* feat(qwen-image):
add qwen-image-edit support

* fix(qwen image):
- compatible with torch.compile in new rope setting
- fix init import
- add prompt truncation in img2img and inpaint pipe
- remove unused logic and comment
- add copy statement
- guard logic for rope video shape tuple

* fix(qwen image):
- make fix-copies
- update doc
2025-08-16 19:24:29 -10:00
Steven Liu
a58a4f665b [docs] Quickstart (#12128)
* start

* feedback

* feedback

* feedback
2025-08-15 13:48:01 -07:00
Yao Matrix
8701e8644b make test_gguf all pass on xpu (#12158)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-08-16 01:00:31 +05:30
Sayak Paul
58bf268261 support hf_quantizer in cache warmup. (#12043)
* support hf_quantizer in cache warmup.

* reviewer feedback

* up

* up
2025-08-14 18:57:33 +05:30
Sayak Paul
1b48db4c8f [core] respect local_files_only=True when using sharded checkpoints (#12005)
* tighten compilation tests for quantization

* feat: model_info but local.

* up

* Revert "tighten compilation tests for quantization"

This reverts commit 8d431dc967.

* up

* reviewer feedback.

* reviewer feedback.

* up

* up

* empty

* update

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
2025-08-14 14:50:51 +05:30
Sayak Paul
46a0c6aa82 feat: cuda device_map for pipelines. (#12122)
* feat: cuda device_map for pipelines.

* up

* up

* empty

* up
2025-08-14 10:31:24 +05:30
Steven Liu
421ee07e33 [docs] Parallel loading of shards (#12135)
* initial

* feedback

* Update docs/source/en/using-diffusers/loading.md

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-08-14 09:39:40 +05:30
Sayak Paul
123506ee59 make parallel loading flag a part of constants. (#12137) 2025-08-14 09:36:47 +05:30
Alrott SlimRG
8c48ec05ed Fix bf15/fp16 for pipeline_wan_vace.py (#12143)
* Fix bf15/fp16 for pipeline_wan_vace.py

* Update pipeline_wan_vace.py

* try removing xfail decorator

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-14 05:04:00 +05:30
Steven Liu
a6d2fc2c1d [docs] Refresh effective and efficient doc (#12134)
* refresh

* init

* feedback
2025-08-13 11:14:21 -07:00
Sam Yuan
bc2762cce9 try to use deepseek with an agent to auto i18n to zh (#12032)
* try to use deepseek with an agent to auto i18n to zh

Signed-off-by: SamYuan1990 <yy19902439@126.com>

* add two more docs

Signed-off-by: SamYuan1990 <yy19902439@126.com>

* fix, updated some prompt for better translation

Signed-off-by: SamYuan1990 <yy19902439@126.com>

* Try to passs CI check

Signed-off-by: SamYuan1990 <yy19902439@126.com>

* fix up for human review process

Signed-off-by: SamYuan1990 <yy19902439@126.com>

* fix up

Signed-off-by: SamYuan1990 <yy19902439@126.com>

* fix review comments

Signed-off-by: SamYuan1990 <yy19902439@126.com>

---------

Signed-off-by: SamYuan1990 <yy19902439@126.com>
2025-08-13 08:26:24 -07:00
Sayak Paul
baa9b582f3 [core] parallel loading of shards (#12028)
* checking.

* checking

* checking

* up

* up

* up

* Apply suggestions from code review

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* up

* up

* fix

* review feedback.

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-08-13 10:33:20 +05:30
Nguyễn Trọng Tuấn
da096a4999 Add QwenImage Inpainting and Img2Img pipeline (#12117)
* feat/qwenimage-img2img-inpaint

* Update qwenimage.md to reflect new pipelines and add # Copied from convention

* tiny fix for passing ruff check

* reformat code

* fix copied from statement

* fix copied from statement

* copy and style fix

* fix dummies

---------

Co-authored-by: TuanNT-ZenAI <tuannt.zenai@gmail.com>
Co-authored-by: DN6 <dhruv.nair@gmail.com>
2025-08-13 09:41:50 +05:30
Leo Jiang
480fb357a3 [Bugfix] typo fix in NPU FA (#12129)
[Bugfix] typo error in npu FA

Co-authored-by: J石页 <jiangshuo9@h-partners.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-12 22:12:19 +05:30
Steven Liu
38740ddbd8 [docs] Modular diffusers (#11931)
* start

* draft

* state, pipelineblock, apis

* sequential

* fix links

* new

* loop, auto

* fix

* pipeline

* guiders

* components manager

* reviews

* update

* update

* update

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
2025-08-12 18:50:20 +05:30
IrisRainbowNeko
72282876b2 Add low_cpu_mem_usage option to from_single_file to align with from_pretrained (#12114)
* align meta device of from_single_file with from_pretrained

* update docstr

* Apply style fixes

---------

Co-authored-by: IrisRainbowNeko <rainbow-neko@outlook.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-12 16:36:55 +05:30
Dhruv Nair
3552279a23 [Modular] Add experimental feature warning for Modular Diffusers (#12127)
update
2025-08-12 10:25:02 +05:30
Steven Liu
f8ba5cd77a [docs] Cache link (#12105)
cache
2025-08-11 11:03:59 -07:00
Sayak Paul
c9c8217306 [chore] complete the licensing statement. (#12001)
complete the licensing statement.
2025-08-11 22:15:15 +05:30
Aryan
135df5be9d [tests] Add inference test slices for SD3 and remove unnecessary tests (#12106)
* update

* nuke LoC for inference slices
2025-08-11 18:36:09 +05:30
Sayak Paul
4a9dbd56f6 enable compilation in qwen image. (#12061)
* update

* update

* update

* enable compilation in qwen image.

* add tests

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-11 14:37:37 +05:30
Dhruv Nair
630d27fe5b [Modular] More Updates for Custom Code Loading (#11969)
* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-08-11 13:26:58 +05:30
Sayak Paul
f442955c6e [lora] support loading loras from lightx2v/Qwen-Image-Lightning (#12119)
* feat: support qwen lightning lora.

* add docs.

* fix
2025-08-11 09:27:10 +05:30
Sayak Paul
ff9a387618 [core] add modular support for Flux I2I (#12086)
* start

* encoder.

* up

* up

* up

* up

* up

* up
2025-08-11 07:23:23 +05:30
Sayak Paul
03c3f69aa5 [docs] diffusers gguf checkpoints (#12092)
* feat: support loading diffusers format gguf checkpoints.

* update

* update

* qwen

* up

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* up

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-08-09 08:49:49 +05:30
Sayak Paul
f20aba3e87 [GGUF] feat: support loading diffusers format gguf checkpoints. (#11684)
* feat: support loading diffusers format gguf checkpoints.

* update

* update

* qwen

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
2025-08-08 22:27:15 +05:30
YiYi Xu
ccf2c31188 [Modular] Fast Tests (#11937)
* rearrage the params to groups: default params /image params /batch params / callback params

* make style

* add names property to pipeline blocks

* style

* remove more unused func

* prepare_latents_inpaint always return noise and image_latents

* up

* up

* update

* update

* update

* update

* update

* update

* update

* update

---------

Co-authored-by: DN6 <dhruv.nair@gmail.com>
2025-08-08 19:42:13 +05:30
Sayak Paul
7b10e4ae65 [tests] device placement for non-denoiser components in group offloading LoRA tests (#12103)
up
2025-08-08 13:34:29 +05:30
Beinsezii
3c0531bc50 lora_conversion_utils: replace lora up/down with a/b even if transformer. in key (#12101)
lora_conversion_utils: replace lora up/down with a/b even if transformer. in key

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-08-08 11:21:47 +05:30
Sayak Paul
a8e47978c6 [lora] adapt new LoRA config injection method (#11999)
* use state dict when setting up LoRA.

* up

* up

* up

* comment

* up

* up
2025-08-08 09:22:48 +05:30
YiYi Xu
50e18ee698 [qwen] device typo (#12099)
up
2025-08-07 12:27:39 -10:00
DefTruth
4b17fa2a2e fix flux type hint (#12089)
fix-flux-type-hint
2025-08-07 13:00:15 +05:30
dg845
d45199a2f1 Implement Frequency-Decoupled Guidance (FDG) as a Guider (#11976)
* Initial commit implementing frequency-decoupled guidance (FDG) as a guider

* Update FrequencyDecoupledGuidance docstring to describe FDG

* Update project so that it accepts any number of non-batch dims

* Change guidance_scale and other params to accept a list of params for each freq level

* Add comment with Laplacian pyramid shapes

* Add function to import_utils to check if the kornia package is available

* Only import from kornia if package is available

* Fix bug: use pred_cond/uncond in freq space rather than data space

* Allow guidance rescaling to be done in data space or frequency space (speculative)

* Add kornia install instructions to kornia import error message

* Add config to control whether operations are upcast to fp64

* Add parallel_weights recommended values to docstring

* Apply style fixes

* make fix-copies

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-07 11:21:02 +05:30
Sayak Paul
061163142d [tests] tighten compilation tests for quantization (#12002)
* tighten compilation tests for quantization

* up

* up
2025-08-07 10:13:14 +05:30
Dhruv Nair
5780776c8a Make prompt_2 optional in Flux Pipelines (#12073)
* update

* update
2025-08-06 15:40:12 -10:00
Aryan
f19421e27c Helper functions to return skip-layer compatible layers (#12048)
update

Co-authored-by: Álvaro Somoza <asomoza@users.noreply.github.com>
2025-08-06 07:55:16 -10:00
Aryan
69cdc25746 Fix group offloading synchronization bug for parameter-only GroupModule's (#12077)
* update

* update

* refactor

* fuck yeah

* make style

* Update src/diffusers/hooks/group_offloading.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/hooks/group_offloading.py

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-08-06 21:11:00 +05:30
Aryan
cfd6ec7465 [refactor] condense group offloading (#11990)
* update

* update

* refactor

* add test

* address review comment

* nit
2025-08-06 20:01:02 +05:30
jiqing-feng
1082c46afa fix input shape for WanGGUFTexttoVideoSingleFileTests (#12081)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-08-06 14:12:40 +05:30
Isotr0py
ba2ba9019f Add cuda kernel support for GGUF inference (#11869)
* add gguf kernel support

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix

Signed-off-by: Isotr0py <2037008807@qq.com>

* optimize

Signed-off-by: Isotr0py <2037008807@qq.com>

* update

* update

* update

* update

* update

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: DN6 <dhruv.nair@gmail.com>
2025-08-05 21:36:48 +05:30
C
fa4c0e5e2e optimize QwenImagePipeline to reduce unnecessary CUDA synchronization (#12072) 2025-08-05 04:12:47 -10:00
Sayak Paul
b793debd9d [tests] deal with the failing AudioLDM2 tests (#12069)
up
2025-08-05 15:54:25 +05:30
Aryan
377057126c [tests] Fix Qwen test_inference slices (#12070)
update
2025-08-05 14:10:22 +05:30
Sayak Paul
5937e11d85 [docs] small corrections to the example in the Qwen docs (#12068)
* up

* up
2025-08-05 09:47:21 +05:30
Sayak Paul
9c1d4e3be1 [wip] feat: support lora in qwen image and training script (#12056)
* feat: support lora in qwen image and training script

* up

* up

* up

* up

* up

* up

* add lora tests

* fix

* add tests

* fix

* reviewer feedback

* up[

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-05 07:06:02 +05:30
Steven Liu
7ea065c507 [docs] Install (#12026)
* initial

* init
2025-08-04 10:13:36 -07:00
Sayak Paul
7a7a487396 fix the rest for all GPUs in CI (#12064)
fix the rest
2025-08-04 21:03:33 +05:30
Sayak Paul
4efb4db9d0 enable all gpus when running ci. (#12062) 2025-08-04 20:17:34 +05:30
Pauline Bailly-Masson
639fd12a20 CI fixing (#12059)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-08-04 19:09:17 +05:30
naykun
69a9828f4d fix(qwen-image): update vae license (#12063)
* fix(qwen-image):
- update vae license

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-04 17:08:47 +05:30
Samuel Tesfai
11d22e0e80 Cross attention module to Wan Attention (#12058)
* Cross attention module to Wan Attention

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-04 16:35:06 +05:30
Aryan
9a38fab5ae tests + minor refactor for QwenImage (#12057)
* update

* update

* update

* add docs
2025-08-04 16:28:42 +05:30
YiYi Xu
cb8e61ed2f [wan2.2] follow-up (#12024)
* up

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-08-03 23:06:22 -10:00
naykun
8e53cd959e Qwen-Image (#12055)
* (feat): qwen-image integration

* fix(qwen-image):
- remove unused logics related to controlnet/ip-adapter

* fix(qwen-image):
- compatible with attention dispatcher
- cond cache support

* fix(qwen-image):
- cond cache registry
- attention backend argument
- fix copies

* fix(qwen-image):
- remove local test

* Update src/diffusers/models/transformers/transformer_qwenimage.py

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-08-03 08:20:35 -10:00
Tanuj Rai
359b605f4b Update autoencoder_kl_cosmos.py (#12045)
* Update autoencoder_kl_cosmos.py

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-08-02 20:24:01 +05:30
Bernd Doser
6febc08bfc Fix type of force_upcast to bool (#12046) 2025-08-02 19:03:13 +05:30
Sayak Paul
9a2eaed002 [LoRA] support lightx2v lora in wan (#12040)
* support lightx2v lora in wan

* add docsa.

* reviewer feedback

* empty
2025-08-02 11:43:26 +05:30
Philip Brown
0c71189abe Allow SD pipeline to use newer schedulers, eg: FlowMatch (#12015)
Allow SD pipeline to use newer schedulers, eg: FlowMatch,
by skipping attribute that doesnt exist there
(scale_model_input)
 Lines starting
2025-07-31 23:59:40 -10:00
YiYi Xu
58d2b10a2e [wan2.2] fix vae patches (#12041)
up
2025-07-31 23:43:42 -10:00
Sayak Paul
20e0740b88 [training-scripts] Make pytorch examples UV-compatible (#12000)
* add uv dependencies on top of scripts.

* add uv deps.
2025-07-31 22:09:52 +05:30
Álvaro Somoza
9d313fc718 [Fix] huggingface-cli to hf missed files (#12008)
fix
2025-07-30 14:25:43 -04:00
Steven Liu
f83dd5c984 [docs] Update index (#12020)
initial

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-07-30 08:31:01 -07:00
Sayak Paul
c052791b5f [core] support attention backends for LTX (#12021)
* support attention backends for lTX

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

* reviewer feedback.

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-07-30 16:35:11 +05:30
Ömer Karışman
843e3f9346 wan2.2 i2v FirstBlockCache fix (#12013)
* enable caching for WanImageToVideoPipeline

* ruff format
2025-07-30 15:44:53 +05:30
YiYi Xu
d8854b8d54 [wan2.2] add 5b i2v (#12006)
* add 5b ti2v

* remove a copy

* Update src/diffusers/pipelines/wan/pipeline_wan_i2v.py

Co-authored-by: Aryan <aryan@huggingface.co>

* Apply suggestions from code review

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-07-29 17:34:05 -10:00
Steven Liu
327e251b81 [docs] Fix link (#12018)
fix link
2025-07-29 11:45:15 -07:00
Steven Liu
dfa48831e2 [docs] quant_kwargs (#11712)
* draft

* update
2025-07-29 10:23:16 -07:00
Sayak Paul
94df8ef68a [docs] include lora fast post. (#11993)
* include lora fast post.

* include details.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-29 22:36:50 +05:30
Sayak Paul
203dc520a7 [modular] add Modular flux for text-to-image (#11995)
* start flux.

* more

* up

* up

* up

* up

* get back the deleted files.

* up

* empathy
2025-07-29 22:06:39 +05:30
jlonge4
56d4387270 feat: add flux kontext (#11985)
* add flux kontext

* add kontext to img2img

* Apply style fixes
2025-07-29 03:00:34 -04:00
Álvaro Somoza
edcbe8038b Fix huggingface-hub failing tests (#11994)
* login

* more logins

* uploads

* missed login

* another missed login

* downloads

* examples and more logins

* fix

* setup

* Apply style fixes

* fix

* Apply style fixes
2025-07-29 02:34:58 -04:00
Aryan
c02c4a6d27 [refactor] Wan single file implementation (#11918)
* update

* update

* update

* add coauthor

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* improve test

* handle ip adapter params correctly

* fix chroma qkv fusion test

* fix fastercache implementation

* remove set_attention_backend related code

* fix more tests

* fight more tests

* add back set_attention_backend

* update

* update

* make style

* make fix-copies

* make ip adapter processor compatible with attention dispatcher

* refactor chroma as well

* attnetion dispatcher support

* remove transpose; fix rope shape

* remove rmsnorm assert

* minify and deprecate npu/xla processors

* remove rmsnorm assert

* minify and deprecate npu/xla processors

* update

* Update src/diffusers/models/transformers/transformer_wan.py

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-07-29 10:02:56 +05:30
Aryan
6f3ac3050f [refactor] some shared parts between hooks + docs (#11968)
* update

* try test fix

* add missing link

* fix tests

* Update src/diffusers/hooks/first_block_cache.py

* make style
2025-07-29 07:44:02 +05:30
YiYi Xu
a6d9f6a1a9 [WIP] Wan2.2 (#12004)
* support wan 2.2 i2v

* add t2v + vae2.2

* add conversion script for vae 2.2

* add

* add 5b t2v

* conversion script

* refactor out reearrange

* remove a copied from in skyreels

* Apply suggestions from code review

Co-authored-by: bagheera <59658056+bghira@users.noreply.github.com>

* Update src/diffusers/models/transformers/transformer_wan.py

* fix fast tests

* style

---------

Co-authored-by: bagheera <59658056+bghira@users.noreply.github.com>
2025-07-28 11:58:55 -10:00
Yao Matrix
284150449d enable quantcompile test on xpu (#11988)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-07-28 09:58:45 +05:30
Aryan
3d2f8ae99b [compile] logger statements create unnecessary guards during dynamo tracing (#11987)
* update

* update
2025-07-26 00:28:17 +05:30
Aryan
f36ba9f094 [modular diffusers] Wan (#11913)
* update
2025-07-23 06:19:40 -10:00
Sayak Paul
1c50a5f7e0 [tests] enforce torch version in the compilation tests. (#11979)
enforce torch version in the compilation tests.
2025-07-23 19:42:46 +05:30
Sayak Paul
7ae6347e33 [docs] update guidance_scale docstring for guidance_distilled models. (#11935)
* update guidance_scale docstring for guidance_distilled models.

* Update pipeline_flux.py

* Update pipeline_flux_control.py

* Update pipeline_flux_kontext.py

* Update pipeline_flux_kontext_inpaint.py

* Update pipeline_sana_sprint.py

* style

* Update pipeline_hidream_image.py

* Update pipeline_chroma.py

* Update pipeline_chroma_img2img.py

* Update pipeline_hunyuan_video.py

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-07-23 17:49:38 +05:30
Aryan
178d32dedd [tests] Add test slices for Wan (#11920)
* update

* fix wan vace test slice

* test

* fix
2025-07-23 17:23:52 +05:30
YiYi Xu
ef1e628729 fix style (#11975)
up
2025-07-22 10:25:40 -10:00
878 changed files with 39412 additions and 10718 deletions

View File

@@ -25,7 +25,7 @@ jobs:
group: aws-g6e-4xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3

View File

@@ -79,14 +79,14 @@ jobs:
# Check secret is set
- name: whoami
run: huggingface-cli whoami
run: hf auth whoami
env:
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}
# Push to HF! (under subfolder based on checkout ref)
# https://huggingface.co/datasets/diffusers/community-pipelines-mirror
- name: Mirror community pipeline to HF
run: huggingface-cli upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
run: hf upload diffusers/community-pipelines-mirror ./examples/community ${PATH_IN_REPO} --repo-type dataset
env:
PATH_IN_REPO: ${{ env.PATH_IN_REPO }}
HF_TOKEN: ${{ secrets.HF_TOKEN_MIRROR_COMMUNITY_PIPELINES }}

View File

@@ -61,7 +61,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -107,7 +107,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
defaults:
run:
shell: bash
@@ -178,7 +178,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -222,7 +222,7 @@ jobs:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -270,7 +270,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
defaults:
run:
shell: bash
@@ -333,18 +333,21 @@ jobs:
additional_deps: ["peft"]
- backend: "gguf"
test_location: "gguf"
additional_deps: ["peft"]
additional_deps: ["peft", "kernels"]
- backend: "torchao"
test_location: "torchao"
additional_deps: []
- backend: "optimum_quanto"
test_location: "quanto"
additional_deps: []
- backend: "nvidia_modelopt"
test_location: "modelopt"
additional_deps: []
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
options: --shm-size "20gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -396,7 +399,7 @@ jobs:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
options: --shm-size "20gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3

View File

@@ -1,38 +0,0 @@
name: Run Flax dependency tests
on:
pull_request:
branches:
- main
paths:
- "src/diffusers/**.py"
push:
branches:
- main
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
check_flax_dependencies:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install "jax[cpu]>=0.2.16,!=0.3.2"
python -m uv pip install "flax>=0.4.1"
python -m uv pip install "jaxlib>=0.1.65"
python -m uv pip install pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pytest tests/others/test_dependencies.py

141
.github/workflows/pr_modular_tests.yml vendored Normal file
View File

@@ -0,0 +1,141 @@
name: Fast PR tests for Modular
on:
pull_request:
branches: [main]
paths:
- "src/diffusers/modular_pipelines/**.py"
- "src/diffusers/models/modeling_utils.py"
- "src/diffusers/models/model_loading_utils.py"
- "src/diffusers/pipelines/pipeline_utils.py"
- "src/diffusers/pipeline_loading_utils.py"
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/modular_pipelines/**.py"
- ".github/**.yml"
- "utils/**.py"
- "setup.py"
push:
branches:
- ci-*
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
HF_HUB_ENABLE_HF_TRANSFER: 1
OMP_NUM_THREADS: 4
MKL_NUM_THREADS: 4
PYTEST_TIMEOUT: 60
jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
run_fast_tests:
needs: [check_code_quality, check_repository_consistency]
strategy:
fail-fast: false
matrix:
config:
- name: Fast PyTorch Modular Pipeline CPU tests
framework: pytorch_pipelines
runner: aws-highmemory-32-plus
image: diffusers/diffusers-pytorch-cpu
report: torch_cpu_modular_pipelines
name: ${{ matrix.config.name }}
runs-on:
group: ${{ matrix.config.runner }}
container:
image: ${{ matrix.config.image }}
options: --shm-size "16gb" --ipc host -v /mnt/hf_cache:/mnt/cache/
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run fast PyTorch Pipeline CPU tests
if: ${{ matrix.config.framework == 'pytorch_pipelines' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_${{ matrix.config.report }} \
tests/modular_pipelines
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_${{ matrix.config.report }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pr_${{ matrix.config.framework }}_${{ matrix.config.report }}_test_reports
path: reports

View File

@@ -118,7 +118,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -183,7 +183,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
defaults:
run:
shell: bash
@@ -253,7 +253,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3

View File

@@ -64,7 +64,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -109,7 +109,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
defaults:
run:
shell: bash
@@ -167,7 +167,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -210,7 +210,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -252,7 +252,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3

View File

@@ -62,7 +62,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -107,7 +107,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
defaults:
run:
shell: bash
@@ -163,7 +163,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
options: --shm-size "16gb" --ipc host --gpus all
defaults:
run:
shell: bash
@@ -222,7 +222,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -265,7 +265,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-xformers-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
@@ -307,7 +307,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
options: --gpus all --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers

View File

@@ -30,7 +30,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: ${{ github.event.inputs.docker_image }}
options: --gpus 0 --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
options: --gpus all --privileged --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Validate test files input

View File

@@ -31,7 +31,7 @@ jobs:
group: "${{ github.event.inputs.runner_type }}"
container:
image: ${{ github.event.inputs.docker_image }}
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus 0 --privileged
options: --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface/diffusers:/mnt/cache/ --gpus all --privileged
steps:
- name: Checkout diffusers

View File

@@ -37,7 +37,7 @@ limitations under the License.
## Installation
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/), please refer to their official documentation.
### PyTorch
@@ -53,14 +53,6 @@ With `conda` (maintained by the community):
conda install -c conda-forge diffusers
```
### Flax
With `pip` (official package):
```bash
pip install --upgrade diffusers[flax]
```
### Apple Silicon (M1/M2) support
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide.

View File

@@ -31,7 +31,7 @@ pip install -r requirements.txt
We need to be authenticated to access some of the checkpoints used during benchmarking:
```sh
huggingface-cli login
hf auth login
```
We use an L40 GPU with 128GB RAM to run the benchmark CI. As such, the benchmarks are configured to run on NVIDIA GPUs. So, make sure you have access to a similar machine (or modify the benchmarking scripts accordingly).

View File

@@ -1,49 +0,0 @@
FROM ubuntu:20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --upgrade --no-cache-dir \
clu \
"jax[cpu]>=0.2.16,!=0.3.2" \
"flax>=0.4.1" \
"jaxlib>=0.1.65" && \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -1,51 +0,0 @@
FROM ubuntu:20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m pip install --no-cache-dir \
"jax[tpu]>=0.2.16,!=0.3.2" \
-f https://storage.googleapis.com/jax-releases/libtpu_releases.html && \
python3 -m uv pip install --upgrade --no-cache-dir \
clu \
"flax>=0.4.1" \
"jaxlib>=0.1.65" && \
python3 -m uv pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -5,31 +5,33 @@
- local: installation
title: Installation
- local: quicktour
title: Quicktour
title: Quickstart
- local: stable_diffusion
title: Effective and efficient diffusion
title: Basic performance
- title: DiffusionPipeline
- title: Pipelines
isExpanded: false
sections:
- local: using-diffusers/loading
title: Load pipelines
title: DiffusionPipeline
- local: tutorials/autopipeline
title: AutoPipeline
- local: using-diffusers/custom_pipeline_overview
title: Load community pipelines and components
title: Community pipelines and components
- local: using-diffusers/callback
title: Pipeline callbacks
- local: using-diffusers/reusing_seeds
title: Reproducible pipelines
title: Reproducibility
- local: using-diffusers/schedulers
title: Load schedulers and models
- local: using-diffusers/models
title: Models
- local: using-diffusers/scheduler_features
title: Scheduler features
- local: using-diffusers/other-formats
title: Model files and layouts
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Sharing pipelines and models
- title: Adapters
isExpanded: false
@@ -58,14 +60,6 @@
title: Batch inference
- local: training/distributed_inference
title: Distributed inference
- local: using-diffusers/scheduler_features
title: Scheduler features
- local: using-diffusers/callback
title: Pipeline callbacks
- local: using-diffusers/reusing_seeds
title: Reproducible pipelines
- local: using-diffusers/image_quality
title: Controlling image quality
- title: Inference optimization
isExpanded: false
@@ -77,7 +71,7 @@
- local: optimization/memory
title: Reduce memory usage
- local: optimization/speed-memory-optims
title: Compile and offloading quantized models
title: Compiling and offloading quantized models
- title: Community optimizations
sections:
- local: optimization/pruna
@@ -94,6 +88,8 @@
title: xDiT
- local: optimization/para_attn
title: ParaAttention
- local: using-diffusers/image_quality
title: FreeU
- title: Hybrid Inference
isExpanded: false
@@ -112,22 +108,24 @@
sections:
- local: modular_diffusers/overview
title: Overview
- local: modular_diffusers/modular_pipeline
title: Modular Pipeline
- local: modular_diffusers/components_manager
title: Components Manager
- local: modular_diffusers/quickstart
title: Quickstart
- local: modular_diffusers/modular_diffusers_states
title: Modular Diffusers States
title: States
- local: modular_diffusers/pipeline_block
title: Pipeline Block
title: ModularPipelineBlocks
- local: modular_diffusers/sequential_pipeline_blocks
title: Sequential Pipeline Blocks
title: SequentialPipelineBlocks
- local: modular_diffusers/loop_sequential_pipeline_blocks
title: Loop Sequential Pipeline Blocks
title: LoopSequentialPipelineBlocks
- local: modular_diffusers/auto_pipeline_blocks
title: Auto Pipeline Blocks
- local: modular_diffusers/end_to_end_guide
title: End-to-End Example
title: AutoPipelineBlocks
- local: modular_diffusers/modular_pipeline
title: ModularPipeline
- local: modular_diffusers/components_manager
title: ComponentsManager
- local: modular_diffusers/guiders
title: Guiders
- title: Training
isExpanded: false
@@ -179,7 +177,7 @@
isExpanded: false
sections:
- local: quantization/overview
title: Getting Started
title: Getting started
- local: quantization/bitsandbytes
title: bitsandbytes
- local: quantization/gguf
@@ -188,12 +186,12 @@
title: torchao
- local: quantization/quanto
title: quanto
- local: quantization/modelopt
title: NVIDIA ModelOpt
- title: Model accelerators and hardware
isExpanded: false
sections:
- local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax
- local: optimization/onnx
title: ONNX
- local: optimization/open_vino
@@ -282,6 +280,18 @@
title: Outputs
- local: api/quantization
title: Quantization
- title: Modular
sections:
- local: api/modular_diffusers/pipeline
title: Pipeline
- local: api/modular_diffusers/pipeline_blocks
title: Blocks
- local: api/modular_diffusers/pipeline_states
title: States
- local: api/modular_diffusers/pipeline_components
title: Components and configs
- local: api/modular_diffusers/guiders
title: Guiders
- title: Loaders
sections:
- local: api/loaders/ip_adapter
@@ -326,6 +336,8 @@
title: AllegroTransformer3DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/bria_transformer
title: BriaTransformer2DModel
- local: api/models/chroma_transformer
title: ChromaTransformer2DModel
- local: api/models/cogvideox_transformer3d
@@ -366,6 +378,8 @@
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/qwenimage_transformer2d
title: QwenImageTransformer2DModel
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/sd3_transformer2d
@@ -418,6 +432,8 @@
title: AutoencoderKLMagvit
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/autoencoderkl_qwenimage
title: AutoencoderKLQwenImage
- local: api/models/autoencoder_kl_wan
title: AutoencoderKLWan
- local: api/models/consistency_decoder_vae
@@ -450,6 +466,8 @@
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/bria_3_2
title: Bria 3.2
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogvideox
@@ -554,6 +572,8 @@
title: PixArt-α
- local: api/pipelines/pixart_sigma
title: PixArt-Σ
- local: api/pipelines/qwenimage
title: QwenImage
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/sana_sprint

View File

@@ -16,7 +16,7 @@ Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from
<Tip>
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf auth login`.
</Tip>

View File

@@ -30,6 +30,7 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen)
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
<Tip>
@@ -105,6 +106,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
## QwenImageLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.QwenImageLoraLoaderMixin
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin

View File

@@ -44,15 +44,3 @@ model = AutoencoderKL.from_single_file(url)
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput
## FlaxAutoencoderKL
[[autodoc]] FlaxAutoencoderKL
## FlaxAutoencoderKLOutput
[[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput
## FlaxDecoderOutput
[[autodoc]] models.vae_flax.FlaxDecoderOutput

View File

@@ -0,0 +1,35 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLQwenImage
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLQwenImage
vae = AutoencoderKLQwenImage.from_pretrained("Qwen/QwenImage-20B", subfolder="vae")
```
## AutoencoderKLQwenImage
[[autodoc]] AutoencoderKLQwenImage
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -0,0 +1,19 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# BriaTransformer2DModel
A modified flux Transformer model from [Bria](https://huggingface.co/briaai/BRIA-3.2)
## BriaTransformer2DModel
[[autodoc]] BriaTransformer2DModel

View File

@@ -40,11 +40,3 @@ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=contro
## ControlNetOutput
[[autodoc]] models.controlnets.controlnet.ControlNetOutput
## FlaxControlNetModel
[[autodoc]] FlaxControlNetModel
## FlaxControlNetOutput
[[autodoc]] models.controlnets.controlnet_flax.FlaxControlNetOutput

View File

@@ -19,10 +19,6 @@ All models are built from the base [`ModelMixin`] class which is a [`torch.nn.Mo
## ModelMixin
[[autodoc]] ModelMixin
## FlaxModelMixin
[[autodoc]] FlaxModelMixin
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin

View File

@@ -0,0 +1,28 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# QwenImageTransformer2DModel
The model can be loaded with the following code snippet.
```python
from diffusers import QwenImageTransformer2DModel
transformer = QwenImageTransformer2DModel.from_pretrained("Qwen/QwenImage-20B", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## QwenImageTransformer2DModel
[[autodoc]] QwenImageTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -23,9 +23,3 @@ The abstract from the paper is:
## UNet2DConditionOutput
[[autodoc]] models.unets.unet_2d_condition.UNet2DConditionOutput
## FlaxUNet2DConditionModel
[[autodoc]] models.unets.unet_2d_condition_flax.FlaxUNet2DConditionModel
## FlaxUNet2DConditionOutput
[[autodoc]] models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput

View File

@@ -0,0 +1,39 @@
# Guiders
Guiders are components in Modular Diffusers that control how the diffusion process is guided during generation. They implement various guidance techniques to improve generation quality and control.
## BaseGuidance
[[autodoc]] diffusers.guiders.guider_utils.BaseGuidance
## ClassifierFreeGuidance
[[autodoc]] diffusers.guiders.classifier_free_guidance.ClassifierFreeGuidance
## ClassifierFreeZeroStarGuidance
[[autodoc]] diffusers.guiders.classifier_free_zero_star_guidance.ClassifierFreeZeroStarGuidance
## SkipLayerGuidance
[[autodoc]] diffusers.guiders.skip_layer_guidance.SkipLayerGuidance
## SmoothedEnergyGuidance
[[autodoc]] diffusers.guiders.smoothed_energy_guidance.SmoothedEnergyGuidance
## PerturbedAttentionGuidance
[[autodoc]] diffusers.guiders.perturbed_attention_guidance.PerturbedAttentionGuidance
## AdaptiveProjectedGuidance
[[autodoc]] diffusers.guiders.adaptive_projected_guidance.AdaptiveProjectedGuidance
## AutoGuidance
[[autodoc]] diffusers.guiders.auto_guidance.AutoGuidance
## TangentialClassifierFreeGuidance
[[autodoc]] diffusers.guiders.tangential_classifier_free_guidance.TangentialClassifierFreeGuidance

View File

@@ -0,0 +1,5 @@
# Pipeline
## ModularPipeline
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.ModularPipeline

View File

@@ -0,0 +1,17 @@
# Pipeline blocks
## ModularPipelineBlocks
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.ModularPipelineBlocks
## SequentialPipelineBlocks
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.SequentialPipelineBlocks
## LoopSequentialPipelineBlocks
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.LoopSequentialPipelineBlocks
## AutoPipelineBlocks
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.AutoPipelineBlocks

View File

@@ -0,0 +1,17 @@
# Components and configs
## ComponentSpec
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.ComponentSpec
## ConfigSpec
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.ConfigSpec
## ComponentsManager
[[autodoc]] diffusers.modular_pipelines.components_manager.ComponentsManager
## InsertableDict
[[autodoc]] diffusers.modular_pipelines.modular_pipeline_utils.InsertableDict

View File

@@ -0,0 +1,9 @@
# Pipeline states
## PipelineState
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.PipelineState
## BlockState
[[autodoc]] diffusers.modular_pipelines.modular_pipeline.BlockState

View File

@@ -54,10 +54,6 @@ To check a specific pipeline or model output, refer to its corresponding API doc
[[autodoc]] pipelines.ImagePipelineOutput
## FlaxImagePipelineOutput
[[autodoc]] pipelines.pipeline_flax_utils.FlaxImagePipelineOutput
## AudioPipelineOutput
[[autodoc]] pipelines.AudioPipelineOutput

View File

@@ -0,0 +1,44 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Bria 3.2
Bria 3.2 is the next-generation commercial-ready text-to-image model. With just 4 billion parameters, it provides exceptional aesthetics and text rendering, evaluated to provide on par results to leading open-source models, and outperforming other licensed models.
In addition to being built entirely on licensed data, 3.2 provides several advantages for enterprise and commercial use:
- Efficient Compute - the model is X3 smaller than the equivalent models in the market (4B parameters vs 12B parameters other open source models)
- Architecture Consistency: Same architecture as 3.1—ideal for users looking to upgrade without disruption.
- Fine-tuning Speedup: 2x faster fine-tuning on L40S and A100.
Original model checkpoints for Bria 3.2 can be found [here](https://huggingface.co/briaai/BRIA-3.2).
Github repo for Bria 3.2 can be found [here](https://github.com/Bria-AI/BRIA-3.2).
If you want to learn more about the Bria platform, and get free traril access, please visit [bria.ai](https://bria.ai).
## Usage
_As the model is gated, before using it with diffusers you first need to go to the [Bria 3.2 Hugging Face page](https://huggingface.co/briaai/BRIA-3.2), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
```bash
hf auth login
```
## BriaPipeline
[[autodoc]] BriaPipeline
- all
- __call__

View File

@@ -72,11 +72,3 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## FlaxStableDiffusionControlNetPipeline
[[autodoc]] FlaxStableDiffusionControlNetPipeline
- all
- __call__
## FlaxStableDiffusionControlNetPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -25,6 +25,8 @@ Original model checkpoints for Flux can be found [here](https://huggingface.co/b
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out [this section](https://huggingface.co/blog/sd3#memory-optimizations-for-sd3) for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to [this blog post](https://huggingface.co/blog/quanto-diffusers) to learn more. For an exhaustive list of resources, check out [this gist](https://gist.github.com/sayakpaul/b664605caf0aa3bf8585ab109dd5ac9c).
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
</Tip>
Flux comes in the following variants:
@@ -314,6 +316,67 @@ if integrity_checker.test_image(image_):
raise ValueError("Your image has been flagged. Choose another prompt/image or try again.")
```
### Kontext Inpainting
`FluxKontextInpaintPipeline` enables image modification within a fixed mask region. It currently supports both text-based conditioning and image-reference conditioning.
<hfoptions id="kontext-inpaint">
<hfoption id="text-only">
```python
import torch
from diffusers import FluxKontextInpaintPipeline
from diffusers.utils import load_image
prompt = "Change the yellow dinosaur to green one"
img_url = (
"https://github.com/ZenAI-Vietnam/Flux-Kontext-pipelines/blob/main/assets/dinosaur_input.jpeg?raw=true"
)
mask_url = (
"https://github.com/ZenAI-Vietnam/Flux-Kontext-pipelines/blob/main/assets/dinosaur_mask.png?raw=true"
)
source = load_image(img_url)
mask = load_image(mask_url)
pipe = FluxKontextInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
)
pipe.to("cuda")
image = pipe(prompt=prompt, image=source, mask_image=mask, strength=1.0).images[0]
image.save("kontext_inpainting_normal.png")
```
</hfoption>
<hfoption id="image conditioning">
```python
import torch
from diffusers import FluxKontextInpaintPipeline
from diffusers.utils import load_image
pipe = FluxKontextInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
)
pipe.to("cuda")
prompt = "Replace this ball"
img_url = "https://images.pexels.com/photos/39362/the-ball-stadion-football-the-pitch-39362.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500"
mask_url = "https://github.com/ZenAI-Vietnam/Flux-Kontext-pipelines/blob/main/assets/ball_mask.png?raw=true"
image_reference_url = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTah3x6OL_ECMBaZ5ZlJJhNsyC-OSMLWAI-xw&s"
source = load_image(img_url)
mask = load_image(mask_url)
image_reference = load_image(image_reference_url)
mask = pipe.mask_processor.blur(mask, blur_factor=12)
image = pipe(
prompt=prompt, image=source, mask_image=mask, image_reference=image_reference, strength=1.0
).images[0]
image.save("kontext_inpainting_ref.png")
```
</hfoption>
</hfoptions>
## Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux
We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps' inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).
@@ -644,3 +707,15 @@ image.save("flux-fp8-dev.png")
[[autodoc]] FluxFillPipeline
- all
- __call__
## FluxKontextPipeline
[[autodoc]] FluxKontextPipeline
- all
- __call__
## FluxKontextInpaintPipeline
[[autodoc]] FluxKontextInpaintPipeline
- all
- __call__

View File

@@ -18,7 +18,7 @@
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
</Tip>

View File

@@ -88,7 +88,7 @@ export_to_video(video, "output.mp4", fps=24)
</hfoption>
<hfoption id="inference speed">
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster. [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
```py
import torch

View File

@@ -37,6 +37,7 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
| [AudioLDM2](audioldm2) | text2audio |
| [AuraFlow](auraflow) | text2image |
| [BLIP Diffusion](blip_diffusion) | text2image |
| [Bria 3.2](bria_3_2) | text2image |
| [CogVideoX](cogvideox) | text2video |
| [Consistency Models](consistency_models) | unconditional image generation |
| [ControlNet](controlnet) | text2image, image2image, inpainting |
@@ -105,10 +106,20 @@ The table below lists all the pipelines currently available in 🤗 Diffusers an
[[autodoc]] pipelines.StableDiffusionMixin.disable_freeu
## FlaxDiffusionPipeline
[[autodoc]] pipelines.pipeline_flax_utils.FlaxDiffusionPipeline
## PushToHubMixin
[[autodoc]] utils.PushToHubMixin
## Callbacks
[[autodoc]] callbacks.PipelineCallback
[[autodoc]] callbacks.SDCFGCutoffCallback
[[autodoc]] callbacks.SDXLCFGCutoffCallback
[[autodoc]] callbacks.SDXLControlnetCFGCutoffCallback
[[autodoc]] callbacks.IPAdapterScaleCutoffCallback
[[autodoc]] callbacks.SD3CFGCutoffCallback

View File

@@ -0,0 +1,135 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
# QwenImage
<div class="flex flex-wrap space-x-1">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</div>
Qwen-Image from the Qwen team is an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.
Qwen-Image comes in the following variants:
| model type | model id |
|:----------:|:--------:|
| Qwen-Image | [`Qwen/Qwen-Image`](https://huggingface.co/Qwen/Qwen-Image) |
| Qwen-Image-Edit | [`Qwen/Qwen-Image-Edit`](https://huggingface.co/Qwen/Qwen-Image-Edit) |
<Tip>
[Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
</Tip>
## LoRA for faster inference
Use a LoRA from `lightx2v/Qwen-Image-Lightning` to speed up inference by reducing the
number of steps. Refer to the code snippet below:
<details>
<summary>Code</summary>
```py
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
import torch
import math
ckpt_id = "Qwen/Qwen-Image"
# From
# https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3), # We use shift=3 in distillation
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3), # We use shift=3 in distillation
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None, # set shift_terminal to None
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = DiffusionPipeline.from_pretrained(
ckpt_id, scheduler=scheduler, torch_dtype=torch.bfloat16
).to("cuda")
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors"
)
prompt = "a tiny astronaut hatching from an egg on the moon, Ultra HD, 4K, cinematic composition."
negative_prompt = " "
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=1024,
height=1024,
num_inference_steps=8,
true_cfg_scale=1.0,
generator=torch.manual_seed(0),
).images[0]
image.save("qwen_fewsteps.png")
```
</details>
<Tip>
The `guidance_scale` parameter in the pipeline is there to support future guidance-distilled models when they come up. Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance, please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should enable classifier-free guidance computations.
</Tip>
## QwenImagePipeline
[[autodoc]] QwenImagePipeline
- all
- __call__
## QwenImageImg2ImgPipeline
[[autodoc]] QwenImageImg2ImgPipeline
- all
- __call__
## QwenImageInpaintPipeline
[[autodoc]] QwenImageInpaintPipeline
- all
- __call__
## QwenImageEditPipeline
[[autodoc]] QwenImageEditPipeline
- all
- __call__
## QwenImageEditInpaintPipeline
[[autodoc]] QwenImageEditInpaintPipeline
- all
- __call__
## QwenImaggeControlNetPipeline
- all
- __call__
## QwenImagePipelineOutput
[[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -22,7 +22,7 @@
# SkyReels-V2: Infinite-length Film Generative model
[SkyReels-V2](https://huggingface.co/papers/2504.13074) by the SkyReels Team.
[SkyReels-V2](https://huggingface.co/papers/2504.13074) by the SkyReels Team from Skywork AI.
*Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at [this https URL](https://github.com/SkyworkAI/SkyReels-V2).*
@@ -44,93 +44,113 @@ The following SkyReels-V2 models are supported in Diffusers:
### A _Visual_ Demonstration
An example with these parameters:
base_num_frames=97, num_frames=97, num_inference_steps=30, ar_step=5, causal_block_size=5
The example below has the following parameters:
vae_scale_factor_temporal -> 4
num_latent_frames: (97-1)//vae_scale_factor_temporal+1 = 25 frames -> 5 blocks of 5 frames each
- `base_num_frames=97`
- `num_frames=97`
- `num_inference_steps=30`
- `ar_step=5`
- `causal_block_size=5`
base_num_latent_frames = (97-1)//vae_scale_factor_temporal+1 = 25 → blocks = 25//5 = 5 blocks
This 5 blocks means the maximum context length of the model is 25 frames in the latent space.
With `vae_scale_factor_temporal=4`, expect `5` blocks of `5` frames each as calculated by:
Asynchronous Processing Timeline:
┌─────────────────────────────────────────────────────────────────┐
│ Steps: 1 6 11 16 21 26 31 36 41 46 50 │
│ Block 1: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 2: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 3: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 4: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 5: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└─────────────────────────────────────────────────────────────────┘
`num_latent_frames: (97-1)//vae_scale_factor_temporal+1 = 25 frames -> 5 blocks of 5 frames each`
For Long Videos (num_frames > base_num_frames):
base_num_frames acts as the "sliding window size" for processing long videos.
And the maximum context length in the latent space is calculated with `base_num_latent_frames`:
Example: 257-frame video with base_num_frames=97, overlap_history=17
┌──── Iteration 1 (frames 1-97) ────┐
│ Processing window: 97 frames │ → 5 blocks, async processing
│ Generates: frames 1-97 │
└───────────────────────────────────┘
┌────── Iteration 2 (frames 81-177) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (81-97) from prev │ → 5 blocks, async processing
│ Generates: frames 98-177 │
└─────────────────────────────────────────┘
┌────── Iteration 3 (frames 161-257) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (161-177) from prev │ → 5 blocks, async processing
│ Generates: frames 178-257 │
└──────────────────────────────────────────┘
`base_num_latent_frames = (97-1)//vae_scale_factor_temporal+1 = 25 -> 25//5 = 5 blocks`
Each iteration independently runs the asynchronous processing with its own 5 blocks.
base_num_frames controls:
1. Memory usage (larger window = more VRAM)
2. Model context length (must match training constraints)
3. Number of blocks per iteration (base_num_latent_frames // causal_block_size)
Asynchronous Processing Timeline:
```text
┌─────────────────────────────────────────────────────────────────┐
│ Steps: 1 6 11 16 21 26 31 36 41 46 50 │
│ Block 1: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 2: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 3: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 4: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
│ Block 5: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└─────────────────────────────────────────────────────────────────┘
```
Each block takes 30 steps to complete denoising.
Block N starts at step: 1 + (N-1) x ar_step
Total steps: 30 + (5-1) x 5 = 50 steps
For Long Videos (`num_frames` > `base_num_frames`):
`base_num_frames` acts as the "sliding window size" for processing long videos.
Example: `257`-frame video with `base_num_frames=97`, `overlap_history=17`
```text
┌──── Iteration 1 (frames 1-97) ────┐
│ Processing window: 97 frames │ → 5 blocks,
│ Generates: frames 1-97 │ async processing
└───────────────────────────────────┘
┌────── Iteration 2 (frames 81-177) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (81-97) from prev │ → 5 blocks,
│ Generates: frames 98-177 │ async processing
└─────────────────────────────────────────┘
┌────── Iteration 3 (frames 161-257) ──────┐
│ Processing window: 97 frames │
│ Overlap: 17 frames (161-177) from prev │ → 5 blocks,
│ Generates: frames 178-257 │ async processing
└──────────────────────────────────────────┘
```
Each iteration independently runs the asynchronous processing with its own `5` blocks.
`base_num_frames` controls:
1. Memory usage (larger window = more VRAM)
2. Model context length (must match training constraints)
3. Number of blocks per iteration (`base_num_latent_frames // causal_block_size`)
Each block takes `30` steps to complete denoising.
Block N starts at step: `1 + (N-1) x ar_step`
Total steps: `30 + (5-1) x 5 = 50` steps
Synchronous mode (ar_step=0) would process all blocks/frames simultaneously:
┌──────────────────────────────────────────────┐
│ Steps: 1 ... 30 │
│ All blocks: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■]
└──────────────────────────────────────────────┘
Total steps: 30 steps
Synchronous mode (`ar_step=0`) would process all blocks/frames simultaneously:
```text
┌──────────────────────────────────────────────┐
│ Steps: 1 ... 30
│ All blocks: [■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■] │
└──────────────────────────────────────────────┘
```
Total steps: `30` steps
An example on how the step matrix is constructed for asynchronous processing:
Given the parameters: (num_inference_steps=30, flow_shift=8, num_frames=97, ar_step=5, causal_block_size=5)
- num_latent_frames = (97 frames - 1) // (4 temporal downsampling) + 1 = 25
- step_template = [999, 995, 991, 986, 980, 975, 969, 963, 956, 948,
941, 932, 922, 912, 901, 888, 874, 859, 841, 822,
799, 773, 743, 708, 666, 615, 551, 470, 363, 216]
An example on how the step matrix is constructed for asynchronous processing:
Given the parameters: (`num_inference_steps=30, flow_shift=8, num_frames=97, ar_step=5, causal_block_size=5`)
```
- num_latent_frames = (97 frames - 1) // (4 temporal downsampling) + 1 = 25
- step_template = [999, 995, 991, 986, 980, 975, 969, 963, 956, 948,
941, 932, 922, 912, 901, 888, 874, 859, 841, 822,
799, 773, 743, 708, 666, 615, 551, 470, 363, 216]
```
The algorithm creates a 50x25 step_matrix where:
- Row 1: [999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999]
- Row 2: [995, 995, 995, 995, 995, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999]
- Row 3: [991, 991, 991, 991, 991, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999]
- ...
- Row 7: [969, 969, 969, 969, 969, 995, 995, 995, 995, 995, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999, 999]
- ...
- Row 21: [799, 799, 799, 799, 799, 888, 888, 888, 888, 888, 941, 941, 941, 941, 941, 975, 975, 975, 975, 975, 999, 999, 999, 999, 999]
- ...
- Row 35: [ 0, 0, 0, 0, 0, 216, 216, 216, 216, 216, 666, 666, 666, 666, 666, 822, 822, 822, 822, 822, 901, 901, 901, 901, 901]
- ...
- Row 42: [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 551, 551, 551, 551, 551, 773, 773, 773, 773, 773]
- ...
- Row 50: [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 216, 216, 216, 216, 216]
The algorithm creates a `50x25` `step_matrix` where:
```
- Row 1: [999×5, 999×5, 999×5, 999×5, 999×5]
- Row 2: [995×5, 999×5, 999×5, 999×5, 999×5]
- Row 3: [991×5, 999×5, 999×5, 999×5, 999×5]
- ...
- Row 7: [969×5, 995×5, 999×5, 999×5, 999×5]
- ...
- Row 21: [799×5, 888×5, 941×5, 975×5, 999×5]
- ...
- Row 35: [ 0×5, 216×5, 666×5, 822×5, 901×5]
- ...
- Row 42: [ 0×5, 0×5, 0×5, 551×5, 773×5]
- ...
- Row 50: [ 0×5, 0×5, 0×5, 0×5, 216×5]
```
Detailed Row 6 Analysis:
- step_matrix[5]: [ 975, 975, 975, 975, 975, 999, 999, 999, 999, 999, 999, ..., 999]
- step_index[5]: [ 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 0, ..., 0]
- step_update_mask[5]: [True,True,True,True,True,True,True,True,True,True,False, ...,False]
- valid_interval[5]: (0, 25)
Detailed Row `6` Analysis:
```
- step_matrix[5]: [ 975×5, 999×5, 999×5, 999×5, 999×5]
- step_index[5]: [ 6×5, 1×5, 0×5, 0×5, 0×5]
- step_update_mask[5]: [True×5, True×5, False×5, False×5, False×5]
- valid_interval[5]: (0, 25)
```
Key Pattern: Block `i` lags behind Block `i-1` by exactly `ar_step=5` timesteps, creating the
staggered "diffusion forcing" effect where later blocks condition on cleaner earlier blocks.
Key Pattern: Block i lags behind Block i-1 by exactly ar_step=5 timesteps, creating the
staggered "diffusion forcing" effect where later blocks condition on cleaner earlier blocks.
### Text-to-Video Generation
@@ -145,23 +165,22 @@ From the original repo:
>You can use --ar_step 5 to enable asynchronous inference. When asynchronous inference, --causal_block_size 5 is recommended while it is not supposed to be set for synchronous generation... Asynchronous inference will take more steps to diffuse the whole sequence which means it will be SLOWER than synchronous mode. In our experiments, asynchronous inference may improve the instruction following and visual consistent performance.
```py
# pip install ftfy
import torch
from diffusers import AutoModel, SkyReelsV2DiffusionForcingPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
vae = AutoModel.from_pretrained("Skywork/SkyReels-V2-DF-14B-540P-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Skywork/SkyReels-V2-DF-14B-540P-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
model_id = "Skywork/SkyReels-V2-DF-1.3B-540P-Diffusers"
vae = AutoModel.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipeline = SkyReelsV2DiffusionForcingPipeline.from_pretrained(
"Skywork/SkyReels-V2-DF-14B-540P-Diffusers",
model_id,
vae=vae,
transformer=transformer,
torch_dtype=torch.bfloat16
torch_dtype=torch.bfloat16,
)
pipeline.to("cuda")
flow_shift = 8.0 # 8.0 for T2V, 5.0 for I2V
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config, flow_shift=flow_shift)
pipeline = pipeline.to("cuda")
prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
@@ -177,7 +196,7 @@ output = pipeline(
overlap_history=None, # Number of frames to overlap for smooth transitions in long videos; 17 for long video generations
addnoise_condition=20, # Improves consistency in long video generation
).frames[0]
export_to_video(output, "T2V.mp4", fps=24, quality=8)
export_to_video(output, "video.mp4", fps=24, quality=8)
```
</hfoption>
@@ -198,14 +217,14 @@ from diffusers import AutoencoderKLWan, SkyReelsV2DiffusionForcingImageToVideoPi
from diffusers.utils import export_to_video, load_image
model_id = "Skywork/SkyReels-V2-DF-14B-720P-Diffusers"
model_id = "Skywork/SkyReels-V2-DF-1.3B-720P-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipeline = SkyReelsV2DiffusionForcingImageToVideoPipeline.from_pretrained(
model_id, vae=vae, torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
flow_shift = 5.0 # 8.0 for T2V, 5.0 for I2V
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config, flow_shift=flow_shift)
pipeline.to("cuda")
first_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png")
last_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png")
@@ -239,7 +258,7 @@ prompt = "CG animation style, a small blue bird takes off from the ground, flapp
output = pipeline(
image=first_frame, last_image=last_frame, prompt=prompt, height=height, width=width, guidance_scale=5.0
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=8)
export_to_video(output, "video.mp4", fps=24, quality=8)
```
</hfoption>
@@ -261,75 +280,35 @@ from diffusers import AutoencoderKLWan, SkyReelsV2DiffusionForcingVideoToVideoPi
from diffusers.utils import export_to_video, load_video
model_id = "Skywork/SkyReels-V2-DF-14B-540P-Diffusers"
model_id = "Skywork/SkyReels-V2-DF-1.3B-720P-Diffusers"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipeline = SkyReelsV2DiffusionForcingVideoToVideoPipeline.from_pretrained(
model_id, vae=vae, torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
flow_shift = 5.0 # 8.0 for T2V, 5.0 for I2V
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config, flow_shift=flow_shift)
pipeline.to("cuda")
video = load_video("input_video.mp4")
prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
output = pipeline(
video=video, prompt=prompt, height=544, width=960, guidance_scale=5.0,
num_inference_steps=30, num_frames=257, base_num_frames=97#, ar_step=5, causal_block_size=5,
video=video, prompt=prompt, height=720, width=1280, guidance_scale=5.0, overlap_history=17,
num_inference_steps=30, num_frames=257, base_num_frames=121#, ar_step=5, causal_block_size=5,
).frames[0]
export_to_video(output, "output.mp4", fps=24, quality=8)
# Total frames will be the number of frames of given video + 257
export_to_video(output, "video.mp4", fps=24, quality=8)
# Total frames will be the number of frames of the given video + 257
```
</hfoption>
</hfoptions>
## Notes
- SkyReels-V2 supports LoRAs with [`~loaders.SkyReelsV2LoraLoaderMixin.load_lora_weights`].
<details>
<summary>Show example code</summary>
```py
# pip install ftfy
import torch
from diffusers import AutoModel, SkyReelsV2DiffusionForcingPipeline
from diffusers.utils import export_to_video
vae = AutoModel.from_pretrained(
"Skywork/SkyReels-V2-DF-1.3B-540P-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
pipeline = SkyReelsV2DiffusionForcingPipeline.from_pretrained(
"Skywork/SkyReels-V2-DF-1.3B-540P-Diffusers", vae=vae, torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
pipeline.load_lora_weights("benjamin-paine/steamboat-willie-1.3b", adapter_name="steamboat-willie")
pipeline.set_adapters("steamboat-willie")
pipeline.enable_model_cpu_offload()
# use "steamboat willie style" to trigger the LoRA
prompt = """
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
output = pipeline(
prompt=prompt,
num_frames=97,
guidance_scale=6.0,
).frames[0]
export_to_video(output, "output.mp4", fps=24)
```
</details>
`SkyReelsV2Pipeline` and `SkyReelsV2ImageToVideoPipeline` are also available without Diffusion Forcing framework applied.
## SkyReelsV2DiffusionForcingPipeline
@@ -364,4 +343,4 @@ export_to_video(output, "output.mp4", fps=24, quality=8)
## SkyReelsV2PipelineOutput
[[autodoc]] pipelines.skyreels_v2.pipeline_output.SkyReelsV2PipelineOutput
[[autodoc]] pipelines.skyreels_v2.pipeline_output.SkyReelsV2PipelineOutput

View File

@@ -47,13 +47,3 @@ Make sure to check out the Stable Diffusion [Tips](overview#tips) section to lea
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## FlaxStableDiffusionImg2ImgPipeline
[[autodoc]] FlaxStableDiffusionImg2ImgPipeline
- all
- __call__
## FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -49,13 +49,3 @@ If you're interested in using one of the official checkpoints for a task, explor
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## FlaxStableDiffusionInpaintPipeline
[[autodoc]] FlaxStableDiffusionInpaintPipeline
- all
- __call__
## FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -31,7 +31,7 @@ _As the model is gated, before using it with diffusers you first need to go to t
Use the command below to log in:
```bash
huggingface-cli login
hf auth login
```
<Tip>

View File

@@ -51,13 +51,3 @@ If you're interested in using one of the official checkpoints for a task, explor
## StableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
## FlaxStableDiffusionPipeline
[[autodoc]] FlaxStableDiffusionPipeline
- all
- __call__
## FlaxStableDiffusionPipelineOutput
[[autodoc]] pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput

View File

@@ -20,7 +20,7 @@
</div>
</div>
# Wan2.1
# Wan
[Wan-2.1](https://huggingface.co/papers/2503.20314) by the Wan Team.
@@ -29,6 +29,7 @@
You can find all the original Wan2.1 checkpoints under the [Wan-AI](https://huggingface.co/Wan-AI) organization.
The following Wan models are supported in Diffusers:
- [Wan 2.1 T2V 1.3B](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B-Diffusers)
- [Wan 2.1 T2V 14B](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B-Diffusers)
- [Wan 2.1 I2V 14B - 480P](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-480P-Diffusers)
@@ -36,9 +37,12 @@ The following Wan models are supported in Diffusers:
- [Wan 2.1 FLF2V 14B - 720P](https://huggingface.co/Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers)
- [Wan 2.1 VACE 1.3B](https://huggingface.co/Wan-AI/Wan2.1-VACE-1.3B-diffusers)
- [Wan 2.1 VACE 14B](https://huggingface.co/Wan-AI/Wan2.1-VACE-14B-diffusers)
- [Wan 2.2 T2V 14B](https://huggingface.co/Wan-AI/Wan2.2-T2V-A14B-Diffusers)
- [Wan 2.2 I2V 14B](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B-Diffusers)
- [Wan 2.2 TI2V 5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B-Diffusers)
> [!TIP]
> Click on the Wan2.1 models in the right sidebar for more examples of video generation.
> Click on the Wan models in the right sidebar for more examples of video generation.
### Text-to-Video Generation
@@ -115,7 +119,7 @@ export_to_video(output, "output.mp4", fps=16)
</hfoption>
<hfoption id="T2V inference speed">
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster. [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs.
```py
# pip install ftfy
@@ -327,6 +331,10 @@ The general rule of thumb to keep in mind when preparing inputs for the VACE pip
- Try lower `shift` values (`2.0` to `5.0`) for lower resolution videos and higher `shift` values (`7.0` to `12.0`) for higher resolution images.
- Wan 2.1 and 2.2 support using [LightX2V LoRAs](https://huggingface.co/Kijai/WanVideo_comfy/tree/main/Lightx2v) to speed up inference. Using them on Wan 2.2 is slightly more involed. Refer to [this code snippet](https://github.com/huggingface/diffusers/pull/12040#issuecomment-3144185272) to learn more.
- Wan 2.2 has two denoisers. By default, LoRAs are only loaded into the first denoiser. One can set `load_into_transformer_2=True` to load LoRAs into the second denoiser. Refer to [this](https://github.com/huggingface/diffusers/pull/12074#issue-3292620048) and [this](https://github.com/huggingface/diffusers/pull/12074#issuecomment-3155896144) examples to learn more.
## WanPipeline
[[autodoc]] WanPipeline

View File

@@ -27,19 +27,19 @@ Learn how to quantize models in the [Quantization](../quantization/overview) gui
## BitsAndBytesConfig
[[autodoc]] BitsAndBytesConfig
[[autodoc]] quantizers.quantization_config.BitsAndBytesConfig
## GGUFQuantizationConfig
[[autodoc]] GGUFQuantizationConfig
[[autodoc]] quantizers.quantization_config.GGUFQuantizationConfig
## QuantoConfig
[[autodoc]] QuantoConfig
[[autodoc]] quantizers.quantization_config.QuantoConfig
## TorchAoConfig
[[autodoc]] TorchAoConfig
[[autodoc]] quantizers.quantization_config.TorchAoConfig
## DiffusersQuantizer

View File

@@ -12,37 +12,24 @@ specific language governing permissions and limitations under the License.
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400"/>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400" style="border: none;"/>
<br>
</p>
# Diffusers
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or want to train your own diffusion model, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](conceptual/philosophy#usability-over-performance), [simple over easy](conceptual/philosophy#simple-over-easy), and [customizability over abstractions](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
Diffusers is a library of state-of-the-art pretrained diffusion models for generating videos, images, and audio.
The library has three main components:
The library revolves around the [`DiffusionPipeline`], an API designed for:
- State-of-the-art diffusion pipelines for inference with just a few lines of code. There are many pipelines in 🤗 Diffusers, check out the table in the pipeline [overview](api/pipelines/overview) for a complete list of available pipelines and the task they solve.
- Interchangeable [noise schedulers](api/schedulers/overview) for balancing trade-offs between generation speed and quality.
- Pretrained [models](api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
- easy inference with only a few lines of code
- flexibility to mix-and-match pipeline components (models, schedulers)
- loading and using adapters like LoRA
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/tutorial_overview"
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
<p class="text-gray-700">Learn the fundamental skills you need to start generating outputs, build your own diffusion system, and train a diffusion model. We recommend starting here if you're using 🤗 Diffusers for the first time!</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./using-diffusers/loading_overview"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
<p class="text-gray-700">Practical guides for helping you load pipelines, models, and schedulers. You'll also learn how to use pipelines for specific tasks, control how outputs are generated, optimize for inference speed, and different training techniques.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual/philosophy"
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
<p class="text-gray-700">Understand why the library was designed the way it was, and learn more about the ethical guidelines and safety implementations for using the library.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./api/models/overview"
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
<p class="text-gray-700">Technical descriptions of how 🤗 Diffusers classes and methods work.</p>
</a>
</div>
</div>
Diffusers also comes with optimizations - such as offloading and quantization - to ensure even the largest models are accessible on memory-constrained devices. If memory is not an issue, Diffusers supports torch.compile to boost inference speed.
Get started right away with a Diffusers model on the [Hub](https://huggingface.co/models?library=diffusers&sort=trending) today!
## Learn
If you're a beginner, we recommend starting with the [Hugging Face Diffusion Models Course](https://huggingface.co/learn/diffusion-course/unit0/1). You'll learn the theory behind diffusion models, and learn how to use the Diffusers library to generate images, fine-tune your own models, and more.

View File

@@ -12,183 +12,135 @@ specific language governing permissions and limitations under the License.
# Installation
🤗 Diffusers is tested on Python 3.8+, PyTorch 1.7.0+, and Flax. Follow the installation instructions below for the deep learning library you are using:
Diffusers is tested on Python 3.8+ and PyTorch 1.4+. Install [PyTorch](https://pytorch.org/get-started/locally/) according to your system and setup.
- [PyTorch](https://pytorch.org/get-started/locally/) installation instructions
- [Flax](https://flax.readthedocs.io/en/latest/) installation instructions
## Install with pip
You should install 🤗 Diffusers in a [virtual environment](https://docs.python.org/3/library/venv.html).
If you're unfamiliar with Python virtual environments, take a look at this [guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
A virtual environment makes it easier to manage different projects and avoid compatibility issues between dependencies.
Create a virtual environment with Python or [uv](https://docs.astral.sh/uv/) (refer to [Installation](https://docs.astral.sh/uv/getting-started/installation/) for installation instructions), a fast Rust-based Python package and project manager.
<hfoptions id="install">
<hfoption id="uv">
Create a [virtual environment](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/) for easier management of separate projects and to avoid compatibility issues between dependencies. Use [uv](https://docs.astral.sh/uv/), a Rust-based Python package and project manager, to create a virtual environment and install Diffusers.
```bash
uv venv my-env
source my-env/bin/activate
```
</hfoption>
<hfoption id="Python">
Install Diffusers with one of the following methods.
<hfoptions id="install">
<hfoption id="pip">
PyTorch only supports Python 3.8 - 3.11 on Windows.
```bash
python -m venv my-env
source my-env/bin/activate
uv pip install diffusers["torch"] transformers
```
</hfoption>
</hfoptions>
You should also install 🤗 Transformers because 🤗 Diffusers relies on its models.
<frameworkcontent>
<pt>
PyTorch only supports Python 3.8 - 3.11 on Windows. Install Diffusers with uv.
```bash
uv install diffusers["torch"] transformers
```
You can also install Diffusers with pip.
```bash
pip install diffusers["torch"] transformers
```
</pt>
<jax>
Install Diffusers with uv.
```bash
uv pip install diffusers["flax"] transformers
```
You can also install Diffusers with pip.
```bash
pip install diffusers["flax"] transformers
```
</jax>
</frameworkcontent>
## Install with conda
After activating your virtual environment, with `conda` (maintained by the community):
<hfoption id="conda">
```bash
conda install -c conda-forge diffusers
```
## Install from source
</hfoption>
<hfoption id="source">
Before installing 🤗 Diffusers from source, make sure you have PyTorch and 🤗 Accelerate installed.
A source install installs the `main` version instead of the latest `stable` version. The `main` version is useful for staying updated with the latest changes but it may not always be stable. If you run into a problem, open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) and we will try to resolve it as soon as possible.
To install 🤗 Accelerate:
Make sure [Accelerate](https://huggingface.co/docs/accelerate/index) is installed.
```bash
pip install accelerate
uv pip install accelerate
```
Then install 🤗 Diffusers from source:
Install Diffusers from source with the command below.
```bash
pip install git+https://github.com/huggingface/diffusers
uv pip install git+https://github.com/huggingface/diffusers
```
This command installs the bleeding edge `main` version rather than the latest `stable` version.
The `main` version is useful for staying up-to-date with the latest developments.
For instance, if a bug has been fixed since the last official release but a new release hasn't been rolled out yet.
However, this means the `main` version may not always be stable.
We strive to keep the `main` version operational, and most issues are usually resolved within a few hours or a day.
If you run into a problem, please open an [Issue](https://github.com/huggingface/diffusers/issues/new/choose) so we can fix it even sooner!
</hfoption>
</hfoptions>
## Editable install
You will need an editable install if you'd like to:
An editable install is recommended for development workflows or if you're using the `main` version of the source code. A special link is created between the cloned repository and the Python library paths. This avoids reinstalling a package after every change.
* Use the `main` version of the source code.
* Contribute to 🤗 Diffusers and need to test changes in the code.
Clone the repository and install 🤗 Diffusers with the following commands:
Clone the repository and install Diffusers with the following commands.
```bash
git clone https://github.com/huggingface/diffusers.git
cd diffusers
uv pip install -e ".[torch]"
```
<frameworkcontent>
<pt>
```bash
pip install -e ".[torch]"
```
</pt>
<jax>
```bash
pip install -e ".[flax]"
```
</jax>
</frameworkcontent>
> [!WARNING]
> You must keep the `diffusers` folder if you want to keep using the library with the editable install.
These commands will link the folder you cloned the repository to and your Python library paths.
Python will now look inside the folder you cloned to in addition to the normal library paths.
For example, if your Python packages are typically installed in `~/anaconda3/envs/main/lib/python3.10/site-packages/`, Python will also search the `~/diffusers/` folder you cloned to.
<Tip warning={true}>
You must keep the `diffusers` folder if you want to keep using the library.
</Tip>
Now you can easily update your clone to the latest version of 🤗 Diffusers with the following command:
Update your cloned repository to the latest version of Diffusers with the command below.
```bash
cd ~/diffusers/
git pull
```
Your Python environment will find the `main` version of 🤗 Diffusers on the next run.
## Cache
Model weights and files are downloaded from the Hub to a cache which is usually your home directory. You can change the cache location by specifying the `HF_HOME` or `HUGGINFACE_HUB_CACHE` environment variables or configuring the `cache_dir` parameter in methods like [`~DiffusionPipeline.from_pretrained`].
Model weights and files are downloaded from the Hub to a cache, which is usually your home directory. Change the cache location with the [HF_HOME](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhome) or [HF_HUB_CACHE](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhubcache) environment variables or configuring the `cache_dir` parameter in methods like [`~DiffusionPipeline.from_pretrained`].
Cached files allow you to run 🤗 Diffusers offline. To prevent 🤗 Diffusers from connecting to the internet, set the `HF_HUB_OFFLINE` environment variable to `1` and 🤗 Diffusers will only load previously downloaded files in the cache.
<hfoptions id="cache">
<hfoption id="env variable">
```bash
export HF_HOME="/path/to/your/cache"
export HF_HUB_CACHE="/path/to/your/hub/cache"
```
</hfoption>
<hfoption id="from_pretrained">
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
cache_dir="/path/to/your/cache"
)
```
</hfoption>
</hfoptions>
Cached files allow you to use Diffusers offline. Set the [HF_HUB_OFFLINE](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhuboffline) environment variable to `1` to prevent Diffusers from connecting to the internet.
```shell
export HF_HUB_OFFLINE=1
```
For more details about managing and cleaning the cache, take a look at the [caching](https://huggingface.co/docs/huggingface_hub/guides/manage-cache) guide.
For more details about managing and cleaning the cache, take a look at the [Understand caching](https://huggingface.co/docs/huggingface_hub/guides/manage-cache) guide.
## Telemetry logging
Our library gathers telemetry information during [`~DiffusionPipeline.from_pretrained`] requests.
The data gathered includes the version of 🤗 Diffusers and PyTorch/Flax, the requested model or pipeline class,
and the path to a pretrained checkpoint if it is hosted on the Hugging Face Hub.
Diffusers gathers telemetry information during [`~DiffusionPipeline.from_pretrained`] requests.
The data gathered includes the Diffusers and PyTorch version, the requested model or pipeline class,
and the path to a pretrained checkpoint if it is hosted on the Hub.
This usage data helps us debug issues and prioritize new features.
Telemetry is only sent when loading models and pipelines from the Hub,
and it is not collected if you're loading local files.
We understand that not everyone wants to share additional information,and we respect your privacy.
You can disable telemetry collection by setting the `HF_HUB_DISABLE_TELEMETRY` environment variable from your terminal:
Opt-out and disable telemetry collection with the [HF_HUB_DISABLE_TELEMETRY](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhubdisabletelemetry) environment variable.
On Linux/MacOS:
<hfoptions id="telemetry">
<hfoption id="Linux/macOS">
```bash
export HF_HUB_DISABLE_TELEMETRY=1
```
On Windows:
</hfoption>
<hfoption id="Windows">
```bash
set HF_HUB_DISABLE_TELEMETRY=1
```
</hfoption>
</hfoptions>

View File

@@ -12,83 +12,112 @@ specific language governing permissions and limitations under the License.
# AutoPipelineBlocks
<Tip warning={true}>
[`~modular_pipelines.AutoPipelineBlocks`] are a multi-block type containing blocks that support different workflows. It automatically selects which sub-blocks to run based on the input provided at runtime. This is typically used to package multiple workflows - text-to-image, image-to-image, inpaint - into a single pipeline for convenience.
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
This guide shows how to create [`~modular_pipelines.AutoPipelineBlocks`].
</Tip>
Create three [`~modular_pipelines.ModularPipelineBlocks`] for text-to-image, image-to-image, and inpainting. These represent the different workflows available in the pipeline.
`AutoPipelineBlocks` is a subclass of `ModularPipelineBlocks`. It is a multi-block that automatically selects which sub-blocks to run based on the inputs provided at runtime, creating conditional workflows that adapt to different scenarios. The main purpose is convenience and portability - for developers, you can package everything into one workflow, making it easier to share and use.
In this tutorial, we will show you how to create an `AutoPipelineBlocks` and learn more about how the conditional selection works.
<Tip>
Other types of multi-blocks include [SequentialPipelineBlocks](sequential_pipeline_blocks.md) (for linear workflows) and [LoopSequentialPipelineBlocks](loop_sequential_pipeline_blocks.md) (for iterative workflows). For information on creating individual blocks, see the [PipelineBlock guide](pipeline_block.md).
Additionally, like all `ModularPipelineBlocks`, `AutoPipelineBlocks` are definitions/specifications, not runnable pipelines. You need to convert them into a `ModularPipeline` to actually execute them. For information on creating and running pipelines, see the [Modular Pipeline guide](modular_pipeline.md).
</Tip>
For example, you might want to support text-to-image and image-to-image tasks. Instead of creating two separate pipelines, you can create an `AutoPipelineBlocks` that automatically chooses the workflow based on whether an `image` input is provided.
Let's see an example. We'll use the helper function from the [PipelineBlock guide](./pipeline_block.md) to create our blocks:
**Helper Function**
<hfoptions id="auto">
<hfoption id="text-to-image">
```py
from diffusers.modular_pipelines import PipelineBlock, InputParam, OutputParam
import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam
def make_block(inputs=[], intermediate_inputs=[], intermediate_outputs=[], block_fn=None, description=None):
class TestBlock(PipelineBlock):
model_name = "test"
@property
def inputs(self):
return inputs
@property
def intermediate_inputs(self):
return intermediate_inputs
@property
def intermediate_outputs(self):
return intermediate_outputs
@property
def description(self):
return description if description is not None else ""
def __call__(self, components, state):
block_state = self.get_block_state(state)
if block_fn is not None:
block_state = block_fn(block_state, state)
self.set_block_state(state, block_state)
return components, state
return TestBlock
class TextToImageBlock(ModularPipelineBlocks):
model_name = "text2img"
@property
def inputs(self):
return [InputParam(name="prompt")]
@property
def intermediate_outputs(self):
return []
@property
def description(self):
return "I'm a text-to-image workflow!"
def __call__(self, components, state):
block_state = self.get_block_state(state)
print("running the text-to-image workflow")
# Add your text-to-image logic here
# For example: generate image from prompt
self.set_block_state(state, block_state)
return components, state
```
Now let's create a dummy `AutoPipelineBlocks` that includes dummy text-to-image, image-to-image, and inpaint pipelines.
</hfoption>
<hfoption id="image-to-image">
```py
from diffusers.modular_pipelines import AutoPipelineBlocks
class ImageToImageBlock(ModularPipelineBlocks):
model_name = "img2img"
# These are dummy blocks and we only focus on "inputs" for our purpose
inputs = [InputParam(name="prompt")]
# block_fn prints out which workflow is running so we can see the execution order at runtime
block_fn = lambda x, y: print("running the text-to-image workflow")
block_t2i_cls = make_block(inputs=inputs, block_fn=block_fn, description="I'm a text-to-image workflow!")
@property
def inputs(self):
return [InputParam(name="prompt"), InputParam(name="image")]
inputs = [InputParam(name="prompt"), InputParam(name="image")]
block_fn = lambda x, y: print("running the image-to-image workflow")
block_i2i_cls = make_block(inputs=inputs, block_fn=block_fn, description="I'm a image-to-image workflow!")
@property
def intermediate_outputs(self):
return []
inputs = [InputParam(name="prompt"), InputParam(name="image"), InputParam(name="mask")]
block_fn = lambda x, y: print("running the inpaint workflow")
block_inpaint_cls = make_block(inputs=inputs, block_fn=block_fn, description="I'm a inpaint workflow!")
@property
def description(self):
return "I'm an image-to-image workflow!"
def __call__(self, components, state):
block_state = self.get_block_state(state)
print("running the image-to-image workflow")
# Add your image-to-image logic here
# For example: transform input image based on prompt
self.set_block_state(state, block_state)
return components, state
```
</hfoption>
<hfoption id="inpaint">
```py
class InpaintBlock(ModularPipelineBlocks):
model_name = "inpaint"
@property
def inputs(self):
return [InputParam(name="prompt"), InputParam(name="image"), InputParam(name="mask")]
@property
def intermediate_outputs(self):
return []
@property
def description(self):
return "I'm an inpaint workflow!"
def __call__(self, components, state):
block_state = self.get_block_state(state)
print("running the inpaint workflow")
# Add your inpainting logic here
# For example: fill masked areas based on prompt
self.set_block_state(state, block_state)
return components, state
```
</hfoption>
</hfoptions>
Create an [`~modular_pipelines.AutoPipelineBlocks`] class that includes a list of the sub-block classes and their corresponding block names.
You also need to include `block_trigger_inputs`, a list of input names that trigger the corresponding block. If a trigger input is provided at runtime, then that block is selected to run. Use `None` to specify the default block to run if no trigger inputs are detected.
Lastly, it is important to include a `description` that clearly explains which inputs trigger which workflow. This helps users understand how to run specific workflows.
```py
from diffusers.modular_pipelines import AutoPipelineBlocks
class AutoImageBlocks(AutoPipelineBlocks):
# List of sub-block classes to choose from
@@ -97,11 +126,11 @@ class AutoImageBlocks(AutoPipelineBlocks):
block_names = ["inpaint", "img2img", "text2img"]
# Trigger inputs that determine which block to run
# - "mask" triggers inpaint workflow
# - "image" triggers img2img workflow (but only if mask is not provided)
# - "image" triggers img2img workflow (but only if mask is not provided)
# - if none of above, runs the text2img workflow (default)
block_trigger_inputs = ["mask", "image", None]
# Description is extremely important for AutoPipelineBlocks
@property
def description(self):
return (
"Pipeline generates images given different types of conditions!\n"
@@ -110,207 +139,18 @@ class AutoImageBlocks(AutoPipelineBlocks):
+ " - img2img workflow is run when `image` is provided (but only when `mask` is not provided).\n"
+ " - text2img workflow is run when neither `image` nor `mask` is provided.\n"
)
```
# Create the blocks
It is **very** important to include a `description` to avoid any confusion over how to run a block and what inputs are required. While [`~modular_pipelines.AutoPipelineBlocks`] are convenient, it's conditional logic may be difficult to figure out if it isn't properly explained.
Create an instance of `AutoImageBlocks`.
```py
auto_blocks = AutoImageBlocks()
# convert to pipeline
auto_pipeline = auto_blocks.init_pipeline()
```
Now we have created an `AutoPipelineBlocks` that contains 3 sub-blocks. Notice the warning message at the top - this automatically appears in every `ModularPipelineBlocks` that contains `AutoPipelineBlocks` to remind end users that dynamic block selection happens at runtime.
For more complex compositions, such as nested [`~modular_pipelines.AutoPipelineBlocks`] blocks when they're used as sub-blocks in larger pipelines, use the [`~modular_pipelines.SequentialPipelineBlocks.get_execution_blocks`] method to extract the a block that is actually run based on your input.
```py
AutoImageBlocks(
Class: AutoPipelineBlocks
====================================================================================================
This pipeline contains blocks that are selected at runtime based on inputs.
Trigger Inputs: ['mask', 'image']
====================================================================================================
Description: Pipeline generates images given different types of conditions!
This is an auto pipeline block that works for text2img, img2img and inpainting tasks.
- inpaint workflow is run when `mask` is provided.
- img2img workflow is run when `image` is provided (but only when `mask` is not provided).
- text2img workflow is run when neither `image` nor `mask` is provided.
Sub-Blocks:
inpaint [trigger: mask] (TestBlock)
Description: I'm a inpaint workflow!
img2img [trigger: image] (TestBlock)
Description: I'm a image-to-image workflow!
text2img [default] (TestBlock)
Description: I'm a text-to-image workflow!
)
```
Check out the documentation with `print(auto_pipeline.doc)`:
```py
>>> print(auto_pipeline.doc)
class AutoImageBlocks
Pipeline generates images given different types of conditions!
This is an auto pipeline block that works for text2img, img2img and inpainting tasks.
- inpaint workflow is run when `mask` is provided.
- img2img workflow is run when `image` is provided (but only when `mask` is not provided).
- text2img workflow is run when neither `image` nor `mask` is provided.
Inputs:
prompt (`None`, *optional*):
image (`None`, *optional*):
mask (`None`, *optional*):
```
There is a fundamental trade-off of AutoPipelineBlocks: it trades clarity for convenience. While it is really easy for packaging multiple workflows, it can become confusing without proper documentation. e.g. if we just throw a pipeline at you and tell you that it contains 3 sub-blocks and takes 3 inputs `prompt`, `image` and `mask`, and ask you to run an image-to-image workflow: if you don't have any prior knowledge on how these pipelines work, you would be pretty clueless, right?
This pipeline we just made though, has a docstring that shows all available inputs and workflows and explains how to use each with different inputs. So it's really helpful for users. For example, it's clear that you need to pass `image` to run img2img. This is why the description field is absolutely critical for AutoPipelineBlocks. We highly recommend you to explain the conditional logic very well for each `AutoPipelineBlocks` you would make. We also recommend to always test individual pipelines first before packaging them into AutoPipelineBlocks.
Let's run this auto pipeline with different inputs to see if the conditional logic works as described. Remember that we have added `print` in each `PipelineBlock`'s `__call__` method to print out its workflow name, so it should be easy to tell which one is running:
```py
>>> _ = auto_pipeline(image="image", mask="mask")
running the inpaint workflow
>>> _ = auto_pipeline(image="image")
running the image-to-image workflow
>>> _ = auto_pipeline(prompt="prompt")
running the text-to-image workflow
>>> _ = auto_pipeline(image="prompt", mask="mask")
running the inpaint workflow
```
However, even with documentation, it can become very confusing when AutoPipelineBlocks are combined with other blocks. The complexity grows quickly when you have nested AutoPipelineBlocks or use them as sub-blocks in larger pipelines.
Let's make another `AutoPipelineBlocks` - this one only contains one block, and it does not include `None` in its `block_trigger_inputs` (which corresponds to the default block to run when none of the trigger inputs are provided). This means this block will be skipped if the trigger input (`ip_adapter_image`) is not provided at runtime.
```py
from diffusers.modular_pipelines import SequentialPipelineBlocks, InsertableDict
inputs = [InputParam(name="ip_adapter_image")]
block_fn = lambda x, y: print("running the ip-adapter workflow")
block_ipa_cls = make_block(inputs=inputs, block_fn=block_fn, description="I'm a IP-adapter workflow!")
class AutoIPAdapter(AutoPipelineBlocks):
block_classes = [block_ipa_cls]
block_names = ["ip-adapter"]
block_trigger_inputs = ["ip_adapter_image"]
@property
def description(self):
return "Run IP Adapter step if `ip_adapter_image` is provided."
```
Now let's combine these 2 auto blocks together into a `SequentialPipelineBlocks`:
```py
auto_ipa_blocks = AutoIPAdapter()
blocks_dict = InsertableDict()
blocks_dict["ip-adapter"] = auto_ipa_blocks
blocks_dict["image-generation"] = auto_blocks
all_blocks = SequentialPipelineBlocks.from_blocks_dict(blocks_dict)
pipeline = all_blocks.init_pipeline()
```
Let's take a look: now things get more confusing. In this particular example, you could still try to explain the conditional logic in the `description` field here - there are only 4 possible execution paths so it's doable. However, since this is a `SequentialPipelineBlocks` that could contain many more blocks, the complexity can quickly get out of hand as the number of blocks increases.
```py
>>> all_blocks
SequentialPipelineBlocks(
Class: ModularPipelineBlocks
====================================================================================================
This pipeline contains blocks that are selected at runtime based on inputs.
Trigger Inputs: ['image', 'mask', 'ip_adapter_image']
Use `get_execution_blocks()` with input names to see selected blocks (e.g. `get_execution_blocks('image')`).
====================================================================================================
Description:
Sub-Blocks:
[0] ip-adapter (AutoIPAdapter)
Description: Run IP Adapter step if `ip_adapter_image` is provided.
[1] image-generation (AutoImageBlocks)
Description: Pipeline generates images given different types of conditions!
This is an auto pipeline block that works for text2img, img2img and inpainting tasks.
- inpaint workflow is run when `mask` is provided.
- img2img workflow is run when `image` is provided (but only when `mask` is not provided).
- text2img workflow is run when neither `image` nor `mask` is provided.
)
```
This is when the `get_execution_blocks()` method comes in handy - it basically extracts a `SequentialPipelineBlocks` that only contains the blocks that are actually run based on your inputs.
Let's try some examples:
`mask`: we expect it to skip the first ip-adapter since `ip_adapter_image` is not provided, and then run the inpaint for the second block.
```py
>>> all_blocks.get_execution_blocks('mask')
SequentialPipelineBlocks(
Class: ModularPipelineBlocks
Description:
Sub-Blocks:
[0] image-generation (TestBlock)
Description: I'm a inpaint workflow!
)
```
Let's also actually run the pipeline to confirm:
```py
>>> _ = pipeline(mask="mask")
skipping auto block: AutoIPAdapter
running the inpaint workflow
```
Try a few more:
```py
print(f"inputs: ip_adapter_image:")
blocks_select = all_blocks.get_execution_blocks('ip_adapter_image')
print(f"expected_execution_blocks: {blocks_select}")
print(f"actual execution blocks:")
_ = pipeline(ip_adapter_image="ip_adapter_image", prompt="prompt")
# expect to see ip-adapter + text2img
print(f"inputs: image:")
blocks_select = all_blocks.get_execution_blocks('image')
print(f"expected_execution_blocks: {blocks_select}")
print(f"actual execution blocks:")
_ = pipeline(image="image", prompt="prompt")
# expect to see img2img
print(f"inputs: prompt:")
blocks_select = all_blocks.get_execution_blocks('prompt')
print(f"expected_execution_blocks: {blocks_select}")
print(f"actual execution blocks:")
_ = pipeline(prompt="prompt")
# expect to see text2img (prompt is not a trigger input so fallback to default)
print(f"inputs: mask + ip_adapter_image:")
blocks_select = all_blocks.get_execution_blocks('mask','ip_adapter_image')
print(f"expected_execution_blocks: {blocks_select}")
print(f"actual execution blocks:")
_ = pipeline(mask="mask", ip_adapter_image="ip_adapter_image")
# expect to see ip-adapter + inpaint
```
In summary, `AutoPipelineBlocks` is a good tool for packaging multiple workflows into a single, convenient interface and it can greatly simplify the user experience. However, always provide clear descriptions explaining the conditional logic, test individual pipelines first before combining them, and use `get_execution_blocks()` to understand runtime behavior in complex compositions.
auto_blocks.get_execution_blocks("mask")
```

View File

@@ -10,118 +10,123 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Components Manager
# ComponentsManager
<Tip warning={true}>
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), prevents duplicate model instances, and supports offloading.
🧪 **Experimental Feature**: This is an experimental feature we are actively developing. The API may be subject to breaking changes.
This guide will show you how to use [`ComponentsManager`] to manage components and device memory.
</Tip>
## Add a component
The Components Manager is a central model registry and management system in diffusers. It lets you add models then reuse them across multiple pipelines and workflows. It tracks all models in one place with useful metadata such as model size, device placement and loaded adapters (LoRA, IP-Adapter). It has mechanisms in place to prevent duplicate model instances, enables memory-efficient sharing. Most significantly, it offers offloading that works across pipelines — unlike regular DiffusionPipeline offloading (i.e. `enable_model_cpu_offload` and `enable_sequential_cpu_offload`) which is limited to one pipeline with predefined sequences, the Components Manager automatically manages your device memory across all your models and workflows.
The [`ComponentsManager`] should be created alongside a [`ModularPipeline`] in either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
> [!TIP]
> The `collection` parameter is optional but makes it easier to organize and manage components.
## Basic Operations
<hfoptions id="create">
<hfoption id="from_pretrained">
Let's start with the most basic operations. First, create a Components Manager:
```py
from diffusers import ModularPipeline, ComponentsManager
comp = ComponentsManager()
pipe = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test1")
```
</hfoption>
<hfoption id="init_pipeline">
```py
from diffusers import ComponentsManager
comp = ComponentsManager()
from diffusers.modular_pipelines import SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS
t2i_blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
components = ComponentsManager()
t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=components)
```
Use the `add(name, component)` method to register a component. It returns a unique ID that combines the component name with the object's unique identifier (using Python's `id()` function):
</hfoption>
</hfoptions>
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_components`]. The example below uses [`~ModularPipeline.load_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
```py
pipe.load_components()
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```
Use the [`~ModularPipeline.null_component_names`] property to identify any components that need to be loaded, retrieve them with [`~ComponentsManager.get_components_by_names`], and then call [`~ModularPipeline.update_components`] to add the missing components.
```py
pipe2.null_component_names
['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'image_encoder', 'unet', 'vae', 'scheduler', 'controlnet']
comp_dict = comp.get_components_by_names(names=pipe2.null_component_names)
pipe2.update_components(**comp_dict)
```
To add individual components, use the [`~ComponentsManager.add`] method. This registers a component with a unique id.
```py
from diffusers import AutoModel
text_encoder = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
# Returns component_id like 'text_encoder_139917733042864'
component_id = comp.add("text_encoder", text_encoder)
comp
```
You can view all registered components and their metadata:
```py
>>> comp
Components:
===============================================================================================================================================
Models:
-----------------------------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID | Collection
-----------------------------------------------------------------------------------------------------------------------------------------------
text_encoder_139917733042864 | CLIPTextModel | cpu | torch.float32 | 0.46 | N/A | N/A
-----------------------------------------------------------------------------------------------------------------------------------------------
Additional Component Info:
==================================================
```
And remove components using their unique ID:
Use [`~ComponentsManager.remove`] to remove a component using their id.
```py
comp.remove("text_encoder_139917733042864")
```
## Duplicate Detection
## Retrieve a component
The Components Manager automatically detects and prevents duplicate model instances to save memory and avoid confusion. Let's walk through how this works in practice.
The [`ComponentsManager`] provides several methods to retrieve registered components.
When you try to add the same object twice, the manager will warn you and return the existing ID:
### get_one
The [`~ComponentsManager.get_one`] method returns a single component and supports pattern matching for the `name` parameter. If multiple components match, [`~ComponentsManager.get_one`] returns an error.
| Pattern | Example | Description |
|-------------|----------------------------------|-------------------------------------------|
| exact | `comp.get_one(name="unet")` | exact name match |
| wildcard | `comp.get_one(name="unet*")` | names starting with "unet" |
| exclusion | `comp.get_one(name="!unet")` | exclude components named "unet" |
| or | `comp.get_one(name="unet&#124;vae")` | name is "unet" or "vae" |
[`~ComponentsManager.get_one`] also filters components by the `collection` argument or `load_id` argument.
```py
>>> comp.add("text_encoder", text_encoder)
'text_encoder_139917733042864'
>>> comp.add("text_encoder", text_encoder)
ComponentsManager: component 'text_encoder' already exists as 'text_encoder_139917733042864'
'text_encoder_139917733042864'
comp.get_one(name="unet", collection="sdxl")
```
Even if you add the same object under a different name, it will still be detected as a duplicate:
### get_components_by_names
The [`~ComponentsManager.get_components_by_names`] method accepts a list of names and returns a dictionary mapping names to components. This is especially useful with [`ModularPipeline`] since they provide lists of required component names and the returned dictionary can be passed directly to [`~ModularPipeline.update_components`].
```py
>>> comp.add("clip", text_encoder)
ComponentsManager: adding component 'clip' as 'clip_139917733042864', but it is duplicate of 'text_encoder_139917733042864'
To remove a duplicate, call `components_manager.remove('<component_id>')`.
'clip_139917733042864'
component_dict = comp.get_components_by_names(names=["text_encoder", "unet", "vae"])
{"text_encoder": component1, "unet": component2, "vae": component3}
```
However, there's a more subtle case where duplicate detection becomes tricky. When you load the same model into different objects, the manager can't detect duplicates unless you use `ComponentSpec`. For example:
## Duplicate detection
```py
>>> text_encoder_2 = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
>>> comp.add("text_encoder", text_encoder_2)
'text_encoder_139917732983664'
```
This creates a problem - you now have two copies of the same model consuming double the memory:
```py
>>> comp
Components:
===============================================================================================================================================
Models:
-----------------------------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID | Collection
-----------------------------------------------------------------------------------------------------------------------------------------------
text_encoder_139917733042864 | CLIPTextModel | cpu | torch.float32 | 0.46 | N/A | N/A
clip_139917733042864 | CLIPTextModel | cpu | torch.float32 | 0.46 | N/A | N/A
text_encoder_139917732983664 | CLIPTextModel | cpu | torch.float32 | 0.46 | N/A | N/A
-----------------------------------------------------------------------------------------------------------------------------------------------
Additional Component Info:
==================================================
```
We recommend using `ComponentSpec` to load your models. Models loaded with `ComponentSpec` get tagged with a unique ID that encodes their loading parameters, allowing the Components Manager to detect when different objects represent the same underlying checkpoint:
It is recommended to load model components with [`ComponentSpec`] to assign components with a unique id that encodes their loading parameters. This allows [`ComponentsManager`] to automatically detect and prevent duplicate model instances even when different objects represent the same underlying checkpoint.
```py
from diffusers import ComponentSpec, ComponentsManager
from transformers import CLIPTextModel
comp = ComponentsManager()
# Create ComponentSpec for the first text encoder
spec = ComponentSpec(name="text_encoder", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=AutoModel)
# Create ComponentSpec for a duplicate text encoder (it is same checkpoint, from same repo/subfolder)
# Create ComponentSpec for a duplicate text encoder (it is same checkpoint, from the same repo/subfolder)
spec_duplicated = ComponentSpec(name="text_encoder_duplicated", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=CLIPTextModel)
# Load and add both components - the manager will detect they're the same model
@@ -129,42 +134,36 @@ comp.add("text_encoder", spec.load())
comp.add("text_encoder_duplicated", spec_duplicated.load())
```
Now the manager detects the duplicate and warns you:
This returns a warning with instructions for removing the duplicate.
```out
```py
ComponentsManager: adding component 'text_encoder_duplicated_139917580682672', but it has duplicate load_id 'stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null' with existing components: text_encoder_139918506246832. To remove a duplicate, call `components_manager.remove('<component_id>')`.
'text_encoder_duplicated_139917580682672'
```
Both models now show the same `load_id`, making it clear they're the same model:
You could also add a component without using [`ComponentSpec`] and duplicate detection still works in most cases even if you're adding the same component under a different name.
However, [`ComponentManager`] can't detect duplicates when you load the same component into different objects. In this case, you should load a model with [`ComponentSpec`].
```py
>>> comp
Components:
======================================================================================================================================================================================================
Models:
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID | Collection
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
text_encoder_139918506246832 | CLIPTextModel | cpu | torch.float32 | 0.46 | stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null | N/A
text_encoder_duplicated_139917580682672 | CLIPTextModel | cpu | torch.float32 | 0.46 | stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null | N/A
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Additional Component Info:
==================================================
text_encoder_2 = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
comp.add("text_encoder", text_encoder_2)
'text_encoder_139917732983664'
```
## Collections
Collections are labels you can assign to components for better organization and management. You add a component under a collection by passing the `collection=` parameter when you add the component to the manager, i.e. `add(name, component, collection=...)`. Within each collection, only one component per name is allowed - if you add a second component with the same name, the first one is automatically removed.
Collections are labels assigned to components for better organization and management. Add a component to a collection with the `collection` argument in [`~ComponentsManager.add`].
Here's how collections work in practice:
Only one component per name is allowed in each collection. Adding a second component with the same name automatically removes the first component.
```py
from diffusers import ComponentSpec, ComponentsManager
comp = ComponentsManager()
# Create ComponentSpec for the first UNet (SDXL base)
# Create ComponentSpec for the first UNet
spec = ComponentSpec(name="unet", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", type_hint=AutoModel)
# Create ComponentSpec for a different UNet (Juggernaut-XL)
# Create ComponentSpec for a different UNet
spec2 = ComponentSpec(name="unet", repo="RunDiffusion/Juggernaut-XL-v9", subfolder="unet", type_hint=AutoModel, variant="fp16")
# Add both UNets to the same collection - the second one will replace the first
@@ -172,343 +171,20 @@ comp.add("unet", spec.load(), collection="sdxl")
comp.add("unet", spec2.load(), collection="sdxl")
```
The manager automatically removes the old UNet and adds the new one:
This makes it convenient to work with node-based systems because you can:
```out
ComponentsManager: removing existing unet from collection 'sdxl': unet_139917723891888
'unet_139917723893136'
```
- Mark all models as loaded from one node with the `collection` label.
- Automatically replace models when new checkpoints are loaded under the same name.
- Batch delete all models in a collection when a node is removed.
Only one UNet remains in the collection:
## Offloading
```py
>>> comp
Components:
====================================================================================================================================================================
Models:
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID | Collection
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
unet_139917723893136 | UNet2DConditionModel | cpu | torch.float32 | 9.56 | RunDiffusion/Juggernaut-XL-v9|unet|fp16|null | sdxl
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
Additional Component Info:
==================================================
```
For example, in node-based systems, you can mark all models loaded from one node with the same collection label, automatically replace models when user loads new checkpoints under same name, batch delete all models in a collection when a node is removed.
## Retrieving Components
The Components Manager provides several methods to retrieve registered components.
The `get_one()` method returns a single component and supports pattern matching for the `name` parameter. You can use:
- exact matches like `comp.get_one(name="unet")`
- wildcards like `comp.get_one(name="unet*")` for components starting with "unet"
- exclusion patterns like `comp.get_one(name="!unet")` to exclude components named "unet"
- OR patterns like `comp.get_one(name="unet|vae")` to match either "unet" OR "vae".
Optionally, You can add collection and load_id as filters e.g. `comp.get_one(name="unet", collection="sdxl")`. If multiple components match, `get_one()` throws an error.
Another useful method is `get_components_by_names()`, which takes a list of names and returns a dictionary mapping names to components. This is particularly helpful with modular pipelines since they provide lists of required component names, and the returned dictionary can be directly passed to `pipeline.update_components()`.
```py
# Get components by name list
component_dict = comp.get_components_by_names(names=["text_encoder", "unet", "vae"])
# Returns: {"text_encoder": component1, "unet": component2, "vae": component3}
```
## Using Components Manager with Modular Pipelines
The Components Manager integrates seamlessly with Modular Pipelines. All you need to do is pass a Components Manager instance to `from_pretrained()` or `init_pipeline()` with an optional `collection` parameter:
```py
from diffusers import ModularPipeline, ComponentsManager
comp = ComponentsManager()
pipe = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test1")
```
By default, modular pipelines don't load components immediately, so both the pipeline and Components Manager start empty:
```py
>>> comp
Components:
==================================================
No components registered.
==================================================
```
When you load components on the pipeline, they are automatically registered in the Components Manager:
```py
>>> pipe.load_components(names="unet")
>>> comp
Components:
==============================================================================================================================================================
Models:
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID | Collection
--------------------------------------------------------------------------------------------------------------------------------------------------------------
unet_139917726686304 | UNet2DConditionModel | cpu | torch.float32 | 9.56 | SG161222/RealVisXL_V4.0|unet|null|null | test1
--------------------------------------------------------------------------------------------------------------------------------------------------------------
Additional Component Info:
==================================================
```
Now let's load all default components and then create a second pipeline that reuses all components from the first one. We pass the same Components Manager to the second pipeline but with a different collection:
```py
# Load all default components
>>> pipe.load_default_components()
# Create a second pipeline using the same Components Manager but with a different collection
>>> pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
```
As mentioned earlier, `ModularPipeline` has a property `null_component_names` that returns a list of component names it needs to load. We can conveniently use this list with the `get_components_by_names` method on the Components Manager:
```py
# Get the list of components that pipe2 needs to load
>>> pipe2.null_component_names
['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'image_encoder', 'unet', 'vae', 'scheduler', 'controlnet']
# Retrieve all required components from the Components Manager
>>> comp_dict = comp.get_components_by_names(names=pipe2.null_component_names)
# Update the pipeline with the retrieved components
>>> pipe2.update_components(**comp_dict)
```
The warnings that follow are expected and indicate that the Components Manager is correctly identifying that these components already exist and will be reused rather than creating duplicates:
```out
ComponentsManager: component 'text_encoder' already exists as 'text_encoder_139917586016400'
ComponentsManager: component 'text_encoder_2' already exists as 'text_encoder_2_139917699973424'
ComponentsManager: component 'tokenizer' already exists as 'tokenizer_139917580599504'
ComponentsManager: component 'tokenizer_2' already exists as 'tokenizer_2_139915763443904'
ComponentsManager: component 'image_encoder' already exists as 'image_encoder_139917722468304'
ComponentsManager: component 'unet' already exists as 'unet_139917580609632'
ComponentsManager: component 'vae' already exists as 'vae_139917722459040'
ComponentsManager: component 'scheduler' already exists as 'scheduler_139916266559408'
ComponentsManager: component 'controlnet' already exists as 'controlnet_139917722454432'
```
The pipeline is now fully loaded:
```py
# null_component_names return empty list, meaning everything are loaded
>>> pipe2.null_component_names
[]
```
No new components were added to the Components Manager - we're reusing everything. All models are now associated with both `test1` and `test2` collections, showing that these components are shared across multiple pipelines:
```py
>>> comp
Components:
========================================================================================================================================================================================
Models:
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID | Collection
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
text_encoder_139917586016400 | CLIPTextModel | cpu | torch.float32 | 0.46 | SG161222/RealVisXL_V4.0|text_encoder|null|null | test1
| | | | | | test2
text_encoder_2_139917699973424 | CLIPTextModelWithProjection | cpu | torch.float32 | 2.59 | SG161222/RealVisXL_V4.0|text_encoder_2|null|null | test1
| | | | | | test2
unet_139917580609632 | UNet2DConditionModel | cpu | torch.float32 | 9.56 | SG161222/RealVisXL_V4.0|unet|null|null | test1
| | | | | | test2
controlnet_139917722454432 | ControlNetModel | cpu | torch.float32 | 4.66 | diffusers/controlnet-canny-sdxl-1.0|null|null|null | test1
| | | | | | test2
vae_139917722459040 | AutoencoderKL | cpu | torch.float32 | 0.31 | SG161222/RealVisXL_V4.0|vae|null|null | test1
| | | | | | test2
image_encoder_139917722468304 | CLIPVisionModelWithProjection | cpu | torch.float32 | 6.87 | h94/IP-Adapter|sdxl_models/image_encoder|null|null | test1
| | | | | | test2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Other Components:
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
ID | Class | Collection
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
tokenizer_139917580599504 | CLIPTokenizer | test1
| | test2
scheduler_139916266559408 | EulerDiscreteScheduler | test1
| | test2
tokenizer_2_139915763443904 | CLIPTokenizer | test1
| | test2
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Additional Component Info:
==================================================
```
## Automatic Memory Management
The Components Manager provides a global offloading strategy across all models, regardless of which pipeline is using them:
The [`~ComponentsManager.enable_auto_cpu_offload`] method is a global offloading strategy that works across all models regardless of which pipeline is using them. Once enabled, you don't need to worry about device placement if you add or remove components.
```py
comp.enable_auto_cpu_offload(device="cuda")
```
When enabled, all models start on CPU. The manager moves models to the device right before they're used and moves other models back to CPU when GPU memory runs low. You can set your own rules for which models to offload first. This works smoothly as you add or remove components. Once it's on, you don't need to worry about device placement - you can focus on your workflow.
## Practical Example: Building Modular Workflows with Component Reuse
Now that we've covered the basics of the Components Manager, let's walk through a practical example that shows how to build workflows in a modular setting and use the Components Manager to reuse components across multiple pipelines. This example demonstrates the true power of Modular Diffusers by working with multiple pipelines that can share components.
In this example, we'll generate latents from a text-to-image pipeline, then refine them with an image-to-image pipeline.
Let's create a modular text-to-image workflow by separating it into three workflows: `text_blocks` for encoding prompts, `t2i_blocks` for generating latents, and `decoder_blocks` for creating final images.
```py
import torch
from diffusers.modular_pipelines import SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import ALL_BLOCKS
# Create modular blocks and separate text encoding and decoding steps
t2i_blocks = SequentialPipelineBlocks.from_blocks_dict(ALL_BLOCKS["text2img"])
text_blocks = t2i_blocks.sub_blocks.pop("text_encoder")
decoder_blocks = t2i_blocks.sub_blocks.pop("decode")
```
Now we will convert them into runnalbe pipelines and set up the Components Manager with auto offloading and organize components under a "t2i" collection
Since we now have 3 different workflows that share components, we create a separate pipeline that serves as a dedicated loader to load all the components, register them to the component manager, and then reuse them across different workflows.
```py
from diffusers import ComponentsManager, ModularPipeline
# Set up Components Manager with auto offloading
components = ComponentsManager()
components.enable_auto_cpu_offload(device="cuda")
# Create a new pipeline to load the components
t2i_repo = "YiYiXu/modular-demo-auto"
t2i_loader_pipe = ModularPipeline.from_pretrained(t2i_repo, components_manager=components, collection="t2i")
# convert the 3 blocks into pipelines and attach the same components manager to all 3
text_node = text_blocks.init_pipeline(t2i_repo, components_manager=components)
decoder_node = decoder_blocks.init_pipeline(t2i_repo, components_manager=components)
t2i_pipe = t2i_blocks.init_pipeline(t2i_repo, components_manager=components)
```
Load all components into the loader pipeline, they should all be automatically registered to Components Manager under the "t2i" collection:
```py
# Load all components (including IP-Adapter and ControlNet for later use)
t2i_loader_pipe.load_default_components(torch_dtype=torch.float16)
```
Now distribute the loaded components to each pipeline:
```py
# Get VAE for decoder (using get_one since there's only one)
vae = components.get_one(load_id="SG161222/RealVisXL_V4.0|vae|null|null")
decoder_node.update_components(vae=vae)
# Get text components for text node (using get_components_by_names for multiple components)
text_components = components.get_components_by_names(text_node.null_component_names)
text_node.update_components(**text_components)
# Get remaining components for t2i pipeline
t2i_components = components.get_components_by_names(t2i_pipe.null_component_names)
t2i_pipe.update_components(**t2i_components)
```
Now we can generate images using our modular workflow:
```py
# Generate text embeddings
prompt = "an astronaut"
text_embeddings = text_node(prompt=prompt, output=["prompt_embeds","negative_prompt_embeds", "pooled_prompt_embeds", "negative_pooled_prompt_embeds"])
# Generate latents and decode to image
generator = torch.Generator(device="cuda").manual_seed(0)
latents_t2i = t2i_pipe(**text_embeddings, num_inference_steps=25, generator=generator, output="latents")
image = decoder_node(latents=latents_t2i, output="images")[0]
image.save("modular_part2_t2i.png")
```
Let's add a LoRA:
```py
# Load LoRA weights
>>> t2i_loader_pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy_face")
>>> components
Components:
============================================================================================================================================================
...
Additional Component Info:
==================================================
unet:
Adapters: ['toy_face']
```
You can see that the Components Manager tracks adapters metadata for all models it manages, and in our case, only Unet has lora loaded. This means we can reuse existing text embeddings.
```py
# Generate with LoRA (reusing existing text embeddings)
generator = torch.Generator(device="cuda").manual_seed(0)
latents_lora = t2i_pipe(**text_embeddings, num_inference_steps=25, generator=generator, output="latents")
image = decoder_node(latents=latents_lora, output="images")[0]
image.save("modular_part2_lora.png")
```
Now let's create a refiner pipeline that reuses components from our text-to-image workflow:
```py
# Create refiner blocks (removing image_encoder and decode since we work with latents)
refiner_blocks = SequentialPipelineBlocks.from_blocks_dict(ALL_BLOCKS["img2img"])
refiner_blocks.sub_blocks.pop("image_encoder")
refiner_blocks.sub_blocks.pop("decode")
# Create refiner pipeline with different repo and collection,
# Attach the same component manager to it
refiner_repo = "YiYiXu/modular_refiner"
refiner_pipe = refiner_blocks.init_pipeline(refiner_repo, components_manager=components, collection="refiner")
```
We pass the **same Components Manager** (`components`) to the refiner pipeline, but with a **different collection** (`"refiner"`). This allows the refiner to access and reuse components from the "t2i" collection while organizing its own components (like the refiner UNet) under the "refiner" collection.
```py
# Load only the refiner UNet (different from t2i UNet)
refiner_pipe.load_components(names="unet", torch_dtype=torch.float16)
# Reuse components from t2i pipeline using pattern matching
reuse_components = components.search_components("text_encoder_2|scheduler|vae|tokenizer_2")
refiner_pipe.update_components(**reuse_components)
```
When we reuse components from the "t2i" collection, they automatically get added to the "refiner" collection as well. You can verify this by checking the Components Manager - you'll see components like `vae`, `scheduler`, etc. listed under both collections, indicating they're shared between workflows.
Now we can refine any of our generated latents:
```py
# Refine all our different latents
refined_latents = refiner_pipe(image_latents=latents_t2i, prompt=prompt, num_inference_steps=10, output="latents")
refined_image = decoder_node(latents=refined_latents, output="images")[0]
refined_image.save("modular_part2_t2i_refine_out.png")
refined_latents = refiner_pipe(image_latents=latents_lora, prompt=prompt, num_inference_steps=10, output="latents")
refined_image = decoder_node(latents=refined_latents, output="images")[0]
refined_image.save("modular_part2_lora_refine_out.png")
```
Here are the results from our modular pipeline examples.
#### Base Text-to-Image Generation
| Base Text-to-Image | Base Text-to-Image (Refined) |
|-------------------|------------------------------|
| ![Base T2I](https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/modular_quicktour/modular_part2_t2i.png) | ![Base T2I Refined](https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/modular_quicktour/modular_part2_t2i_refine_out.png) |
#### LoRA
| LoRA | LoRA (Refined) |
|-------------------|------------------------------|
| ![LoRA](https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/modular_quicktour/modular_part2_lora.png) | ![LoRA Refined](https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/modular_quicktour/modular_part2_lora_refine_out.png) |
All models begin on the CPU and [`ComponentsManager`] moves them to the appropriate device right before they're needed, and moves other models back to the CPU when GPU memory is low.
You can set your own rules for which models to offload first.

View File

@@ -1,648 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# End-to-End Developer Guide: Building with Modular Diffusers
<Tip warning={true}>
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
</Tip>
In this tutorial we will walk through the process of adding a new pipeline to the modular framework using differential diffusion as our example. We'll cover the complete workflow from implementation to deployment: implementing the new pipeline, ensuring compatibility with existing tools, sharing the code on Hugging Face Hub, and deploying it as a UI node.
We'll also demonstrate the 4-step framework process we use for implementing new basic pipelines in the modular system.
1. **Start with an existing pipeline as a base**
- Identify which existing pipeline is most similar to the one you want to implement
- Determine what part of the pipeline needs modification
2. **Build a working pipeline structure first**
- Assemble the complete pipeline structure
- Use existing blocks wherever possible
- For new blocks, create placeholders (e.g. you can copy from similar blocks and change the name) without implementing custom logic just yet
3. **Set up an example**
- Create a simple inference script with expected inputs/outputs
4. **Implement your custom logic and test incrementally**
- Add the custom logics the blocks you want to change
- Test incrementally, and inspect pipeline states and debug as needed
Let's see how this works with the Differential Diffusion example.
## Differential Diffusion Pipeline
### Start with an existing pipeline
Differential diffusion (https://differential-diffusion.github.io/) is an image-to-image workflow, so it makes sense for us to start with the preset of pipeline blocks used to build img2img pipeline (`IMAGE2IMAGE_BLOCKS`) and see how we can build this new pipeline with them.
```py
>>> from diffusers.modular_pipelines.stable_diffusion_xl import IMAGE2IMAGE_BLOCKS
>>> IMAGE2IMAGE_BLOCKS = InsertableDict([
... ("text_encoder", StableDiffusionXLTextEncoderStep),
... ("image_encoder", StableDiffusionXLVaeEncoderStep),
... ("input", StableDiffusionXLInputStep),
... ("set_timesteps", StableDiffusionXLImg2ImgSetTimestepsStep),
... ("prepare_latents", StableDiffusionXLImg2ImgPrepareLatentsStep),
... ("prepare_add_cond", StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep),
... ("denoise", StableDiffusionXLDenoiseStep),
... ("decode", StableDiffusionXLDecodeStep)
... ])
```
Note that "denoise" (`StableDiffusionXLDenoiseStep`) is a `LoopSequentialPipelineBlocks` that contains 3 loop blocks (more on LoopSequentialPipelineBlocks [here](https://huggingface.co/docs/diffusers/modular_diffusers/write_own_pipeline_block#loopsequentialpipelineblocks))
```py
>>> denoise_blocks = IMAGE2IMAGE_BLOCKS["denoise"]()
>>> print(denoise_blocks)
```
```out
StableDiffusionXLDenoiseStep(
Class: StableDiffusionXLDenoiseLoopWrapper
Description: Denoise step that iteratively denoise the latents.
Its loop logic is defined in `StableDiffusionXLDenoiseLoopWrapper.__call__` method
At each iteration, it runs blocks defined in `sub_blocks` sequencially:
- `StableDiffusionXLLoopBeforeDenoiser`
- `StableDiffusionXLLoopDenoiser`
- `StableDiffusionXLLoopAfterDenoiser`
This block supports both text2img and img2img tasks.
Components:
scheduler (`EulerDiscreteScheduler`)
guider (`ClassifierFreeGuidance`)
unet (`UNet2DConditionModel`)
Sub-Blocks:
[0] before_denoiser (StableDiffusionXLLoopBeforeDenoiser)
Description: step within the denoising loop that prepare the latent input for the denoiser. This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` object (e.g. `StableDiffusionXLDenoiseLoopWrapper`)
[1] denoiser (StableDiffusionXLLoopDenoiser)
Description: Step within the denoising loop that denoise the latents with guidance. This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` object (e.g. `StableDiffusionXLDenoiseLoopWrapper`)
[2] after_denoiser (StableDiffusionXLLoopAfterDenoiser)
Description: step within the denoising loop that update the latents. This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` object (e.g. `StableDiffusionXLDenoiseLoopWrapper`)
)
```
Let's compare standard image-to-image and differential diffusion! The key difference in algorithm is that standard image-to-image diffusion applies uniform noise across all pixels based on a single `strength` parameter, but differential diffusion uses a change map where each pixel value determines when that region starts denoising. Regions with lower values get "frozen" earlier by replacing them with noised original latents, preserving more of the original image.
Therefore, the key differences when it comes to pipeline implementation would be:
1. The `prepare_latents` step (which prepares the change map and pre-computes noised latents for all timesteps)
2. The `denoise` step (which selectively applies denoising based on the change map)
3. Since differential diffusion doesn't use the `strength` parameter, we'll use the text-to-image `set_timesteps` step instead of the image-to-image version
To implement differntial diffusion, we can reuse most blocks from image-to-image and text-to-image workflows, only modifying the `prepare_latents` step and the first part of the `denoise` step (i.e. `before_denoiser (StableDiffusionXLLoopBeforeDenoiser)`).
Here's a flowchart showing the pipeline structure and the changes we need to make:
![DiffDiff Pipeline Structure](https://mermaid.ink/img/pako:eNqVVO9r4kAQ_VeWLQWFKEk00eRDwZpa7Q-ucPfpYpE1mdWlcTdsVmpb-7_fZk1tTCl3J0Sy8968N5kZ9g0nIgUc4pUk-Rr9iuYc6d_Ibs14vlXoQYpNrtqo07lAo1jBTi2AlynysWIa6DJmG7KCBnZpsHHMSqkqNjaxKC5ALRTbQKEgLyosMthVnEvIiYRFRhRwVaBoNpmUT0W7MrTJkUbSdJEInlbwxMDXcQpcsAKq6OH_2mDTODIY4yt0J0ReUaYGnLXiJVChdSsB-enfPhBnhnjT-rCQj-1K_8Ygt62YUAVy8Ykf4FvU6XYu9rpuIGqPpvXSzs_RVEj2KrgiGUp02zNQTHBEM_FcK3BfQbBHd7qAst-PxvW-9WOrypnNylG0G9oRUMYBFeolg-IQTTJSFDqOUkZp-fwsQURZloVnlPpLf2kVSoonCM-SwCUuqY6dZ5aqddjLd1YiMiFLNrWorrxj9EOmP4El37lsl_9p5PzFqIqwVwgdN981fDM94bphH5I06R8NXZ_4QcPQPTFs6JltPrS6JssFhw9N817l27bdyM-lSKAo6iVBAAnQY0n9wLO9wbcluY7ruUFDtdguH74K0yENKDkK-8nAG6TfNrfy_bf-HjdrlOfZS7VYSAlU5JAwyhLE9WrWVw1dWdPTXauDsy8LUkdHtnX_pfMnBOvSGluRNbGurbuTHtdZN9Zts1MljC19_7EUh0puwcIbkBtSHvFbic6xWsMG5jjUrymRT3M85-86Jyf8txCbjzQptqs1DinJCn3a5qm-viJG9M26OUYlcH0_jsWWKxwGttHA4Rve4dD1el3H8_yh49hD3_X7roVfcNhx-l3b14PxvGHQ0xMa9t4t_Gp8na7tDvu-4w08HXecweD9D4X54ZI)
### Build a Working Pipeline Structure
ok now we've identified the blocks to modify, let's build the pipeline skeleton first - at this stage, our goal is to get the pipeline struture working end-to-end (even though it's just doing the img2img behavior). I would simply create placeholder blocks by copying from existing ones:
```py
>>> # Copy existing blocks as placeholders
>>> class SDXLDiffDiffPrepareLatentsStep(PipelineBlock):
... """Copied from StableDiffusionXLImg2ImgPrepareLatentsStep - will modify later"""
... # ... same implementation as StableDiffusionXLImg2ImgPrepareLatentsStep
...
>>> class SDXLDiffDiffLoopBeforeDenoiser(PipelineBlock):
... """Copied from StableDiffusionXLLoopBeforeDenoiser - will modify later"""
... # ... same implementation as StableDiffusionXLLoopBeforeDenoiser
```
`SDXLDiffDiffLoopBeforeDenoiser` is the be part of the denoise loop we need to change. Let's use it to assemble a `SDXLDiffDiffDenoiseStep`.
```py
>>> class SDXLDiffDiffDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
... block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLLoopDenoiser, StableDiffusionXLLoopAfterDenoiser]
... block_names = ["before_denoiser", "denoiser", "after_denoiser"]
```
Now we can put together our differential diffusion pipeline.
```py
>>> DIFFDIFF_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
>>> DIFFDIFF_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
>>> DIFFDIFF_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
>>> DIFFDIFF_BLOCKS["denoise"] = SDXLDiffDiffDenoiseStep
>>>
>>> dd_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_BLOCKS)
>>> print(dd_blocks)
>>> # At this point, the pipeline works exactly like img2img since our blocks are just copies
```
### Set up an example
ok, so now our blocks should be able to compile without an error, we can move on to the next step. Let's setup a simple example so we can run the pipeline as we build it. diff-diff use same model checkpoints as SDXL so we can fetch the models from a regular SDXL repo.
```py
>>> dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
>>> dd_pipeline.load_default_componenets(torch_dtype=torch.float16)
>>> dd_pipeline.to("cuda")
```
We will use this example script:
```py
>>> image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
>>> mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
>>>
>>> prompt = "a green pear"
>>> negative_prompt = "blurry"
>>>
>>> image = dd_pipeline(
... prompt=prompt,
... negative_prompt=negative_prompt,
... num_inference_steps=25,
... diffdiff_map=mask,
... image=image,
... output="images"
... )[0]
>>>
>>> image.save("diffdiff_out.png")
```
If you run the script right now, you will get a complaint about unexpected input `diffdiff_map`.
and you would get the same result as the original img2img pipeline.
### implement your custom logic and test incrementally
Let's modify the pipeline so that we can get expected result with this example script.
We'll start with the `prepare_latents` step. The main changes are:
- Requires a new user input `diffdiff_map`
- Requires new component `mask_processor` to process the `diffdiff_map`
- Requires new intermediate inputs:
- Need `timestep` instead of `latent_timestep` to precompute all the latents
- Need `num_inference_steps` to create the `diffdiff_masks`
- create a new output `diffdiff_masks` and `original_latents`
<Tip>
💡 use `print(dd_pipeline.doc)` to check compiled inputs and outputs of the built piepline.
e.g. after we added `diffdiff_map` as an input in this step, we can run `print(dd_pipeline.doc)` to verify that it shows up in the docstring as a user input.
</Tip>
Once we make sure all the variables we need are available in the block state, we can implement the diff-diff logic inside `__call__`. We created 2 new variables: the change map `diffdiff_mask` and the pre-computed noised latents for all timesteps `original_latents`.
<Tip>
💡 Implement incrementally! Run the example script as you go, and insert `print(state)` and `print(block_state)` everywhere inside the `__call__` method to inspect the intermediate results. This helps you understand what's going on and what each line you just added does.
</Tip>
Here are the key changes we made to implement differential diffusion:
**1. Modified `prepare_latents` step:**
```diff
class SDXLDiffDiffPrepareLatentsStep(PipelineBlock):
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKL),
ComponentSpec("scheduler", EulerDiscreteScheduler),
+ ComponentSpec("mask_processor", VaeImageProcessor, config=FrozenDict({"do_normalize": False, "do_convert_grayscale": True}))
]
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
+ InputParam("diffdiff_map", required=True),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"),
- InputParam("latent_timestep", required=True, type_hint=torch.Tensor),
+ InputParam("timesteps", type_hint=torch.Tensor),
+ InputParam("num_inference_steps", type_hint=int),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
+ OutputParam("original_latents", type_hint=torch.Tensor),
+ OutputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, state: PipelineState):
# ... existing logic ...
+ # Process change map and create masks
+ diffdiff_map = components.mask_processor.preprocess(block_state.diffdiff_map, height=latent_height, width=latent_width)
+ thresholds = torch.arange(block_state.num_inference_steps, dtype=diffdiff_map.dtype) / block_state.num_inference_steps
+ block_state.diffdiff_masks = diffdiff_map > (thresholds + (block_state.denoising_start or 0))
+ block_state.original_latents = block_state.latents
```
**2. Modified `before_denoiser` step:**
```diff
class SDXLDiffDiffLoopBeforeDenoiser(PipelineBlock):
@property
def description(self) -> str:
return (
"Step within the denoising loop for differential diffusion that prepare the latent input for the denoiser"
)
+ @property
+ def inputs(self) -> List[Tuple[str, Any]]:
+ return [
+ InputParam("denoising_start"),
+ ]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("latents", required=True, type_hint=torch.Tensor),
+ InputParam("original_latents", type_hint=torch.Tensor),
+ InputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, block_state, i, t):
+ # Apply differential diffusion logic
+ if i == 0 and block_state.denoising_start is None:
+ block_state.latents = block_state.original_latents[:1]
+ else:
+ block_state.mask = block_state.diffdiff_masks[i].unsqueeze(0).unsqueeze(1)
+ block_state.latents = block_state.original_latents[i] * block_state.mask + block_state.latents * (1 - block_state.mask)
# ... rest of existing logic ...
```
That's all there is to it! We've just created a simple sequential pipeline by mix-and-match some existing and new pipeline blocks.
Now we use the process we've prepred in step2 to build the pipeline and inspect it.
```py
>> dd_pipeline
SequentialPipelineBlocks(
Class: ModularPipelineBlocks
Description:
Components:
text_encoder (`CLIPTextModel`)
text_encoder_2 (`CLIPTextModelWithProjection`)
tokenizer (`CLIPTokenizer`)
tokenizer_2 (`CLIPTokenizer`)
guider (`ClassifierFreeGuidance`)
vae (`AutoencoderKL`)
image_processor (`VaeImageProcessor`)
scheduler (`EulerDiscreteScheduler`)
mask_processor (`VaeImageProcessor`)
unet (`UNet2DConditionModel`)
Configs:
force_zeros_for_empty_prompt (default: True)
requires_aesthetics_score (default: False)
Blocks:
[0] text_encoder (StableDiffusionXLTextEncoderStep)
Description: Text Encoder step that generate text_embeddings to guide the image generation
[1] image_encoder (StableDiffusionXLVaeEncoderStep)
Description: Vae Encoder step that encode the input image into a latent representation
[2] input (StableDiffusionXLInputStep)
Description: Input processing step that:
1. Determines `batch_size` and `dtype` based on `prompt_embeds`
2. Adjusts input tensor shapes based on `batch_size` (number of prompts) and `num_images_per_prompt`
All input tensors are expected to have either batch_size=1 or match the batch_size
of prompt_embeds. The tensors will be duplicated across the batch dimension to
have a final batch_size of batch_size * num_images_per_prompt.
[3] set_timesteps (StableDiffusionXLSetTimestepsStep)
Description: Step that sets the scheduler's timesteps for inference
[4] prepare_latents (SDXLDiffDiffPrepareLatentsStep)
Description: Step that prepares the latents for the differential diffusion generation process
[5] prepare_add_cond (StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep)
Description: Step that prepares the additional conditioning for the image-to-image/inpainting generation process
[6] denoise (SDXLDiffDiffDenoiseStep)
Description: Pipeline block that iteratively denoise the latents over `timesteps`. The specific steps with each iteration can be customized with `sub_blocks` attributes
[7] decode (StableDiffusionXLDecodeStep)
Description: Step that decodes the denoised latents into images
)
```
Run the example now, you should see an apple with its right half transformed into a green pear.
![Image description](https://cdn-uploads.huggingface.co/production/uploads/624ef9ba9d608e459387b34e/4zqJOz-35Q0i6jyUW3liL.png)
## Adding IP-adapter
We provide an auto IP-adapter block that you can plug-and-play into your modular workflow. It's an `AutoPipelineBlocks`, so it will only run when the user passes an IP adapter image. In this tutorial, we'll focus on how to package it into your differential diffusion workflow. To learn more about `AutoPipelineBlocks`, see [here](./auto_pipeline_blocks.md)
We talked about how to add IP-adapter into your workflow in the [Modular Pipeline Guide](./modular_pipeline.md). Let's just go ahead to create the IP-adapter block.
```py
>>> from diffusers.modular_pipelines.stable_diffusion_xl.encoders import StableDiffusionXLAutoIPAdapterStep
>>> ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
```
We can directly add the ip-adapter block instance to the `diffdiff_blocks` that we created before. The `sub_blocks` attribute is a `InsertableDict`, so we're able to insert the it at specific position (index `0` here).
```py
>>> dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
Take a look at the new diff-diff pipeline with ip-adapter!
```py
>>> print(dd_blocks)
```
The pipeline now lists ip-adapter as its first block, and tells you that it will run only if `ip_adapter_image` is provided. It also includes the two new components from ip-adpater: `image_encoder` and `feature_extractor`
```out
SequentialPipelineBlocks(
Class: ModularPipelineBlocks
====================================================================================================
This pipeline contains blocks that are selected at runtime based on inputs.
Trigger Inputs: {'ip_adapter_image'}
Use `get_execution_blocks()` with input names to see selected blocks (e.g. `get_execution_blocks('ip_adapter_image')`).
====================================================================================================
Description:
Components:
image_encoder (`CLIPVisionModelWithProjection`)
feature_extractor (`CLIPImageProcessor`)
unet (`UNet2DConditionModel`)
guider (`ClassifierFreeGuidance`)
text_encoder (`CLIPTextModel`)
text_encoder_2 (`CLIPTextModelWithProjection`)
tokenizer (`CLIPTokenizer`)
tokenizer_2 (`CLIPTokenizer`)
vae (`AutoencoderKL`)
image_processor (`VaeImageProcessor`)
scheduler (`EulerDiscreteScheduler`)
mask_processor (`VaeImageProcessor`)
Configs:
force_zeros_for_empty_prompt (default: True)
requires_aesthetics_score (default: False)
Blocks:
[0] ip_adapter (StableDiffusionXLAutoIPAdapterStep)
Description: Run IP Adapter step if `ip_adapter_image` is provided.
[1] text_encoder (StableDiffusionXLTextEncoderStep)
Description: Text Encoder step that generate text_embeddings to guide the image generation
[2] image_encoder (StableDiffusionXLVaeEncoderStep)
Description: Vae Encoder step that encode the input image into a latent representation
[3] input (StableDiffusionXLInputStep)
Description: Input processing step that:
1. Determines `batch_size` and `dtype` based on `prompt_embeds`
2. Adjusts input tensor shapes based on `batch_size` (number of prompts) and `num_images_per_prompt`
All input tensors are expected to have either batch_size=1 or match the batch_size
of prompt_embeds. The tensors will be duplicated across the batch dimension to
have a final batch_size of batch_size * num_images_per_prompt.
[4] set_timesteps (StableDiffusionXLSetTimestepsStep)
Description: Step that sets the scheduler's timesteps for inference
[5] prepare_latents (SDXLDiffDiffPrepareLatentsStep)
Description: Step that prepares the latents for the differential diffusion generation process
[6] prepare_add_cond (StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep)
Description: Step that prepares the additional conditioning for the image-to-image/inpainting generation process
[7] denoise (SDXLDiffDiffDenoiseStep)
Description: Pipeline block that iteratively denoise the latents over `timesteps`. The specific steps with each iteration can be customized with `sub_blocks` attributes
[8] decode (StableDiffusionXLDecodeStep)
Description: Step that decodes the denoised latents into images
)
```
Let's test it out. We used an orange image to condition the generation via ip-addapter and we can see a slight orange color and texture in the final output.
```py
>>> ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
>>> dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
>>>
>>> dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
>>> dd_pipeline.load_default_components(torch_dtype=torch.float16)
>>> dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
>>> dd_pipeline.loader.set_ip_adapter_scale(0.6)
>>> dd_pipeline = dd_pipeline.to(device)
>>>
>>> ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg")
>>> image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
>>> mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
>>>
>>> prompt = "a green pear"
>>> negative_prompt = "blurry"
>>> generator = torch.Generator(device=device).manual_seed(42)
>>>
>>> image = dd_pipeline(
... prompt=prompt,
... negative_prompt=negative_prompt,
... num_inference_steps=25,
... generator=generator,
... ip_adapter_image=ip_adapter_image,
... diffdiff_map=mask,
... image=image,
... output="images"
... )[0]
```
## Working with ControlNets
What about controlnet? Can differential diffusion work with controlnet? The key differences between a regular pipeline and a ControlNet pipeline are:
1. A ControlNet input step that prepares the control condition
2. Inside the denoising loop, a modified denoiser step where the control image is first processed through ControlNet, then control information is injected into the UNet
From looking at the code workflow: differential diffusion only modifies the "before denoiser" step, while ControlNet operates within the "denoiser" itself. Since they intervene at different points in the pipeline, they should work together without conflicts.
Intuitively, these two techniques are orthogonal and should combine naturally: differential diffusion controls how much the inference process can deviate from the original in each region, while ControlNet controls in what direction that change occurs.
With this understanding, let's assemble the diffdiff-controlnet loop by combining the diffdiff before-denoiser step and controlnet denoiser step.
```py
>>> class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
... block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLControlNetLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser]
... block_names = ["before_denoiser", "denoiser", "after_denoiser"]
>>>
>>> controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
>>> # print(controlnet_denoise)
```
We provide a auto controlnet input block that you can directly put into your workflow to proceess the `control_image`: similar to auto ip-adapter block, this step will only run if `control_image` input is passed from user. It work with both controlnet and controlnet union.
```py
>>> from diffusers.modular_pipelines.stable_diffusion_xl.modular_blocks import StableDiffusionXLAutoControlNetInputStep
>>> control_input_block = StableDiffusionXLAutoControlNetInputStep()
>>> print(control_input_block)
```
```out
StableDiffusionXLAutoControlNetInputStep(
Class: AutoPipelineBlocks
====================================================================================================
This pipeline contains blocks that are selected at runtime based on inputs.
Trigger Inputs: ['control_image', 'control_mode']
====================================================================================================
Description: Controlnet Input step that prepare the controlnet input.
This is an auto pipeline block that works for both controlnet and controlnet_union.
(it should be called right before the denoise step) - `StableDiffusionXLControlNetUnionInputStep` is called to prepare the controlnet input when `control_mode` and `control_image` are provided.
- `StableDiffusionXLControlNetInputStep` is called to prepare the controlnet input when `control_image` is provided. - if neither `control_mode` nor `control_image` is provided, step will be skipped.
Components:
controlnet (`ControlNetUnionModel`)
control_image_processor (`VaeImageProcessor`)
Sub-Blocks:
• controlnet_union [trigger: control_mode] (StableDiffusionXLControlNetUnionInputStep)
Description: step that prepares inputs for the ControlNetUnion model
• controlnet [trigger: control_image] (StableDiffusionXLControlNetInputStep)
Description: step that prepare inputs for controlnet
)
```
Let's assemble the blocks and run an example using controlnet + differential diffusion. We used a tomato as `control_image`, so you can see that in the output, the right half that transformed into a pear had a tomato-like shape.
```py
>>> dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
>>> dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
>>>
>>> dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
>>> dd_pipeline.load_default_components(torch_dtype=torch.float16)
>>> dd_pipeline = dd_pipeline.to(device)
>>>
>>> control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
>>> image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
>>> mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
>>>
>>> prompt = "a green pear"
>>> negative_prompt = "blurry"
>>> generator = torch.Generator(device=device).manual_seed(42)
>>>
>>> image = dd_pipeline(
... prompt=prompt,
... negative_prompt=negative_prompt,
... num_inference_steps=25,
... generator=generator,
... control_image=control_image,
... controlnet_conditioning_scale=0.5,
... diffdiff_map=mask,
... image=image,
... output="images"
... )[0]
```
Optionally, We can combine `SDXLDiffDiffControlNetDenoiseStep` and `SDXLDiffDiffDenoiseStep` into a `AutoPipelineBlocks` so that same workflow can work with or without controlnet.
```py
>>> class SDXLDiffDiffAutoDenoiseStep(AutoPipelineBlocks):
... block_classes = [SDXLDiffDiffControlNetDenoiseStep, SDXLDiffDiffDenoiseStep]
... block_names = ["controlnet_denoise", "denoise"]
... block_trigger_inputs = ["controlnet_cond", None]
```
`SDXLDiffDiffAutoDenoiseStep` will run the ControlNet denoise step if `control_image` input is provided, otherwise it will run the regular denoise step.
<Tip>
Note that it's perfectly fine not to use `AutoPipelineBlocks`. In fact, we recommend only using `AutoPipelineBlocks` to package your workflow at the end once you've verified all your pipelines work as expected.
</Tip>
Now you can create the differential diffusion preset that works with ip-adapter & controlnet.
```py
>>> DIFFDIFF_AUTO_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
>>> DIFFDIFF_AUTO_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
>>> DIFFDIFF_AUTO_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
>>> DIFFDIFF_AUTO_BLOCKS["denoise"] = SDXLDiffDiffAutoDenoiseStep
>>> DIFFDIFF_AUTO_BLOCKS.insert("ip_adapter", StableDiffusionXLAutoIPAdapterStep, 0)
>>> DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoInput, 7)
>>>
>>> print(DIFFDIFF_AUTO_BLOCKS)
```
to use
```py
>>> dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
>>> dd_pipeline = dd_auto_blocks.init_pipeline(...)
```
## Creating a Modular Repo
You can easily share your differential diffusion workflow on the Hub by creating a modular repo. This is one created using the code we just wrote together: https://huggingface.co/YiYiXu/modular-diffdiff
To create a Modular Repo and share on hub, you just need to run `save_pretrained()` along with the `push_to_hub=True` flag. Note that if your pipeline contains custom block, you need to manually upload the code to the hub. But we are working on a command line tool to help you upload it very easily.
```py
dd_pipeline.save_pretrained("YiYiXu/test_modular_doc", push_to_hub=True)
```
With a modular repo, it is very easy for the community to use the workflow you just created! Here is an example to use the differential-diffusion pipeline we just created and shared.
```py
>>> from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
>>> import torch
>>> from diffusers.utils import load_image
>>>
>>> repo_id = "YiYiXu/modular-diffdiff-0704"
>>>
>>> components = ComponentsManager()
>>>
>>> diffdiff_pipeline = ModularPipeline.from_pretrained(repo_id, trust_remote_code=True, components_manager=components, collection="diffdiff")
>>> diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
>>> components.enable_auto_cpu_offload()
```
see more usage example on model card.
## deploy a mellon node
[YIYI TODO: for now, here is an example of mellon node https://huggingface.co/YiYiXu/diff-diff-mellon]

View File

@@ -0,0 +1,175 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Guiders
[Classifier-free guidance](https://huggingface.co/papers/2207.12598) steers model generation that better match a prompt and is commonly used to improve generation quality, control, and adherence to prompts. There are different types of guidance methods, and in Diffusers, they are known as *guiders*. Like blocks, it is easy to switch and use different guiders for different use cases without rewriting the pipeline.
This guide will show you how to switch guiders, adjust guider parameters, and load and share them to the Hub.
## Switching guiders
[`ClassifierFreeGuidance`] is the default guider and created when a pipeline is initialized with [`~ModularPipelineBlocks.init_pipeline`]. It is created by `from_config` which means it doesn't require loading specifications from a modular repository. A guider won't be listed in `modular_model_index.json`.
Use [`~ModularPipeline.get_component_spec`] to inspect a guider.
```py
t2i_pipeline.get_component_spec("guider")
ComponentSpec(name='guider', type_hint=<class 'diffusers.guiders.classifier_free_guidance.ClassifierFreeGuidance'>, description=None, config=FrozenDict([('guidance_scale', 7.5), ('guidance_rescale', 0.0), ('use_original_formulation', False), ('start', 0.0), ('stop', 1.0), ('_use_default_values', ['start', 'guidance_rescale', 'stop', 'use_original_formulation'])]), repo=None, subfolder=None, variant=None, revision=None, default_creation_method='from_config')
```
Switch to a different guider by passing the new guider to [`~ModularPipeline.update_components`].
> [!TIP]
> Changing guiders will return text letting you know you're changing the guider type.
> ```bash
> ModularPipeline.update_components: adding guider with new type: PerturbedAttentionGuidance, previous type: ClassifierFreeGuidance
> ```
```py
from diffusers import LayerSkipConfig, PerturbedAttentionGuidance
config = LayerSkipConfig(indices=[2, 9], fqn="mid_block.attentions.0.transformer_blocks", skip_attention=False, skip_attention_scores=True, skip_ff=False)
guider = PerturbedAttentionGuidance(
guidance_scale=5.0, perturbed_guidance_scale=2.5, perturbed_guidance_config=config
)
t2i_pipeline.update_components(guider=guider)
```
Use [`~ModularPipeline.get_component_spec`] again to verify the guider type is different.
```py
t2i_pipeline.get_component_spec("guider")
ComponentSpec(name='guider', type_hint=<class 'diffusers.guiders.perturbed_attention_guidance.PerturbedAttentionGuidance'>, description=None, config=FrozenDict([('guidance_scale', 5.0), ('perturbed_guidance_scale', 2.5), ('perturbed_guidance_start', 0.01), ('perturbed_guidance_stop', 0.2), ('perturbed_guidance_layers', None), ('perturbed_guidance_config', LayerSkipConfig(indices=[2, 9], fqn='mid_block.attentions.0.transformer_blocks', skip_attention=False, skip_attention_scores=True, skip_ff=False, dropout=1.0)), ('guidance_rescale', 0.0), ('use_original_formulation', False), ('start', 0.0), ('stop', 1.0), ('_use_default_values', ['perturbed_guidance_start', 'use_original_formulation', 'perturbed_guidance_layers', 'stop', 'start', 'guidance_rescale', 'perturbed_guidance_stop']), ('_class_name', 'PerturbedAttentionGuidance'), ('_diffusers_version', '0.35.0.dev0')]), repo=None, subfolder=None, variant=None, revision=None, default_creation_method='from_config')
```
## Loading custom guiders
Guiders that are already saved on the Hub with a `modular_model_index.json` file are considered a `from_pretrained` component now instead of a `from_config` component.
```json
{
"guider": [
null,
null,
{
"repo": "YiYiXu/modular-loader-t2i-guider",
"revision": null,
"subfolder": "pag_guider",
"type_hint": [
"diffusers",
"PerturbedAttentionGuidance"
],
"variant": null
}
]
}
```
The guider is only created after calling [`~ModularPipeline.load_components`] based on the loading specification in `modular_model_index.json`.
```py
t2i_pipeline = t2i_blocks.init_pipeline("YiYiXu/modular-doc-guider")
# not created during init
assert t2i_pipeline.guider is None
t2i_pipeline.load_components()
# loaded as PAG guider
t2i_pipeline.guider
```
## Changing guider parameters
The guider parameters can be adjusted with either the [`~ComponentSpec.create`] method or with [`~ModularPipeline.update_components`]. The example below changes the `guidance_scale` value.
<hfoptions id="switch">
<hfoption id="create">
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider = guider_spec.create(guidance_scale=10)
t2i_pipeline.update_components(guider=guider)
```
</hfoption>
<hfoption id="update_components">
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider_spec.config["guidance_scale"] = 10
t2i_pipeline.update_components(guider=guider_spec)
```
</hfoption>
</hfoptions>
## Uploading custom guiders
Call the [`~utils.PushToHubMixin.push_to_hub`] method on a custom guider to share it to the Hub.
```py
guider.push_to_hub("YiYiXu/modular-loader-t2i-guider", subfolder="pag_guider")
```
To make this guider available to the pipeline, either modify the `modular_model_index.json` file or use the [`~ModularPipeline.update_components`] method.
<hfoptions id="upload">
<hfoption id="modular_model_index.json">
Edit the `modular_model_index.json` file and add a loading specification for the guider by pointing to a folder containing the guider config.
```json
{
"guider": [
"diffusers",
"PerturbedAttentionGuidance",
{
"repo": "YiYiXu/modular-loader-t2i-guider",
"revision": null,
"subfolder": "pag_guider",
"type_hint": [
"diffusers",
"PerturbedAttentionGuidance"
],
"variant": null
}
],
```
</hfoption>
<hfoption id="update_components">
Change the [`~ComponentSpec.default_creation_method`] to `from_pretrained` and use [`~ModularPipeline.update_components`] to update the guider and component specifications as well as the pipeline config.
> [!TIP]
> Changing the creation method will return text letting you know you're changing the creation type to `from_pretrained`.
> ```bash
> ModularPipeline.update_components: changing the default_creation_method of guider from from_config to from_pretrained.
> ```
```py
guider_spec = t2i_pipeline.get_component_spec("guider")
guider_spec.default_creation_method="from_pretrained"
guider_spec.repo="YiYiXu/modular-loader-t2i-guider"
guider_spec.subfolder="pag_guider"
pag_guider = guider_spec.load()
t2i_pipeline.update_components(guider=pag_guider)
```
To make it the default guider for a pipeline, call [`~utils.PushToHubMixin.push_to_hub`]. This is an optional step and not necessary if you are only experimenting locally.
```py
t2i_pipeline.push_to_hub("YiYiXu/modular-doc-guider")
```
</hfoption>
</hfoptions>

View File

@@ -12,67 +12,22 @@ specific language governing permissions and limitations under the License.
# LoopSequentialPipelineBlocks
<Tip warning={true}>
[`~modular_pipelines.LoopSequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a loop. Data flows circularly, using `intermediate_inputs` and `intermediate_outputs`, and each block is run iteratively. This is typically used to create a denoising loop which is iterative by default.
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
</Tip>
## Loop wrapper
`LoopSequentialPipelineBlocks` is a subclass of `ModularPipelineBlocks`. It is a multi-block that composes other blocks together in a loop, creating iterative workflows where blocks run multiple times with evolving state. It's particularly useful for denoising loops requiring repeated execution of the same blocks.
[`~modular_pipelines.LoopSequentialPipelineBlocks`], is also known as the *loop wrapper* because it defines the loop structure, iteration variables, and configuration. Within the loop wrapper, you need the following variables.
<Tip>
Other types of multi-blocks include [SequentialPipelineBlocks](./sequential_pipeline_blocks.md) (for linear workflows) and [AutoPipelineBlocks](./auto_pipeline_blocks.md) (for conditional block selection). For information on creating individual blocks, see the [PipelineBlock guide](./pipeline_block.md).
Additionally, like all `ModularPipelineBlocks`, `LoopSequentialPipelineBlocks` are definitions/specifications, not runnable pipelines. You need to convert them into a `ModularPipeline` to actually execute them. For information on creating and running pipelines, see the [Modular Pipeline guide](modular_pipeline.md).
</Tip>
You could create a loop using `PipelineBlock` like this:
```python
class DenoiseLoop(PipelineBlock):
def __call__(self, components, state):
block_state = self.get_block_state(state)
for t in range(block_state.num_inference_steps):
# ... loop logic here
pass
self.set_block_state(state, block_state)
return components, state
```
But in this tutorial, we will focus on how to use `LoopSequentialPipelineBlocks` to create a "composable" denoising loop where you can add or remove blocks within the loop or reuse the same loop structure with different block combinations.
It involves two parts: a **loop wrapper** and **loop blocks**
* The **loop wrapper** (`LoopSequentialPipelineBlocks`) defines the loop structure, e.g. it defines the iteration variables, and loop configurations such as progress bar.
* The **loop blocks** are basically standard pipeline blocks you add to the loop wrapper.
- they run sequentially for each iteration of the loop
- they receive the current iteration index as an additional parameter
- they share the same block_state throughout the entire loop
Unlike regular `SequentialPipelineBlocks` where each block gets its own state, loop blocks share a single state that persists and evolves across iterations.
We will build a simple loop block to demonstrate these concepts. Creating a loop block involves three steps:
1. defining the loop wrapper class
2. creating the loop blocks
3. adding the loop blocks to the loop wrapper class to create the loop wrapper instance
**Step 1: Define the Loop Wrapper**
To create a `LoopSequentialPipelineBlocks` class, you need to define:
* `loop_inputs`: User input variables (equivalent to `PipelineBlock.inputs`)
* `loop_intermediate_inputs`: Intermediate variables needed from the mutable pipeline state (equivalent to `PipelineBlock.intermediates_inputs`)
* `loop_intermediate_outputs`: New intermediate variables this block will add to the mutable pipeline state (equivalent to `PipelineBlock.intermediates_outputs`)
* `__call__` method: Defines the loop structure and iteration logic
Here is an example of a loop wrapper:
- `loop_inputs` are user provided values and equivalent to [`~modular_pipelines.ModularPipelineBlocks.inputs`].
- `loop_intermediate_inputs` are intermediate variables from the [`~modular_pipelines.PipelineState`] and equivalent to [`~modular_pipelines.ModularPipelineBlocks.intermediate_inputs`].
- `loop_intermediate_outputs` are new intermediate variables created by the block and added to the [`~modular_pipelines.PipelineState`]. It is equivalent to [`~modular_pipelines.ModularPipelineBlocks.intermediate_outputs`].
- `__call__` method defines the loop structure and iteration logic.
```py
import torch
from diffusers.modular_pipelines import LoopSequentialPipelineBlocks, PipelineBlock, InputParam, OutputParam
from diffusers.modular_pipelines import LoopSequentialPipelineBlocks, ModularPipelineBlocks, InputParam, OutputParam
class LoopWrapper(LoopSequentialPipelineBlocks):
model_name = "test"
@@ -93,16 +48,20 @@ class LoopWrapper(LoopSequentialPipelineBlocks):
return components, state
```
**Step 2: Create Loop Blocks**
The loop wrapper can pass additional arguments, like current iteration index, to the loop blocks.
Loop blocks are standard `PipelineBlock`s, but their `__call__` method works differently:
* It receives the iteration variable (e.g., `i`) passed by the loop wrapper
* It works directly with `block_state` instead of pipeline state
* No need to call `self.get_block_state()` or `self.set_block_state()`
## Loop blocks
A loop block is a [`~modular_pipelines.ModularPipelineBlocks`], but the `__call__` method behaves differently.
- It recieves the iteration variable from the loop wrapper.
- It works directly with the [`~modular_pipelines.BlockState`] instead of the [`~modular_pipelines.PipelineState`].
- It doesn't require retrieving or updating the [`~modular_pipelines.BlockState`].
Loop blocks share the same [`~modular_pipelines.BlockState`] to allow values to accumulate and change for each iteration in the loop.
```py
class LoopBlock(PipelineBlock):
# this is used to identify the model family, we won't worry about it in this example
class LoopBlock(ModularPipelineBlocks):
model_name = "test"
@property
def inputs(self):
@@ -119,76 +78,16 @@ class LoopBlock(PipelineBlock):
return components, block_state
```
**Step 3: Combine Everything**
## LoopSequentialPipelineBlocks
Finally, assemble your loop by adding the block(s) to the wrapper:
Use the [`~modular_pipelines.LoopSequentialPipelineBlocks.from_blocks_dict`] method to add the loop block to the loop wrapper to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
```py
loop = LoopWrapper.from_blocks_dict({"block1": LoopBlock})
```
Now you've created a loop with one step:
```py
>>> loop
LoopWrapper(
Class: LoopSequentialPipelineBlocks
Description: I'm a loop!!
Sub-Blocks:
[0] block1 (LoopBlock)
Description: I'm a block used inside the `LoopWrapper` class
)
```
It has two inputs: `x` (used at each step within the loop) and `num_steps` used to define the loop.
```py
>>> print(loop.doc)
class LoopWrapper
I'm a loop!!
Inputs:
x (`None`, *optional*):
num_steps (`None`, *optional*):
Outputs:
x (`None`):
```
**Running the Loop:**
```py
# run the loop
loop_pipeline = loop.init_pipeline()
x = loop_pipeline(num_steps=10, x=0, output="x")
assert x == 10
```
**Adding Multiple Blocks:**
We can add multiple blocks to run within each iteration. Let's run the loop block twice within each iteration:
Add more loop blocks to run within each iteration with [`~modular_pipelines.LoopSequentialPipelineBlocks.from_blocks_dict`]. This allows you to modify the blocks without changing the loop logic itself.
```py
loop = LoopWrapper.from_blocks_dict({"block1": LoopBlock(), "block2": LoopBlock})
loop_pipeline = loop.init_pipeline()
x = loop_pipeline(num_steps=10, x=0, output="x")
assert x == 20 # Each iteration runs 2 blocks, so 10 iterations * 2 = 20
```
**Key Differences from SequentialPipelineBlocks:**
The main difference is that loop blocks share the same `block_state` across all iterations, allowing values to accumulate and evolve throughout the loop. Loop blocks could receive additional arguments (like the current iteration index) depending on the loop wrapper's implementation, since the wrapper defines how loop blocks are called. You can easily add, remove, or reorder blocks within the loop without changing the loop logic itself.
The officially supported denoising loops in Modular Diffusers are implemented using `LoopSequentialPipelineBlocks`. You can explore the actual implementation to see how these concepts work in practice:
```py
from diffusers.modular_pipelines.stable_diffusion_xl.denoise import StableDiffusionXLDenoiseStep
StableDiffusionXLDenoiseStep()
```

View File

@@ -10,43 +10,42 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# PipelineState and BlockState
# States
<Tip warning={true}>
Blocks rely on the [`~modular_pipelines.PipelineState`] and [`~modular_pipelines.BlockState`] data structures for communicating and sharing data.
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
| State | Description |
|-------|-------------|
| [`~modular_pipelines.PipelineState`] | Maintains the overall data required for a pipeline's execution and allows blocks to read and update its data. |
| [`~modular_pipelines.BlockState`] | Allows each block to perform its computation with the necessary data from `inputs`|
</Tip>
This guide explains how states work and how they connect blocks.
In Modular Diffusers, `PipelineState` and `BlockState` are the core data structures that enable blocks to communicate and share data. The concept is fundamental to understand how blocks interact with each other and the pipeline system.
## PipelineState
In the modular diffusers system, `PipelineState` acts as the global state container that all pipeline blocks operate on. It maintains the complete runtime state of the pipeline and provides a structured way for blocks to read from and write to shared data.
The [`~modular_pipelines.PipelineState`] is a global state container for all blocks. It maintains the complete runtime state of the pipeline and provides a structured way for blocks to read from and write to shared data.
A `PipelineState` consists of two distinct states:
There are two dict's in [`~modular_pipelines.PipelineState`] for structuring data.
- **The immutable state** (i.e. the `inputs` dict) contains a copy of values provided by users. Once a value is added to the immutable state, it cannot be changed. Blocks can read from the immutable state but cannot write to it.
- **The mutable state** (i.e. the `intermediates` dict) contains variables that are passed between blocks and can be modified by them.
Here's an example of what a `PipelineState` looks like:
- The `values` dict is a **mutable** state containing a copy of user provided input values and intermediate output values generated by blocks. If a block modifies an `input`, it will be reflected in the `values` dict after calling `set_block_state`.
```py
PipelineState(
inputs={
values={
'prompt': 'a cat'
'guidance_scale': 7.0
'num_inference_steps': 25
},
intermediates={
'prompt_embeds': Tensor(dtype=torch.float32, shape=torch.Size([1, 1, 1, 1]))
'negative_prompt_embeds': None
},
)
```
Each pipeline blocks define what parts of that state they can read from and write to through their `inputs`, `intermediate_inputs`, and `intermediate_outputs` properties. At run time, they gets a local view (`BlockState`) of the relevant variables it needs from `PipelineState`, performs its operations, and then updates `PipelineState` with any changes.
## BlockState
For example, if a block defines an input `image`, inside the block's `__call__` method, the `BlockState` would contain:
The [`~modular_pipelines.BlockState`] is a local view of the relevant variables an individual block needs from [`~modular_pipelines.PipelineState`] for performing it's computations.
Access these variables directly as attributes like `block_state.image`.
```py
BlockState(
@@ -54,6 +53,23 @@ BlockState(
)
```
You can access the variables directly as attributes: `block_state.image`.
When a block's `__call__` method is executed, it retrieves the [`BlockState`] with `self.get_block_state(state)`, performs it's operations, and updates [`~modular_pipelines.PipelineState`] with `self.set_block_state(state, block_state)`.
We will explore more on how blocks interact with pipeline state through their `inputs`, `intermediate_inputs`, and `intermediate_outputs` properties, see the [PipelineBlock guide](./pipeline_block.md).
```py
def __call__(self, components, state):
# retrieve BlockState
block_state = self.get_block_state(state)
# computation logic on inputs
# update PipelineState
self.set_block_state(state, block_state)
return components, state
```
## State interaction
[`~modular_pipelines.PipelineState`] and [`~modular_pipelines.BlockState`] interaction is defined by a block's `inputs`, and `intermediate_outputs`.
- `inputs`, a block can modify an input - like `block_state.image` - and this change can be propagated globally to [`~modular_pipelines.PipelineState`] by calling `set_block_state`.
- `intermediate_outputs`, is a new variable that a block creates. It is added to the [`~modular_pipelines.PipelineState`]'s `values` dict and is available as for subsequent blocks or accessed by users as a final output from the pipeline.

File diff suppressed because it is too large Load Diff

View File

@@ -10,33 +10,32 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Getting Started with Modular Diffusers
# Overview
<Tip warning={true}>
> [!WARNING]
> Modular Diffusers is under active development and it's API may change.
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
Modular Diffusers is a unified pipeline system that simplifies your workflow with *pipeline blocks*.
</Tip>
- Blocks are reusable and you only need to create new blocks that are unique to your pipeline.
- Blocks can be mixed and matched to adapt to or create a pipeline for a specific workflow or multiple workflows.
With Modular Diffusers, we introduce a unified pipeline system that simplifies how you work with diffusion models. Instead of creating separate pipelines for each task, Modular Diffusers lets you:
The Modular Diffusers docs are organized as shown below.
**Write Only What's New**: You won't need to write an entire pipeline from scratch every time you have a new use case. You can create pipeline blocks just for your new workflow's unique aspects and reuse existing blocks for existing functionalities.
## Quickstart
**Assemble Like LEGO®**: You can mix and match between blocks in flexible ways. This allows you to write dedicated blocks unique to specific workflows, and then assemble different blocks into a pipeline that can be used more conveniently for multiple workflows.
- A [quickstart](./quickstart) demonstrating how to implement an example workflow with Modular Diffusers.
## ModularPipelineBlocks
Here's how our guides are organized to help you navigate the Modular Diffusers documentation:
- [States](./modular_diffusers_states) explains how data is shared and communicated between blocks and [`ModularPipeline`].
- [ModularPipelineBlocks](./pipeline_block) is the most basic unit of a [`ModularPipeline`] and this guide shows you how to create one.
- [SequentialPipelineBlocks](./sequential_pipeline_blocks) is a type of block that chains multiple blocks so they run one after another, passing data along the chain. This guide shows you how to create [`~modular_pipelines.SequentialPipelineBlocks`] and how they connect and work together.
- [LoopSequentialPipelineBlocks](./loop_sequential_pipeline_blocks) is a type of block that runs a series of blocks in a loop. This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
- [AutoPipelineBlocks](./auto_pipeline_blocks) is a type of block that automatically chooses which blocks to run based on the input. This guide shows you how to create [`~modular_pipelines.AutoPipelineBlocks`].
### 🚀 Running Pipelines
- **[Modular Pipeline Guide](./modular_pipeline.md)** - How to use predefined blocks to build a pipeline and run it
- **[Components Manager Guide](./components_manager.md)** - How to manage and reuse components across multiple pipelines
## ModularPipeline
### 📚 Creating PipelineBlocks
- **[Pipeline and Block States](./modular_diffusers_states.md)** - Understanding PipelineState and BlockState
- **[Pipeline Block](./pipeline_block.md)** - How to write custom PipelineBlocks
- **[SequentialPipelineBlocks](sequential_pipeline_blocks.md)** - Connecting blocks in sequence
- **[LoopSequentialPipelineBlocks](./loop_sequential_pipeline_blocks.md)** - Creating iterative workflows
- **[AutoPipelineBlocks](./auto_pipeline_blocks.md)** - Conditional block selection
### 🎯 Practical Examples
- **[End-to-End Example](./end_to_end_guide.md)** - Complete end-to-end examples including sharing your workflow in huggingface hub and deplying UI nodes
- [ModularPipeline](./modular_pipeline) shows you how to create and convert pipeline blocks into an executable [`ModularPipeline`].
- [ComponentsManager](./components_manager) shows you how to manage and reuse components across multiple pipelines.
- [Guiders](./guiders) shows you how to use different guidance methods in the pipeline.

View File

@@ -10,126 +10,101 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# PipelineBlock
# ModularPipelineBlocks
<Tip warning={true}>
[`~modular_pipelines.ModularPipelineBlocks`] is the basic block for building a [`ModularPipeline`]. It defines what components, inputs/outputs, and computation a block should perform for a specific step in a pipeline. A [`~modular_pipelines.ModularPipelineBlocks`] connects with other blocks, using [state](./modular_diffusers_states), to enable the modular construction of workflows.
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
A [`~modular_pipelines.ModularPipelineBlocks`] on it's own can't be executed. It is a blueprint for what a step should do in a pipeline. To actually run and execute a pipeline, the [`~modular_pipelines.ModularPipelineBlocks`] needs to be converted into a [`ModularPipeline`].
</Tip>
This guide will show you how to create a [`~modular_pipelines.ModularPipelineBlocks`].
In Modular Diffusers, you build your workflow using `ModularPipelineBlocks`. We support 4 different types of blocks: `PipelineBlock`, `SequentialPipelineBlocks`, `LoopSequentialPipelineBlocks`, and `AutoPipelineBlocks`. Among them, `PipelineBlock` is the most fundamental building block of the whole system - it's like a brick in a Lego system. These blocks are designed to easily connect with each other, allowing for modular construction of creative and potentially very complex workflows.
## Inputs and outputs
<Tip>
> [!TIP]
> Refer to the [States](./modular_diffusers_states) guide if you aren't familiar with how state works in Modular Diffusers.
**Important**: `PipelineBlock`s are definitions/specifications, not runnable pipelines. They define what a block should do and what data it needs, but you need to convert them into a `ModularPipeline` to actually execute them. For information on creating and running pipelines, see the [Modular Pipeline guide](./modular_pipeline.md).
A [`~modular_pipelines.ModularPipelineBlocks`] requires `inputs`, and `intermediate_outputs`.
</Tip>
- `inputs` are values provided by a user and retrieved from the [`~modular_pipelines.PipelineState`]. This is useful because some workflows resize an image, but the original image is still required. The [`~modular_pipelines.PipelineState`] maintains the original image.
In this tutorial, we will focus on how to write a basic `PipelineBlock` and how it interacts with the pipeline state.
Use `InputParam` to define `inputs`.
## PipelineState
```py
from diffusers.modular_pipelines import InputParam
Before we dive into creating `PipelineBlock`s, make sure you have a basic understanding of `PipelineState`. It acts as the global state container that all blocks operate on - each block gets a local view (`BlockState`) of the relevant variables it needs from `PipelineState`, performs its operations, and then updates `PipelineState` with any changes. See the [PipelineState and BlockState guide](./modular_diffusers_states.md) for more details.
user_inputs = [
InputParam(name="image", type_hint="PIL.Image", description="raw input image to process")
]
```
## Define a `PipelineBlock`
- `intermediate_inputs` are values typically created from a previous block but it can also be directly provided if no preceding block generates them. Unlike `inputs`, `intermediate_inputs` can be modified.
To write a `PipelineBlock` class, you need to define a few properties that determine how your block interacts with the pipeline state. Understanding these properties is crucial - they define what data your block can access and what it can produce.
Use `InputParam` to define `intermediate_inputs`.
The three main properties you need to define are:
- `inputs`: Immutable values from the user that cannot be modified
- `intermediate_inputs`: Mutable values from previous blocks that can be read and modified
- `intermediate_outputs`: New values your block creates for subsequent blocks and user access
```py
user_intermediate_inputs = [
InputParam(name="processed_image", type_hint="torch.Tensor", description="image that has been preprocessed and normalized"),
]
```
Let's explore each one and understand how they work with the pipeline state.
- `intermediate_outputs` are new values created by a block and added to the [`~modular_pipelines.PipelineState`]. The `intermediate_outputs` are available as `intermediate_inputs` for subsequent blocks or available as the final output from running the pipeline.
**Inputs: Immutable User Values**
Use `OutputParam` to define `intermediate_outputs`.
Inputs are variables your block needs from the immutable pipeline state - these are user-provided values that cannot be modified by any block. You define them using `InputParam`:
```py
from diffusers.modular_pipelines import OutputParam
```py
user_inputs = [
InputParam(name="image", type_hint="PIL.Image", description="raw input image to process")
]
```
user_intermediate_outputs = [
OutputParam(name="image_latents", description="latents representing the image")
]
```
When you list something as an input, you're saying "I need this value directly from the end user, and I will talk to them directly, telling them what I need in the 'description' field. They will provide it and it will come to me unchanged."
The intermediate inputs and outputs share data to connect blocks. They are accessible at any point, allowing you to track the workflow's progress.
This is especially useful for raw values that serve as the "source of truth" in your workflow. For example, with a raw image, many workflows require preprocessing steps like resizing that a previous block might have performed. But in many cases, you also want the raw PIL image. In some inpainting workflows, you need the original image to overlay with the generated result for better control and consistency.
## Computation logic
**Intermediate Inputs: Mutable Values from Previous Blocks, or Users**
The computation a block performs is defined in the `__call__` method and it follows a specific structure.
Intermediate inputs are variables your block needs from the mutable pipeline state - these are values that can be read and modified. They're typically created by previous blocks, but could also be directly provided by the user if not the case:
```py
user_intermediate_inputs = [
InputParam(name="processed_image", type_hint="torch.Tensor", description="image that has been preprocessed and normalized"),
]
```
When you list something as an intermediate input, you're saying "I need this value, but I want to work with a different block that has already created it. I already know for sure that I can get it from this other block, but it's okay if other developers want use something different."
**Intermediate Outputs: New Values for Subsequent Blocks and User Access**
Intermediate outputs are new variables your block creates and adds to the mutable pipeline state. They serve two purposes:
1. **For subsequent blocks**: They can be used as intermediate inputs by other blocks in the pipeline
2. **For users**: They become available as final outputs that users can access when running the pipeline
```py
user_intermediate_outputs = [
OutputParam(name="image_latents", description="latents representing the image")
]
```
Intermediate inputs and intermediate outputs work together like Lego studs and anti-studs - they're the connection points that make blocks modular. When one block produces an intermediate output, it becomes available as an intermediate input for subsequent blocks. This is where the "modular" nature of the system really shines - blocks can be connected and reconnected in different ways as long as their inputs and outputs match.
Additionally, all intermediate outputs are accessible to users when they run the pipeline, typically you would only need the final images, but they are also able to access intermediate results like latents, embeddings, or other processing steps.
**The `__call__` Method Structure**
Your `PipelineBlock`'s `__call__` method should follow this structure:
1. Retrieve the [`~modular_pipelines.BlockState`] to get a local view of the `inputs` and `intermediate_inputs`.
2. Implement the computation logic on the `inputs` and `intermediate_inputs`.
3. Update [`~modular_pipelines.PipelineState`] to push changes from the local [`~modular_pipelines.BlockState`] back to the global [`~modular_pipelines.PipelineState`].
4. Return the components and state which becomes available to the next block.
```py
def __call__(self, components, state):
# Get a local view of the state variables this block needs
block_state = self.get_block_state(state)
# Your computation logic here
# block_state contains all your inputs and intermediate_inputs
# You can access them like: block_state.image, block_state.processed_image
# Access them like: block_state.image, block_state.processed_image
# Update the pipeline state with your updated block_states
self.set_block_state(state, block_state)
return components, state
```
The `block_state` object contains all the variables you defined in `inputs` and `intermediate_inputs`, making them easily accessible for your computation.
### Components and configs
**Components and Configs**
The components and pipeline-level configs a block needs are specified in [`ComponentSpec`] and [`~modular_pipelines.ConfigSpec`].
You can define the components and pipeline-level configs your block needs using `ComponentSpec` and `ConfigSpec`:
- [`ComponentSpec`] contains the expected components used by a block. You need the `name` of the component and ideally a `type_hint` that specifies exactly what the component is.
- [`~modular_pipelines.ConfigSpec`] contains pipeline-level settings that control behavior across all blocks.
```py
from diffusers import ComponentSpec, ConfigSpec
# Define components your block needs
expected_components = [
ComponentSpec(name="unet", type_hint=UNet2DConditionModel),
ComponentSpec(name="scheduler", type_hint=EulerDiscreteScheduler)
]
# Define pipeline-level configs
expected_config = [
ConfigSpec("force_zeros_for_empty_prompt", True)
]
```
**Components**: In the `ComponentSpec`, you must provide a `name` and ideally a `type_hint`. You can also specify a `default_creation_method` to indicate whether the component should be loaded from a pretrained model or created with default configurations. The actual loading details (`repo`, `subfolder`, `variant` and `revision` fields) are typically specified when creating the pipeline, as we covered in the [Modular Pipeline Guide](./modular_pipeline.md).
**Configs**: Pipeline-level settings that control behavior across all blocks.
When you convert your blocks into a pipeline using `blocks.init_pipeline()`, the pipeline collects all component requirements from the blocks and fetches the loading specs from the modular repository. The components are then made available to your block as the first argument of the `__call__` method. You can access any component you need using dot notation:
When the blocks are converted into a pipeline, the components become available to the block as the first argument in `__call__`.
```py
def __call__(self, components, state):
@@ -137,156 +112,4 @@ def __call__(self, components, state):
unet = components.unet
vae = components.vae
scheduler = components.scheduler
```
That's all you need to define in order to create a `PipelineBlock`. There is no hidden complexity. In fact we are going to create a helper function that take exactly these variables as input and return a pipeline block. We will use this helper function through out the tutorial to create test blocks
Note that for `__call__` method, the only part you should implement differently is the part between `self.get_block_state()` and `self.set_block_state()`, which can be abstracted into a simple function that takes `block_state` and returns the updated state. Our helper function accepts a `block_fn` that does exactly that.
**Helper Function**
```py
from diffusers.modular_pipelines import PipelineBlock, InputParam, OutputParam
import torch
def make_block(inputs=[], intermediate_inputs=[], intermediate_outputs=[], block_fn=None, description=None):
class TestBlock(PipelineBlock):
model_name = "test"
@property
def inputs(self):
return inputs
@property
def intermediate_inputs(self):
return intermediate_inputs
@property
def intermediate_outputs(self):
return intermediate_outputs
@property
def description(self):
return description if description is not None else ""
def __call__(self, components, state):
block_state = self.get_block_state(state)
if block_fn is not None:
block_state = block_fn(block_state, state)
self.set_block_state(state, block_state)
return components, state
return TestBlock
```
## Example: Creating a Simple Pipeline Block
Let's create a simple block to see how these definitions interact with the pipeline state. To better understand what's happening, we'll print out the states before and after updates to inspect them:
```py
inputs = [
InputParam(name="image", type_hint="PIL.Image", description="raw input image to process")
]
intermediate_inputs = [InputParam(name="batch_size", type_hint=int)]
intermediate_outputs = [
OutputParam(name="image_latents", description="latents representing the image")
]
def image_encoder_block_fn(block_state, pipeline_state):
print(f"pipeline_state (before update): {pipeline_state}")
print(f"block_state (before update): {block_state}")
# Simulate processing the image
block_state.image = torch.randn(1, 3, 512, 512)
block_state.batch_size = block_state.batch_size * 2
block_state.processed_image = [torch.randn(1, 3, 512, 512)] * block_state.batch_size
block_state.image_latents = torch.randn(1, 4, 64, 64)
print(f"block_state (after update): {block_state}")
return block_state
# Create a block with our definitions
image_encoder_block_cls = make_block(
inputs=inputs,
intermediate_inputs=intermediate_inputs,
intermediate_outputs=intermediate_outputs,
block_fn=image_encoder_block_fn,
description="Encode raw image into its latent presentation"
)
image_encoder_block = image_encoder_block_cls()
pipe = image_encoder_block.init_pipeline()
```
Let's check the pipeline's docstring to see what inputs it expects:
```py
>>> print(pipe.doc)
class TestBlock
Encode raw image into its latent presentation
Inputs:
image (`PIL.Image`, *optional*):
raw input image to process
batch_size (`int`, *optional*):
Outputs:
image_latents (`None`):
latents representing the image
```
Notice that `batch_size` appears as an input even though we defined it as an intermediate input. This happens because no previous block provided it, so the pipeline makes it available as a user input. However, unlike regular inputs, this value goes directly into the mutable intermediate state.
Now let's run the pipeline:
```py
from diffusers.utils import load_image
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/image_of_squirrel_painting.png")
state = pipe(image=image, batch_size=2)
print(f"pipeline_state (after update): {state}")
```
```out
pipeline_state (before update): PipelineState(
inputs={
image: <PIL.Image.Image image mode=RGB size=512x512 at 0x7F3ECC494550>
},
intermediates={
batch_size: 2
},
)
block_state (before update): BlockState(
image: <PIL.Image.Image image mode=RGB size=512x512 at 0x7F3ECC494640>
batch_size: 2
)
block_state (after update): BlockState(
image: Tensor(dtype=torch.float32, shape=torch.Size([1, 3, 512, 512]))
batch_size: 4
processed_image: List[4] of Tensors with shapes [torch.Size([1, 3, 512, 512]), torch.Size([1, 3, 512, 512]), torch.Size([1, 3, 512, 512]), torch.Size([1, 3, 512, 512])]
image_latents: Tensor(dtype=torch.float32, shape=torch.Size([1, 4, 64, 64]))
)
pipeline_state (after update): PipelineState(
inputs={
image: <PIL.Image.Image image mode=RGB size=512x512 at 0x7F3ECC494550>
},
intermediates={
batch_size: 4
image_latents: Tensor(dtype=torch.float32, shape=torch.Size([1, 4, 64, 64]))
},
)
```
**Key Observations:**
1. **Before the update**: `image` (the input) goes to the immutable inputs dict, while `batch_size` (the intermediate_input) goes to the mutable intermediates dict, and both are available in `block_state`.
2. **After the update**:
- **`image` (inputs)** changed in `block_state` but not in `pipeline_state` - this change is local to the block only.
- **`batch_size (intermediate_inputs)`** was updated in both `block_state` and `pipeline_state` - this change affects subsequent blocks (we didn't need to declare it as an intermediate output since it was already in the intermediates dict)
- **`image_latents (intermediate_outputs)`** was added to `pipeline_state` because it was declared as an intermediate output
- **`processed_image`** was not added to `pipeline_state` because it wasn't declared as an intermediate output
```

View File

@@ -0,0 +1,344 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Quickstart
Modular Diffusers is a framework for quickly building flexible and customizable pipelines. At the core of Modular Diffusers are [`ModularPipelineBlocks`] that can be combined with other blocks to adapt to new workflows. The blocks are converted into a [`ModularPipeline`], a friendly user-facing interface developers can use.
This doc will show you how to implement a [Differential Diffusion](https://differential-diffusion.github.io/) pipeline with the modular framework.
## ModularPipelineBlocks
[`ModularPipelineBlocks`] are *definitions* that specify the components, inputs, outputs, and computation logic for a single step in a pipeline. There are four types of blocks.
- [`ModularPipelineBlocks`] is the most basic block for a single step.
- [`SequentialPipelineBlocks`] is a multi-block that composes other blocks linearly. The outputs of one block are the inputs to the next block.
- [`LoopSequentialPipelineBlocks`] is a multi-block that runs iteratively and is designed for iterative workflows.
- [`AutoPipelineBlocks`] is a collection of blocks for different workflows and it selects which block to run based on the input. It is designed to conveniently package multiple workflows into a single pipeline.
[Differential Diffusion](https://differential-diffusion.github.io/) is an image-to-image workflow. Start with the `IMAGE2IMAGE_BLOCKS` preset, a collection of `ModularPipelineBlocks` for image-to-image generation.
```py
from diffusers.modular_pipelines.stable_diffusion_xl import IMAGE2IMAGE_BLOCKS
IMAGE2IMAGE_BLOCKS = InsertableDict([
("text_encoder", StableDiffusionXLTextEncoderStep),
("image_encoder", StableDiffusionXLVaeEncoderStep),
("input", StableDiffusionXLInputStep),
("set_timesteps", StableDiffusionXLImg2ImgSetTimestepsStep),
("prepare_latents", StableDiffusionXLImg2ImgPrepareLatentsStep),
("prepare_add_cond", StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep),
("denoise", StableDiffusionXLDenoiseStep),
("decode", StableDiffusionXLDecodeStep)
])
```
## Pipeline and block states
Modular Diffusers uses *state* to communicate data between blocks. There are two types of states.
- [`PipelineState`] is a global state that can be used to track all inputs and outputs across all blocks.
- [`BlockState`] is a local view of relevant variables from [`PipelineState`] for an individual block.
## Customizing blocks
[Differential Diffusion](https://differential-diffusion.github.io/) differs from standard image-to-image in its `prepare_latents` and `denoise` blocks. All the other blocks can be reused, but you'll need to modify these two.
Create placeholder `ModularPipelineBlocks` for `prepare_latents` and `denoise` by copying and modifying the existing ones.
Print the `denoise` block to see that it is composed of [`LoopSequentialPipelineBlocks`] with three sub-blocks, `before_denoiser`, `denoiser`, and `after_denoiser`. Only the `before_denoiser` sub-block needs to be modified to prepare the latent input for the denoiser based on the change map.
```py
denoise_blocks = IMAGE2IMAGE_BLOCKS["denoise"]()
print(denoise_blocks)
```
Replace the `StableDiffusionXLLoopBeforeDenoiser` sub-block with the new `SDXLDiffDiffLoopBeforeDenoiser` block.
```py
# Copy existing blocks as placeholders
class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks):
"""Copied from StableDiffusionXLImg2ImgPrepareLatentsStep - will modify later"""
# ... same implementation as StableDiffusionXLImg2ImgPrepareLatentsStep
class SDXLDiffDiffDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLLoopDenoiser, StableDiffusionXLLoopAfterDenoiser]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
```
### prepare_latents
The `prepare_latents` block requires the following changes.
- a processor to process the change map
- a new `inputs` to accept the user-provided change map, `timestep` for precomputing all the latents and `num_inference_steps` to create the mask for updating the image regions
- update the computation in the `__call__` method for processing the change map and creating the masks, and storing it in the [`BlockState`]
```diff
class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks):
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKL),
ComponentSpec("scheduler", EulerDiscreteScheduler),
+ ComponentSpec("mask_processor", VaeImageProcessor, config=FrozenDict({"do_normalize": False, "do_convert_grayscale": True}))
]
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("generator"),
+ InputParam("diffdiff_map", required=True),
- InputParam("latent_timestep", required=True, type_hint=torch.Tensor),
+ InputParam("timesteps", type_hint=torch.Tensor),
+ InputParam("num_inference_steps", type_hint=int),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
+ OutputParam("original_latents", type_hint=torch.Tensor),
+ OutputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, state: PipelineState):
# ... existing logic ...
+ # Process change map and create masks
+ diffdiff_map = components.mask_processor.preprocess(block_state.diffdiff_map, height=latent_height, width=latent_width)
+ thresholds = torch.arange(block_state.num_inference_steps, dtype=diffdiff_map.dtype) / block_state.num_inference_steps
+ block_state.diffdiff_masks = diffdiff_map > (thresholds + (block_state.denoising_start or 0))
+ block_state.original_latents = block_state.latents
```
### denoise
The `before_denoiser` sub-block requires the following changes.
- a new `inputs` to accept a `denoising_start` parameter, `original_latents` and `diffdiff_masks` from the `prepare_latents` block
- update the computation in the `__call__` method for applying Differential Diffusion
```diff
class SDXLDiffDiffLoopBeforeDenoiser(ModularPipelineBlocks):
@property
def description(self) -> str:
return (
"Step within the denoising loop for differential diffusion that prepare the latent input for the denoiser"
)
@property
def inputs(self) -> List[str]:
return [
InputParam("latents", required=True, type_hint=torch.Tensor),
+ InputParam("denoising_start"),
+ InputParam("original_latents", type_hint=torch.Tensor),
+ InputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, block_state, i, t):
+ # Apply differential diffusion logic
+ if i == 0 and block_state.denoising_start is None:
+ block_state.latents = block_state.original_latents[:1]
+ else:
+ block_state.mask = block_state.diffdiff_masks[i].unsqueeze(0).unsqueeze(1)
+ block_state.latents = block_state.original_latents[i] * block_state.mask + block_state.latents * (1 - block_state.mask)
# ... rest of existing logic ...
```
## Assembling the blocks
You should have all the blocks you need at this point to create a [`ModularPipeline`].
Copy the existing `IMAGE2IMAGE_BLOCKS` preset and for the `set_timesteps` block, use the `set_timesteps` from the `TEXT2IMAGE_BLOCKS` because Differential Diffusion doesn't require a `strength` parameter.
Set the `prepare_latents` and `denoise` blocks to the `SDXLDiffDiffPrepareLatentsStep` and `SDXLDiffDiffDenoiseStep` blocks you just modified.
Call [`SequentialPipelineBlocks.from_blocks_dict`] on the blocks to create a `SequentialPipelineBlocks`.
```py
DIFFDIFF_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
DIFFDIFF_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
DIFFDIFF_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
DIFFDIFF_BLOCKS["denoise"] = SDXLDiffDiffDenoiseStep
dd_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_BLOCKS)
print(dd_blocks)
```
## ModularPipeline
Convert the [`SequentialPipelineBlocks`] into a [`ModularPipeline`] with the [`ModularPipeline.init_pipeline`] method. This initializes the expected components to load from a `modular_model_index.json` file. Explicitly load the components by calling [`ModularPipeline.load_components`].
It is a good idea to initialize the [`ComponentManager`] with the pipeline to help manage the different components. Once you call [`~ModularPipeline.load_components`], the components are registered to the [`ComponentManager`] and can be shared between workflows. The example below uses the `collection` argument to assign the components a `"diffdiff"` label for better organization.
```py
from diffusers.modular_pipelines import ComponentsManager
components = ComponentManager()
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", components_manager=components, collection="diffdiff")
dd_pipeline.load_default_componenets(torch_dtype=torch.float16)
dd_pipeline.to("cuda")
```
## Adding workflows
Other workflows can be added to the [`ModularPipeline`] to support additional features without rewriting the entire pipeline from scratch.
This section demonstrates how to add an IP-Adapter or ControlNet.
### IP-Adapter
Stable Diffusion XL already has a preset IP-Adapter block that you can use and doesn't require any changes to the existing Differential Diffusion pipeline.
```py
from diffusers.modular_pipelines.stable_diffusion_xl.encoders import StableDiffusionXLAutoIPAdapterStep
ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
```
Use the [`sub_blocks.insert`] method to insert it into the [`ModularPipeline`]. The example below inserts the `ip_adapter_block` at position `0`. Print the pipeline to see that the `ip_adapter_block` is added and it requires an `ip_adapter_image`. This also added two components to the pipeline, the `image_encoder` and `feature_extractor`.
```py
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
Call [`~ModularPipeline.init_pipeline`] to initialize a [`ModularPipeline`] and use [`~ModularPipeline.load_components`] to load the model components. Load and set the IP-Adapter to run the pipeline.
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device=device).manual_seed(42)
image = dd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
ip_adapter_image=ip_adapter_image,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
### ControlNet
Stable Diffusion XL already has a preset ControlNet block that can readily be used.
```py
from diffusers.modular_pipelines.stable_diffusion_xl.modular_blocks import StableDiffusionXLAutoControlNetInputStep
control_input_block = StableDiffusionXLAutoControlNetInputStep()
```
However, it requires modifying the `denoise` block because that's where the ControlNet injects the control information into the UNet.
Modify the `denoise` block by replacing the `StableDiffusionXLLoopDenoiser` sub-block with the `StableDiffusionXLControlNetLoopDenoiser`.
```py
class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLControlNetLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
Insert the `controlnet_input` block and replace the `denoise` block with the new `controlnet_denoise_block`. Initialize a [`ModularPipeline`] and [`~ModularPipeline.load_components`] into it.
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device=device).manual_seed(42)
image = dd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
control_image=control_image,
controlnet_conditioning_scale=0.5,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
### AutoPipelineBlocks
The Differential Diffusion, IP-Adapter, and ControlNet workflows can be bundled into a single [`ModularPipeline`] by using [`AutoPipelineBlocks`]. This allows automatically selecting which sub-blocks to run based on the inputs like `control_image` or `ip_adapter_image`. If none of these inputs are passed, then it defaults to the Differential Diffusion.
Use `block_trigger_inputs` to only run the `SDXLDiffDiffControlNetDenoiseStep` block if a `control_image` input is provided. Otherwise, the `SDXLDiffDiffDenoiseStep` is used.
```py
class SDXLDiffDiffAutoDenoiseStep(AutoPipelineBlocks):
block_classes = [SDXLDiffDiffControlNetDenoiseStep, SDXLDiffDiffDenoiseStep]
block_names = ["controlnet_denoise", "denoise"]
block_trigger_inputs = ["controlnet_cond", None]
```
Add the `ip_adapter` and `controlnet_input` blocks.
```py
DIFFDIFF_AUTO_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
DIFFDIFF_AUTO_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
DIFFDIFF_AUTO_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
DIFFDIFF_AUTO_BLOCKS["denoise"] = SDXLDiffDiffAutoDenoiseStep
DIFFDIFF_AUTO_BLOCKS.insert("ip_adapter", StableDiffusionXLAutoIPAdapterStep, 0)
DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoInput, 7)
```
Call [`SequentialPipelineBlocks.from_blocks_dict`] to create a [`SequentialPipelineBlocks`] and create a [`ModularPipeline`] and load in the model components to run.
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
```
## Share
Add your [`ModularPipeline`] to the Hub with [`~ModularPipeline.save_pretrained`] and set `push_to_hub` argument to `True`.
```py
dd_pipeline.save_pretrained("YiYiXu/test_modular_doc", push_to_hub=True)
```
Other users can load the [`ModularPipeline`] with [`~ModularPipeline.from_pretrained`].
```py
import torch
from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
```

View File

@@ -12,178 +12,102 @@ specific language governing permissions and limitations under the License.
# SequentialPipelineBlocks
<Tip warning={true}>
[`~modular_pipelines.SequentialPipelineBlocks`] are a multi-block type that composes other [`~modular_pipelines.ModularPipelineBlocks`] together in a sequence. Data flows linearly from one block to the next using `intermediate_inputs` and `intermediate_outputs`. Each block in [`~modular_pipelines.SequentialPipelineBlocks`] usually represents a step in the pipeline, and by combining them, you gradually build a pipeline.
🧪 **Experimental Feature**: Modular Diffusers is an experimental feature we are actively developing. The API may be subject to breaking changes.
This guide shows you how to connect two blocks into a [`~modular_pipelines.SequentialPipelineBlocks`].
</Tip>
Create two [`~modular_pipelines.ModularPipelineBlocks`]. The first block, `InputBlock`, outputs a `batch_size` value and the second block, `ImageEncoderBlock` uses `batch_size` as `intermediate_inputs`.
`SequentialPipelineBlocks` is a subclass of `ModularPipelineBlocks`. Unlike `PipelineBlock`, it is a multi-block that composes other blocks together in sequence, creating modular workflows where data flows from one block to the next. It's one of the most common ways to build complex pipelines by combining simpler building blocks.
<Tip>
Other types of multi-blocks include [AutoPipelineBlocks](auto_pipeline_blocks.md) (for conditional block selection) and [LoopSequentialPipelineBlocks](loop_sequential_pipeline_blocks.md) (for iterative workflows). For information on creating individual blocks, see the [PipelineBlock guide](pipeline_block.md).
Additionally, like all `ModularPipelineBlocks`, `SequentialPipelineBlocks` are definitions/specifications, not runnable pipelines. You need to convert them into a `ModularPipeline` to actually execute them. For information on creating and running pipelines, see the [Modular Pipeline guide](modular_pipeline.md).
</Tip>
In this tutorial, we will focus on how to create `SequentialPipelineBlocks` and how blocks connect and work together.
The key insight is that blocks connect through their intermediate inputs and outputs - the "studs and anti-studs" we discussed in the [PipelineBlock guide](pipeline_block.md). When one block produces an intermediate output, it becomes available as an intermediate input for subsequent blocks.
Let's explore this through an example. We will use the same helper function from the PipelineBlock guide to create blocks.
<hfoptions id="sequential">
<hfoption id="InputBlock">
```py
from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam
class InputBlock(ModularPipelineBlocks):
@property
def inputs(self):
return [
InputParam(name="prompt", type_hint=list, description="list of text prompts"),
InputParam(name="num_images_per_prompt", type_hint=int, description="number of images per prompt"),
]
@property
def intermediate_outputs(self):
return [
OutputParam(name="batch_size", description="calculated batch size"),
]
@property
def description(self):
return "A block that determines batch_size based on the number of prompts and num_images_per_prompt argument."
def __call__(self, components, state):
block_state = self.get_block_state(state)
batch_size = len(block_state.prompt)
block_state.batch_size = batch_size * block_state.num_images_per_prompt
self.set_block_state(state, block_state)
return components, state
```
</hfoption>
<hfoption id="ImageEncoderBlock">
```py
from diffusers.modular_pipelines import PipelineBlock, InputParam, OutputParam
import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, InputParam, OutputParam
def make_block(inputs=[], intermediate_inputs=[], intermediate_outputs=[], block_fn=None, description=None):
class TestBlock(PipelineBlock):
model_name = "test"
@property
def inputs(self):
return inputs
@property
def intermediate_inputs(self):
return intermediate_inputs
@property
def intermediate_outputs(self):
return intermediate_outputs
@property
def description(self):
return description if description is not None else ""
def __call__(self, components, state):
block_state = self.get_block_state(state)
if block_fn is not None:
block_state = block_fn(block_state, state)
self.set_block_state(state, block_state)
return components, state
return TestBlock
class ImageEncoderBlock(ModularPipelineBlocks):
@property
def inputs(self):
return [
InputParam(name="image", type_hint="PIL.Image", description="raw input image to process"),
InputParam(name="batch_size", type_hint=int),
]
@property
def intermediate_outputs(self):
return [
OutputParam(name="image_latents", description="latents representing the image"),
]
@property
def description(self):
return "Encode raw image into its latent presentation"
def __call__(self, components, state):
block_state = self.get_block_state(state)
# Simulate processing the image
# This will change the state of the image from a PIL image to a tensor for all blocks
block_state.image = torch.randn(1, 3, 512, 512)
block_state.batch_size = block_state.batch_size * 2
block_state.image_latents = torch.randn(1, 4, 64, 64)
self.set_block_state(state, block_state)
return components, state
```
Let's create a block that produces `batch_size`, which we'll call "input_block":
</hfoption>
</hfoptions>
```py
def input_block_fn(block_state, pipeline_state):
batch_size = len(block_state.prompt)
block_state.batch_size = batch_size * block_state.num_images_per_prompt
return block_state
Connect the two blocks by defining an [`InsertableDict`] to map the block names to the block instances. Blocks are executed in the order they're registered in `blocks_dict`.
input_block_cls = make_block(
inputs=[
InputParam(name="prompt", type_hint=list, description="list of text prompts"),
InputParam(name="num_images_per_prompt", type_hint=int, description="number of images per prompt")
],
intermediate_outputs=[
OutputParam(name="batch_size", description="calculated batch size")
],
block_fn=input_block_fn,
description="A block that determines batch_size based on the number of prompts and num_images_per_prompt argument."
)
input_block = input_block_cls()
```
Now let's create a second block that uses the `batch_size` from the first block:
```py
def image_encoder_block_fn(block_state, pipeline_state):
# Simulate processing the image
block_state.image = torch.randn(1, 3, 512, 512)
block_state.batch_size = block_state.batch_size * 2
block_state.image_latents = torch.randn(1, 4, 64, 64)
return block_state
image_encoder_block_cls = make_block(
inputs=[
InputParam(name="image", type_hint="PIL.Image", description="raw input image to process")
],
intermediate_inputs=[
InputParam(name="batch_size", type_hint=int)
],
intermediate_outputs=[
OutputParam(name="image_latents", description="latents representing the image")
],
block_fn=image_encoder_block_fn,
description="Encode raw image into its latent presentation"
)
image_encoder_block = image_encoder_block_cls()
```
Now let's connect these blocks to create a `SequentialPipelineBlocks`:
Use [`~modular_pipelines.SequentialPipelineBlocks.from_blocks_dict`] to create a [`~modular_pipelines.SequentialPipelineBlocks`].
```py
from diffusers.modular_pipelines import SequentialPipelineBlocks, InsertableDict
# Define a dict mapping block names to block instances
blocks_dict = InsertableDict()
blocks_dict["input"] = input_block
blocks_dict["image_encoder"] = image_encoder_block
# Create the SequentialPipelineBlocks
blocks = SequentialPipelineBlocks.from_blocks_dict(blocks_dict)
```
Now you have a `SequentialPipelineBlocks` with 2 blocks:
Inspect the sub-blocks in [`~modular_pipelines.SequentialPipelineBlocks`] by calling `blocks`, and for more details about the inputs and outputs, access the `docs` attribute.
```py
>>> blocks
SequentialPipelineBlocks(
Class: ModularPipelineBlocks
Description:
Sub-Blocks:
[0] input (TestBlock)
Description: A block that determines batch_size based on the number of prompts and num_images_per_prompt argument.
[1] image_encoder (TestBlock)
Description: Encode raw image into its latent presentation
)
```
When you inspect `blocks.doc`, you can see that `batch_size` is not listed as an input. The pipeline automatically detects that the `input_block` can produce `batch_size` for the `image_encoder_block`, so it doesn't ask the user to provide it.
```py
>>> print(blocks.doc)
class SequentialPipelineBlocks
Inputs:
prompt (`None`, *optional*):
num_images_per_prompt (`None`, *optional*):
image (`PIL.Image`, *optional*):
raw input image to process
Outputs:
batch_size (`None`):
image_latents (`None`):
latents representing the image
```
At runtime, you have data flow like this:
![Data Flow Diagram](https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/modular_quicktour/Editor%20_%20Mermaid%20Chart-2025-06-30-092631.png)
**How SequentialPipelineBlocks Works:**
1. Blocks are executed in the order they're registered in the `blocks_dict`
2. Outputs from one block become available as intermediate inputs to all subsequent blocks
3. The pipeline automatically figures out which values need to be provided by the user and which will be generated by previous blocks
4. Each block maintains its own behavior and operates through its defined interface, while collectively these interfaces determine what the entire pipeline accepts and produces
What happens within each block follows the same pattern we described earlier: each block gets its own `block_state` with the relevant inputs and intermediate inputs, performs its computation, and updates the pipeline state with its intermediate outputs.
print(blocks)
print(blocks.doc)
```

View File

@@ -209,7 +209,7 @@ There is also a [compile_regions](https://github.com/huggingface/accelerate/blob
# pip install -U accelerate
import torch
from diffusers import StableDiffusionXLPipeline
from accelerate.utils import compile regions
from accelerate.utils import compile_regions
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16

View File

@@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Compile and offloading quantized models
# Compiling and offloading quantized models
Optimizing models often involves trade-offs between [inference speed](./fp16) and [memory-usage](./memory). For instance, while [caching](./cache) can boost inference speed, it also increases memory consumption since it needs to store the outputs of intermediate attention layers. A more balanced optimization strategy combines quantizing a model, [torch.compile](./fp16#torchcompile) and various [offloading methods](./memory#offloading).
@@ -28,7 +28,8 @@ The table below provides a comparison of optimization strategy combinations and
| quantization | 32.602 | 14.9453 |
| quantization, torch.compile | 25.847 | 14.9448 |
| quantization, torch.compile, model CPU offloading | 32.312 | 12.2369 |
<small>These results are benchmarked on Flux with a RTX 4090. The transformer and text_encoder components are quantized. Refer to the [benchmarking script](https://gist.github.com/sayakpaul/0db9d8eeeb3d2a0e5ed7cf0d9ca19b7d) if you're interested in evaluating your own model.</small>
<small>These results are benchmarked on Flux with a RTX 4090. The transformer and text_encoder components are quantized. Refer to the <a href="https://gist.github.com/sayakpaul/0db9d8eeeb3d2a0e5ed7cf0d9ca19b7d">benchmarking script</a> if you're interested in evaluating your own model.</small>
This guide will show you how to compile and offload a quantized model with [bitsandbytes](../quantization/bitsandbytes#torchcompile). Make sure you are using [PyTorch nightly](https://pytorch.org/get-started/locally/) and the latest version of bitsandbytes.

View File

@@ -53,6 +53,16 @@ image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")
```
## Using Optimized CUDA Kernels with GGUF
Optimized CUDA kernels can accelerate GGUF quantized model inference by approximately 10%. This functionality requires a compatible GPU with `torch.cuda.get_device_capability` greater than 7 and the kernels library:
```shell
pip install -U kernels
```
Once installed, set `DIFFUSERS_GGUF_CUDA_KERNELS=true` to use optimized kernels when available. Note that CUDA kernels may introduce minor numerical differences compared to the original GGUF implementation, potentially causing subtle visual variations in generated images. To disable CUDA kernel usage, set the environment variable `DIFFUSERS_GGUF_CUDA_KERNELS=false`.
## Supported Quantization Types
- BF16
@@ -67,3 +77,44 @@ image.save("flux-gguf.png")
- Q5_K
- Q6_K
## Convert to GGUF
Use the Space below to convert a Diffusers checkpoint into the GGUF format for inference.
run conversion:
<iframe
src="https://diffusers-internal-dev-diffusers-to-gguf.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
```py
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig
ckpt_path = (
"https://huggingface.co/sayakpaul/different-lora-from-civitai/blob/main/flux_dev_diffusers-q4_0.gguf"
)
transformer = FluxTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
config="black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16,
)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")
```
When using Diffusers format GGUF checkpoints, it's a must to provide the model `config` path. If the
model config resides in a `subfolder`, that needs to be specified, too.

View File

@@ -0,0 +1,141 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# NVIDIA ModelOpt
[NVIDIA-ModelOpt](https://github.com/NVIDIA/TensorRT-Model-Optimizer) is a unified library of state-of-the-art model optimization techniques like quantization, pruning, distillation, speculative decoding, etc. It compresses deep learning models for downstream deployment frameworks like TensorRT-LLM or TensorRT to optimize inference speed.
Before you begin, make sure you have nvidia_modelopt installed.
```bash
pip install -U "nvidia_modelopt[hf]"
```
Quantize a model by passing [`NVIDIAModelOptConfig`] to [`~ModelMixin.from_pretrained`] (you can also load pre-quantized models). This works for any model in any modality, as long as it supports loading with [Accelerate](https://hf.co/docs/accelerate/index) and contains `torch.nn.Linear` layers.
The example below only quantizes the weights to FP8.
```python
import torch
from diffusers import AutoModel, SanaPipeline, NVIDIAModelOptConfig
model_id = "Efficient-Large-Model/Sana_600M_1024px_diffusers"
dtype = torch.bfloat16
quantization_config = NVIDIAModelOptConfig(quant_type="FP8", quant_method="modelopt")
transformer = AutoModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=dtype,
)
pipe = SanaPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=dtype,
)
pipe.to("cuda")
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB")
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
```
> **Note:**
>
> The quantization methods in NVIDIA-ModelOpt are designed to reduce the memory footprint of model weights using various QAT (Quantization-Aware Training) and PTQ (Post-Training Quantization) techniques while maintaining model performance. However, the actual performance gain during inference depends on the deployment framework (e.g., TRT-LLM, TensorRT) and the specific hardware configuration.
>
> More details can be found [here](https://github.com/NVIDIA/TensorRT-Model-Optimizer/tree/main/examples).
## NVIDIAModelOptConfig
The `NVIDIAModelOptConfig` class accepts three parameters:
- `quant_type`: A string value mentioning one of the quantization types below.
- `modules_to_not_convert`: A list of module full/partial module names for which quantization should not be performed. For example, to not perform any quantization of the [`SD3Transformer2DModel`]'s pos_embed projection blocks, one would specify: `modules_to_not_convert=["pos_embed.proj.weight"]`.
- `disable_conv_quantization`: A boolean value which when set to `True` disables quantization for all convolutional layers in the model. This is useful as channel and block quantization generally don't work well with convolutional layers (used with INT4, NF4, NVFP4). If you want to disable quantization for specific convolutional layers, use `modules_to_not_convert` instead.
- `algorithm`: The algorithm to use for determining scale, defaults to `"max"`. You can check modelopt documentation for more algorithms and details.
- `forward_loop`: The forward loop function to use for calibrating activation during quantization. If not provided, it relies on static scale values computed using the weights only.
- `kwargs`: A dict of keyword arguments to pass to the underlying quantization method which will be invoked based on `quant_type`.
## Supported quantization types
ModelOpt supports weight-only, channel and block quantization int8, fp8, int4, nf4, and nvfp4. The quantization methods are designed to reduce the memory footprint of the model weights while maintaining the performance of the model during inference.
Weight-only quantization stores the model weights in a specific low-bit data type but performs computation with a higher-precision data type, like `bfloat16`. This lowers the memory requirements from model weights but retains the memory peaks for activation computation.
The quantization methods supported are as follows:
| **Quantization Type** | **Supported Schemes** | **Required Kwargs** | **Additional Notes** |
|-----------------------|-----------------------|---------------------|----------------------|
| **INT8** | `int8 weight only`, `int8 channel quantization`, `int8 block quantization` | `quant_type`, `quant_type + channel_quantize`, `quant_type + channel_quantize + block_quantize` |
| **FP8** | `fp8 weight only`, `fp8 channel quantization`, `fp8 block quantization` | `quant_type`, `quant_type + channel_quantize`, `quant_type + channel_quantize + block_quantize` |
| **INT4** | `int4 weight only`, `int4 block quantization` | `quant_type`, `quant_type + channel_quantize + block_quantize` | `channel_quantize = -1 is only supported for now`|
| **NF4** | `nf4 weight only`, `nf4 double block quantization` | `quant_type`, `quant_type + channel_quantize + block_quantize + scale_channel_quantize` + `scale_block_quantize` | `channel_quantize = -1 and scale_channel_quantize = -1 are only supported for now` |
| **NVFP4** | `nvfp4 weight only`, `nvfp4 block quantization` | `quant_type`, `quant_type + channel_quantize + block_quantize` | `channel_quantize = -1 is only supported for now`|
Refer to the [official modelopt documentation](https://nvidia.github.io/TensorRT-Model-Optimizer/) for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
## Serializing and Deserializing quantized models
To serialize a quantized model in a given dtype, first load the model with the desired quantization dtype and then save it using the [`~ModelMixin.save_pretrained`] method.
```python
import torch
from diffusers import AutoModel, NVIDIAModelOptConfig
from modelopt.torch.opt import enable_huggingface_checkpointing
enable_huggingface_checkpointing()
model_id = "Efficient-Large-Model/Sana_600M_1024px_diffusers"
quant_config_fp8 = {"quant_type": "FP8", "quant_method": "modelopt"}
quant_config_fp8 = NVIDIAModelOptConfig(**quant_config_fp8)
model = AutoModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quant_config_fp8,
torch_dtype=torch.bfloat16,
)
model.save_pretrained('path/to/sana_fp8', safe_serialization=False)
```
To load a serialized quantized model, use the [`~ModelMixin.from_pretrained`] method.
```python
import torch
from diffusers import AutoModel, NVIDIAModelOptConfig, SanaPipeline
from modelopt.torch.opt import enable_huggingface_checkpointing
enable_huggingface_checkpointing()
quantization_config = NVIDIAModelOptConfig(quant_type="FP8", quant_method="modelopt")
transformer = AutoModel.from_pretrained(
"path/to/sana_fp8",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
pipe = SanaPipeline.from_pretrained(
"Efficient-Large-Model/Sana_600M_1024px_diffusers",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.to("cuda")
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
```

View File

@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License.
-->
# Quantization
# Getting started
Quantization focuses on representing data with fewer bits while also trying to preserve the precision of the original data. This often means converting a data type to represent the same information with fewer bits. For example, if your model weights are stored as 32-bit floating points and they're quantized to 16-bit floating points, this halves the model size which makes it easier to store and reduces memory usage. Lower precision can also speedup inference because it takes less time to perform calculations with fewer bits.
@@ -19,19 +19,25 @@ Diffusers supports multiple quantization backends to make large diffusion models
## Pipeline-level quantization
There are two ways you can use [`~quantizers.PipelineQuantizationConfig`] depending on the level of control you want over the quantization specifications of each model in the pipeline.
There are two ways to use [`~quantizers.PipelineQuantizationConfig`] depending on how much customization you want to apply to the quantization configuration.
- for more basic and simple use cases, you only need to define the `quant_backend`, `quant_kwargs`, and `components_to_quantize`
- for more granular quantization control, provide a `quant_mapping` that provides the quantization specifications for the individual model components
- for basic use cases, define the `quant_backend`, `quant_kwargs`, and `components_to_quantize` arguments
- for granular quantization control, define a `quant_mapping` that provides the quantization configuration for individual model components
### Simple quantization
### Basic quantization
Initialize [`~quantizers.PipelineQuantizationConfig`] with the following parameters.
- `quant_backend` specifies which quantization backend to use. Currently supported backends include: `bitsandbytes_4bit`, `bitsandbytes_8bit`, `gguf`, `quanto`, and `torchao`.
- `quant_kwargs` contains the specific quantization arguments to use.
- `quant_kwargs` specifies the quantization arguments to use.
> [!TIP]
> These `quant_kwargs` arguments are different for each backend. Refer to the [Quantization API](../api/quantization) docs to view the arguments for each backend.
- `components_to_quantize` specifies which components of the pipeline to quantize. Typically, you should quantize the most compute intensive components like the transformer. The text encoder is another component to consider quantizing if a pipeline has more than one such as [`FluxPipeline`]. The example below quantizes the T5 text encoder in [`FluxPipeline`] while keeping the CLIP model intact.
The example below loads the bitsandbytes backend with the following arguments from [`~quantizers.quantization_config.BitsAndBytesConfig`], `load_in_4bit`, `bnb_4bit_quant_type`, and `bnb_4bit_compute_dtype`.
```py
import torch
from diffusers import DiffusionPipeline
@@ -56,13 +62,13 @@ pipe = DiffusionPipeline.from_pretrained(
image = pipe("photo of a cute dog").images[0]
```
### quant_mapping
### Advanced quantization
The `quant_mapping` argument provides more flexible options for how to quantize each individual component in a pipeline, like combining different quantization backends.
The `quant_mapping` argument provides more options for how to quantize each individual component in a pipeline, like combining different quantization backends.
Initialize [`~quantizers.PipelineQuantizationConfig`] and pass a `quant_mapping` to it. The `quant_mapping` allows you to specify the quantization options for each component in the pipeline such as the transformer and text encoder.
The example below uses two quantization backends, [`~quantizers.QuantoConfig`] and [`transformers.BitsAndBytesConfig`], for the transformer and text encoder.
The example below uses two quantization backends, [`~quantizers.quantization_config.QuantoConfig`] and [`transformers.BitsAndBytesConfig`], for the transformer and text encoder.
```py
import torch
@@ -85,7 +91,7 @@ pipeline_quant_config = PipelineQuantizationConfig(
There is a separate bitsandbytes backend in [Transformers](https://huggingface.co/docs/transformers/main_classes/quantization#transformers.BitsAndBytesConfig). You need to import and use [`transformers.BitsAndBytesConfig`] for components that come from Transformers. For example, `text_encoder_2` in [`FluxPipeline`] is a [`~transformers.T5EncoderModel`] from Transformers so you need to use [`transformers.BitsAndBytesConfig`] instead of [`diffusers.BitsAndBytesConfig`].
> [!TIP]
> Use the [simple quantization](#simple-quantization) method above if you don't want to manage these distinct imports or aren't sure where each pipeline component comes from.
> Use the [basic quantization](#basic-quantization) method above if you don't want to manage these distinct imports or aren't sure where each pipeline component comes from.
```py
import torch
@@ -129,4 +135,4 @@ Check out the resources below to learn more about quantization.
- The Transformers quantization [Overview](https://huggingface.co/docs/transformers/quantization/overview#when-to-use-what) provides an overview of the pros and cons of different quantization backends.
- Read the [Exploring Quantization Backends in Diffusers](https://huggingface.co/blog/diffusers-quantization) blog post for a brief introduction to each quantization backend, how to choose a backend, and combining quantization with other memory optimizations.
- Read the [Exploring Quantization Backends in Diffusers](https://huggingface.co/blog/diffusers-quantization) blog post for a brief introduction to each quantization backend, how to choose a backend, and combining quantization with other memory optimizations.

View File

@@ -10,314 +10,223 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Quickstart
# Quicktour
Diffusers is a library for developers and researchers that provides an easy inference API for generating images, videos and audio, as well as the building blocks for implementing new workflows.
Diffusion models are trained to denoise random Gaussian noise step-by-step to generate a sample of interest, such as an image or audio. This has sparked a tremendous amount of interest in generative AI, and you have probably seen examples of diffusion generated images on the internet. 🧨 Diffusers is a library aimed at making diffusion models widely accessible to everyone.
Diffusers provides many optimizations out-of-the-box that makes it possible to load and run large models on setups with limited memory or to accelerate inference.
Whether you're a developer or an everyday user, this quicktour will introduce you to 🧨 Diffusers and help you get up and generating quickly! There are three main components of the library to know about:
This Quickstart will give you an overview of Diffusers and get you up and generating quickly.
* The [`DiffusionPipeline`] is a high-level end-to-end class designed to rapidly generate samples from pretrained diffusion models for inference.
* Popular pretrained [model](./api/models) architectures and modules that can be used as building blocks for creating diffusion systems.
* Many different [schedulers](./api/schedulers/overview) - algorithms that control how noise is added for training, and how to generate denoised images during inference.
> [!TIP]
> Before you begin, make sure you have a Hugging Face [account](https://huggingface.co/join) in order to use gated models like [Flux](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The quicktour will show you how to use the [`DiffusionPipeline`] for inference, and then walk you through how to combine a model and scheduler to replicate what's happening inside the [`DiffusionPipeline`].
<Tip>
The quicktour is a simplified version of the introductory 🧨 Diffusers [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) to help you get started quickly. If you want to learn more about 🧨 Diffusers' goal, design philosophy, and additional details about its core API, check out the notebook!
</Tip>
Before you begin, make sure you have all the necessary libraries installed:
```py
# uncomment to install the necessary libraries in Colab
#!pip install --upgrade diffusers accelerate transformers
```
- [🤗 Accelerate](https://huggingface.co/docs/accelerate/index) speeds up model loading for inference and training.
- [🤗 Transformers](https://huggingface.co/docs/transformers/index) is required to run the most popular diffusion models, such as [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview).
Follow the [Installation](./installation) guide to install Diffusers if it's not already installed.
## DiffusionPipeline
The [`DiffusionPipeline`] is the easiest way to use a pretrained diffusion system for inference. It is an end-to-end system containing the model and the scheduler. You can use the [`DiffusionPipeline`] out-of-the-box for many tasks. Take a look at the table below for some supported tasks, and for a complete list of supported tasks, check out the [🧨 Diffusers Summary](./api/pipelines/overview#diffusers-summary) table.
A diffusion model combines multiple components to generate outputs in any modality based on an input, such as a text description, image or both.
| **Task** | **Description** | **Pipeline**
|------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|
| Unconditional Image Generation | generate an image from Gaussian noise | [unconditional_image_generation](./using-diffusers/unconditional_image_generation) |
| Text-Guided Image Generation | generate an image given a text prompt | [conditional_image_generation](./using-diffusers/conditional_image_generation) |
| Text-Guided Image-to-Image Translation | adapt an image guided by a text prompt | [img2img](./using-diffusers/img2img) |
| Text-Guided Image-Inpainting | fill the masked part of an image given the image, the mask and a text prompt | [inpaint](./using-diffusers/inpaint) |
| Text-Guided Depth-to-Image Translation | adapt parts of an image guided by a text prompt while preserving structure via depth estimation | [depth2img](./using-diffusers/depth2img) |
For a standard text-to-image model:
Start by creating an instance of a [`DiffusionPipeline`] and specify which pipeline checkpoint you would like to download.
You can use the [`DiffusionPipeline`] for any [checkpoint](https://huggingface.co/models?library=diffusers&sort=downloads) stored on the Hugging Face Hub.
In this quicktour, you'll load the [`stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint for text-to-image generation.
1. A text encoder turns a prompt into embeddings that guide the denoising process. Some models have more than one text encoder.
2. A scheduler contains the algorithmic specifics for gradually denoising initial random noise into clean outputs. Different schedulers affect generation speed and quality.
3. A UNet or diffusion transformer (DiT) is the workhorse of a diffusion model.
<Tip warning={true}>
At each step, it performs the denoising predictions, such as how much noise to remove or the general direction in which to steer the noise to generate better quality outputs.
For [Stable Diffusion](https://huggingface.co/CompVis/stable-diffusion) models, please carefully read the [license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) first before running the model. 🧨 Diffusers implements a [`safety_checker`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) to prevent offensive or harmful content, but the model's improved image generation capabilities can still produce potentially harmful content.
The UNet or DiT repeats this loop for a set amount of steps to generate the final output.
4. A variational autoencoder (VAE) encodes and decodes pixels to a spatially compressed latent-space. *Latents* are compressed representations of an image and are more efficient to work with. The UNet or DiT operates on latents, and the clean latents at the end are decoded back into images.
</Tip>
The [`DiffusionPipeline`] packages all these components into a single class for inference. There are several arguments in [`~DiffusionPipeline.__call__`] you can change, such as `num_inference_steps`, that affect the diffusion process. Try different values and arguments to see how they change generation quality or speed.
Load the model with the [`~DiffusionPipeline.from_pretrained`] method:
Load a model with [`~DiffusionPipeline.from_pretrained`] and describe what you'd like to generate. The example below uses the default argument values.
```python
>>> from diffusers import DiffusionPipeline
<hfoptions id="diffusionpipeline">
<hfoption id="text-to-image">
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
The [`DiffusionPipeline`] downloads and caches all modeling, tokenization, and scheduling components. You'll see that the Stable Diffusion pipeline is composed of the [`UNet2DConditionModel`] and [`PNDMScheduler`] among other things:
Use `.images[0]` to access the generated image output.
```py
>>> pipeline
StableDiffusionPipeline {
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.21.4",
...,
"scheduler": [
"diffusers",
"PNDMScheduler"
],
...,
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
```
We strongly recommend running the pipeline on a GPU because the model consists of roughly 1.4 billion parameters.
You can move the generator object to a GPU, just like you would in PyTorch:
</hfoption>
<hfoption id="text-to-video">
```python
>>> pipeline.to("cuda")
```
Now you can pass a text prompt to the `pipeline` to generate an image, and then access the denoised image. By default, the image output is wrapped in a [`PIL.Image`](https://pillow.readthedocs.io/en/stable/reference/Image.html?highlight=image#the-image-class) object.
```python
>>> image = pipeline("An image of a squirrel in Picasso style").images[0]
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/image_of_squirrel_painting.png"/>
</div>
Save the image by calling `save`:
```python
>>> image.save("image_of_squirrel_painting.png")
```
### Local pipeline
You can also use the pipeline locally. The only difference is you need to download the weights first:
```bash
!git lfs install
!git clone https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
```
Then load the saved weights into the pipeline:
```python
>>> pipeline = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", use_safetensors=True)
```
Now, you can run the pipeline as you would in the section above.
### Swapping schedulers
Different schedulers come with different denoising speeds and quality trade-offs. The best way to find out which one works best for you is to try them out! One of the main features of 🧨 Diffusers is to allow you to easily switch between schedulers. For example, to replace the default [`PNDMScheduler`] with the [`EulerDiscreteScheduler`], load it with the [`~diffusers.ConfigMixin.from_config`] method:
Use `.frames[0]` to access the generated video output and [`~utils.export_to_video`] to save the video.
```py
>>> from diffusers import EulerDiscreteScheduler
import torch
from diffusers import AutoencoderKLWan, DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.utils import export_to_video
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
>>> pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
vae = AutoencoderKLWan.from_pretrained(
"Wan-AI/Wan2.2-T2V-A14B-Diffusers",
subfolder="vae",
torch_dtype=torch.float32
)
pipeline = DiffusionPipeline.from_pretrained(
"Wan-AI/Wan2.2-T2V-A14B-Diffusers",
vae=vae
torch_dtype=torch.bfloat16,
device_map="cuda"
)
prompt = """
Cinematic video of a sleek cat lounging on a colorful inflatable in a crystal-clear turquoise pool in Palm Springs,
sipping a salt-rimmed margarita through a straw. Golden-hour sunlight glows over mid-century modern homes and swaying palms.
Shot in rich Sony a7S III: with moody, glamorous color grading, subtle lens flares, and soft vintage film grain.
Ripples shimmer as a warm desert breeze stirs the water, blending luxury and playful charm in an epic, gorgeously composed frame.
"""
video = pipeline(prompt=prompt, num_frames=81, num_inference_steps=40).frames[0]
export_to_video(video, "output.mp4", fps=16)
```
Try generating an image with the new scheduler and see if you notice a difference!
</hfoption>
</hfoptions>
In the next section, you'll take a closer look at the components - the model and scheduler - that make up the [`DiffusionPipeline`] and learn how to use these components to generate an image of a cat.
## LoRA
## Models
Adapters insert a small number of trainable parameters to the original base model. Only the inserted parameters are fine-tuned while the rest of the model weights remain frozen. This makes it fast and cheap to fine-tune a model on a new style. Among adapters, [LoRA's](./tutorials/using_peft_for_inference) are the most popular.
Most models take a noisy sample, and at each timestep it predicts the *noise residual* (other models learn to predict the previous sample directly or the velocity or [`v-prediction`](https://github.com/huggingface/diffusers/blob/5e5ce13e2f89ac45a0066cb3f369462a3cf1d9ef/src/diffusers/schedulers/scheduling_ddim.py#L110)), the difference between a less noisy image and the input image. You can mix and match models to create other diffusion systems.
Models are initiated with the [`~ModelMixin.from_pretrained`] method which also locally caches the model weights so it is faster the next time you load the model. For the quicktour, you'll load the [`UNet2DModel`], a basic unconditional image generation model with a checkpoint trained on cat images:
Add a LoRA to a pipeline with the [`~loaders.QwenImageLoraLoaderMixin.load_lora_weights`] method. Some LoRA's require a special word to trigger it, such as `Realism`, in the example below. Check a LoRA's model card to see if it requires a trigger word.
```py
>>> from diffusers import UNet2DModel
import torch
from diffusers import DiffusionPipeline
>>> repo_id = "google/ddpm-cat-256"
>>> model = UNet2DModel.from_pretrained(repo_id, use_safetensors=True)
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
)
pipeline.load_lora_weights(
"flymy-ai/qwen-image-realism-lora",
)
prompt = """
super Realism cinematic film still of a cat sipping a margarita in a pool in Palm Springs in the style of umempart, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
```
Check out the [LoRA](./tutorials/using_peft_for_inference) docs or Adapters section to learn more.
## Quantization
[Quantization](./quantization/overview) stores data in fewer bits to reduce memory usage. It may also speed up inference because it takes less time to perform calculations with fewer bits.
Diffusers provides several quantization backends and picking one depends on your use case. For example, [bitsandbytes](./quantization/bitsandbytes) and [torchao](./quantization/torchao) are both simple and easy to use for inference, but torchao supports more [quantization types](./quantization/torchao#supported-quantization-types) like fp8.
Configure [`PipelineQuantizationConfig`] with the backend to use, the specific arguments (refer to the [API](./api/quantization) reference for available arguments) for that backend, and which components to quantize. The example below quantizes the model to 4-bits and only uses 14.93GB of memory.
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={"load_in_4bit": True, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16},
components_to_quantize=["transformer", "text_encoder"],
)
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image",
torch_dtype=torch.bfloat16,
quantization_config=quant_config,
device_map="cuda"
)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
print(f"Max memory reserved: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
```
Take a look at the [Quantization](./quantization/overview) section for more details.
## Optimizations
> [!TIP]
> Use the [`AutoModel`] API to automatically select a model class if you're unsure of which one to use.
> Optimization is dependent on hardware specs such as memory. Use this [Space](https://huggingface.co/spaces/diffusers/optimized-diffusers-code) to generate code examples that include all of Diffusers' available memory and speed optimization techniques for any model you're using.
To access the model parameters, call `model.config`:
Modern diffusion models are very large and have billions of parameters. The iterative denoising process is also computationally intensive and slow. Diffusers provides techniques for reducing memory usage and boosting inference speed. These techniques can be combined with quantization to optimize for both memory usage and inference speed.
### Memory usage
The text encoders and UNet or DiT can use up as much as ~30GB of memory, exceeding the amount available on many free-tier or consumer GPUs.
Offloading stores weights that aren't currently used on the CPU and only moves them to the GPU when they're needed. There are a few offloading types and the example below uses [model offloading](./optimization/memory#model-offloading). This moves an entire model, like a text encoder or transformer, to the CPU when it isn't actively being used.
Call [`~DiffusionPipeline.enable_model_cpu_offload`] to activate it. By combining quantization and offloading, the following example only requires ~12.54GB of memory.
```py
>>> model.config
import torch
from diffusers import DiffusionPipeline
from diffusers.quantizers import PipelineQuantizationConfig
quant_config = PipelineQuantizationConfig(
quant_backend="bitsandbytes_4bit",
quant_kwargs={"load_in_4bit": True, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16},
components_to_quantize=["transformer", "text_encoder"],
)
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image",
torch_dtype=torch.bfloat16,
quantization_config=quant_config,
device_map="cuda"
)
pipeline.enable_model_cpu_offload()
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
print(f"Max memory reserved: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
```
The model configuration is a 🧊 frozen 🧊 dictionary, which means those parameters can't be changed after the model is created. This is intentional and ensures that the parameters used to define the model architecture at the start remain the same, while other parameters can still be adjusted during inference.
Refer to the [Reduce memory usage](./optimization/memory) docs to learn more about other memory reducing techniques.
Some of the most important parameters are:
### Inference speed
* `sample_size`: the height and width dimension of the input sample.
* `in_channels`: the number of input channels of the input sample.
* `down_block_types` and `up_block_types`: the type of down- and upsampling blocks used to create the UNet architecture.
* `block_out_channels`: the number of output channels of the downsampling blocks; also used in reverse order for the number of input channels of the upsampling blocks.
* `layers_per_block`: the number of ResNet blocks present in each UNet block.
The denoising loop performs a lot of computations and can be slow. Methods like [torch.compile](./optimization/fp16#torchcompile) increases inference speed by compiling the computations into an optimized kernel. Compilation is slow for the first generation but successive generations should be much faster.
To use the model for inference, create the image shape with random Gaussian noise. It should have a `batch` axis because the model can receive multiple random noises, a `channel` axis corresponding to the number of input channels, and a `sample_size` axis for the height and width of the image:
The example below uses [regional compilation](./optimization/fp16#regional-compilation) to only compile small regions of a model. It reduces cold-start latency while also providing a runtime speed up.
Call [`~ModelMixin.compile_repeated_blocks`] on the model to activate it.
```py
>>> import torch
import torch
from diffusers import DiffusionPipeline
>>> torch.manual_seed(0)
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
)
>>> noisy_sample = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
>>> noisy_sample.shape
torch.Size([1, 3, 256, 256])
pipeline.transformer.compile_repeated_blocks(
fullgraph=True,
)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
```
For inference, pass the noisy image and a `timestep` to the model. The `timestep` indicates how noisy the input image is, with more noise at the beginning and less at the end. This helps the model determine its position in the diffusion process, whether it is closer to the start or the end. Use the `sample` method to get the model output:
```py
>>> with torch.no_grad():
... noisy_residual = model(sample=noisy_sample, timestep=2).sample
```
To generate actual examples though, you'll need a scheduler to guide the denoising process. In the next section, you'll learn how to couple a model with a scheduler.
## Schedulers
Schedulers manage going from a noisy sample to a less noisy sample given the model output - in this case, it is the `noisy_residual`.
<Tip>
🧨 Diffusers is a toolbox for building diffusion systems. While the [`DiffusionPipeline`] is a convenient way to get started with a pre-built diffusion system, you can also choose your own model and scheduler components separately to build a custom diffusion system.
</Tip>
For the quicktour, you'll instantiate the [`DDPMScheduler`] with its [`~diffusers.ConfigMixin.from_config`] method:
```py
>>> from diffusers import DDPMScheduler
>>> scheduler = DDPMScheduler.from_pretrained(repo_id)
>>> scheduler
DDPMScheduler {
"_class_name": "DDPMScheduler",
"_diffusers_version": "0.21.4",
"beta_end": 0.02,
"beta_schedule": "linear",
"beta_start": 0.0001,
"clip_sample": true,
"clip_sample_range": 1.0,
"dynamic_thresholding_ratio": 0.995,
"num_train_timesteps": 1000,
"prediction_type": "epsilon",
"sample_max_value": 1.0,
"steps_offset": 0,
"thresholding": false,
"timestep_spacing": "leading",
"trained_betas": null,
"variance_type": "fixed_small"
}
```
<Tip>
💡 Unlike a model, a scheduler does not have trainable weights and is parameter-free!
</Tip>
Some of the most important parameters are:
* `num_train_timesteps`: the length of the denoising process or, in other words, the number of timesteps required to process random Gaussian noise into a data sample.
* `beta_schedule`: the type of noise schedule to use for inference and training.
* `beta_start` and `beta_end`: the start and end noise values for the noise schedule.
To predict a slightly less noisy image, pass the following to the scheduler's [`~diffusers.DDPMScheduler.step`] method: model output, `timestep`, and current `sample`.
```py
>>> less_noisy_sample = scheduler.step(model_output=noisy_residual, timestep=2, sample=noisy_sample).prev_sample
>>> less_noisy_sample.shape
torch.Size([1, 3, 256, 256])
```
The `less_noisy_sample` can be passed to the next `timestep` where it'll get even less noisy! Let's bring it all together now and visualize the entire denoising process.
First, create a function that postprocesses and displays the denoised image as a `PIL.Image`:
```py
>>> import PIL.Image
>>> import numpy as np
>>> def display_sample(sample, i):
... image_processed = sample.cpu().permute(0, 2, 3, 1)
... image_processed = (image_processed + 1.0) * 127.5
... image_processed = image_processed.numpy().astype(np.uint8)
... image_pil = PIL.Image.fromarray(image_processed[0])
... display(f"Image at step {i}")
... display(image_pil)
```
To speed up the denoising process, move the input and model to a GPU:
```py
>>> model.to("cuda")
>>> noisy_sample = noisy_sample.to("cuda")
```
Now create a denoising loop that predicts the residual of the less noisy sample, and computes the less noisy sample with the scheduler:
```py
>>> import tqdm
>>> sample = noisy_sample
>>> for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
... # 1. predict noise residual
... with torch.no_grad():
... residual = model(sample, t).sample
... # 2. compute less noisy image and set x_t -> x_t-1
... sample = scheduler.step(residual, t, sample).prev_sample
... # 3. optionally look at image
... if (i + 1) % 50 == 0:
... display_sample(sample, i + 1)
```
Sit back and watch as a cat is generated from nothing but noise! 😻
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/diffusion-quicktour.png"/>
</div>
## Next steps
Hopefully, you generated some cool images with 🧨 Diffusers in this quicktour! For your next steps, you can:
* Train or finetune a model to generate your own images in the [training](./tutorials/basic_training) tutorial.
* See example official and community [training or finetuning scripts](https://github.com/huggingface/diffusers/tree/main/examples#-diffusers-examples) for a variety of use cases.
* Learn more about loading, accessing, changing, and comparing schedulers in the [Using different Schedulers](./using-diffusers/schedulers) guide.
* Explore prompt engineering, speed and memory optimizations, and tips and tricks for generating higher-quality images with the [Stable Diffusion](./stable_diffusion) guide.
* Dive deeper into speeding up 🧨 Diffusers with guides on [optimized PyTorch on a GPU](./optimization/fp16), and inference guides for running [Stable Diffusion on Apple Silicon (M1/M2)](./optimization/mps) and [ONNX Runtime](./optimization/onnx).
Check out the [Accelerate inference](./optimization/fp16) or [Caching](./optimization/cache) docs for more methods that speed up inference.

View File

@@ -10,252 +10,123 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Effective and efficient diffusion
[[open-in-colab]]
Getting the [`DiffusionPipeline`] to generate images in a certain style or include what you want can be tricky. Often times, you have to run the [`DiffusionPipeline`] several times before you end up with an image you're happy with. But generating something out of nothing is a computationally intensive process, especially if you're running inference over and over again.
# Basic performance
This is why it's important to get the most *computational* (speed) and *memory* (GPU vRAM) efficiency from the pipeline to reduce the time between inference cycles so you can iterate faster.
Diffusion is a random process that is computationally demanding. You may need to run the [`DiffusionPipeline`] several times before getting a desired output. That's why it's important to carefully balance generation speed and memory usage in order to iterate faster,
This tutorial walks you through how to generate faster and better with the [`DiffusionPipeline`].
This guide recommends some basic performance tips for using the [`DiffusionPipeline`]. Refer to the Inference Optimization section docs such as [Accelerate inference](./optimization/fp16) or [Reduce memory usage](./optimization/memory) for more detailed performance guides.
Begin by loading the [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) model:
## Memory usage
```python
Reducing the amount of memory used indirectly speeds up generation and can help a model fit on device.
The [`~DiffusionPipeline.enable_model_cpu_offload`] method moves a model to the CPU when it is not in use to save GPU memory.
```py
import torch
from diffusers import DiffusionPipeline
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipeline.enable_model_cpu_offload()
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
pipeline(prompt).images[0]
print(f"Max memory reserved: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
```
The example prompt you'll use is a portrait of an old warrior chief, but feel free to use your own prompt:
## Inference speed
```python
prompt = "portrait photo of a old warrior chief"
```
Denoising is the most computationally demanding process during diffusion. Methods that optimizes this process accelerates inference speed. Try the following methods for a speed up.
## Speed
- Add `device_map="cuda"` to place the pipeline on a GPU. Placing a model on an accelerator, like a GPU, increases speed because it performs computations in parallel.
- Set `torch_dtype=torch.bfloat16` to execute the pipeline in half-precision. Reducing the data type precision increases speed because it takes less time to perform computations in a lower precision.
<Tip>
💡 If you don't have access to a GPU, you can use one for free from a GPU provider like [Colab](https://colab.research.google.com/)!
</Tip>
One of the simplest ways to speed up inference is to place the pipeline on a GPU the same way you would with any PyTorch module:
```python
pipeline = pipeline.to("cuda")
```
To make sure you can use the same image and improve on it, use a [`Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) and set a seed for [reproducibility](./using-diffusers/reusing_seeds):
```python
```py
import torch
import time
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
generator = torch.Generator("cuda").manual_seed(0)
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda
)
```
Now you can generate an image:
```python
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_1.png">
</div>
This process took ~30 seconds on a T4 GPU (it might be faster if your allocated GPU is better than a T4). By default, the [`DiffusionPipeline`] runs inference with full `float32` precision for 50 inference steps. You can speed this up by switching to a lower precision like `float16` or running fewer inference steps.
Let's start by loading the model in `float16` and generate an image:
```python
import torch
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True)
pipeline = pipeline.to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_2.png">
</div>
This time, it only took ~11 seconds to generate the image, which is almost 3x faster than before!
<Tip>
💡 We strongly suggest always running your pipelines in `float16`, and so far, we've rarely seen any degradation in output quality.
</Tip>
Another option is to reduce the number of inference steps. Choosing a more efficient scheduler could help decrease the number of steps without sacrificing output quality. You can find which schedulers are compatible with the current model in the [`DiffusionPipeline`] by calling the `compatibles` method:
```python
pipeline.scheduler.compatibles
[
diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler,
diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler,
diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler,
diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler,
diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler,
diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler,
diffusers.schedulers.scheduling_ddpm.DDPMScheduler,
diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler,
diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler,
diffusers.utils.dummy_torch_and_torchsde_objects.DPMSolverSDEScheduler,
diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler,
diffusers.schedulers.scheduling_pndm.PNDMScheduler,
diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler,
diffusers.schedulers.scheduling_ddim.DDIMScheduler,
]
```
The Stable Diffusion model uses the [`PNDMScheduler`] by default which usually requires ~50 inference steps, but more performant schedulers like [`DPMSolverMultistepScheduler`], require only ~20 or 25 inference steps. Use the [`~ConfigMixin.from_config`] method to load a new scheduler:
```python
from diffusers import DPMSolverMultistepScheduler
- Use a faster scheduler, such as [`DPMSolverMultistepScheduler`], which only requires ~20-25 steps.
- Set `num_inference_steps` to a lower value. Reducing the number of inference steps reduces the overall number of computations. However, this can result in lower generation quality.
```py
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
start_time = time.perf_counter()
image = pipeline(prompt).images[0]
end_time = time.perf_counter()
print(f"Image generation took {end_time - start_time:.3f} seconds")
```
Now set the `num_inference_steps` to 20:
## Generation quality
```python
generator = torch.Generator("cuda").manual_seed(0)
image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0]
image
```
Many modern diffusion models deliver high-quality images out-of-the-box. However, you can still improve generation quality by trying the following.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_3.png">
</div>
- Try a more detailed and descriptive prompt. Include details such as the image medium, subject, style, and aesthetic. A negative prompt may also help by guiding a model away from undesirable features by using words like low quality or blurry.
Great, you've managed to cut the inference time to just 4 seconds! ⚡️
```py
import torch
from diffusers import DiffusionPipeline
## Memory
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
The other key to improving pipeline performance is consuming less memory, which indirectly implies more speed, since you're often trying to maximize the number of images generated per second. The easiest way to see how many images you can generate at once is to try out different batch sizes until you get an `OutOfMemoryError` (OOM).
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
negative_prompt = "low quality, blurry, ugly, poor details"
pipeline(prompt, negative_prompt=negative_prompt).images[0]
```
Create a function that'll generate a batch of images from a list of prompts and `Generators`. Make sure to assign each `Generator` a seed so you can reuse it if it produces a good result.
For more details about creating better prompts, take a look at the [Prompt techniques](./using-diffusers/weighted_prompts) doc.
```python
def get_inputs(batch_size=1):
generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)]
prompts = batch_size * [prompt]
num_inference_steps = 20
- Try a different scheduler, like [`HeunDiscreteScheduler`] or [`LMSDiscreteScheduler`], that gives up generation speed for quality.
return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps}
```
```py
import torch
from diffusers import DiffusionPipeline, HeunDiscreteScheduler
Start with `batch_size=4` and see how much memory you've consumed:
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.bfloat16,
device_map="cuda"
)
pipeline.scheduler = HeunDiscreteScheduler.from_config(pipeline.scheduler.config)
```python
from diffusers.utils import make_image_grid
images = pipeline(**get_inputs(batch_size=4)).images
make_image_grid(images, 2, 2)
```
Unless you have a GPU with more vRAM, the code above probably returned an `OOM` error! Most of the memory is taken up by the cross-attention layers. Instead of running this operation in a batch, you can run it sequentially to save a significant amount of memory. All you have to do is configure the pipeline to use the [`~DiffusionPipeline.enable_attention_slicing`] function:
```python
pipeline.enable_attention_slicing()
```
Now try increasing the `batch_size` to 8!
```python
images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_5.png">
</div>
Whereas before you couldn't even generate a batch of 4 images, now you can generate a batch of 8 images at ~3.5 seconds per image! This is probably the fastest you can go on a T4 GPU without sacrificing quality.
## Quality
In the last two sections, you learned how to optimize the speed of your pipeline by using `fp16`, reducing the number of inference steps by using a more performant scheduler, and enabling attention slicing to reduce memory consumption. Now you're going to focus on how to improve the quality of generated images.
### Better checkpoints
The most obvious step is to use better checkpoints. The Stable Diffusion model is a good starting point, and since its official launch, several improved versions have also been released. However, using a newer version doesn't automatically mean you'll get better results. You'll still have to experiment with different checkpoints yourself, and do a little research (such as using [negative prompts](https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/)) to get the best results.
As the field grows, there are more and more high-quality checkpoints finetuned to produce certain styles. Try exploring the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) and [Diffusers Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery) to find one you're interested in!
### Better pipeline components
You can also try replacing the current pipeline components with a newer version. Let's try loading the latest [autoencoder](https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main/vae) from Stability AI into the pipeline, and generate some images:
```python
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda")
pipeline.vae = vae
images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_6.png">
</div>
### Better prompt engineering
The text prompt you use to generate an image is super important, so much so that it is called *prompt engineering*. Some considerations to keep during prompt engineering are:
- How is the image or similar images of the one I want to generate stored on the internet?
- What additional detail can I give that steers the model towards the style I want?
With this in mind, let's improve the prompt to include color and higher quality details:
```python
prompt += ", tribal panther make up, blue on red, side profile, looking away, serious eyes"
prompt += " 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta"
```
Generate a batch of images with the new prompt:
```python
images = pipeline(**get_inputs(batch_size=8)).images
make_image_grid(images, rows=2, cols=4)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_7.png">
</div>
Pretty impressive! Let's tweak the second image - corresponding to the `Generator` with a seed of `1` - a bit more by adding some text about the age of the subject:
```python
prompts = [
"portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of an old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
"portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta",
]
generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))]
images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images
make_image_grid(images, 2, 2)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_8.png">
</div>
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
negative_prompt = "low quality, blurry, ugly, poor details"
pipeline(prompt, negative_prompt=negative_prompt).images[0]
```
## Next steps
In this tutorial, you learned how to optimize a [`DiffusionPipeline`] for computational and memory efficiency as well as improving the quality of generated outputs. If you're interested in making your pipeline even faster, take a look at the following resources:
- Learn how [PyTorch 2.0](./optimization/fp16) and [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) can yield 5 - 300% faster inference speed. On an A100 GPU, inference can be up to 50% faster!
- If you can't use PyTorch 2, we recommend you install [xFormers](./optimization/xformers). Its memory-efficient attention mechanism works great with PyTorch 1.13.1 for faster speed and reduced memory consumption.
- Other optimization techniques, such as model offloading, are covered in [this guide](./optimization/fp16).
Diffusers offers more advanced and powerful optimizations such as [group-offloading](./optimization/memory#group-offloading) and [regional compilation](./optimization/fp16#regional-compilation). To learn more about how to maximize performance, take a look at the Inference Optimization section.

View File

@@ -145,10 +145,10 @@ When running `accelerate config`, if you use torch.compile, there can be dramati
If you would like to push your model to the Hub after training is completed with a neat model card, make sure you're logged in:
```bash
huggingface-cli login
hf auth login
# Alternatively, you could upload your model manually using:
# huggingface-cli upload my-cool-account-name/my-cool-lora-name /path/to/awesome/lora
# hf upload my-cool-account-name/my-cool-lora-name /path/to/awesome/lora
```
Make sure your data is prepared as described in [Data Preparation](#data-preparation). When ready, you can begin training!

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[ControlNet](https://hf.co/papers/2302.05543) models are adapters trained on top of another pretrained model. It allows for a greater degree of control over image generation by conditioning the model with an additional input image. The input image can be a canny edge, depth map, human pose, and many more.
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing`, `gradient_accumulation_steps`, and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing or xFormers. You should have a GPU with >30GB of memory if you want to train faster with Flax.
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing`, `gradient_accumulation_steps`, and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers).
This guide will explore the [train_controlnet.py](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/train_controlnet.py) training script to help you become familiar with it, and how you can adapt it for your own use-case.
@@ -28,45 +28,10 @@ pip install .
Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/controlnet
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
If you have access to a TPU, the Flax training script runs even faster! Let's run the training script on the [Google Cloud TPU VM](https://cloud.google.com/tpu/docs/run-calculation-jax). Create a single TPU v4-8 VM and connect to it:
```bash
ZONE=us-central2-b
TPU_TYPE=v4-8
VM_NAME=hg_flax
gcloud alpha compute tpus tpu-vm create $VM_NAME \
--zone $ZONE \
--accelerator-type $TPU_TYPE \
--version tpu-vm-v4-base
gcloud alpha compute tpus tpu-vm ssh $VM_NAME --zone $ZONE -- \
```
Install JAX 0.4.5:
```bash
pip install "jax[tpu]==0.4.5" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
```
Then install the required dependencies for the Flax script:
```bash
cd examples/controlnet
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
@@ -120,7 +85,7 @@ Many of the basic and important parameters are described in the [Text-to-image](
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:
@@ -272,9 +237,6 @@ That's it! You don't need to add any additional parameters to your training comm
</hfoption>
</hfoptions>
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```bash
export MODEL_DIR="stable-diffusion-v1-5/stable-diffusion-v1-5"
export OUTPUT_DIR="path/to/save/model"
@@ -292,47 +254,6 @@ accelerate launch train_controlnet.py \
--push_to_hub
```
</hfoption>
<hfoption id="Flax">
With Flax, you can [profile your code](https://jax.readthedocs.io/en/latest/profiling.html) by adding the `--profile_steps==5` parameter to your training command. Install the Tensorboard profile plugin:
```bash
pip install tensorflow tensorboard-plugin-profile
tensorboard --logdir runs/fill-circle-100steps-20230411_165612/
```
Then you can inspect the profile at [http://localhost:6006/#profile](http://localhost:6006/#profile).
<Tip warning={true}>
If you run into version conflicts with the plugin, try uninstalling and reinstalling all versions of TensorFlow and Tensorboard. The debugging functionality of the profile plugin is still experimental, and not all views are fully functional. The `trace_viewer` cuts off events after 1M, which can result in all your device traces getting lost if for example, you profile the compilation step by accident.
</Tip>
```bash
python3 train_controlnet_flax.py \
--pretrained_model_name_or_path=$MODEL_DIR \
--output_dir=$OUTPUT_DIR \
--dataset_name=fusing/fill50k \
--resolution=512 \
--learning_rate=1e-5 \
--validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--validation_steps=1000 \
--train_batch_size=2 \
--revision="non-ema" \
--from_pt \
--report_to="wandb" \
--tracker_project_name=$HUB_MODEL_ID \
--num_train_epochs=11 \
--push_to_hub \
--hub_model_id=$HUB_MODEL_ID
```
</hfoption>
</hfoptions>
Once training is complete, you can use your newly trained model for inference!
```py

View File

@@ -67,7 +67,7 @@ dataset = load_dataset(
Then use the [`~datasets.Dataset.push_to_hub`] method to upload the dataset to the Hub:
```python
# assuming you have ran the huggingface-cli login command in a terminal
# assuming you have ran the hf auth login command in a terminal
dataset.push_to_hub("name_of_your_dataset")
# if you want to push to a private repo, simply pass private=True:

View File

@@ -223,7 +223,7 @@ from diffusers.image_processor import VaeImageProcessor
import torch
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=torch.bfloat16).to("cuda")
vae_scale_factor = 2 ** (len(vae.config.block_out_channels))
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
with torch.no_grad():

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[DreamBooth](https://huggingface.co/papers/2208.12242) is a training technique that updates the entire diffusion model by training on just a few images of a subject or style. It works by associating a special word in the prompt with the example images.
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing or xFormers. You should have a GPU with >30GB of memory if you want to train faster with Flax.
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers).
This guide will explore the [train_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) script to help you become more familiar with it, and how you can adapt it for your own use-case.
@@ -28,25 +28,11 @@ pip install .
Navigate to the example folder with the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/dreambooth
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/dreambooth
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
@@ -110,7 +96,7 @@ Some basic and important parameters to know and specify are:
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:
@@ -311,9 +297,6 @@ That's it! You don't need to add any additional parameters to your training comm
</hfoption>
</hfoptions>
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```bash
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export INSTANCE_DIR="./dog"
@@ -334,29 +317,6 @@ accelerate launch train_dreambooth.py \
--push_to_hub
```
</hfoption>
<hfoption id="Flax">
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export INSTANCE_DIR="./dog"
export OUTPUT_DIR="path-to-save-model"
python train_dreambooth_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \
--resolution=512 \
--train_batch_size=1 \
--learning_rate=5e-6 \
--max_train_steps=400 \
--push_to_hub
```
</hfoption>
</hfoptions>
Once training is complete, you can use your newly trained model for inference!
<Tip>
@@ -383,9 +343,6 @@ image.save("dog-bucket.png")
</Tip>
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```py
from diffusers import DiffusionPipeline
import torch
@@ -395,39 +352,6 @@ image = pipeline("A photo of sks dog in a bucket", num_inference_steps=50, guida
image.save("dog-bucket.png")
```
</hfoption>
<hfoption id="Flax">
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path-to-your-trained-model", dtype=jax.numpy.bfloat16)
prompt = "A photo of sks dog in a bucket"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("dog-bucket.png")
```
</hfoption>
</hfoptions>
## LoRA
LoRA is a training technique for significantly reducing the number of trainable parameters. As a result, training is faster and it is easier to store the resulting weights because they are a lot smaller (~100MBs). Use the [train_dreambooth_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py) script to train with LoRA.

View File

@@ -88,7 +88,7 @@ Most of the parameters are identical to the parameters in the [Text-to-image](te
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:

View File

@@ -38,25 +38,11 @@ pip install .
Navigate to the example folder with the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/text_to_image
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/text_to_image
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.

View File

@@ -23,18 +23,18 @@ Each training script is:
Our current collection of training scripts include:
| Training | SDXL-support | LoRA-support | Flax-support |
|---|---|---|---|
| [unconditional image generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) | | | |
| [text-to-image](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) | 👍 | 👍 | 👍 |
| [textual inversion](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb) | | | 👍 |
| [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb) | 👍 | 👍 | 👍 |
| [ControlNet](https://github.com/huggingface/diffusers/tree/main/examples/controlnet) | 👍 | | 👍 |
| [InstructPix2Pix](https://github.com/huggingface/diffusers/tree/main/examples/instruct_pix2pix) | 👍 | | |
| [Custom Diffusion](https://github.com/huggingface/diffusers/tree/main/examples/custom_diffusion) | | | |
| [T2I-Adapters](https://github.com/huggingface/diffusers/tree/main/examples/t2i_adapter) | 👍 | | |
| [Kandinsky 2.2](https://github.com/huggingface/diffusers/tree/main/examples/kandinsky2_2/text_to_image) | | 👍 | |
| [Wuerstchen](https://github.com/huggingface/diffusers/tree/main/examples/wuerstchen/text_to_image) | | 👍 | |
| Training | SDXL-support | LoRA-support |
|---|---|---|
| [unconditional image generation](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) | | |
| [text-to-image](https://github.com/huggingface/diffusers/tree/main/examples/text_to_image) | 👍 | 👍 |
| [textual inversion](https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb) | | |
| [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb) | 👍 | 👍 |
| [ControlNet](https://github.com/huggingface/diffusers/tree/main/examples/controlnet) | 👍 | |
| [InstructPix2Pix](https://github.com/huggingface/diffusers/tree/main/examples/instruct_pix2pix) | 👍 | |
| [Custom Diffusion](https://github.com/huggingface/diffusers/tree/main/examples/custom_diffusion) | | |
| [T2I-Adapters](https://github.com/huggingface/diffusers/tree/main/examples/t2i_adapter) | 👍 | |
| [Kandinsky 2.2](https://github.com/huggingface/diffusers/tree/main/examples/kandinsky2_2/text_to_image) | | 👍 |
| [Wuerstchen](https://github.com/huggingface/diffusers/tree/main/examples/wuerstchen/text_to_image) | | 👍 |
These examples are **actively** maintained, so please feel free to open an issue if they aren't working as expected. If you feel like another training example should be included, you're more than welcome to start a [Feature Request](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=) to discuss your feature idea with us and whether it meets our criteria of being self-contained, easy-to-tweak, beginner-friendly, and single-purpose.
@@ -48,7 +48,7 @@ cd diffusers
pip install .
```
Then navigate to the folder of the training script (for example, [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth)) and install the `requirements.txt` file. Some training scripts have a specific requirement file for SDXL, LoRA or Flax. If you're using one of these scripts, make sure you install its corresponding requirements file.
Then navigate to the folder of the training script (for example, [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth)) and install the `requirements.txt` file. Some training scripts have a specific requirement file for SDXL or LoRA. If you're using one of these scripts, make sure you install its corresponding requirements file.
```bash
cd examples/dreambooth

View File

@@ -96,7 +96,7 @@ Most of the parameters are identical to the parameters in the [Text-to-image](te
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting either `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting either `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:

View File

@@ -20,7 +20,7 @@ The text-to-image script is experimental, and it's easy to overfit and run into
Text-to-image models like Stable Diffusion are conditioned to generate images given a text prompt.
Training a model can be taxing on your hardware, but if you enable `gradient_checkpointing` and `mixed_precision`, it is possible to train a model on a single 24GB GPU. If you're training with larger batch sizes or want to train faster, it's better to use GPUs with more than 30GB of memory. You can reduce your memory footprint by enabling memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing, gradient accumulation or xFormers. A GPU with at least 30GB of memory or a TPU v3 is recommended for training with Flax.
Training a model can be taxing on your hardware, but if you enable `gradient_checkpointing` and `mixed_precision`, it is possible to train a model on a single 24GB GPU. If you're training with larger batch sizes or want to train faster, it's better to use GPUs with more than 30GB of memory. You can reduce your memory footprint by enabling memory-efficient attention with [xFormers](../optimization/xformers).
This guide will explore the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) training script to help you become familiar with it, and how you can adapt it for your own use-case.
@@ -34,20 +34,10 @@ pip install .
Then navigate to the example folder containing the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/text_to_image
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/text_to_image
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
@@ -106,7 +96,7 @@ Some basic and important parameters include:
### Min-SNR weighting
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script.
The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch.
Add the `--snr_gamma` parameter and set it to the recommended value of 5.0:
@@ -155,9 +145,6 @@ Lastly, the [training loop](https://github.com/huggingface/diffusers/blob/8959c5
Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! 🚀
<hfoptions id="training-inference">
<hfoption id="PyTorch">
Let's train on the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset to generate your own Naruto characters. Set the environment variables `MODEL_NAME` and `dataset_name` to the model and the dataset (either from the Hub or a local path). If you're training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command.
<Tip>
@@ -187,43 +174,8 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
--push_to_hub
```
</hfoption>
<hfoption id="Flax">
Training with Flax can be faster on TPUs and GPUs thanks to [@duongna211](https://github.com/duongna21). Flax is more efficient on a TPU, but GPU performance is also great.
Set the environment variables `MODEL_NAME` and `dataset_name` to the model and the dataset (either from the Hub or a local path).
<Tip>
To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment variables to the path of the dataset and where to save the model to.
</Tip>
```bash
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export dataset_name="lambdalabs/naruto-blip-captions"
python train_text_to_image_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$dataset_name \
--resolution=512 --center_crop --random_flip \
--train_batch_size=1 \
--max_train_steps=15000 \
--learning_rate=1e-05 \
--max_grad_norm=1 \
--output_dir="sd-naruto-model" \
--push_to_hub
```
</hfoption>
</hfoptions>
Once training is complete, you can use your newly trained model for inference:
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```py
from diffusers import StableDiffusionPipeline
import torch
@@ -234,39 +186,6 @@ image = pipeline(prompt="yoda").images[0]
image.save("yoda-naruto.png")
```
</hfoption>
<hfoption id="Flax">
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path/to/saved_model", dtype=jax.numpy.bfloat16)
prompt = "yoda naruto"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("yoda-naruto.png")
```
</hfoption>
</hfoptions>
## Next steps
Congratulations on training your own text-to-image model! To learn more about how to use your new model, the following guides may be helpful:

View File

@@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License.
[Textual Inversion](https://hf.co/papers/2208.01618) is a training technique for personalizing image generation models with just a few example images of what you want it to learn. This technique works by learning and updating the text embeddings (the new embeddings are tied to a special word you must use in the prompt) to match the example images you provide.
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing or xFormers. With the same configuration and setup as PyTorch, the Flax training script should be at least ~70% faster!
If you're training on a GPU with limited vRAM, you should try enabling the `gradient_checkpointing` and `mixed_precision` parameters in the training command. You can also reduce your memory footprint by using memory-efficient attention with [xFormers](../optimization/xformers).
This guide will explore the [textual_inversion.py](https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py) script to help you become more familiar with it, and how you can adapt it for your own use-case.
@@ -28,25 +28,10 @@ pip install .
Navigate to the example folder with the training script and install the required dependencies for the script you're using:
<hfoptions id="installation">
<hfoption id="PyTorch">
```bash
cd examples/textual_inversion
pip install -r requirements.txt
```
</hfoption>
<hfoption id="Flax">
```bash
cd examples/textual_inversion
pip install -r requirements_flax.txt
```
</hfoption>
</hfoptions>
<Tip>
🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more.
@@ -189,9 +174,6 @@ One more thing before you launch the script. If you're interested in following a
--validation_steps=100
```
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```bash
export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5"
export DATA_DIR="./cat"
@@ -214,36 +196,8 @@ accelerate launch textual_inversion.py \
--push_to_hub
```
</hfoption>
<hfoption id="Flax">
```bash
export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
export DATA_DIR="./cat"
python textual_inversion_flax.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATA_DIR \
--learnable_property="object" \
--placeholder_token="<cat-toy>" \
--initializer_token="toy" \
--resolution=512 \
--train_batch_size=1 \
--max_train_steps=3000 \
--learning_rate=5.0e-04 \
--scale_lr \
--output_dir="textual_inversion_cat" \
--push_to_hub
```
</hfoption>
</hfoptions>
After training is complete, you can use your newly trained model for inference like:
<hfoptions id="training-inference">
<hfoption id="PyTorch">
```py
from diffusers import StableDiffusionPipeline
import torch
@@ -254,42 +208,6 @@ image = pipeline("A <cat-toy> train", num_inference_steps=50).images[0]
image.save("cat-train.png")
```
</hfoption>
<hfoption id="Flax">
Flax doesn't support the [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] method, but the textual_inversion_flax.py script [saves](https://github.com/huggingface/diffusers/blob/c0f058265161178f2a88849e92b37ffdc81f1dcc/examples/textual_inversion/textual_inversion_flax.py#L636C2-L636C2) the learned embeddings as a part of the model after training. This means you can use the model for inference like any other Flax model:
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
model_path = "path-to-your-trained-model"
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(model_path, dtype=jax.numpy.bfloat16)
prompt = "A <cat-toy> train"
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 50
num_samples = jax.device_count()
prompt = num_samples * [prompt]
prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
image.save("cat-train.png")
```
</hfoption>
</hfoptions>
## Next steps
Congratulations on training your own Textual Inversion model! 🎉 To learn more about how to use your new model, the following guides may be helpful:

View File

@@ -12,112 +12,56 @@ specific language governing permissions and limitations under the License.
# AutoPipeline
Diffusers provides many pipelines for basic tasks like generating images, videos, audio, and inpainting. On top of these, there are specialized pipelines for adapters and features like upscaling, super-resolution, and more. Different pipeline classes can even use the same checkpoint because they share the same pretrained model! With so many different pipelines, it can be overwhelming to know which pipeline class to use.
[AutoPipeline](../api/models/auto_model) is a *task-and-model* pipeline that automatically selects the correct pipeline subclass based on the task. It handles the complexity of loading different pipeline subclasses without needing to know the specific pipeline subclass name.
The [AutoPipeline](../api/pipelines/auto_pipeline) class is designed to simplify the variety of pipelines in Diffusers. It is a generic *task-first* pipeline that lets you focus on a task ([`AutoPipelineForText2Image`], [`AutoPipelineForImage2Image`], and [`AutoPipelineForInpainting`]) without needing to know the specific pipeline class. The [AutoPipeline](../api/pipelines/auto_pipeline) automatically detects the correct pipeline class to use.
This is unlike [`DiffusionPipeline`], a *model-only* pipeline that automatically selects the pipeline subclass based on the model.
For example, let's use the [dreamlike-art/dreamlike-photoreal-2.0](https://hf.co/dreamlike-art/dreamlike-photoreal-2.0) checkpoint.
Under the hood, [AutoPipeline](../api/pipelines/auto_pipeline):
1. Detects a `"stable-diffusion"` class from the [model_index.json](https://hf.co/dreamlike-art/dreamlike-photoreal-2.0/blob/main/model_index.json) file.
2. Depending on the task you're interested in, it loads the [`StableDiffusionPipeline`], [`StableDiffusionImg2ImgPipeline`], or [`StableDiffusionInpaintPipeline`]. Any parameter (`strength`, `num_inference_steps`, etc.) you would pass to these specific pipelines can also be passed to the [AutoPipeline](../api/pipelines/auto_pipeline).
<hfoptions id="autopipeline">
<hfoption id="text-to-image">
[`AutoPipelineForImage2Image`] returns a specific pipeline subclass, (for example, [`StableDiffusionXLImg2ImgPipeline`]), which can only be used for image-to-image tasks.
```py
from diffusers import AutoPipelineForText2Image
import torch
pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
"dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
prompt = "cinematic photo of Godzilla eating sushi with a cat in a izakaya, 35mm photograph, film, professional, 4k, highly detailed"
generator = torch.Generator(device="cpu").manual_seed(37)
image = pipe_txt2img(prompt, generator=generator).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-text2img.png"/>
</div>
</hfoption>
<hfoption id="image-to-image">
```py
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image
import torch
pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
"dreamlike-art/dreamlike-photoreal-2.0", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-text2img.png")
prompt = "cinematic photo of Godzilla eating burgers with a cat in a fast food restaurant, 35mm photograph, film, professional, 4k, highly detailed"
generator = torch.Generator(device="cpu").manual_seed(53)
image = pipe_img2img(prompt, image=init_image, generator=generator).images[0]
image
```
Notice how the [dreamlike-art/dreamlike-photoreal-2.0](https://hf.co/dreamlike-art/dreamlike-photoreal-2.0) checkpoint is used for both text-to-image and image-to-image tasks? To save memory and avoid loading the checkpoint twice, use the [`~DiffusionPipeline.from_pipe`] method.
```py
pipe_img2img = AutoPipelineForImage2Image.from_pipe(pipe_txt2img).to("cuda")
image = pipeline(prompt, image=init_image, generator=generator).images[0]
image
```
You can learn more about the [`~DiffusionPipeline.from_pipe`] method in the [Reuse a pipeline](../using-diffusers/loading#reuse-a-pipeline) guide.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-img2img.png"/>
</div>
</hfoption>
<hfoption id="inpainting">
```py
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForInpainting.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True
).to("cuda")
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-img2img.png")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-mask.png")
prompt = "cinematic photo of a owl, 35mm photograph, film, professional, 4k, highly detailed"
generator = torch.Generator(device="cpu").manual_seed(38)
image = pipeline(prompt, image=init_image, mask_image=mask_image, generator=generator, strength=0.4).images[0]
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/autopipeline-inpaint.png"/>
</div>
</hfoption>
</hfoptions>
## Unsupported checkpoints
The [AutoPipeline](../api/pipelines/auto_pipeline) supports [Stable Diffusion](../api/pipelines/stable_diffusion/overview), [Stable Diffusion XL](../api/pipelines/stable_diffusion/stable_diffusion_xl), [ControlNet](../api/pipelines/controlnet), [Kandinsky 2.1](../api/pipelines/kandinsky.md), [Kandinsky 2.2](../api/pipelines/kandinsky_v22), and [DeepFloyd IF](../api/pipelines/deepfloyd_if) checkpoints.
If you try to load an unsupported checkpoint, you'll get an error.
```py
from diffusers import AutoPipelineForImage2Image
import torch
pipeline = AutoPipelineForImage2Image.from_pretrained(
"openai/shap-e-img2img", torch_dtype=torch.float16, use_safetensors=True
"RunDiffusion/Juggernaut-XL-v9", torch_dtype=torch.bfloat16, device_map="cuda",
)
print(pipeline)
"StableDiffusionXLImg2ImgPipeline {
"_class_name": "StableDiffusionXLImg2ImgPipeline",
...
"
```
Loading the same model with [`DiffusionPipeline`] returns the [`StableDiffusionXLPipeline`] subclass. It can be used for text-to-image, image-to-image, or inpainting tasks depending on the inputs.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9", torch_dtype=torch.bfloat16, device_map="cuda",
)
print(pipeline)
"StableDiffusionXLPipeline {
"_class_name": "StableDiffusionXLPipeline",
...
"
```
Check the [mappings](https://github.com/huggingface/diffusers/blob/130fd8df54f24ffb006d84787b598d8adc899f23/src/diffusers/pipelines/auto_pipeline.py#L114) to see whether a model is supported or not.
Trying to load an unsupported model returns an error.
```py
import torch
from diffusers import AutoPipelineForImage2Image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"openai/shap-e-img2img", torch_dtype=torch.float16,
)
"ValueError: AutoPipeline can't find a pipeline linked to ShapEImg2ImgPipeline for None"
```
There are three types of [AutoPipeline](../api/models/auto_model) classes, [`AutoPipelineForText2Image`], [`AutoPipelineForImage2Image`] and [`AutoPipelineForInpainting`]. Each of these classes have a predefined mapping, linking a pipeline to their task-specific subclass.
When [`~AutoPipelineForText2Image.from_pretrained`] is called, it extracts the class name from the `model_index.json` file and selects the appropriate pipeline subclass for the task based on the mapping.

View File

@@ -42,7 +42,7 @@ We encourage you to share your model with the community, and in order to do that
Or login in from the terminal:
```bash
huggingface-cli login
hf auth login
```
Since the model checkpoints are quite large, install [Git-LFS](https://git-lfs.com/) to version these large files:

View File

@@ -94,7 +94,7 @@ pipeline = AutoPipelineForText2Image.from_pretrained(
pipeline.unet.load_lora_adapter(
"jbilcke-hf/sdxl-cinematic-1",
weight_name="pytorch_lora_weights.safetensors",
adapter_name="cinematic"
adapter_name="cinematic",
prefix="unet"
)
# use cnmt in the prompt to trigger the LoRA
@@ -319,6 +319,19 @@ If you expect to varied resolutions during inference with this feature, then mak
There are still scenarios where recompulation is unavoidable, such as when the hotswapped LoRA targets more layers than the initial adapter. Try to load the LoRA that targets the most layers *first*. For more details about this limitation, refer to the PEFT [hotswapping](https://huggingface.co/docs/peft/main/en/package_reference/hotswap#peft.utils.hotswap.hotswap_adapter) docs.
<details>
<summary>Technical details of hotswapping</summary>
The [`~loaders.lora_base.LoraBaseMixin.enable_lora_hotswap`] method converts the LoRA scaling factor from floats to torch.tensors and pads the shape of the weights to the largest required shape to avoid reassigning the whole attribute when the data in the weights are replaced.
This is why the `max_rank` argument is important. The results are unchanged even when the values are padded with zeros. Computation may be slower though depending on the padding size.
Since no new LoRA attributes are added, each subsequent LoRA is only allowed to target the same layers, or subset of layers, the first LoRA targets. Choosing the LoRA loading order is important because if the LoRAs target disjoint layers, you may end up creating a dummy LoRA that targets the union of all target layers.
For more implementation details, take a look at the [`hotswap.py`](https://github.com/huggingface/peft/blob/92d65cafa51c829484ad3d95cf71d09de57ff066/src/peft/utils/hotswap.py) file.
</details>
## Merge
The weights from each LoRA can be merged together to produce a blend of multiple existing styles. There are several methods for merging LoRAs, each of which differ in *how* the weights are merged (may affect generation quality).
@@ -673,4 +686,6 @@ Browse the [LoRA Studio](https://lorastudio.co/models) for different LoRAs to us
height="450"
></iframe>
You can find additional LoRAs in the [FLUX LoRA the Explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer) and [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) Spaces.
You can find additional LoRAs in the [FLUX LoRA the Explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer) and [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) Spaces.
Check out the [Fast LoRA inference for Flux with Diffusers and PEFT](https://huggingface.co/blog/lora-fast) blog post to learn how to optimize LoRA inference with methods like FlashAttention-3 and fp8 quantization.

View File

@@ -12,52 +12,37 @@ specific language governing permissions and limitations under the License.
# Pipeline callbacks
The denoising loop of a pipeline can be modified with custom defined functions using the `callback_on_step_end` parameter. The callback function is executed at the end of each step, and modifies the pipeline attributes and variables for the next step. This is really useful for *dynamically* adjusting certain pipeline attributes or modifying tensor variables. This versatility allows for interesting use cases such as changing the prompt embeddings at each timestep, assigning different weights to the prompt embeddings, and editing the guidance scale. With callbacks, you can implement new features without modifying the underlying code!
A callback is a function that modifies [`DiffusionPipeline`] behavior and it is executed at the end of a denoising step. The changes are propagated to subsequent steps in the denoising process. It is useful for adjusting pipeline attributes or tensor variables to support new features without rewriting the underlying pipeline code.
> [!TIP]
> 🤗 Diffusers currently only supports `callback_on_step_end`, but feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) if you have a cool use-case and require a callback function with a different execution point!
Diffusers provides several callbacks in the pipeline [overview](../api/pipelines/overview#callbacks).
This guide will demonstrate how callbacks work by a few features you can implement with them.
To enable a callback, configure when the callback is executed after a certain number of denoising steps with one of the following arguments.
## Official callbacks
- `cutoff_step_ratio` specifies when a callback is activated as a percentage of the total denoising steps.
- `cutoff_step_index` specifies the exact step number a callback is activated.
We provide a list of callbacks you can plug into an existing pipeline and modify the denoising loop. This is the current list of official callbacks:
The example below uses `cutoff_step_ratio=0.4`, which means the callback is activated once denoising reaches 40% of the total inference steps. [`~callbacks.SDXLCFGCutoffCallback`] disables classifier-free guidance (CFG) after a certain number of steps, which can help save compute without significantly affecting performance.
- `SDCFGCutoffCallback`: Disables the CFG after a certain number of steps for all SD 1.5 pipelines, including text-to-image, image-to-image, inpaint, and controlnet.
- `SDXLCFGCutoffCallback`: Disables the CFG after a certain number of steps for all SDXL pipelines, including text-to-image, image-to-image, inpaint, and controlnet.
- `IPAdapterScaleCutoffCallback`: Disables the IP Adapter after a certain number of steps for all pipelines supporting IP-Adapter.
Define a callback with either of the `cutoff` arguments and pass it to the `callback_on_step_end` parameter in the pipeline.
> [!TIP]
> If you want to add a new official callback, feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) or [submit a PR](https://huggingface.co/docs/diffusers/main/en/conceptual/contribution#how-to-open-a-pr).
To set up a callback, you need to specify the number of denoising steps after which the callback comes into effect. You can do so by using either one of these two arguments
- `cutoff_step_ratio`: Float number with the ratio of the steps.
- `cutoff_step_index`: Integer number with the exact number of the step.
```python
```py
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline
from diffusers.callbacks import SDXLCFGCutoffCallback
callback = SDXLCFGCutoffCallback(cutoff_step_ratio=0.4)
# can also be used with cutoff_step_index
# if using cutoff_step_index
# callback = SDXLCFGCutoffCallback(cutoff_step_ratio=None, cutoff_step_index=10)
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
device_map="cuda"
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, use_karras_sigmas=True)
prompt = "a sports car at the road, best quality, high quality, high detail, 8k resolution"
generator = torch.Generator(device="cpu").manual_seed(2628670641)
out = pipeline(
output = pipeline(
prompt=prompt,
negative_prompt="",
guidance_scale=6.5,
@@ -65,83 +50,16 @@ out = pipeline(
generator=generator,
callback_on_step_end=callback,
)
out.images[0].save("official_callback.png")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/without_cfg_callback.png" alt="generated image of a sports car at the road" />
<figcaption class="mt-2 text-center text-sm text-gray-500">without SDXLCFGCutoffCallback</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/with_cfg_callback.png" alt="generated image of a sports car at the road with cfg callback" />
<figcaption class="mt-2 text-center text-sm text-gray-500">with SDXLCFGCutoffCallback</figcaption>
</div>
</div>
If you want to add a new official callback, feel free to open a [feature request](https://github.com/huggingface/diffusers/issues/new/choose) or [submit a PR](https://huggingface.co/docs/diffusers/main/en/conceptual/contribution#how-to-open-a-pr). Otherwise, you can also create your own callback as shown below.
## Dynamic classifier-free guidance
## Early stopping
Dynamic classifier-free guidance (CFG) is a feature that allows you to disable CFG after a certain number of inference steps which can help you save compute with minimal cost to performance. The callback function for this should have the following arguments:
- `pipeline` (or the pipeline instance) provides access to important properties such as `num_timesteps` and `guidance_scale`. You can modify these properties by updating the underlying attributes. For this example, you'll disable CFG by setting `pipeline._guidance_scale=0.0`.
- `step_index` and `timestep` tell you where you are in the denoising loop. Use `step_index` to turn off CFG after reaching 40% of `num_timesteps`.
- `callback_kwargs` is a dict that contains tensor variables you can modify during the denoising loop. It only includes variables specified in the `callback_on_step_end_tensor_inputs` argument, which is passed to the pipeline's `__call__` method. Different pipelines may use different sets of variables, so please check a pipeline's `_callback_tensor_inputs` attribute for the list of variables you can modify. Some common variables include `latents` and `prompt_embeds`. For this function, change the batch size of `prompt_embeds` after setting `guidance_scale=0.0` in order for it to work properly.
Your callback function should look something like this:
```python
def callback_dynamic_cfg(pipe, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipeline.num_timesteps * 0.4):
prompt_embeds = callback_kwargs["prompt_embeds"]
prompt_embeds = prompt_embeds.chunk(2)[-1]
# update guidance_scale and prompt_embeds
pipeline._guidance_scale = 0.0
callback_kwargs["prompt_embeds"] = prompt_embeds
return callback_kwargs
```
Now, you can pass the callback function to the `callback_on_step_end` parameter and the `prompt_embeds` to `callback_on_step_end_tensor_inputs`.
Early stopping is useful if you aren't happy with the intermediate results during generation. This callback sets a hardcoded stop point after which the pipeline terminates by setting the `_interrupt` attribute to `True`.
```py
import torch
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")
prompt = "a photo of an astronaut riding a horse on mars"
generator = torch.Generator(device="cuda").manual_seed(1)
out = pipeline(
prompt,
generator=generator,
callback_on_step_end=callback_dynamic_cfg,
callback_on_step_end_tensor_inputs=['prompt_embeds']
)
out.images[0].save("out_custom_cfg.png")
```
## Interrupt the diffusion process
> [!TIP]
> The interruption callback is supported for text-to-image, image-to-image, and inpainting for the [StableDiffusionPipeline](../api/pipelines/stable_diffusion/overview) and [StableDiffusionXLPipeline](../api/pipelines/stable_diffusion/stable_diffusion_xl).
Stopping the diffusion process early is useful when building UIs that work with Diffusers because it allows users to stop the generation process if they're unhappy with the intermediate results. You can incorporate this into your pipeline with a callback.
This callback function should take the following arguments: `pipeline`, `i`, `t`, and `callback_kwargs` (this must be returned). Set the pipeline's `_interrupt` attribute to `True` to stop the diffusion process after a certain number of steps. You are also free to implement your own custom stopping logic inside the callback.
In this example, the diffusion process is stopped after 10 steps even though `num_inference_steps` is set to 50.
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
pipeline.enable_model_cpu_offload()
num_inference_steps = 50
from diffusers import StableDiffusionXLPipeline
def interrupt_callback(pipeline, i, t, callback_kwargs):
stop_idx = 10
@@ -150,6 +68,11 @@ def interrupt_callback(pipeline, i, t, callback_kwargs):
return callback_kwargs
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5"
)
num_inference_steps = 50
pipeline(
"A photo of a cat",
num_inference_steps=num_inference_steps,
@@ -157,92 +80,11 @@ pipeline(
)
```
## IP Adapter Cutoff
## Display intermediate images
IP Adapter is an image prompt adapter that can be used for diffusion models without any changes to the underlying model. We can use the IP Adapter Cutoff Callback to disable the IP Adapter after a certain number of steps. To set up the callback, you need to specify the number of denoising steps after which the callback comes into effect. You can do so by using either one of these two arguments:
Visualizing the intermediate images is useful for progress monitoring and assessing the quality of the generated content. This callback decodes the latent tensors at each step and converts them to images.
- `cutoff_step_ratio`: Float number with the ratio of the steps.
- `cutoff_step_index`: Integer number with the exact number of the step.
We need to download the diffusion model and load the ip_adapter for it as follows:
```py
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipeline.set_ip_adapter_scale(0.6)
```
The setup for the callback should look something like this:
```py
from diffusers import AutoPipelineForText2Image
from diffusers.callbacks import IPAdapterScaleCutoffCallback
from diffusers.utils import load_image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.6)
callback = IPAdapterScaleCutoffCallback(
cutoff_step_ratio=None,
cutoff_step_index=5
)
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png"
)
generator = torch.Generator(device="cuda").manual_seed(2628670641)
images = pipeline(
prompt="a tiger sitting in a chair drinking orange juice",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
generator=generator,
num_inference_steps=50,
callback_on_step_end=callback,
).images
images[0].save("custom_callback_img.png")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/without_callback.png" alt="generated image of a tiger sitting in a chair drinking orange juice" />
<figcaption class="mt-2 text-center text-sm text-gray-500">without IPAdapterScaleCutoffCallback</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/with_callback2.png" alt="generated image of a tiger sitting in a chair drinking orange juice with ip adapter callback" />
<figcaption class="mt-2 text-center text-sm text-gray-500">with IPAdapterScaleCutoffCallback</figcaption>
</div>
</div>
## Display image after each generation step
> [!TIP]
> This tip was contributed by [asomoza](https://github.com/asomoza).
Display an image after each generation step by accessing and converting the latents after each step into an image. The latent space is compressed to 128x128, so the images are also 128x128 which is useful for a quick preview.
1. Use the function below to convert the SDXL latents (4 channels) to RGB tensors (3 channels) as explained in the [Explaining the SDXL latent space](https://huggingface.co/blog/TimothyAlexisVass/explaining-the-sdxl-latent-space) blog post.
[Convert](https://huggingface.co/blog/TimothyAlexisVass/explaining-the-sdxl-latent-space) the Stable Diffusion XL latents from latents (4 channels) to RGB tensors (3 tensors).
```py
def latents_to_rgb(latents):
@@ -260,7 +102,7 @@ def latents_to_rgb(latents):
return Image.fromarray(image_array)
```
2. Create a function to decode and save the latents into an image.
Extract the latents and convert the first image in the batch to RGB. Save the image as a PNG file with the step number.
```py
def decode_tensors(pipe, step, timestep, callback_kwargs):
@@ -272,19 +114,18 @@ def decode_tensors(pipe, step, timestep, callback_kwargs):
return callback_kwargs
```
3. Pass the `decode_tensors` function to the `callback_on_step_end` parameter to decode the tensors after each step. You also need to specify what you want to modify in the `callback_on_step_end_tensor_inputs` parameter, which in this case are the latents.
Use the `callback_on_step_end_tensor_inputs` parameter to specify what input type to modify, which in this case, are the latents.
```py
from diffusers import AutoPipelineForText2Image
import torch
from PIL import Image
from diffusers import AutoPipelineForText2Image
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
device_map="cuda"
)
image = pipeline(
prompt="A croissant shaped like a cute bear.",
@@ -293,27 +134,3 @@ image = pipeline(
callback_on_step_end_tensor_inputs=["latents"],
).images[0]
```
<div class="flex gap-4 justify-center">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_0.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 0</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_19.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 19
</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_29.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 29</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_39.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 39</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/tips_step_49.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">step 49</figcaption>
</div>
</div>

View File

@@ -10,376 +10,163 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Load community pipelines and components
[[open-in-colab]]
## Community pipelines
# Community pipelines and components
> [!TIP] Take a look at GitHub Issue [#841](https://github.com/huggingface/diffusers/issues/841) for more context about why we're adding community pipelines to help everyone easily share their work without being slowed down.
Community pipelines are any [`DiffusionPipeline`] class that are different from the original paper implementation (for example, the [`StableDiffusionControlNetPipeline`] corresponds to the [Text-to-Image Generation with ControlNet Conditioning](https://huggingface.co/papers/2302.05543) paper). They provide additional functionality or extend the original implementation of a pipeline.
There are many cool community pipelines like [Marigold Depth Estimation](https://github.com/huggingface/diffusers/tree/main/examples/community#marigold-depth-estimation) or [InstantID](https://github.com/huggingface/diffusers/tree/main/examples/community#instantid-pipeline), and you can find all the official community pipelines [here](https://github.com/huggingface/diffusers/tree/main/examples/community).
There are two types of community pipelines, those stored on the Hugging Face Hub and those stored on Diffusers GitHub repository. Hub pipelines are completely customizable (scheduler, models, pipeline code, etc.) while Diffusers GitHub pipelines are only limited to custom pipeline code.
| | GitHub community pipeline | HF Hub community pipeline |
|----------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| usage | same | same |
| review process | open a Pull Request on GitHub and undergo a review process from the Diffusers team before merging; may be slower | upload directly to a Hub repository without any review; this is the fastest workflow |
| visibility | included in the official Diffusers repository and documentation | included on your HF Hub profile and relies on your own usage/promotion to gain visibility |
<hfoptions id="community">
<hfoption id="Hub pipelines">
To load a Hugging Face Hub community pipeline, pass the repository id of the community pipeline to the `custom_pipeline` argument and the model repository where you'd like to load the pipeline weights and components from. For example, the example below loads a dummy pipeline from [hf-internal-testing/diffusers-dummy-pipeline](https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py) and the pipeline weights and components from [google/ddpm-cifar10-32](https://huggingface.co/google/ddpm-cifar10-32):
> [!WARNING]
> By loading a community pipeline from the Hugging Face Hub, you are trusting that the code you are loading is safe. Make sure to inspect the code online before loading and running it automatically!
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline", use_safetensors=True
)
```
</hfoption>
<hfoption id="GitHub pipelines">
To load a GitHub community pipeline, pass the repository id of the community pipeline to the `custom_pipeline` argument and the model repository where you you'd like to load the pipeline weights and components from. You can also load model components directly. The example below loads the community [CLIP Guided Stable Diffusion](https://github.com/huggingface/diffusers/tree/main/examples/community#clip-guided-stable-diffusion) pipeline and the CLIP model components.
```py
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id)
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
use_safetensors=True,
)
```
</hfoption>
</hfoptions>
### Load from a local file
Community pipelines can also be loaded from a local file if you pass a file path instead. The path to the passed directory must contain a pipeline.py file that contains the pipeline class.
```py
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="./path/to/pipeline_directory/",
clip_model=clip_model,
feature_extractor=feature_extractor,
use_safetensors=True,
)
```
### Load from a specific version
By default, community pipelines are loaded from the latest stable version of Diffusers. To load a community pipeline from another version, use the `custom_revision` parameter.
<hfoptions id="version">
<hfoption id="main">
For example, to load from the main branch:
```py
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="clip_guided_stable_diffusion",
custom_revision="main",
clip_model=clip_model,
feature_extractor=feature_extractor,
use_safetensors=True,
)
```
</hfoption>
<hfoption id="older version">
For example, to load from a previous version of Diffusers like v0.25.0:
```py
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
custom_pipeline="clip_guided_stable_diffusion",
custom_revision="v0.25.0",
clip_model=clip_model,
feature_extractor=feature_extractor,
use_safetensors=True,
)
```
</hfoption>
</hfoptions>
### Load with from_pipe
Community pipelines can also be loaded with the [`~DiffusionPipeline.from_pipe`] method which allows you to load and reuse multiple pipelines without any additional memory overhead (learn more in the [Reuse a pipeline](./loading#reuse-a-pipeline) guide). The memory requirement is determined by the largest single pipeline loaded.
For example, let's load a community pipeline that supports [long prompts with weighting](https://github.com/huggingface/diffusers/tree/main/examples/community#long-prompt-weighting-stable-diffusion) from a Stable Diffusion pipeline.
```py
import torch
from diffusers import DiffusionPipeline
pipe_sd = DiffusionPipeline.from_pretrained("emilianJR/CyberRealistic_V3", torch_dtype=torch.float16)
pipe_sd.to("cuda")
# load long prompt weighting pipeline
pipe_lpw = DiffusionPipeline.from_pipe(
pipe_sd,
custom_pipeline="lpw_stable_diffusion",
).to("cuda")
prompt = "cat, hiding in the leaves, ((rain)), zazie rainyday, beautiful eyes, macro shot, colorful details, natural lighting, amazing composition, subsurface scattering, amazing textures, filmic, soft light, ultra-detailed eyes, intricate details, detailed texture, light source contrast, dramatic shadows, cinematic light, depth of field, film grain, noise, dark background, hyperrealistic dslr film still, dim volumetric cinematic lighting"
neg_prompt = "(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
generator = torch.Generator(device="cpu").manual_seed(20)
out_lpw = pipe_lpw(
prompt,
negative_prompt=neg_prompt,
width=512,
height=512,
max_embeddings_multiples=3,
num_inference_steps=50,
generator=generator,
).images[0]
out_lpw
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/from_pipe_lpw.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">Stable Diffusion with long prompt weighting</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/from_pipe_non_lpw.png" />
<figcaption class="mt-2 text-center text-sm text-gray-500">Stable Diffusion</figcaption>
</div>
</div>
## Example community pipelines
Community pipelines are a really fun and creative way to extend the capabilities of the original pipeline with new and unique features. You can find all community pipelines in the [diffusers/examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) folder with inference and training examples for how to use them.
This section showcases a couple of the community pipelines and hopefully it'll inspire you to create your own (feel free to open a PR for your community pipeline and ping us for a review)!
Community pipelines are [`DiffusionPipeline`] classes that are different from the original paper implementation. They provide additional functionality or extend the original pipeline implementation.
> [!TIP]
> The [`~DiffusionPipeline.from_pipe`] method is particularly useful for loading community pipelines because many of them don't have pretrained weights and add a feature on top of an existing pipeline like Stable Diffusion or Stable Diffusion XL. You can learn more about the [`~DiffusionPipeline.from_pipe`] method in the [Load with from_pipe](custom_pipeline_overview#load-with-from_pipe) section.
> Check out the community pipelines in [diffusers/examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) with inference and training examples for how to use them.
<hfoptions id="community">
<hfoption id="Marigold">
Community pipelines are either stored on the Hub or the Diffusers' GitHub repository. Hub pipelines are completely customizable (scheduler, models, pipeline code, etc.) while GitHub pipelines are limited to only the custom pipeline code. Further compare the two community pipeline types in the table below.
[Marigold](https://marigoldmonodepth.github.io/) is a depth estimation diffusion pipeline that uses the rich existing and inherent visual knowledge in diffusion models. It takes an input image and denoises and decodes it into a depth map. Marigold performs well even on images it hasn't seen before.
| | GitHub | Hub |
|---|---|---|
| Usage | Same. | Same. |
| Review process | Open a Pull Request on GitHub and undergo a review process from the Diffusers team before merging. This option is slower. | Upload directly to a Hub repository without a review. This is the fastest option. |
| Visibility | Included in the official Diffusers repository and docs. | Included on your Hub profile and relies on your own usage and promotion to gain visibility. |
## custom_pipeline
Load either community pipeline types by passing the `custom_pipeline` argument to [`~DiffusionPipeline.from_pretrained`].
```py
import torch
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
pipeline = DiffusionPipeline.from_pretrained(
"prs-eth/marigold-lcm-v1-0",
custom_pipeline="marigold_depth_estimation",
"stabilityai/stable-diffusion-3-medium-diffusers",
custom_pipeline="pipeline_stable_diffusion_3_instruct_pix2pix",
torch_dtype=torch.float16,
variant="fp16",
device_map="cuda"
)
pipeline.to("cuda")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/community-marigold.png")
output = pipeline(
image,
denoising_steps=4,
ensemble_size=5,
processing_res=768,
match_input_res=True,
batch_size=0,
seed=33,
color_map="Spectral",
show_progress_bar=True,
)
depth_colored: Image.Image = output.depth_colored
depth_colored.save("./depth_colored.png")
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/community-marigold.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/marigold-depth.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">colorized depth image</figcaption>
</div>
</div>
</hfoption>
<hfoption id="HD-Painter">
[HD-Painter](https://hf.co/papers/2312.14091) is a high-resolution inpainting pipeline. It introduces a *Prompt-Aware Introverted Attention (PAIntA)* layer to better align a prompt with the area to be inpainted, and *Reweighting Attention Score Guidance (RASG)* to keep the latents more prompt-aligned and within their trained domain to generate realistc images.
Add the `custom_revision` argument to [`~DiffusionPipeline.from_pretrained`] to load a community pipeline from a specific version (for example, `v0.30.0` or `main`). By default, community pipelines are loaded from the latest stable version of Diffusers.
```py
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5-inpainting",
custom_pipeline="hd_painter"
"stabilityai/stable-diffusion-3-medium-diffusers",
custom_pipeline="pipeline_stable_diffusion_3_instruct_pix2pix",
custom_revision="main"
torch_dtype=torch.float16,
device_map="cuda"
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hd-painter.jpg")
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hd-painter-mask.png")
prompt = "football"
image = pipeline(prompt, init_image, mask_image, use_rasg=True, use_painta=True, generator=torch.manual_seed(0)).images[0]
image
```
<div class="flex flex-row gap-4">
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hd-painter.jpg"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
</div>
<div class="flex-1">
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hd-painter-output.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
</div>
</div>
> [!WARNING]
> While the Hugging Face Hub [scans](https://huggingface.co/docs/hub/security-malware) files, you should still inspect the Hub pipeline code and make sure it is safe.
</hfoption>
</hfoptions>
There are a few ways to load a community pipeline.
- Pass a path to `custom_pipeline` to load a local community pipeline. The directory must contain a `pipeline.py` file containing the pipeline class.
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
custom_pipeline="path/to/pipeline_directory",
torch_dtype=torch.float16,
device_map="cuda"
)
```
- The `custom_pipeline` argument is also supported by [`~DiffusionPipeline.from_pipe`], which is useful for [reusing pipelines](./loading#reuse-a-pipeline) without using additional memory. It limits the memory usage to only the largest pipeline loaded.
```py
import torch
from diffusers import DiffusionPipeline
pipeline_sd = DiffusionPipeline.from_pretrained("emilianJR/CyberRealistic_V3", torch_dtype=torch.float16, device_map="cuda")
pipeline_lpw = DiffusionPipeline.from_pipe(
pipeline_sd, custom_pipeline="lpw_stable_diffusion", device_map="cuda"
)
```
The [`~DiffusionPipeline.from_pipe`] method is especially useful for loading community pipelines because many of them don't have pretrained weights. Community pipelines generally add a feature on top of an existing pipeline.
## Community components
Community components allow users to build pipelines that may have customized components that are not a part of Diffusers. If your pipeline has custom components that Diffusers doesn't already support, you need to provide their implementations as Python modules. These customized components could be a VAE, UNet, and scheduler. In most cases, the text encoder is imported from the Transformers library. The pipeline code itself can also be customized.
Community components let users build pipelines with custom transformers, UNets, VAEs, and schedulers not supported by Diffusers. These components require Python module implementations.
This section shows how users should use community components to build a community pipeline.
This section shows how users can use community components to build a community pipeline using [showlab/show-1-base](https://huggingface.co/showlab/show-1-base) as an example.
You'll use the [showlab/show-1-base](https://huggingface.co/showlab/show-1-base) pipeline checkpoint as an example.
1. Import and load the text encoder from Transformers:
```python
from transformers import T5Tokenizer, T5EncoderModel
pipe_id = "showlab/show-1-base"
tokenizer = T5Tokenizer.from_pretrained(pipe_id, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(pipe_id, subfolder="text_encoder")
```
2. Load a scheduler:
1. Load the required components, the scheduler and image processor. The text encoder is generally imported from [Transformers](https://huggingface.co/docs/transformers/index).
```python
from transformers import T5Tokenizer, T5EncoderModel, CLIPImageProcessor
from diffusers import DPMSolverMultistepScheduler
pipeline_id = "showlab/show-1-base"
tokenizer = T5Tokenizer.from_pretrained(pipeline_id, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(pipeline_id, subfolder="text_encoder")
scheduler = DPMSolverMultistepScheduler.from_pretrained(pipe_id, subfolder="scheduler")
```
3. Load an image processor:
```python
from transformers import CLIPImageProcessor
feature_extractor = CLIPImageProcessor.from_pretrained(pipe_id, subfolder="feature_extractor")
```
<Tip warning={true}>
> [!WARNING]
> In steps 2 and 3, the custom [UNet](https://github.com/showlab/Show-1/blob/main/showone/models/unet_3d_condition.py) and [pipeline](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/unet/showone_unet_3d_condition.py) implementation must match the format shown in their files for this example to work.
In steps 4 and 5, the custom [UNet](https://github.com/showlab/Show-1/blob/main/showone/models/unet_3d_condition.py) and [pipeline](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/unet/showone_unet_3d_condition.py) implementation must match the format shown in their files for this example to work.
</Tip>
4. Now you'll load a [custom UNet](https://github.com/showlab/Show-1/blob/main/showone/models/unet_3d_condition.py), which in this example, has already been implemented in [showone_unet_3d_condition.py](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/unet/showone_unet_3d_condition.py) for your convenience. You'll notice the [`UNet3DConditionModel`] class name is changed to `ShowOneUNet3DConditionModel` because [`UNet3DConditionModel`] already exists in Diffusers. Any components needed for the `ShowOneUNet3DConditionModel` class should be placed in showone_unet_3d_condition.py.
Once this is done, you can initialize the UNet:
```python
from showone_unet_3d_condition import ShowOneUNet3DConditionModel
unet = ShowOneUNet3DConditionModel.from_pretrained(pipe_id, subfolder="unet")
```
5. Finally, you'll load the custom pipeline code. For this example, it has already been created for you in [pipeline_t2v_base_pixel.py](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/pipeline_t2v_base_pixel.py). This script contains a custom `TextToVideoIFPipeline` class for generating videos from text. Just like the custom UNet, any code needed for the custom pipeline to work should go in pipeline_t2v_base_pixel.py.
Once everything is in place, you can initialize the `TextToVideoIFPipeline` with the `ShowOneUNet3DConditionModel`:
2. Load a [custom UNet](https://github.com/showlab/Show-1/blob/main/showone/models/unet_3d_condition.py) which is already implemented in [showone_unet_3d_condition.py](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/unet/showone_unet_3d_condition.py). The [`UNet3DConditionModel`] class name is renamed to the custom implementation, `ShowOneUNet3DConditionModel`, because [`UNet3DConditionModel`] already exists in Diffusers. Any components required for `ShowOneUNet3DConditionModel` class should be placed in `showone_unet_3d_condition.py`.
```python
from showone_unet_3d_condition import ShowOneUNet3DConditionModel
unet = ShowOneUNet3DConditionModel.from_pretrained(pipeline_id, subfolder="unet")
```
3. Load the custom pipeline code (already implemented in [pipeline_t2v_base_pixel.py](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/pipeline_t2v_base_pixel.py)). This script contains a custom `TextToVideoIFPipeline` class for generating videos from text. Like the custom UNet, any code required for `TextToVideIFPipeline` should be placed in `pipeline_t2v_base_pixel.py`.
Initialize `TextToVideoIFPipeline` with `ShowOneUNet3DConditionModel`.
```python
from pipeline_t2v_base_pixel import TextToVideoIFPipeline
import torch
from pipeline_t2v_base_pixel import TextToVideoIFPipeline
pipeline = TextToVideoIFPipeline(
unet=unet,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
feature_extractor=feature_extractor
feature_extractor=feature_extractor,
device_map="cuda",
torch_dtype=torch.float16
)
pipeline = pipeline.to(device="cuda")
pipeline.torch_dtype = torch.float16
```
Push the pipeline to the Hub to share with the community!
4. Push the pipeline to the Hub to share with the community.
```python
pipeline.push_to_hub("custom-t2v-pipeline")
```
After the pipeline is successfully pushed, you need to make a few changes:
After the pipeline is successfully pushed, make the following changes.
1. Change the `_class_name` attribute in [model_index.json](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/model_index.json#L2) to `"pipeline_t2v_base_pixel"` and `"TextToVideoIFPipeline"`.
2. Upload `showone_unet_3d_condition.py` to the [unet](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/unet/showone_unet_3d_condition.py) subfolder.
3. Upload `pipeline_t2v_base_pixel.py` to the pipeline [repository](https://huggingface.co/sayakpaul/show-1-base-with-code/tree/main).
- Change the `_class_name` attribute in [model_index.json](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/model_index.json#L2) to `"pipeline_t2v_base_pixel"` and `"TextToVideoIFPipeline"`.
- Upload `showone_unet_3d_condition.py` to the [unet](https://huggingface.co/sayakpaul/show-1-base-with-code/blob/main/unet/showone_unet_3d_condition.py) subfolder.
- Upload `pipeline_t2v_base_pixel.py` to the pipeline [repository](https://huggingface.co/sayakpaul/show-1-base-with-code/tree/main).
To run inference, add the `trust_remote_code` argument while initializing the pipeline to handle all the "magic" behind the scenes.
> [!WARNING]
> As an additional precaution with `trust_remote_code=True`, we strongly encourage you to pass a commit hash to the `revision` parameter in [`~DiffusionPipeline.from_pretrained`] to make sure the code hasn't been updated with some malicious new lines of code (unless you fully trust the model owners).
```python
from diffusers import DiffusionPipeline
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"<change-username>/<change-id>", trust_remote_code=True, torch_dtype=torch.float16
).to("cuda")
prompt = "hello"
# Text embeds
prompt_embeds, negative_embeds = pipeline.encode_prompt(prompt)
# Keyframes generation (8x64x40, 2fps)
video_frames = pipeline(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
num_frames=8,
height=40,
width=64,
num_inference_steps=2,
guidance_scale=9.0,
output_type="pt"
).frames
```
As an additional reference, take a look at the repository structure of [stabilityai/japanese-stable-diffusion-xl](https://huggingface.co/stabilityai/japanese-stable-diffusion-xl/) which also uses the `trust_remote_code` feature.
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/japanese-stable-diffusion-xl", trust_remote_code=True
)
pipeline.to("cuda")
```
> [!WARNING]
> As an additional precaution with `trust_remote_code=True`, we strongly encourage passing a commit hash to the `revision` argument in [`~DiffusionPipeline.from_pretrained`] to make sure the code hasn't been updated with new malicious code (unless you fully trust the model owners).
## Resources
- Take a look at Issue [#841](https://github.com/huggingface/diffusers/issues/841) for more context about why we're adding community pipelines to help everyone easily share their work without being slowed down.
- Check out the [stabilityai/japanese-stable-diffusion-xl](https://huggingface.co/stabilityai/japanese-stable-diffusion-xl/) repository for an additional example of a community pipeline that also uses the `trust_remote_code` feature.

View File

@@ -10,13 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Controlling image quality
The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training.
This guide will show you how to turn these techniques on in your pipeline and how to configure them to improve the quality of your generated images.
## Details
# FreeU
[FreeU](https://hf.co/papers/2309.11497) improves image details by rebalancing the UNet's backbone and skip connection weights. The skip connections can cause the model to overlook some of the backbone semantics which may lead to unnatural image details in the generated image. This technique does not require any additional training and can be applied on the fly during inference for tasks like image-to-image and text-to-video.
@@ -139,7 +133,7 @@ export_to_video(video_frames, "teddy_bear.mp4", fps=10)
</hfoption>
</hfoptions>
Call the [`pipelines.StableDiffusionMixin.disable_freeu`] method to disable FreeU.
Call the [`~pipelines.StableDiffusionMixin.disable_freeu`] method to disable FreeU.
```py
pipeline.disable_freeu()

View File

@@ -10,574 +10,240 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Load pipelines
[[open-in-colab]]
Diffusion systems consist of multiple components like parameterized models and schedulers that interact in complex ways. That is why we designed the [`DiffusionPipeline`] to wrap the complexity of the entire diffusion system into an easy-to-use API. At the same time, the [`DiffusionPipeline`] is entirely customizable so you can modify each component to build a diffusion system for your use case.
# DiffusionPipeline
This guide will show you how to load:
Diffusion models consists of multiple components like UNets or diffusion transformers (DiTs), text encoders, variational autoencoders (VAEs), and schedulers. The [`DiffusionPipeline`] wraps all of these components into a single easy-to-use API without giving up the flexibility to modify it's components.
- pipelines from the Hub and locally
- different components into a pipeline
- multiple pipelines without increasing memory usage
- checkpoint variants such as different floating point types or non-exponential mean averaged (EMA) weights
This guide will show you how to load a [`DiffusionPipeline`].
## Load a pipeline
## Loading a pipeline
> [!TIP]
> Skip to the [DiffusionPipeline explained](#diffusionpipeline-explained) section if you're interested in an explanation about how the [`DiffusionPipeline`] class works.
[`DiffusionPipeline`] is a base pipeline class that automatically selects and returns an instance of a model's pipeline subclass, like [`QwenImagePipeline`], by scanning the `model_index.json` file for the class name.
There are two ways to load a pipeline for a task:
1. Load the generic [`DiffusionPipeline`] class and allow it to automatically detect the correct pipeline class from the checkpoint.
2. Load a specific pipeline class for a specific task.
<hfoptions id="pipelines">
<hfoption id="generic pipeline">
The [`DiffusionPipeline`] class is a simple and generic way to load the latest trending diffusion model from the [Hub](https://huggingface.co/models?library=diffusers&sort=trending). It uses the [`~DiffusionPipeline.from_pretrained`] method to automatically detect the correct pipeline class for a task from the checkpoint, downloads and caches all the required configuration and weight files, and returns a pipeline ready for inference.
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
This same checkpoint can also be used for an image-to-image task. The [`DiffusionPipeline`] class can handle any task as long as you provide the appropriate inputs. For example, for an image-to-image task, you need to pass an initial image to the pipeline.
Pass a model id to [`~DiffusionPipeline.from_pretrained`] to load a pipeline.
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/img2img-init.png")
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipeline("Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", image=init_image).images[0]
```
</hfoption>
<hfoption id="specific pipeline">
Checkpoints can be loaded by their specific pipeline class if you already know it. For example, to load a Stable Diffusion model, use the [`StableDiffusionPipeline`] class.
```python
from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
This same checkpoint may also be used for another task like image-to-image. To differentiate what task you want to use the checkpoint for, you have to use the corresponding task-specific pipeline class. For example, to use the same checkpoint for image-to-image, use the [`StableDiffusionImg2ImgPipeline`] class.
```py
from diffusers import StableDiffusionImg2ImgPipeline
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True)
```
</hfoption>
</hfoptions>
Use the Space below to gauge a pipeline's memory requirements before you download and load it to see if it runs on your hardware.
<div class="block dark:hidden">
<iframe
src="https://diffusers-compute-pipeline-size.hf.space?__theme=light"
width="850"
height="1600"
></iframe>
</div>
<div class="hidden dark:block">
<iframe
src="https://diffusers-compute-pipeline-size.hf.space?__theme=dark"
width="850"
height="1600"
></iframe>
</div>
### Specifying Component-Specific Data Types
You can customize the data types for individual sub-models by passing a dictionary to the `torch_dtype` parameter. This allows you to load different components of a pipeline in different floating point precisions. For instance, if you want to load the transformer with `torch.bfloat16` and all other components with `torch.float16`, you can pass a dictionary mapping:
```python
from diffusers import HunyuanVideoPipeline
import torch
from diffusers import DiffusionPipeline
pipe = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
torch_dtype={"transformer": torch.bfloat16, "default": torch.float16},
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
)
print(pipe.transformer.dtype, pipe.vae.dtype) # (torch.bfloat16, torch.float16)
```
If a component is not explicitly specified in the dictionary and no `default` is provided, it will be loaded with `torch.float32`.
Every model has a specific pipeline subclass that inherits from [`DiffusionPipeline`]. A subclass usually has a narrow focus and are task-specific. See the table below for an example.
### Local pipeline
| pipeline subclass | task |
|---|---|
| [`QwenImagePipeline`] | text-to-image |
| [`QwenImageImg2ImgPipeline`] | image-to-image |
| [`QwenImageInpaintPipeline`] | inpaint |
To load a pipeline locally, use [git-lfs](https://git-lfs.github.com/) to manually download a checkpoint to your local disk.
You could use the subclass directly by passing a model id to [`~QwenImagePipeline.from_pretrained`].
```bash
git-lfs install
git clone https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
```py
import torch
from diffusers import QwenImagePipeline
pipeline = QwenImagePipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16, device_map="cuda"
)
```
This creates a local folder, ./stable-diffusion-v1-5, on your disk and you should pass its path to [`~DiffusionPipeline.from_pretrained`].
### Local pipelines
```python
Pipelines can also be run locally. Use [`~huggingface_hub.snapshot_download`] to download a model repository.
```py
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Qwen/Qwen-Image")
```
The model is downloaded to your [cache](../installation#cache). Pass the folder path to [`~QwenImagePipeline.from_pretrained`] to load it.
```py
import torch
from diffusers import QwenImagePipeline
pipeline = QwenImagePipeline.from_pretrained(
"path/to/your/cache", torch_dtype=torch.bfloat16, device_map="cuda"
)
```
The [`~QwenImagePipeline.from_pretrained`] method won't download files from the Hub when it detects a local path. But this also means it won't download and cache any updates that have been made to the model either.
## Pipeline data types
Use the `torch_dtype` argument in [`~DiffusionPipeline.from_pretrained`] to load a model with a specific data type. This allows you to load different models in different precisions. For example, loading a large transformer model in half-precision reduces the memory required.
Pass the data type for each model as a dictionary to `torch_dtype`. Use the `default` key to set the default data type. If a model isn't in the dictionary and `default` isn't provided, it is loaded in full precision (`torch.float32`).
```py
import torch
from diffusers import QwenImagePipeline
pipeline = QwenImagePipeline.from_pretrained(
"Qwen/Qwen-Image",
torch_dtype={"transformer": torch.bfloat16, "default": torch.float16},
)
print(pipeline.transformer.dtype, pipeline.vae.dtype)
```
You don't need to use a dictionary if you're loading all the models in the same data type.
```py
import torch
from diffusers import QwenImagePipeline
pipeline = QwenImagePipeline.from_pretrained(
"Qwen/Qwen-Image", torch_dtype=torch.bfloat16
)
print(pipeline.transformer.dtype, pipeline.vae.dtype)
```
## Device placement
The `device_map` argument determines individual model or pipeline placement on an accelerator like a GPU. It is especially helpful when there are multiple GPUs.
A pipeline supports two options for `device_map`, `"cuda"` and `"balanced"`. Refer to the table below to compare the placement strategies.
| parameter | description |
|---|---|
| `"cuda"` | places pipeline on a supported accelerator device like CUDA |
| `"balanced"` | evenly distributes pipeline on all GPUs |
Use the `max_memory` argument in [`~DiffusionPipeline.from_pretrained`] to allocate a maximum amount of memory to use on each device. By default, Diffusers uses the maximum amount available.
```py
import torch
from diffusers import DiffusionPipeline
stable_diffusion = DiffusionPipeline.from_pretrained("./stable-diffusion-v1-5", use_safetensors=True)
max_memory = {0: "16GB", 1: "16GB"}
pipeline = DiffusionPipeline.from_pretrained(
"Qwen/Qwen-Image",
torch_dtype=torch.bfloat16,
device_map="cuda",
)
```
The [`~DiffusionPipeline.from_pretrained`] method won't download files from the Hub when it detects a local path, but this also means it won't download and cache the latest changes to a checkpoint.
## Customize a pipeline
You can customize a pipeline by loading different components into it. This is important because you can:
- change to a scheduler with faster generation speed or higher generation quality depending on your needs (call the `scheduler.compatibles` method on your pipeline to see compatible schedulers)
- change a default pipeline component to a newer and better performing one
For example, let's customize the default [stabilityai/stable-diffusion-xl-base-1.0](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0) checkpoint with:
- The [`HeunDiscreteScheduler`] to generate higher quality images at the expense of slower generation speed. You must pass the `subfolder="scheduler"` parameter in [`~HeunDiscreteScheduler.from_pretrained`] to load the scheduler configuration into the correct [subfolder](https://hf.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/scheduler) of the pipeline repository.
- A more stable VAE that runs in fp16.
The `hf_device_map` attribute allows you to access and view the `device_map`.
```py
from diffusers import StableDiffusionXLPipeline, HeunDiscreteScheduler, AutoencoderKL
print(pipeline.hf_device_map)
# {'unet': 1, 'vae': 1, 'safety_checker': 0, 'text_encoder': 0}
```
Reset a pipeline's `device_map` with the [`~DiffusionPipeline.reset_device_map`] method. This is necessary if you want to use methods such as `.to()`, [`~DiffusionPipeline.enable_sequential_cpu_offload`], and [`~DiffusionPipeline.enable_model_cpu_offload`].
```py
pipeline.reset_device_map()
```
## Parallel loading
Large models are often [sharded](../training/distributed_inference#model-sharding) into smaller files so that they are easier to load. Diffusers supports loading shards in parallel to speed up the loading process.
Set `HF_ENABLE_PARALLEL_LOADING` to `"YES"` to enable parallel loading of shards.
The `device_map` argument should be set to `"cuda"` to pre-allocate a large chunk of memory based on the model size. This substantially reduces model load time because warming up the memory allocator now avoids many smaller calls to the allocator later.
```py
import os
import torch
from diffusers import DiffusionPipeline
scheduler = HeunDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "YES"
pipeline = DiffusionPipeline.from_pretrained(
"Wan-AI/Wan2.2-I2V-A14B-Diffusers", torch_dtype=torch.bfloat16, device_map="cuda"
)
```
Now pass the new scheduler and VAE to the [`StableDiffusionXLPipeline`].
## Replacing models in a pipeline
[`DiffusionPipeline`] is flexible and accommodates loading different models or schedulers. You can experiment with different schedulers to optimize for generation speed or quality, and you can replace models with more performant ones.
The example below uses a more stable VAE version.
```py
pipeline = StableDiffusionXLPipeline.from_pretrained(
import torch
from diffusers import DiffusionPipeline, AutoModel
vae = AutoModel.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
scheduler=scheduler,
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
device_map="cuda"
)
```
## Reuse a pipeline
## Reusing models in multiple pipelines
When you load multiple pipelines that share the same model components, it makes sense to reuse the shared components instead of reloading everything into memory again, especially if your hardware is memory-constrained. For example:
When working with multiple pipelines that use the same model, the [`~DiffusionPipeline.from_pipe`] method enables reusing a model instead of reloading it each time. This allows you to use multiple pipelines without increasing memory usage.
1. You generated an image with the [`StableDiffusionPipeline`] but you want to improve its quality with the [`StableDiffusionSAGPipeline`]. Both of these pipelines share the same pretrained model, so it'd be a waste of memory to load the same model twice.
2. You want to add a model component, like a [`MotionAdapter`](../api/pipelines/animatediff#animatediffpipeline), to [`AnimateDiffPipeline`] which was instantiated from an existing [`StableDiffusionPipeline`]. Again, both pipelines share the same pretrained model, so it'd be a waste of memory to load an entirely new pipeline again.
Memory usage is determined by the pipeline with the highest memory requirement regardless of the number of pipelines.
With the [`DiffusionPipeline.from_pipe`] API, you can switch between multiple pipelines to take advantage of their different features without increasing memory-usage. It is similar to turning on and off a feature in your pipeline.
> [!TIP]
> To switch between tasks (rather than features), use the [`~DiffusionPipeline.from_pipe`] method with the [AutoPipeline](../api/pipelines/auto_pipeline) class, which automatically identifies the pipeline class based on the task (learn more in the [AutoPipeline](../tutorials/autopipeline) tutorial).
Let's start with a [`StableDiffusionPipeline`] and then reuse the loaded model components to create a [`StableDiffusionSAGPipeline`] to increase generation quality. You'll use the [`StableDiffusionPipeline`] with an [IP-Adapter](./ip_adapter) to generate a bear eating pizza.
```python
from diffusers import DiffusionPipeline, StableDiffusionSAGPipeline
import torch
import gc
from diffusers.utils import load_image
from accelerate.utils import compute_module_sizes
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png")
pipe_sd = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V6.0_B1_noVAE", torch_dtype=torch.float16)
pipe_sd.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe_sd.set_ip_adapter_scale(0.6)
pipe_sd.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt="bear eats pizza",
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
ip_adapter_image=image,
num_inference_steps=50,
generator=generator,
).images[0]
out_sd
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sd_0.png"/>
</div>
For reference, you can check how much memory this process consumed.
```python
def bytes_to_giga_bytes(bytes):
return bytes / 1024 / 1024 / 1024
print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")
"Max memory allocated: 4.406213283538818 GB"
```
Now, reuse the same pipeline components from [`StableDiffusionPipeline`] in [`StableDiffusionSAGPipeline`] with the [`~DiffusionPipeline.from_pipe`] method.
The example below loads a pipeline and then loads a second pipeline with [`~DiffusionPipeline.from_pipe`] to use [perturbed-attention guidance (PAG)](../api/pipelines/pag) to improve generation quality.
> [!WARNING]
> Some pipeline methods may not function properly on new pipelines created with [`~DiffusionPipeline.from_pipe`]. For instance, the [`~DiffusionPipeline.enable_model_cpu_offload`] method installs hooks on the model components based on a unique offloading sequence for each pipeline. If the models are executed in a different order in the new pipeline, the CPU offloading may not work correctly.
>
> To ensure everything works as expected, we recommend re-applying a pipeline method on a new pipeline created with [`~DiffusionPipeline.from_pipe`].
> Use [`AutoPipelineForText2Image`] because [`DiffusionPipeline`] doesn't support PAG. Refer to the [AutoPipeline](../tutorials/autopipeline) docs to learn more.
```python
pipe_sag = StableDiffusionSAGPipeline.from_pipe(
pipe_sd
```py
import torch
from diffusers import AutoPipelineForText2Image
pipeline_sdxl = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, device_map="cuda"
)
generator = torch.Generator(device="cpu").manual_seed(33)
out_sag = pipe_sag(
prompt="bear eats pizza",
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
ip_adapter_image=image,
num_inference_steps=50,
generator=generator,
guidance_scale=1.0,
sag_scale=0.75
).images[0]
out_sag
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
image = pipeline_sdxl(prompt).images[0]
print(f"Max memory reserved: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
# Max memory reserved: 10.47 GB
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_sag_1.png"/>
</div>
If you check the memory usage, you'll see it remains the same as before because [`StableDiffusionPipeline`] and [`StableDiffusionSAGPipeline`] are sharing the same pipeline components. This allows you to use them interchangeably without any additional memory overhead.
Set `enable_pag=True` in the second pipeline to enable PAG. The second pipeline uses the same amount of memory because it shares model weights with the first one.
```py
print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")
"Max memory allocated: 4.406213283538818 GB"
pipeline = AutoPipelineForText2Image.from_pipe(
pipeline_sdxl, enable_pag=True
)
prompt = """
cinematic film still of a cat sipping a margarita in a pool in Palm Springs, California
highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain
"""
image = pipeline(prompt).images[0]
print(f"Max memory reserved: {torch.cuda.max_memory_allocated() / 1024**3:.2f} GB")
# Max memory reserved: 10.47 GB
```
Let's animate the image with the [`AnimateDiffPipeline`] and also add a [`MotionAdapter`] module to the pipeline. For the [`AnimateDiffPipeline`], you need to unload the IP-Adapter first and reload it *after* you've created your new pipeline (this only applies to the [`AnimateDiffPipeline`]).
> [!WARNING]
> Pipelines created by [`~DiffusionPipeline.from_pipe`] share the same models and *state*. Modifying the state of a model in one pipeline affects all the other pipelines that share the same model.
```py
from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler
from diffusers.utils import export_to_gif
pipe_sag.unload_ip_adapter()
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
pipe_animate = AnimateDiffPipeline.from_pipe(pipe_sd, motion_adapter=adapter)
pipe_animate.scheduler = DDIMScheduler.from_config(pipe_animate.scheduler.config, beta_schedule="linear")
# load IP-Adapter and LoRA weights again
pipe_animate.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipe_animate.load_lora_weights("guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out")
pipe_animate.to("cuda")
generator = torch.Generator(device="cpu").manual_seed(33)
pipe_animate.set_adapters("zoom-out", adapter_weights=0.75)
out = pipe_animate(
prompt="bear eats pizza",
num_frames=16,
num_inference_steps=50,
ip_adapter_image=image,
generator=generator,
).frames[0]
export_to_gif(out, "out_animate.gif")
```
<div class="flex justify-center">
<img class="rounded-xl" src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/from_pipe_out_animate_3.gif"/>
</div>
The [`AnimateDiffPipeline`] is more memory-intensive and consumes 15GB of memory (see the [Memory-usage of from_pipe](#memory-usage-of-from_pipe) section to learn what this means for your memory-usage).
```py
print(f"Max memory allocated: {bytes_to_giga_bytes(torch.cuda.max_memory_allocated())} GB")
"Max memory allocated: 15.178664207458496 GB"
```
### Modify from_pipe components
Pipelines loaded with [`~DiffusionPipeline.from_pipe`] can be customized with different model components or methods. However, whenever you modify the *state* of the model components, it affects all the other pipelines that share the same components. For example, if you call [`~diffusers.loaders.IPAdapterMixin.unload_ip_adapter`] on the [`StableDiffusionSAGPipeline`], you won't be able to use IP-Adapter with the [`StableDiffusionPipeline`] because it's been removed from their shared components.
```py
pipe.sag_unload_ip_adapter()
generator = torch.Generator(device="cpu").manual_seed(33)
out_sd = pipe_sd(
prompt="bear eats pizza",
negative_prompt="wrong white balance, dark, sketches,worst quality,low quality",
ip_adapter_image=image,
num_inference_steps=50,
generator=generator,
).images[0]
"AttributeError: 'NoneType' object has no attribute 'image_projection_layers'"
```
### Memory usage of from_pipe
The memory requirement of loading multiple pipelines with [`~DiffusionPipeline.from_pipe`] is determined by the pipeline with the highest memory-usage regardless of the number of pipelines you create.
| Pipeline | Memory usage (GB) |
|---|---|
| StableDiffusionPipeline | 4.400 |
| StableDiffusionSAGPipeline | 4.400 |
| AnimateDiffPipeline | 15.178 |
The [`AnimateDiffPipeline`] has the highest memory requirement, so the *total memory-usage* is based only on the [`AnimateDiffPipeline`]. Your memory-usage will not increase if you create additional pipelines as long as their memory requirements doesn't exceed that of the [`AnimateDiffPipeline`]. Each pipeline can be used interchangeably without any additional memory overhead.
Some methods may not work correctly on pipelines created with [`~DiffusionPipeline.from_pipe`]. For example, [`~DiffusionPipeline.enable_model_cpu_offload`] relies on a unique model execution order, which may differ in the new pipeline. To ensure proper functionality, reapply these methods on the new pipeline.
## Safety checker
Diffusers implements a [safety checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) for Stable Diffusion models which can generate harmful content. The safety checker screens the generated output against known hardcoded not-safe-for-work (NSFW) content. If for whatever reason you'd like to disable the safety checker, pass `safety_checker=None` to the [`~DiffusionPipeline.from_pretrained`] method.
Diffusers provides a [safety checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) for older Stable Diffusion models to prevent generating harmful content. It screens the generated output against a set of hardcoded harmful concepts.
```python
If you want to disable the safety checker, pass `safety_checker=None` in [`~DiffusionPipeline.from_pretrained`] as shown below.
```py
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, use_safetensors=True)
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None
)
"""
You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide by the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend keeping the safety filter enabled in all public-facing circumstances, disabling it only for use cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
"""
```
## Checkpoint variants
A checkpoint variant is usually a checkpoint whose weights are:
- Stored in a different floating point type, such as [torch.float16](https://pytorch.org/docs/stable/tensors.html#data-types), because it only requires half the bandwidth and storage to download. You can't use this variant if you're continuing training or using a CPU.
- Non-exponential mean averaged (EMA) weights which shouldn't be used for inference. You should use this variant to continue finetuning a model.
> [!TIP]
> When the checkpoints have identical model structures, but they were trained on different datasets and with a different training setup, they should be stored in separate repositories. For example, [stabilityai/stable-diffusion-2](https://hf.co/stabilityai/stable-diffusion-2) and [stabilityai/stable-diffusion-2-1](https://hf.co/stabilityai/stable-diffusion-2-1) are stored in separate repositories.
Otherwise, a variant is **identical** to the original checkpoint. They have exactly the same serialization format (like [safetensors](./using_safetensors)), model structure, and their weights have identical tensor shapes.
| **checkpoint type** | **weight name** | **argument for loading weights** |
|---------------------|---------------------------------------------|----------------------------------|
| original | diffusion_pytorch_model.safetensors | |
| floating point | diffusion_pytorch_model.fp16.safetensors | `variant`, `torch_dtype` |
| non-EMA | diffusion_pytorch_model.non_ema.safetensors | `variant` |
There are two important arguments for loading variants:
- `torch_dtype` specifies the floating point precision of the loaded checkpoint. For example, if you want to save bandwidth by loading a fp16 variant, you should set `variant="fp16"` and `torch_dtype=torch.float16` to *convert the weights* to fp16. Otherwise, the fp16 weights are converted to the default fp32 precision.
If you only set `torch_dtype=torch.float16`, the default fp32 weights are downloaded first and then converted to fp16.
- `variant` specifies which files should be loaded from the repository. For example, if you want to load a non-EMA variant of a UNet from [stable-diffusion-v1-5/stable-diffusion-v1-5](https://hf.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main/unet), set `variant="non_ema"` to download the `non_ema` file.
<hfoptions id="variants">
<hfoption id="fp16">
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```
</hfoption>
<hfoption id="non-EMA">
```py
pipeline = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5", variant="non_ema", use_safetensors=True
)
```
</hfoption>
</hfoptions>
Use the `variant` parameter in the [`DiffusionPipeline.save_pretrained`] method to save a checkpoint as a different floating point type or as a non-EMA variant. You should try save a variant to the same folder as the original checkpoint, so you have the option of loading both from the same folder.
<hfoptions id="save">
<hfoption id="fp16">
```python
from diffusers import DiffusionPipeline
pipeline.save_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", variant="fp16")
```
</hfoption>
<hfoption id="non_ema">
```py
pipeline.save_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", variant="non_ema")
```
</hfoption>
</hfoptions>
If you don't save the variant to an existing folder, you must specify the `variant` argument otherwise it'll throw an `Exception` because it can't find the original checkpoint.
```python
# 👎 this won't work
pipeline = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True
)
# 👍 this works
pipeline = DiffusionPipeline.from_pretrained(
"./stable-diffusion-v1-5", variant="fp16", torch_dtype=torch.float16, use_safetensors=True
)
```
## DiffusionPipeline explained
As a class method, [`DiffusionPipeline.from_pretrained`] is responsible for two things:
- Download the latest version of the folder structure required for inference and cache it. If the latest folder structure is available in the local cache, [`DiffusionPipeline.from_pretrained`] reuses the cache and won't redownload the files.
- Load the cached weights into the correct pipeline [class](../api/pipelines/overview#diffusers-summary) - retrieved from the `model_index.json` file - and return an instance of it.
The pipelines' underlying folder structure corresponds directly with their class instances. For example, the [`StableDiffusionPipeline`] corresponds to the folder structure in [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5).
```python
from diffusers import DiffusionPipeline
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(repo_id, use_safetensors=True)
print(pipeline)
```
You'll see pipeline is an instance of [`StableDiffusionPipeline`], which consists of seven components:
- `"feature_extractor"`: a [`~transformers.CLIPImageProcessor`] from 🤗 Transformers.
- `"safety_checker"`: a [component](https://github.com/huggingface/diffusers/blob/e55687e1e15407f60f32242027b7bb8170e58266/src/diffusers/pipelines/stable_diffusion/safety_checker.py#L32) for screening against harmful content.
- `"scheduler"`: an instance of [`PNDMScheduler`].
- `"text_encoder"`: a [`~transformers.CLIPTextModel`] from 🤗 Transformers.
- `"tokenizer"`: a [`~transformers.CLIPTokenizer`] from 🤗 Transformers.
- `"unet"`: an instance of [`UNet2DConditionModel`].
- `"vae"`: an instance of [`AutoencoderKL`].
```json
StableDiffusionPipeline {
"feature_extractor": [
"transformers",
"CLIPImageProcessor"
],
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"PNDMScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
```
Compare the components of the pipeline instance to the [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/tree/main) folder structure, and you'll see there is a separate folder for each of the components in the repository:
```
.
├── feature_extractor
│   └── preprocessor_config.json
├── model_index.json
├── safety_checker
│   ├── config.json
| ├── model.fp16.safetensors
│ ├── model.safetensors
│ ├── pytorch_model.bin
| └── pytorch_model.fp16.bin
├── scheduler
│   └── scheduler_config.json
├── text_encoder
│   ├── config.json
| ├── model.fp16.safetensors
│ ├── model.safetensors
│ |── pytorch_model.bin
| └── pytorch_model.fp16.bin
├── tokenizer
│   ├── merges.txt
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── unet
│   ├── config.json
│   ├── diffusion_pytorch_model.bin
| |── diffusion_pytorch_model.fp16.bin
│ |── diffusion_pytorch_model.f16.safetensors
│ |── diffusion_pytorch_model.non_ema.bin
│ |── diffusion_pytorch_model.non_ema.safetensors
│ └── diffusion_pytorch_model.safetensors
|── vae
. ├── config.json
. ├── diffusion_pytorch_model.bin
├── diffusion_pytorch_model.fp16.bin
├── diffusion_pytorch_model.fp16.safetensors
└── diffusion_pytorch_model.safetensors
```
You can access each of the components of the pipeline as an attribute to view its configuration:
```py
pipeline.tokenizer
CLIPTokenizer(
name_or_path="/root/.cache/huggingface/hub/models--runwayml--stable-diffusion-v1-5/snapshots/39593d5650112b4cc580433f6b0435385882d819/tokenizer",
vocab_size=49408,
model_max_length=77,
is_fast=False,
padding_side="right",
truncation_side="right",
special_tokens={
"bos_token": AddedToken("<|startoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
"eos_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
"unk_token": AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=True),
"pad_token": "<|endoftext|>",
},
clean_up_tokenization_spaces=True
)
```
Every pipeline expects a [`model_index.json`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json) file that tells the [`DiffusionPipeline`]:
- which pipeline class to load from `_class_name`
- which version of 🧨 Diffusers was used to create the model in `_diffusers_version`
- what components from which library are stored in the subfolders (`name` corresponds to the component and subfolder name, `library` corresponds to the name of the library to load the class from, and `class` corresponds to the class name)
```json
{
"_class_name": "StableDiffusionPipeline",
"_diffusers_version": "0.6.0",
"feature_extractor": [
"transformers",
"CLIPImageProcessor"
],
"safety_checker": [
"stable_diffusion",
"StableDiffusionSafetyChecker"
],
"scheduler": [
"diffusers",
"PNDMScheduler"
],
"text_encoder": [
"transformers",
"CLIPTextModel"
],
"tokenizer": [
"transformers",
"CLIPTokenizer"
],
"unet": [
"diffusers",
"UNet2DConditionModel"
],
"vae": [
"diffusers",
"AutoencoderKL"
]
}
```
```

View File

@@ -0,0 +1,120 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
[[open-in-colab]]
# Models
A diffusion model relies on a few individual models working together to generate an output. These models are responsible for denoising, encoding inputs, and decoding latents into the actual outputs.
This guide will show you how to load models.
## Loading a model
All models are loaded with the [`~ModelMixin.from_pretrained`] method, which downloads and caches the latest model version. If the latest files are available in the local cache, [`~ModelMixin.from_pretrained`] reuses files in the cache.
Pass the `subfolder` argument to [`~ModelMixin.from_pretrained`] to specify where to load the model weights from. Omit the `subfolder` argument if the repository doesn't have a subfolder structure or if you're loading a standalone model.
```py
from diffusers import QwenImageTransformer2DModel
model = QwenImageTransformer2DModel.from_pretrained("Qwen/Qwen-Image", subfolder="transformer")
```
## AutoModel
[`AutoModel`] detects the model class from a `model_index.json` file or a model's `config.json` file. It fetches the correct model class from these files and delegates the actual loading to the model class. [`AutoModel`] is useful for automatic model type detection without needing to know the exact model class beforehand.
```py
from diffusers import AutoModel
model = AutoModel.from_pretrained(
"Qwen/Qwen-Image", subfolder="transformer"
)
```
## Model data types
Use the `torch_dtype` argument in [`~ModelMixin.from_pretrained`] to load a model with a specific data type. This allows you to load a model in a lower precision to reduce memory usage.
```py
import torch
from diffusers import QwenImageTransformer2DModel
model = QwenImageTransformer2DModel.from_pretrained(
"Qwen/Qwen-Image",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
```
[nn.Module.to](https://docs.pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.to) can also convert to a specific data type on the fly. However, it converts *all* weights to the requested data type unlike `torch_dtype` which respects `_keep_in_fp32_modules`. This argument preserves layers in `torch.float32` for numerical stability and best generation quality (see example [_keep_in_fp32_modules](https://github.com/huggingface/diffusers/blob/f864a9a352fa4a220d860bfdd1782e3e5af96382/src/diffusers/models/transformers/transformer_wan.py#L374))
```py
from diffusers import QwenImageTransformer2DModel
model = QwenImageTransformer2DModel.from_pretrained(
"Qwen/Qwen-Image", subfolder="transformer"
)
model = model.to(dtype=torch.float16)
```
## Device placement
Use the `device_map` argument in [`~ModelMixin.from_pretrained`] to place a model on an accelerator like a GPU. It is especially helpful where there are multiple GPUs.
Diffusers currently provides three options to `device_map` for individual models, `"cuda"`, `"balanced"` and `"auto"`. Refer to the table below to compare the three placement strategies.
| parameter | description |
|---|---|
| `"cuda"` | places pipeline on a supported accelerator (CUDA) |
| `"balanced"` | evenly distributes pipeline on all GPUs |
| `"auto"` | distribute model from fastest device first to slowest |
Use the `max_memory` argument in [`~ModelMixin.from_pretrained`] to allocate a maximum amount of memory to use on each device. By default, Diffusers uses the maximum amount available.
```py
import torch
from diffusers import QwenImagePipeline
max_memory = {0: "16GB", 1: "16GB"}
pipeline = QwenImagePipeline.from_pretrained(
"Qwen/Qwen-Image",
torch_dtype=torch.bfloat16,
device_map="cuda",
max_memory=max_memory
)
```
The `hf_device_map` attribute allows you to access and view the `device_map`.
```py
print(transformer.hf_device_map)
# {'': device(type='cuda')}
```
## Saving models
Save a model with the [`~ModelMixin.save_pretrained`] method.
```py
from diffusers import QwenImageTransformer2DModel
model = QwenImageTransformer2DModel.from_pretrained("Qwen/Qwen-Image", subfolder="transformer")
model.save_pretrained("./local/model")
```
For large models, it is helpful to use `max_shard_size` to save a model as multiple shards. A shard can be loaded faster and save memory (refer to the [parallel loading](./loading#parallel-loading) docs for more details), especially if there is more than one GPU.
```py
model.save_pretrained("./local/model", max_shard_size="5GB")
```

View File

@@ -176,7 +176,7 @@ Benefits of using the Diffusers-multifolder layout include:
).to("cuda")
turbo_pipeline.scheduler = EulerDiscreteScheduler.from_config(
turbo_pipeline.scheduler.config,
timestep+spacing="trailing"
timestep_spacing="trailing"
)
image = turbo_pipeline(
"an astronaut riding a unicorn on mars",
@@ -267,6 +267,7 @@ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_d
save_folder = "flux-dev"
pipe.save_pretrained("flux-dev")
export_folder_as_dduf("flux-dev.dduf", folder_path=save_folder)
```
> [!TIP]
> Packaging and loading quantized checkpoints in the DDUF format is supported as long as they respect the multi-folder structure.

View File

@@ -10,19 +10,22 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Push files to the Hub
[[open-in-colab]]
🤗 Diffusers provides a [`~diffusers.utils.PushToHubMixin`] for uploading your model, scheduler, or pipeline to the Hub. It is an easy way to store your files on the Hub, and also allows you to share your work with others. Under the hood, the [`~diffusers.utils.PushToHubMixin`]:
# Sharing pipelines and models
Share your pipeline or models and schedulers on the Hub with the [`~diffusers.utils.PushToHubMixin`] class. This class:
1. creates a repository on the Hub
2. saves your model, scheduler, or pipeline files so they can be reloaded later
3. uploads folder containing these files to the Hub
This guide will show you how to use the [`~diffusers.utils.PushToHubMixin`] to upload your files to the Hub.
This guide will show you how to upload your files to the Hub with the [`~diffusers.utils.PushToHubMixin`] class.
You'll need to log in to your Hub account with your access [token](https://huggingface.co/settings/tokens) first:
Log in to your Hugging Face account with your access [token](https://huggingface.co/settings/tokens).
<hfoptions id="login">
<hfoption id="notebook">
```py
from huggingface_hub import notebook_login
@@ -30,9 +33,19 @@ from huggingface_hub import notebook_login
notebook_login()
```
</hfoption>
<hfoption id="hf CLI">
```bash
hf auth login
```
</hfoption>
</hfoptions>
## Models
To push a model to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the model to be stored on the Hub:
To push a model to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the model.
```py
from diffusers import ControlNetModel
@@ -48,15 +61,9 @@ controlnet = ControlNetModel(
controlnet.push_to_hub("my-controlnet-model")
```
For models, you can also specify the [*variant*](loading#checkpoint-variants) of the weights to push to the Hub. For example, to push `fp16` weights:
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] method saves the model's `config.json` file and the weights are automatically saved as safetensors files.
```py
controlnet.push_to_hub("my-controlnet-model", variant="fp16")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the model's `config.json` file and the weights are automatically saved in the `safetensors` format.
Now you can reload the model from your repository on the Hub:
Load the model again with [`~DiffusionPipeline.from_pretrained`].
```py
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model")
@@ -64,7 +71,7 @@ model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model")
## Scheduler
To push a scheduler to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the scheduler to be stored on the Hub:
To push a scheduler to the Hub, call [`~diffusers.utils.PushToHubMixin.push_to_hub`] and specify the repository id of the scheduler.
```py
from diffusers import DDIMScheduler
@@ -81,7 +88,7 @@ scheduler.push_to_hub("my-controlnet-scheduler")
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves the scheduler's `scheduler_config.json` file to the specified repository.
Now you can reload the scheduler from your repository on the Hub:
Load the scheduler again with [`~SchedulerMixin.from_pretrained`].
```py
scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-scheduler")
@@ -89,7 +96,7 @@ scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-schedule
## Pipeline
You can also push an entire pipeline with all it's components to the Hub. For example, initialize the components of a [`StableDiffusionPipeline`] with the parameters you want:
To push a pipeline to the Hub, initialize the pipeline components with your desired parameters.
```py
from diffusers import (
@@ -143,7 +150,7 @@ text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
```
Pass all of the components to the [`StableDiffusionPipeline`] and call [`~diffusers.utils.PushToHubMixin.push_to_hub`] to push the pipeline to the Hub:
Pass all components to the pipeline and call [`~diffusers.utils.PushToHubMixin.push_to_hub`].
```py
components = {
@@ -160,7 +167,7 @@ pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub("my-pipeline")
```
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] function saves each component to a subfolder in the repository. Now you can reload the pipeline from your repository on the Hub:
The [`~diffusers.utils.PushToHubMixin.push_to_hub`] method saves each component to a subfolder in the repository. Load the pipeline again with [`~DiffusionPipeline.from_pretrained`].
```py
pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline")
@@ -168,10 +175,10 @@ pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline")
## Privacy
Set `private=True` in the [`~diffusers.utils.PushToHubMixin.push_to_hub`] function to keep your model, scheduler, or pipeline files private:
Set `private=True` in [`~diffusers.utils.PushToHubMixin.push_to_hub`] to keep a model, scheduler, or pipeline files private.
```py
controlnet.push_to_hub("my-controlnet-model-private", private=True)
```
Private repositories are only visible to you, and other users won't be able to clone the repository and your repository won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for`. You must be [logged in](https://huggingface.co/docs/huggingface_hub/quick-start#login) to load a model from a private repository.
Private repositories are only visible to you. Other users won't be able to clone the repository and it won't appear in search results. Even if a user has the URL to your private repository, they'll receive a `404 - Sorry, we can't find the page you are looking for`. You must be [logged in](https://huggingface.co/docs/huggingface_hub/quick-start#login) to load a model from a private repository.

View File

@@ -10,129 +10,86 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Reproducible pipelines
# Reproducibility
Diffusion models are inherently random which is what allows it to generate different outputs every time it is run. But there are certain times when you want to generate the same output every time, like when you're testing, replicating results, and even [improving image quality](#deterministic-batch-generation). While you can't expect to get identical results across platforms, you can expect reproducible results across releases and platforms within a certain tolerance range (though even this may vary).
Diffusion is a random process that generates a different output every time. For certain situations like testing and replicating results, you want to generate the same result each time, across releases and platforms within a certain tolerance range.
This guide will show you how to control randomness for deterministic generation on a CPU and GPU.
This guide will show you how to control sources of randomness and enable deterministic algorithms.
## Generator
Pipelines rely on [torch.randn](https://pytorch.org/docs/stable/generated/torch.randn.html), which uses a different random seed each time, to create the initial noisy tensors. To generate the same output on a CPU or GPU, use a [Generator](https://docs.pytorch.org/docs/stable/generated/torch.Generator.html) to manage how random values are generated.
> [!TIP]
> We strongly recommend reading PyTorch's [statement about reproducibility](https://pytorch.org/docs/stable/notes/randomness.html):
>
> "Completely reproducible results are not guaranteed across PyTorch releases, individual commits, or different platforms. Furthermore, results may not be reproducible between CPU and GPU executions, even when using identical seeds."
> If reproducibility is important to your use case, we recommend always using a CPU `Generator`. The performance loss is often negligible and you'll generate more similar values.
## Control randomness
<hfoptions id="generator">
<hfoption id="GPU">
During inference, pipelines rely heavily on random sampling operations which include creating the
Gaussian noise tensors to denoise and adding noise to the scheduling step.
The GPU uses a different random number generator than the CPU. Diffusers solves this issue with the [`~utils.torch_utils.randn_tensor`] function to create the random tensor on a CPU and then moving it to the GPU. This function is used everywhere inside the pipeline and you don't need to explicitly call it.
Take a look at the tensor values in the [`DDIMPipeline`] after two inference steps.
Use [manual_seed](https://docs.pytorch.org/docs/stable/generated/torch.manual_seed.html) as shown below to set a seed.
```python
from diffusers import DDIMPipeline
import numpy as np
ddim = DDIMPipeline.from_pretrained( "google/ddpm-cifar10-32", use_safetensors=True)
image = ddim(num_inference_steps=2, output_type="np").images
print(np.abs(image).sum())
```
Running the code above prints one value, but if you run it again you get a different value.
Each time the pipeline is run, [torch.randn](https://pytorch.org/docs/stable/generated/torch.randn.html) uses a different random seed to create the Gaussian noise tensors. This leads to a different result each time it is run and enables the diffusion pipeline to generate a different random image each time.
But if you need to reliably generate the same image, that depends on whether you're running the pipeline on a CPU or GPU.
> [!TIP]
> It might seem unintuitive to pass `Generator` objects to a pipeline instead of the integer value representing the seed. However, this is the recommended design when working with probabilistic models in PyTorch because a `Generator` is a *random state* that can be passed to multiple pipelines in a sequence. As soon as the `Generator` is consumed, the *state* is changed in place which means even if you passed the same `Generator` to a different pipeline, it won't produce the same result because the state is already changed.
<hfoptions id="hardware">
<hfoption id="CPU">
To generate reproducible results on a CPU, you'll need to use a PyTorch [Generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) and set a seed. Now when you run the code, it always prints a value of `1491.1711` because the `Generator` object with the seed is passed to all the random functions in the pipeline. You should get a similar, if not the same, result on whatever hardware and PyTorch version you're using.
```python
```py
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", device_map="cuda")
generator = torch.manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
</hfoption>
<hfoption id="CPU">
Set `device="cpu"` in the `Generator` and use [manual_seed](https://docs.pytorch.org/docs/stable/generated/torch.manual_seed.html) to set a seed for generating random numbers.
```py
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32")
generator = torch.Generator(device="cpu").manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
</hfoption>
<hfoption id="GPU">
Writing a reproducible pipeline on a GPU is a bit trickier, and full reproducibility across different hardware is not guaranteed because matrix multiplication - which diffusion pipelines require a lot of - is less deterministic on a GPU than a CPU. For example, if you run the same code example from the CPU example, you'll get a different result even though the seed is identical. This is because the GPU uses a different random number generator than the CPU.
```python
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
ddim.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
To avoid this issue, Diffusers has a [`~utils.torch_utils.randn_tensor`] function for creating random noise on the CPU, and then moving the tensor to a GPU if necessary. The [`~utils.torch_utils.randn_tensor`] function is used everywhere inside the pipeline. Now you can call [torch.manual_seed](https://pytorch.org/docs/stable/generated/torch.manual_seed.html) which automatically creates a CPU `Generator` that can be passed to the pipeline even if it is being run on a GPU.
```python
import torch
import numpy as np
from diffusers import DDIMPipeline
ddim = DDIMPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
ddim.to("cuda")
generator = torch.manual_seed(0)
image = ddim(num_inference_steps=2, output_type="np", generator=generator).images
print(np.abs(image).sum())
```
> [!TIP]
> If reproducibility is important to your use case, we recommend always passing a CPU `Generator`. The performance loss is often negligible and you'll generate more similar values than if the pipeline had been run on a GPU.
Finally, more complex pipelines such as [`UnCLIPPipeline`], are often extremely
susceptible to precision error propagation. You'll need to use
exactly the same hardware and PyTorch version for full reproducibility.
</hfoption>
</hfoptions>
The `Generator` object should be passed to the pipeline instead of an integer seed. `Generator` maintains a *random state* that is consumed and modified when used. Once consumed, the same `Generator` object produces different results in subsequent calls, even across different pipelines, because it's *state* has changed.
```py
generator = torch.manual_seed(0)
for _ in range(5):
- image = pipeline(prompt, generator=generator)
+ image = pipeline(prompt, generator=torch.manual_seed(0))
```
## Deterministic algorithms
You can also configure PyTorch to use deterministic algorithms to create a reproducible pipeline. The downside is that deterministic algorithms may be slower than non-deterministic ones and you may observe a decrease in performance.
PyTorch supports [deterministic algorithms](https://docs.pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms) - where available - for certain operations so they produce the same results. Deterministic algorithms may be slower and decrease performance.
Non-deterministic behavior occurs when operations are launched in more than one CUDA stream. To avoid this, set the environment variable [CUBLAS_WORKSPACE_CONFIG](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility) to `:16:8` to only use one buffer size during runtime.
PyTorch typically benchmarks multiple algorithms to select the fastest one, but if you want reproducibility, you should disable this feature because the benchmark may select different algorithms each time. Set Diffusers [enable_full_determinism](https://github.com/huggingface/diffusers/blob/142f353e1c638ff1d20bd798402b68f72c1ebbdd/src/diffusers/utils/testing_utils.py#L861) to enable deterministic algorithms.
```py
enable_full_determinism()
```
Now when you run the same pipeline twice, you'll get identical results.
Use Diffusers' [enable_full_determinism](https://github.com/huggingface/diffusers/blob/142f353e1c638ff1d20bd798402b68f72c1ebbdd/src/diffusers/utils/testing_utils.py#L861) function to enable deterministic algorithms.
```py
import torch
from diffusers import DDIMScheduler, StableDiffusionPipeline
from diffusers_utils import enable_full_determinism
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", use_safetensors=True).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
g = torch.Generator(device="cuda")
prompt = "A bear is playing a guitar on Times Square"
g.manual_seed(0)
result1 = pipe(prompt=prompt, num_inference_steps=50, generator=g, output_type="latent").images
g.manual_seed(0)
result2 = pipe(prompt=prompt, num_inference_steps=50, generator=g, output_type="latent").images
print("L_inf dist =", abs(result1 - result2).max())
"L_inf dist = tensor(0., device='cuda:0')"
enable_full_determinism()
```
Under the hood, `enable_full_determinism` works by:
- Setting the environment variable [CUBLAS_WORKSPACE_CONFIG](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility) to `:16:8` to only use one buffer size during rntime. Non-deterministic behavior occurs when operations are used in more than one CUDA stream.
- Disabling benchmarking to find the fastest convolution operation by setting `torch.backends.cudnn.benchmark=False`. Non-deterministic behavior occurs because the benchmark may select different algorithms each time depending on hardware or benchmarking noise.
- Disabling TensorFloat32 (TF32) operations in favor of more precise and consistent full-precision operations.
## Resources
We strongly recommend reading PyTorch's developer notes about [Reproducibility](https://docs.pytorch.org/docs/stable/notes/randomness.html). You can try to limit randomness, but it is not *guaranteed* even with an identical seed.

View File

@@ -165,53 +165,6 @@ image
Most images look very similar and are comparable in quality. Again, it often comes down to your specific use case so a good approach is to run multiple different schedulers and compare the results.
### Flax schedulers
To compare Flax schedulers, you need to additionally load the scheduler state into the model parameters. For example, let's change the default scheduler in [`FlaxStableDiffusionPipeline`] to use the super fast [`FlaxDPMSolverMultistepScheduler`].
> [!WARNING]
> The [`FlaxLMSDiscreteScheduler`] and [`FlaxDDPMScheduler`] are not compatible with the [`FlaxStableDiffusionPipeline`] yet.
```py
import jax
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline, FlaxDPMSolverMultistepScheduler
scheduler, scheduler_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
subfolder="scheduler"
)
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
scheduler=scheduler,
variant="bf16",
dtype=jax.numpy.bfloat16,
)
params["scheduler"] = scheduler_state
```
Then you can take advantage of Flax's compatibility with TPUs to generate a number of images in parallel. You'll need to make a copy of the model parameters for each available device and then split the inputs across them to generate your desired number of images.
```py
# Generate 1 image per parallel device (8 on TPUv2-8 or TPUv3-8)
prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition."
num_samples = jax.device_count()
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples)
prng_seed = jax.random.PRNGKey(0)
num_inference_steps = 25
# shard inputs and rng
params = replicate(params)
prng_seed = jax.random.split(prng_seed, jax.device_count())
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
## Models
Models are loaded from the [`ModelMixin.from_pretrained`] method, which downloads and caches the latest version of the model weights and configurations. If the latest files are available in the local cache, [`~ModelMixin.from_pretrained`] reuses files in the cache instead of re-downloading them.

View File

@@ -1,225 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# JAX/Flax
[[open-in-colab]]
🤗 Diffusers supports Flax for super fast inference on Google TPUs, such as those available in Colab, Kaggle or Google Cloud Platform. This guide shows you how to run inference with Stable Diffusion using JAX/Flax.
Before you begin, make sure you have the necessary libraries installed:
```py
# uncomment to install the necessary libraries in Colab
#!pip install -q jax==0.3.25 jaxlib==0.3.25 flax transformers ftfy
#!pip install -q diffusers
```
You should also make sure you're using a TPU backend. While JAX does not run exclusively on TPUs, you'll get the best performance on a TPU because each server has 8 TPU accelerators working in parallel.
If you are running this guide in Colab, select *Runtime* in the menu above, select the option *Change runtime type*, and then select *TPU* under the *Hardware accelerator* setting. Import JAX and quickly check whether you're using a TPU:
```python
import jax
import jax.tools.colab_tpu
jax.tools.colab_tpu.setup_tpu()
num_devices = jax.device_count()
device_type = jax.devices()[0].device_kind
print(f"Found {num_devices} JAX devices of type {device_type}.")
assert (
"TPU" in device_type,
"Available device is not a TPU, please select TPU from Runtime > Change runtime type > Hardware accelerator"
)
# Found 8 JAX devices of type Cloud TPU.
```
Great, now you can import the rest of the dependencies you'll need:
```python
import jax.numpy as jnp
from jax import pmap
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxStableDiffusionPipeline
```
## Load a model
Flax is a functional framework, so models are stateless and parameters are stored outside of them. Loading a pretrained Flax pipeline returns *both* the pipeline and the model weights (or parameters). In this guide, you'll use `bfloat16`, a more efficient half-float type that is supported by TPUs (you can also use `float32` for full precision if you want).
```python
dtype = jnp.bfloat16
pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
variant="bf16",
dtype=dtype,
)
```
## Inference
TPUs usually have 8 devices working in parallel, so let's use the same prompt for each device. This means you can perform inference on 8 devices at once, with each device generating one image. As a result, you'll get 8 images in the same amount of time it takes for one chip to generate a single image!
<Tip>
Learn more details in the [How does parallelization work?](#how-does-parallelization-work) section.
</Tip>
After replicating the prompt, get the tokenized text ids by calling the `prepare_inputs` function on the pipeline. The length of the tokenized text is set to 77 tokens as required by the configuration of the underlying CLIP text model.
```python
prompt = "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of field, close up, split lighting, cinematic"
prompt = [prompt] * jax.device_count()
prompt_ids = pipeline.prepare_inputs(prompt)
prompt_ids.shape
# (8, 77)
```
Model parameters and inputs have to be replicated across the 8 parallel devices. The parameters dictionary is replicated with [`flax.jax_utils.replicate`](https://flax.readthedocs.io/en/latest/api_reference/flax.jax_utils.html#flax.jax_utils.replicate) which traverses the dictionary and changes the shape of the weights so they are repeated 8 times. Arrays are replicated using `shard`.
```python
# parameters
p_params = replicate(params)
# arrays
prompt_ids = shard(prompt_ids)
prompt_ids.shape
# (8, 1, 77)
```
This shape means each one of the 8 devices receives as an input a `jnp` array with shape `(1, 77)`, where `1` is the batch size per device. On TPUs with sufficient memory, you could have a batch size larger than `1` if you want to generate multiple images (per chip) at once.
Next, create a random number generator to pass to the generation function. This is standard procedure in Flax, which is very serious and opinionated about random numbers. All functions that deal with random numbers are expected to receive a generator to ensure reproducibility, even when you're training across multiple distributed devices.
The helper function below uses a seed to initialize a random number generator. As long as you use the same seed, you'll get the exact same results. Feel free to use different seeds when exploring results later in the guide.
```python
def create_key(seed=0):
return jax.random.PRNGKey(seed)
```
The helper function, or `rng`, is split 8 times so each device receives a different generator and generates a different image.
```python
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
```
To take advantage of JAX's optimized speed on a TPU, pass `jit=True` to the pipeline to compile the JAX code into an efficient representation and to ensure the model runs in parallel across the 8 devices.
<Tip warning={true}>
You need to ensure all your inputs have the same shape in subsequent calls, otherwise JAX will need to recompile the code which is slower.
</Tip>
The first inference run takes more time because it needs to compile the code, but subsequent calls (even with different inputs) are much faster. For example, it took more than a minute to compile on a TPU v2-8, but then it takes about **7s** on a future inference run!
```py
%%time
images = pipeline(prompt_ids, p_params, rng, jit=True)[0]
# CPU times: user 56.2 s, sys: 42.5 s, total: 1min 38s
# Wall time: 1min 29s
```
The returned array has shape `(8, 1, 512, 512, 3)` which should be reshaped to remove the second dimension and get 8 images of `512 × 512 × 3`. Then you can use the [`~utils.numpy_to_pil`] function to convert the arrays into images.
```python
from diffusers.utils import make_image_grid
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
images = pipeline.numpy_to_pil(images)
make_image_grid(images, rows=2, cols=4)
```
![img](https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/stable_diffusion_jax_how_to_cell_38_output_0.jpeg)
## Using different prompts
You don't necessarily have to use the same prompt on all devices. For example, to generate 8 different prompts:
```python
prompts = [
"Labrador in the style of Hokusai",
"Painting of a squirrel skating in New York",
"HAL-9000 in the style of Van Gogh",
"Times Square under water, with fish and a dolphin swimming around",
"Ancient Roman fresco showing a man working on his laptop",
"Close-up photograph of young black woman against urban background, high quality, bokeh",
"Armchair in the shape of an avocado",
"Clown astronaut in space, with Earth in the background",
]
prompt_ids = pipeline.prepare_inputs(prompts)
prompt_ids = shard(prompt_ids)
images = pipeline(prompt_ids, p_params, rng, jit=True).images
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
images = pipeline.numpy_to_pil(images)
make_image_grid(images, 2, 4)
```
![img](https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/stable_diffusion_jax_how_to_cell_43_output_0.jpeg)
## How does parallelization work?
The Flax pipeline in 🤗 Diffusers automatically compiles the model and runs it in parallel on all available devices. Let's take a closer look at how that process works.
JAX parallelization can be done in multiple ways. The easiest one revolves around using the [`jax.pmap`](https://jax.readthedocs.io/en/latest/_autosummary/jax.pmap.html) function to achieve single-program multiple-data (SPMD) parallelization. It means running several copies of the same code, each on different data inputs. More sophisticated approaches are possible, and you can go over to the JAX [documentation](https://jax.readthedocs.io/en/latest/index.html) to explore this topic in more detail if you are interested!
`jax.pmap` does two things:
1. Compiles (or "`jit`s") the code which is similar to `jax.jit()`. This does not happen when you call `pmap`, and only the first time the `pmap`ped function is called.
2. Ensures the compiled code runs in parallel on all available devices.
To demonstrate, call `pmap` on the pipeline's `_generate` method (this is a private method that generates images and may be renamed or removed in future releases of 🤗 Diffusers):
```python
p_generate = pmap(pipeline._generate)
```
After calling `pmap`, the prepared function `p_generate` will:
1. Make a copy of the underlying function, `pipeline._generate`, on each device.
2. Send each device a different portion of the input arguments (this is why it's necessary to call the *shard* function). In this case, `prompt_ids` has shape `(8, 1, 77, 768)` so the array is split into 8 and each copy of `_generate` receives an input with shape `(1, 77, 768)`.
The most important thing to pay attention to here is the batch size (1 in this example), and the input dimensions that make sense for your code. You don't have to change anything else to make the code work in parallel.
The first time you call the pipeline takes more time, but the calls afterward are much faster. The `block_until_ready` function is used to correctly measure inference time because JAX uses asynchronous dispatch and returns control to the Python loop as soon as it can. You don't need to use that in your code; blocking occurs automatically when you want to use the result of a computation that has not yet been materialized.
```py
%%time
images = p_generate(prompt_ids, p_params, rng)
images = images.block_until_ready()
# CPU times: user 1min 15s, sys: 18.2 s, total: 1min 34s
# Wall time: 1min 15s
```
Check your image dimensions to see if they're correct:
```python
images.shape
# (8, 1, 512, 512, 3)
```
## Resources
To learn more about how JAX works with Stable Diffusion, you may be interested in reading:
* [Accelerating Stable Diffusion XL Inference with JAX on Cloud TPU v5e](https://hf.co/blog/sdxl_jax)

View File

@@ -287,7 +287,7 @@ export_to_video(output, "output.mp4", fps=16)
## Reduce memory usage
Recent video models like [`HunyuanVideoPipeline`] and [`WanPipeline`], which have 10B+ parameters, require a lot of memory and it often exceeds the memory availabe on consumer hardware. Diffusers offers several techniques for reducing the memory requirements of these large models.
Recent video models like [`HunyuanVideoPipeline`] and [`WanPipeline`], which have 10B+ parameters, require a lot of memory and it often exceeds the memory available on consumer hardware. Diffusers offers several techniques for reducing the memory requirements of these large models.
> [!TIP]
> Refer to the [Reduce memory usage](../optimization/memory) guide for more details about other memory saving techniques.

View File

@@ -37,7 +37,7 @@ Diffusers는 Stable Diffusion 추론을 위해 PyTorch `mps`를 사용해 Apple
```python
# `huggingface-cli login`에 로그인되어 있음을 확인
# `hf auth login`에 로그인되어 있음을 확인
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")

View File

@@ -75,7 +75,7 @@ dataset = load_dataset(
[push_to_hub(https://huggingface.co/docs/datasets/v2.13.1/en/package_reference/main_classes#datasets.Dataset.push_to_hub) 을 사용해서 Hub에 데이터셋을 업로드 합니다:
```python
# 터미널에서 huggingface-cli login 커맨드를 이미 실행했다고 가정합니다
# 터미널에서 hf auth login 커맨드를 이미 실행했다고 가정합니다
dataset.push_to_hub("name_of_your_dataset")
# 개인 repo로 push 하고 싶다면, `private=True` 을 추가하세요:

View File

@@ -39,7 +39,7 @@ specific language governing permissions and limitations under the License.
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](https://huggingface.co/join)하세요):
```bash
huggingface-cli login
hf auth login
```
## Text-to-image

View File

@@ -42,7 +42,7 @@ Unconditional 이미지 생성은 학습에 사용된 데이터셋과 유사한
또는 터미널로 로그인할 수 있습니다:
```bash
huggingface-cli login
hf auth login
```
모델 체크포인트가 상당히 크기 때문에 [Git-LFS](https://git-lfs.com/)에서 대용량 파일의 버전 관리를 할 수 있습니다.

View File

@@ -42,7 +42,7 @@ Stable Diffusion 모델들은 학습 및 저장된 프레임워크와 다운로
시작하기 전에 스크립트를 실행할 🤗 Diffusers의 로컬 클론(clone)이 있는지 확인하고 Hugging Face 계정에 로그인하여 pull request를 열고 변환된 모델을 허브에 푸시할 수 있도록 하세요.
```bash
huggingface-cli login
hf auth login
```
스크립트를 사용하려면:

View File

@@ -1,12 +1,150 @@
- sections:
- title: 开始Diffusers
sections:
- local: index
title: 🧨 Diffusers
title: Diffusers
- local: installation
title: 安装
- local: quicktour
title: 快速入门
- local: stable_diffusion
title: 有效和高效的扩散
- local: consisid
title: 身份保持的文本到视频生成
- local: installation
title: 安装
title: 开始
- title: DiffusionPipeline
isExpanded: false
sections:
- local: using-diffusers/schedulers
title: Load schedulers and models
- title: Inference
isExpanded: false
sections:
- local: training/distributed_inference
title: Distributed inference
- title: Inference optimization
isExpanded: false
sections:
- local: optimization/fp16
title: Accelerate inference
- local: optimization/cache
title: Caching
- local: optimization/memory
title: Reduce memory usage
- local: optimization/speed-memory-optims
title: Compile and offloading quantized models
- title: Community optimizations
sections:
- local: optimization/pruna
title: Pruna
- local: optimization/xformers
title: xFormers
- local: optimization/tome
title: Token merging
- local: optimization/deepcache
title: DeepCache
- local: optimization/tgate
title: TGATE
- local: optimization/xdit
title: xDiT
- local: optimization/para_attn
title: ParaAttention
- title: Hybrid Inference
isExpanded: false
sections:
- local: hybrid_inference/overview
title: Overview
- local: hybrid_inference/vae_encode
title: VAE Encode
- local: hybrid_inference/api_reference
title: API Reference
- title: Modular Diffusers
isExpanded: false
sections:
- local: modular_diffusers/overview
title: Overview
- local: modular_diffusers/quickstart
title: Quickstart
- local: modular_diffusers/modular_diffusers_states
title: States
- local: modular_diffusers/pipeline_block
title: ModularPipelineBlocks
- local: modular_diffusers/sequential_pipeline_blocks
title: SequentialPipelineBlocks
- local: modular_diffusers/loop_sequential_pipeline_blocks
title: LoopSequentialPipelineBlocks
- local: modular_diffusers/auto_pipeline_blocks
title: AutoPipelineBlocks
- local: modular_diffusers/modular_pipeline
title: ModularPipeline
- local: modular_diffusers/components_manager
title: ComponentsManager
- local: modular_diffusers/guiders
title: Guiders
- title: Training
isExpanded: false
sections:
- local: training/overview
title: Overview
- local: training/adapt_a_model
title: Adapt a model to a new task
- title: Models
sections:
- local: training/text2image
title: Text-to-image
- local: training/kandinsky
title: Kandinsky 2.2
- local: training/wuerstchen
title: Wuerstchen
- local: training/controlnet
title: ControlNet
- local: training/instructpix2pix
title: InstructPix2Pix
- title: Methods
sections:
- local: training/text_inversion
title: Textual Inversion
- local: training/dreambooth
title: DreamBooth
- local: training/lora
title: LoRA
- title: Model accelerators and hardware
isExpanded: false
sections:
- local: optimization/onnx
title: ONNX
- local: optimization/open_vino
title: OpenVINO
- local: optimization/coreml
title: Core ML
- local: optimization/mps
title: Metal Performance Shaders (MPS)
- local: optimization/habana
title: Intel Gaudi
- local: optimization/neuron
title: AWS Neuron
- title: Specific pipeline examples
isExpanded: false
sections:
- local: using-diffusers/consisid
title: ConsisID
- title: Resources
isExpanded: false
sections:
- title: Task recipes
sections:
- local: community_projects
title: Projects built with Diffusers
- local: conceptual/philosophy
title: Philosophy
- local: conceptual/contribution
title: How to contribute?
- local: conceptual/ethical_guidelines
title: Diffusers' Ethical Guidelines
- local: conceptual/evaluation
title: Evaluating Diffusion Models

View File

@@ -0,0 +1,89 @@
<!--版权 2025 The HuggingFace Team。保留所有权利。
根据Apache许可证版本2.0"许可证")授权;除非符合许可证,否则不得使用此文件。您可以在
http://www.apache.org/licenses/LICENSE-2.0
获取许可证的副本。
除非适用法律要求或书面同意,根据许可证分发的软件是按"原样"分发的,没有任何形式的明示或暗示的担保或条件。有关许可证的特定语言,请参阅许可证。
-->
# 社区项目
欢迎来到社区项目。这个空间致力于展示我们充满活力的社区使用`diffusers`库创建的令人难以置信的工作和创新应用。
本节旨在:
- 突出使用`diffusers`构建的多样化和鼓舞人心的项目
- 促进我们社区内的知识共享
- 提供如何利用`diffusers`的实际例子
探索愉快感谢您成为Diffusers社区的一部分
<table>
<tr>
<th>项目名称</th>
<th>描述</th>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/carson-katri/dream-textures"> dream-textures </a></td>
<td>Stable Diffusion内置到Blender</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/megvii-research/HiDiffusion"> HiDiffusion </a></td>
<td>仅通过添加一行代码即可提高扩散模型的分辨率和速度</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/lllyasviel/IC-Light"> IC-Light </a></td>
<td>IC-Light是一个用于操作图像照明的项目</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/InstantID/InstantID"> InstantID </a></td>
<td>InstantID零样本身份保留生成在几秒钟内</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Sanster/IOPaint"> IOPaint </a></td>
<td>由SOTA AI模型驱动的图像修复工具。从您的图片中移除任何不需要的物体、缺陷、人物或擦除并替换由stable_diffusion驱动图片上的任何内容。</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/bmaltais/kohya_ss"> Kohya </a></td>
<td>Kohya的Stable Diffusion训练器的Gradio GUI</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/magic-research/magic-animate"> MagicAnimate </a></td>
<td>MagicAnimate使用扩散模型进行时间一致的人体图像动画</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/levihsu/OOTDiffusion"> OOTDiffusion </a></td>
<td>基于潜在扩散的虚拟试穿控制</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/vladmandic/automatic"> SD.Next </a></td>
<td>SD.Next: Stable Diffusion 和其他基于Diffusion的生成图像模型的高级实现</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/ashawkey/stable-dreamfusion"> stable-dreamfusion </a></td>
<td>使用 NeRF + Diffusion 进行文本到3D & 图像到3D & 网格导出</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/HVision-NKU/StoryDiffusion"> StoryDiffusion </a></td>
<td>StoryDiffusion 可以通过生成一致的图像和视频来创造一个神奇的故事。</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/cumulo-autumn/StreamDiffusion"> StreamDiffusion </a></td>
<td>实时交互生成的管道级解决方案</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/Netwrck/stable-diffusion-server"> Stable Diffusion Server </a></td>
<td>配置用于使用一个 stable diffusion 模型进行修复/生成/img2img 的服务器</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/suzukimain/auto_diffusers"> Model Search </a></td>
<td>在 Civitai 和 Hugging Face 上搜索模型</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/beinsezii/skrample"> Skrample </a></td>
<td>完全模块化的调度器功能,具有一流的 diffusers 集成。</td>
</tr>
</table>

View File

@@ -0,0 +1,485 @@
<!--Copyright 2025 The HuggingFace Team. 保留所有权利。
根据Apache许可证2.0版("许可证")授权;除非符合许可证要求,否则不得使用此文件。您可以在以下网址获取许可证副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,根据许可证分发的软件均按"原样"分发,不附带任何明示或暗示的担保或条件。有关许可证下特定语言规定的权限和限制,请参阅许可证。
-->
# 如何为Diffusers 🧨做贡献
我们❤️来自开源社区的贡献!欢迎所有人参与,所有类型的贡献——不仅仅是代码——都受到重视和赞赏。回答问题、帮助他人、主动交流以及改进文档对社区都极具价值,所以如果您愿意参与,请不要犹豫!
我们鼓励每个人先在公开Discord频道里打招呼👋。在那里我们讨论扩散模型的最新趋势、提出问题、展示个人项目、互相协助贡献或者只是闲聊☕。<a href="https://Discord.gg/G7tWnz98XR"><img alt="加入Discord社区" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>
无论您选择以何种方式贡献,我们都致力于成为一个开放、友好、善良的社区。请阅读我们的[行为准则](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md),并在互动时注意遵守。我们也建议您了解指导本项目的[伦理准则](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines),并请您遵循同样的透明度和责任原则。
我们高度重视社区的反馈所以如果您认为自己有能帮助改进库的有价值反馈请不要犹豫说出来——每条消息、评论、issue和拉取请求PR都会被阅读和考虑。
## 概述
您可以通过多种方式做出贡献从在issue和讨论区回答问题到向核心库添加新的diffusion模型。
下面我们按难度升序列出不同的贡献方式,所有方式对社区都很有价值:
* 1. 在[Diffusers讨论论坛](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers)或[Discord](https://discord.gg/G7tWnz98XR)上提问和回答问题
* 2. 在[GitHub Issues标签页](https://github.com/huggingface/diffusers/issues/new/choose)提交新issue或在[GitHub Discussions标签页](https://github.com/huggingface/diffusers/discussions/new/choose)发起新讨论
* 3. 在[GitHub Issues标签页](https://github.com/huggingface/diffusers/issues)解答issue或在[GitHub Discussions标签页](https://github.com/huggingface/diffusers/discussions)参与讨论
* 4. 解决标记为"Good first issue"的简单问题,详见[此处](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)
* 5. 参与[文档](https://github.com/huggingface/diffusers/tree/main/docs/source)建设
* 6. 贡献[社区Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples)
* 7. 完善[示例代码](https://github.com/huggingface/diffusers/tree/main/examples)
* 8. 解决标记为"Good second issue"的中等难度问题,详见[此处](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22)
* 9. 添加新pipeline/模型/调度器,参见["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)和["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)类issue。此类贡献请先阅读[设计哲学](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md)
重申:**所有贡献对社区都具有重要价值。**下文将详细说明各类贡献方式。
对于4-9类贡献您需要提交PR拉取请求具体操作详见[如何提交PR](#how-to-open-a-pr)章节。
### 1. 在Diffusers讨论区或Discord提问与解答
任何与Diffusers库相关的问题或讨论都可以发布在[官方论坛](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/)或[Discord频道](https://discord.gg/G7tWnz98XR),包括但不限于:
- 分享训练/推理实验报告
- 展示个人项目
- 咨询非官方训练示例
- 项目提案
- 通用反馈
- 论文解读
- 基于Diffusers库的个人项目求助
- 一般性问题
- 关于diffusion模型的伦理讨论
- ...
论坛/Discord上的每个问题都能促使社区公开分享知识很可能帮助未来遇到相同问题的初学者。请务必提出您的疑问。
同样地,通过回答问题您也在为社区创造公共知识文档,这种贡献极具价值。
**请注意**:提问/回答时投入的精力越多,产生的公共知识质量就越高。精心构建的问题与专业解答能形成高质量知识库,而表述不清的问题则可能降低讨论价值。
低质量的问题或回答会降低公共知识库的整体质量。
简而言之,高质量的问题或回答应具备*精确性*、*简洁性*、*相关性*、*易于理解*、*可访问性*和*格式规范/表述清晰*等特质。更多详情请参阅[如何提交优质议题](#how-to-write-a-good-issue)章节。
**关于渠道的说明**
[*论坛*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63)的内容能被谷歌等搜索引擎更好地收录,且帖子按热度而非时间排序,便于查找历史问答。此外,论坛内容更容易被直接链接引用。
而*Discord*采用即时聊天模式适合快速交流。虽然在Discord上可能更快获得解答但信息会随时间淹没且难以回溯历史讨论。因此我们强烈建议在论坛发布优质问答以构建可持续的社区知识库。若Discord讨论产生有价值结论建议将成果整理发布至论坛以惠及更多读者。
### 2. 在GitHub议题页提交新议题
🧨 Diffusers库的稳健性离不开用户的问题反馈感谢您的报错。
请注意GitHub议题仅限处理与Diffusers库代码直接相关的技术问题、错误报告、功能请求或库设计反馈。
简言之,**与Diffusers库代码含文档无关**的内容应发布至[论坛](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63)或[Discord](https://discord.gg/G7tWnz98XR)。
**提交新议题时请遵循以下准则**
- 确认是否已有类似议题使用GitHub议题页的搜索栏
- 请勿在现有议题下追加新问题。若存在高度关联议题,应新建议题并添加相关链接
- 确保使用英文提交。非英语用户可通过[DeepL](https://www.deepl.com/translator)等免费工具翻译
- 检查升级至最新Diffusers版本是否能解决问题。提交前请确认`python -c "import diffusers; print(diffusers.__version__)"`显示的版本号不低于最新版本
- 记请记住你在提交新issue时投入的精力越多得到的回答质量就越高Diffusers项目的整体issue质量也会越好。
新issue通常包含以下内容
#### 2.1 可复现的最小化错误报告
错误报告应始终包含可复现的代码片段,并尽可能简洁明了。具体而言:
- 尽量缩小问题范围,**不要直接粘贴整个代码文件**
- 规范代码格式
- 除Diffusers依赖库外不要包含其他外部库
- **务必**提供环境信息:可在终端运行`diffusers-cli env`命令然后将显示的信息复制到issue中
- 详细说明问题。如果读者不清楚问题所在及其影响,就无法解决问题
- **确保**读者能以最小成本复现问题。如果代码片段因缺少库或未定义变量而无法运行读者将无法提供帮助。请确保提供的可复现代码尽可能精简可直接复制到Python shell运行
- 如需特定模型/数据集复现问题,请确保读者能获取这些资源。可将模型/数据集上传至[Hub](https://huggingface.co)便于下载。尽量保持模型和数据集体积最小化,降低复现难度
更多信息请参阅[如何撰写优质issue](#how-to-write-a-good-issue)章节。
提交错误报告请点击[此处](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml)。
#### 2.2 功能请求
优质的功能请求应包含以下要素:
1. 首先说明动机:
* 是否与库的使用痛点相关?若是,请解释原因,最好提供演示问题的代码片段
* 是否因项目需求产生?我们很乐意了解详情!
* 是否是你已实现且认为对社区有价值的功能?请说明它为你解决了什么问题
2. 用**完整段落**描述功能特性
3. 提供**代码片段**演示预期用法
4. 如涉及论文,请附上链接
5. 可补充任何有助于理解的辅助材料(示意图、截图等)
提交功能请求请点击[此处](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=)。
#### 2.3 设计反馈
关于库设计的反馈(无论正面还是负面)能极大帮助核心维护者打造更友好的库。要了解当前设计理念,请参阅[此文档](https://huggingface.co/docs/diffusers/conceptual/philosophy)如果您认为某个设计选择与当前理念不符,请说明原因及改进建议。如果某个设计选择因过度遵循理念而限制了使用场景,也请解释原因并提出调整方案。
若某个设计对您特别实用,请同样留下备注——这对未来的设计决策极具参考价值。
您可通过[此链接](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=)提交设计反馈。
#### 2.4 技术问题
技术问题主要涉及库代码的实现逻辑或特定功能模块的作用。提问时请务必:
- 附上相关代码链接
- 详细说明难以理解的具体原因
技术问题提交入口:[点击此处](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml)
#### 2.5 新模型/调度器/pipeline提案
若diffusion模型社区发布了您希望集成到Diffusers库的新模型、pipeline或调度器请提供以下信息
* 简要说明并附论文或发布链接
* 开源实现链接(如有)
* 模型权重下载链接(如已公开)
若您愿意参与开发请告知我们以便指导。另请尝试通过GitHub账号标记原始组件作者。
提案提交地址:[新建请求](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml)
### 3. 解答GitHub问题
回答GitHub问题可能需要Diffusers的技术知识但我们鼓励所有人尝试参与——即使您对答案不完全正确。高质量回答的建议
- 保持简洁精炼
- 严格聚焦问题本身
- 提供代码/论文等佐证材料
- 优先用代码说话:若代码片段能解决问题,请提供完整可复现代码
许多问题可能存在离题、重复或无关情况。您可以通过以下方式协助维护者:
- 引导提问者精确描述问题
- 标记重复issue并附原链接
- 推荐用户至[论坛](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63)或[Discord](https://discord.gg/G7tWnz98XR)
在确认提交的Bug报告正确且需要修改源代码后请继续阅读以下章节内容。
以下所有贡献都需要提交PR拉取请求。具体操作步骤详见[如何提交PR](#how-to-open-a-pr)章节。
### 4. 修复"Good first issue"类问题
标有[Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)标签的问题通常已说明解决方案建议,便于修复。若该问题尚未关闭且您想尝试解决,只需留言"我想尝试解决这个问题"。通常有三种情况:
- a.) 问题描述已提出解决方案。若您认可该方案可直接提交PR或草稿PR进行修复
- b.) 问题描述未提出解决方案。您可询问修复建议Diffusers团队会尽快回复。若有成熟解决方案也可直接提交PR
- c.) 已有PR但问题未关闭。若原PR停滞可新开PR并关联原PR开源社区常见现象。若PR仍活跃您可通过建议、审查或协作等方式帮助原作者
### 5. 文档贡献
优秀库**必然**拥有优秀文档!官方文档是新用户的首要接触点,因此文档贡献具有**极高价值**。贡献形式包括:
- 修正拼写/语法错误
- 修复文档字符串格式错误(如显示异常或链接失效)
- 修正文档字符串中张量的形状/维度描述
- 优化晦涩或错误的说明
- 更新过时代码示例
- 文档翻译
[官方文档页面](https://huggingface.co/docs/diffusers/index)所有内容均属可修改范围,对应[文档源文件](https://github.com/huggingface/diffusers/tree/main/docs/source)可进行编辑。修改前请查阅[验证说明](https://github.com/huggingface/diffusers/tree/main/docs)。
### 6. 贡献社区流程
> [!TIP]
> 阅读[社区流程](../using-diffusers/custom_pipeline_overview#community-pipelines)指南了解GitHub与Hugging Face Hub社区流程的区别。若想了解我们设立社区流程的原因请查看GitHub Issue [#841](https://github.com/huggingface/diffusers/issues/841)简而言之我们无法维护diffusion模型所有可能的推理使用方式但也不希望限制社区构建这些流程
贡献社区流程是向社区分享创意与成果的绝佳方式。您可以在[`DiffusionPipeline`]基础上构建流程,任何人都能通过设置`custom_pipeline`参数加载使用。本节将指导您创建一个简单的"单步"流程——UNet仅执行单次前向传播并调用调度器一次。
1. 为社区流程创建one_step_unet.py文件。只要用户已安装相关包该文件可包含任意所需包。确保仅有一个继承自[`DiffusionPipeline`]的流程类用于从Hub加载模型权重和调度器配置。在`__init__`函数中添加UNet和调度器。
同时添加`register_modules`函数,确保您的流程及其组件可通过[`~DiffusionPipeline.save_pretrained`]保存。
```py
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
```
2. 在前向传播中(建议定义为`__call__`),可添加任意功能。对于"单步"流程,创建随机图像并通过设置`timestep=1`调用UNet和调度器一次。
```py
from diffusers import DiffusionPipeline
import torch
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
def __call__(self):
image = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
)
timestep = 1
model_output = self.unet(image, timestep).sample
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
return scheduler_output
```
现在您可以通过传入UNet和调度器来运行流程若流程结构相同也可加载预训练权重。
```python
from diffusers import DDPMScheduler, UNet2DModel
scheduler = DDPMScheduler()
unet = UNet2DModel()
pipeline = UnetSchedulerOneForwardPipeline(unet=unet, scheduler=scheduler)
output = pipeline()
# 加载预训练权重
pipeline = UnetSchedulerOneForwardPipeline.from_pretrained("google/ddpm-cifar10-32", use_safetensors=True)
output = pipeline()
```
您可以选择将pipeline作为GitHub社区pipeline或Hub社区pipeline进行分享。
<hfoptions id="pipeline类型">
<hfoption id="GitHub pipeline">
通过向Diffusers[代码库](https://github.com/huggingface/diffusers)提交拉取请求来分享GitHub pipeline将one_step_unet.py文件添加到[examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community)子文件夹中。
</hfoption>
<hfoption id="Hub pipeline">
通过在Hub上创建模型仓库并上传one_step_unet.py文件来分享Hub pipeline。
</hfoption>
</hfoptions>
### 7. 贡献训练示例
Diffusers训练示例是位于[examples](https://github.com/huggingface/diffusers/tree/main/examples)目录下的训练脚本集合。
我们支持两种类型的训练示例:
- 官方训练示例
- 研究型训练示例
研究型训练示例位于[examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects),而官方训练示例包含[examples](https://github.com/huggingface/diffusers/tree/main/examples)目录下除`research_projects``community`外的所有文件夹。
官方训练示例由Diffusers核心维护者维护研究型训练示例则由社区维护。
这与[6. 贡献社区pipeline](#6-contribute-a-community-pipeline)中关于官方pipeline与社区pipeline的原因相同核心维护者不可能维护diffusion模型的所有可能训练方法。
如果Diffusers核心维护者和社区认为某种训练范式过于实验性或不够普及相应训练代码应放入`research_projects`文件夹并由作者维护。
官方训练和研究型示例都包含一个目录,其中含有一个或多个训练脚本、`requirements.txt`文件和`README.md`文件。用户使用时需要先克隆代码库:
```bash
git clone https://github.com/huggingface/diffusers
```
并安装训练所需的所有额外依赖:
```bash
cd diffusers
pip install -r examples/<your-example-folder>/requirements.txt
```
因此添加示例时,`requirements.txt`文件应定义训练示例所需的所有pip依赖项安装完成后用户即可运行示例训练脚本。可参考[DreamBooth的requirements.txt文件](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt)。
- 运行示例所需的所有代码应集中在单个Python文件中
- 用户应能通过命令行`python <your-example>.py --args`直接运行示例
- **示例**应保持简洁主要展示如何使用Diffusers进行训练。示例脚本的目的**不是**创建最先进的diffusion模型而是复现已知训练方案避免添加过多自定义逻辑。因此这些示例也力求成为优质的教学材料。
提交示例时,强烈建议参考现有示例(如[dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py))来了解规范格式。
我们强烈建议贡献者使用[Accelerate库](https://github.com/huggingface/accelerate)因其与Diffusers深度集成。
当示例脚本完成后,请确保添加详细的`README.md`说明使用方法,包括:
- 运行示例的具体命令(示例参见[此处](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch)
- 训练结果链接(日志/模型等),展示用户可预期的效果(示例参见[此处](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5)
- 若添加非官方/研究性训练示例,**必须注明**维护者信息含Git账号格式参照[此处](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations)
贡献官方训练示例时,还需在对应目录添加测试文件(如[examples/dreambooth/test_dreambooth.py](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/test_dreambooth.py)),非官方示例无需此步骤。
### 8. 处理"Good second issue"类问题
标有[Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22)标签的问题通常比[Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)更复杂。
这类问题的描述通常不会提供详细解决指引,需要贡献者对库有较深理解。
若您想解决此类问题可直接提交PR并关联对应issue。若已有未合并的PR请分析原因后提交改进版。需注意Good second issue类PR的合并难度通常高于good first issues。在需要帮助的时候请不要犹豫大胆的向核心维护者询问。
### 9. 添加管道、模型和调度器
管道pipelines、模型models和调度器schedulers是Diffusers库中最重要的组成部分。它们提供了对最先进diffusion技术的便捷访问使得社区能够构建强大的生成式AI应用。
通过添加新的模型、管道或调度器您可能为依赖Diffusers的任何用户界面开启全新的强大用例这对整个生成式AI生态系统具有巨大价值。
Diffusers针对这三类组件都有一些开放的功能请求——如果您还不确定要添加哪个具体组件可以浏览以下链接
- [模型或管道](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
- [调度器](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
在添加任何组件之前,强烈建议您阅读[设计哲学指南](philosophy)以更好地理解这三类组件的设计理念。请注意如果添加的模型、调度器或管道与我们的设计理念存在严重分歧我们将无法合并因为这会导致API不一致。如果您从根本上不同意某个设计选择请改为提交[反馈问题](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=),以便讨论是否应该更改库中的特定设计模式/选择,以及是否更新我们的设计哲学。保持库内的一致性对我们非常重要。
请确保在PR中添加原始代码库/论文的链接并最好直接在PR中@原始作者,以便他们可以跟踪进展并在有疑问时提供帮助。
如果您在PR过程中遇到不确定或卡住的情况请随时留言请求初步审查或帮助。
#### 复制机制Copied from
在添加任何管道、模型或调度器代码时,理解`# Copied from`机制是独特且重要的。您会在整个Diffusers代码库中看到这种机制我们使用它的原因是为了保持代码库易于理解和维护。用`# Copied from`机制标记代码会强制标记的代码与复制来源的代码完全相同。这使得每当您运行`make fix-copies`时,可以轻松更新并将更改传播到多个文件。
例如,在下面的代码示例中,[`~diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput`]是原始代码,而`AltDiffusionPipelineOutput`使用`# Copied from`机制来复制它。唯一的区别是将类前缀从`Stable`改为`Alt`
```py
# 从 diffusers.pipelines.stable_diffusion.pipeline_output.StableDiffusionPipelineOutput 复制并将 Stable 替换为 Alt
class AltDiffusionPipelineOutput(BaseOutput):
"""
Output class for Alt Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
nsfw_content_detected (`List[bool]`)
List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or
`None` if safety checking could not be performed.
"""
```
要了解更多信息,请阅读[~不要~重复自己*](https://huggingface.co/blog/transformers-design-philosophy#4-machine-learning-models-are-static)博客文章的相应部分。
## 如何撰写优质问题
**问题描述越清晰,被快速解决的可能性就越高。**
1. 确保使用了正确的issue模板。您可以选择*错误报告*、*功能请求*、*API设计反馈*、*新模型/流水线/调度器添加*、*论坛*或空白issue。在[新建issue](https://github.com/huggingface/diffusers/issues/new/choose)时务必选择正确的模板。
2. **精确描述**为issue起一个恰当的标题。尽量用最简练的语言描述问题。提交issue时越精确理解问题和潜在解决方案所需的时间就越少。确保一个issue只针对一个问题不要将多个问题放在同一个issue中。如果发现多个问题请分别创建多个issue。如果是错误报告请尽可能精确描述错误类型——不应只写"diffusers出错"。
3. **可复现性**:无法复现的代码片段 == 无法解决问题。如果遇到错误,维护人员必须能够**复现**它。确保包含一个可以复制粘贴到Python解释器中复现问题的代码片段。确保您的代码片段是可运行的即没有缺少导入或图像链接等问题。issue应包含错误信息和可直接复制粘贴以复现相同错误的代码片段。如果issue涉及本地模型权重或无法被读者访问的本地数据则问题无法解决。如果无法共享数据或模型请尝试创建虚拟模型或虚拟数据。
4. **最小化原则**:通过尽可能简洁的描述帮助读者快速理解问题。删除所有与问题无关的代码/信息。如果发现错误请创建最简单的代码示例来演示问题不要一发现错误就把整个工作流程都转储到issue中。例如如果在训练模型时某个阶段出现错误或训练过程中遇到问题时应首先尝试理解训练代码的哪部分导致了错误并用少量代码尝试复现。建议使用模拟数据替代完整数据集进行测试。
5. 添加引用链接。当提及特定命名、方法或模型时请务必提供引用链接以便读者理解。若涉及具体PR或issue请确保添加对应链接。不要假设读者了解你所指内容。issue中引用链接越丰富越好。
6. 规范格式。请确保规范格式化issue内容Python代码使用代码语法块错误信息使用标准代码语法。详见[GitHub官方格式文档](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax)。
7. 请将issue视为百科全书的精美词条而非待解决的工单。每个规范撰写的issue不仅是向维护者有效传递问题的方式更是帮助社区深入理解库特性的公共知识贡献。
## 优质PR编写规范
1. 保持风格统一。理解现有设计模式和语法规范确保新增代码与代码库现有结构无缝衔接。显著偏离现有设计模式或用户界面的PR将不予合并。
2. 聚焦单一问题。每个PR应当只解决一个明确问题避免"顺手修复其他问题"的陷阱。包含多个无关修改的PR会极大增加审查难度。
3. 如适用,建议添加代码片段演示新增功能的使用方法。
4. PR标题应准确概括其核心贡献。
5. 若PR针对某个issue请在描述中注明issue编号以建立关联也让关注该issue的用户知晓有人正在处理
6. 进行中的PR请在标题添加`[WIP]`前缀。这既能避免重复劳动也可与待合并PR明确区分
7. 文本表述与格式要求请参照[优质issue编写规范](#how-to-write-a-good-issue)
8. 确保现有测试用例全部通过;
9. 必须添加高覆盖率测试。未经充分测试的代码不予合并。
- 若新增`@slow`测试,请使用`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`确保通过。
CircleCI不执行慢速测试但GitHub Actions会每日夜间运行
10. 所有公开方法必须包含格式规范、兼容markdown的说明文档。可参考[`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py)
11. 由于代码库快速增长必须确保不会添加明显增加仓库体积的文件如图片、视频等非文本文件。建议优先使用托管在hf.co的`dataset`(例如[`hf-internal-testing`](https://huggingface.co/hf-internal-testing)或[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images)存放这类文件。若为外部贡献可将图片添加到PR中并请Hugging Face成员将其迁移至该数据集。
## 提交PR流程
编写代码前强烈建议先搜索现有PR或issue确认没有重复工作。如有疑问建议先创建issue获取反馈。
贡献至🧨 Diffusers需要基本的`git`技能。虽然`git`学习曲线较高,但其拥有最完善的手册。在终端输入`git --help`即可查阅,或参考书籍[Pro Git](https://git-scm.com/book/en/v2)。
请按以下步骤操作([支持的Python版本](https://github.com/huggingface/diffusers/blob/83bc6c94eaeb6f7704a2a428931cf2d9ad973ae9/setup.py#L270)
1. 在[仓库页面](https://github.com/huggingface/diffusers)点击"Fork"按钮创建代码副本至您的GitHub账户
2. 克隆fork到本地并添加主仓库为远程源
```bash
$ git clone git@github.com:<您的GitHub账号>/diffusers.git
$ cd diffusers
$ git remote add upstream https://github.com/huggingface/diffusers.git
```
3. 创建新分支进行开发:
```bash
$ git checkout -b 您的开发分支名称
```
**禁止**直接在`main`分支上修改
4. 在虚拟环境中运行以下命令配置开发环境:
```bash
$ pip install -e ".[dev]"
```
若已克隆仓库,可能需要先执行`git pull`获取最新代码
5. 在您的分支上开发功能
开发过程中应确保测试通过。可运行受影响测试:
```bash
$ pytest tests/<待测文件>.py
```
执行测试前请安装测试依赖:
```bash
$ pip install -e ".[test]"
```
也可运行完整测试套件(需高性能机器):
```bash
$ make test
```
🧨 Diffusers使用`black`和`isort`工具保持代码风格统一。修改后请执行自动化格式校正与代码验证,以下内容无法通过以下命令一次性自动化完成:
```bash
$ make style
```
🧨 Diffusers 还使用 `ruff` 和一些自定义脚本来检查代码错误。虽然质量控制流程会在 CI 中运行,但您也可以通过以下命令手动执行相同的检查:
```bash
$ make quality
```
当您对修改满意后,使用 `git add` 添加更改的文件,并通过 `git commit` 在本地记录这些更改:
```bash
$ git add modified_file.py
$ git commit -m "关于您所做更改的描述性信息。"
```
定期将您的代码副本与原始仓库同步是一个好习惯。这样可以快速适应上游变更:
```bash
$ git pull upstream main
```
使用以下命令将更改推送到您的账户:
```bash
$ git push -u origin 此处替换为您的描述性分支名称
```
6. 确认无误后,请访问您 GitHub 账户中的派生仓库页面。点击「Pull request」将您的更改提交给项目维护者审核。
7. 如果维护者要求修改,这很正常——核心贡献者也会遇到这种情况!为了让所有人能在 Pull request 中看到变更,请在本地分支继续工作并将修改推送到您的派生仓库,这些变更会自动出现在 Pull request 中。
### 测试
我们提供了全面的测试套件来验证库行为和多个示例。库测试位于 [tests 文件夹](https://github.com/huggingface/diffusers/tree/main/tests)。
我们推荐使用 `pytest` 和 `pytest-xdist`,因为它们速度更快。在仓库根目录下运行以下命令执行库测试:
```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
实际上,这就是 `make test` 的实现方式!
您可以指定更小的测试范围来仅验证您正在开发的功能。
默认情况下会跳过耗时测试。设置 `RUN_SLOW` 环境变量为 `yes` 可运行这些测试。注意:这将下载数十 GB 的模型文件——请确保您有足够的磁盘空间、良好的网络连接或充足的耐心!
```bash
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
我们也完全支持 `unittest`,运行方式如下:
```bash
$ python -m unittest discover -s tests -t . -v
$ python -m unittest discover -s examples -t examples -v
```
### 将派生仓库的 main 分支与上游HuggingFacemain 分支同步
为避免向上游仓库发送引用通知(这会给相关 PR 添加注释并向开发者发送不必要的通知),在同步派生仓库的 main 分支时,请遵循以下步骤:
1. 尽可能避免通过派生仓库的分支和 PR 来同步上游,而是直接合并到派生仓库的 main 分支
2. 如果必须使用 PR请在检出分支后执行以下操作
```bash
$ git checkout -b 您的同步分支名称
$ git pull --squash --no-commit upstream main
$ git commit -m '提交信息(不要包含 GitHub 引用)'
$ git push --set-upstream origin 您的分支名称
```
### 风格指南
对于文档字符串,🧨 Diffusers 遵循 [Google 风格指南](https://google.github.io/styleguide/pyguide.html)。

View File

@@ -0,0 +1,56 @@
<!--版权归2025年HuggingFace团队所有。保留所有权利。
根据Apache许可证2.0版("许可证")授权;除非符合许可证要求,否则不得使用此文件。您可以在以下网址获取许可证副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,本软件按"原样"分发,不附带任何明示或暗示的担保或条件。详见许可证中规定的特定语言权限和限制。
-->
# 🧨 Diffusers伦理准则
## 前言
[Diffusers](https://huggingface.co/docs/diffusers/index)不仅提供预训练的diffusion模型还是一个模块化工具箱支持推理和训练功能。
鉴于该技术在实际场景中的应用及其可能对社会产生的负面影响我们认为有必要制定项目伦理准则以指导Diffusers库的开发、用户贡献和使用规范。
该技术涉及的风险仍在持续评估中,主要包括但不限于:艺术家版权问题、深度伪造滥用、不当情境下的色情内容生成、非自愿的人物模仿、以及加剧边缘群体压迫的有害社会偏见。我们将持续追踪风险,并根据社区反馈动态调整本准则。
## 适用范围
Diffusers社区将在项目开发中贯彻以下伦理准则并协调社区贡献的整合方式特别是在涉及伦理敏感议题的技术决策时。
## 伦理准则
以下准则具有普遍适用性,但我们主要在处理涉及伦理敏感问题的技术决策时实施。同时,我们承诺将根据技术发展带来的新兴风险持续调整这些原则:
- **透明度**我们承诺以透明方式管理PR拉取请求向用户解释决策依据并公开技术选择过程。
- **一致性**:我们承诺为用户提供统一标准的项目管理,保持技术稳定性和连贯性。
- **简洁性**为了让Diffusers库更易使用和开发我们承诺保持项目目标精简且逻辑自洽。
- **可及性**:本项目致力于降低贡献门槛,即使非技术人员也能参与运营,从而使研究资源更广泛地服务于社区。
- **可复现性**对于通过Diffusers库发布的上游代码、模型和数据集我们将明确说明其可复现性。
- **责任性**:作为社区和团队,我们共同承担用户责任,通过风险预判和缓解措施来应对技术潜在危害。
## 实施案例:安全功能与机制
团队持续开发技术和非技术工具以应对diffusion技术相关的伦理与社会风险。社区反馈对于功能实施和风险意识提升具有不可替代的价值
- [**社区讨论区**](https://huggingface.co/docs/hub/repositories-pull-requests-discussions):促进社区成员就项目开展协作讨论。
- **偏见探索与评估**Hugging Face团队提供[交互空间](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)展示Stable Diffusion中的偏见。我们支持并鼓励此类偏见探索与评估工作。
- **部署安全强化**
- [**Safe Stable Diffusion**](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_safe)解决Stable Diffusion等基于未过滤网络爬取数据训练的模型容易产生不当内容的问题。相关论文[Safe Latent Diffusion缓解diffusion模型中的不当退化](https://huggingface.co/papers/2211.05105)。
- [**安全检测器**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py):通过比对图像生成后嵌入空间中硬编码有害概念集的类别概率进行检测。有害概念列表经特殊处理以防逆向工程。
- **分阶段模型发布**:对于高度敏感的仓库,采用分级访问控制。这种阶段性发布机制让作者能更好地管控使用场景。
- **许可证制度**:采用新型[OpenRAILs](https://huggingface.co/blog/open_rail)许可协议,在保障开放访问的同时设置使用限制以确保更负责任的应用。

View File

@@ -0,0 +1,558 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
根据 Apache License 2.0 版本("许可证")授权,除非符合许可证要求,否则不得使用本文件。
您可以在以下网址获取许可证副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,本软件按"原样"分发,不附带任何明示或暗示的担保或条件。详见许可证中规定的特定语言权限和限制。
-->
# Diffusion模型评估指南
<a target="_blank" href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/evaluation.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"/>
</a>
> [!TIP]
> 鉴于当前已出现针对图像生成Diffusion模型的成熟评估框架如[HEIM](https://crfm.stanford.edu/helm/heim/latest/)、[T2I-Compbench](https://huggingface.co/papers/2307.06350)、[GenEval](https://huggingface.co/papers/2310.11513)),本文档部分内容已过时。
像 [Stable Diffusion](https://huggingface.co/docs/diffusers/stable_diffusion) 这类生成模型的评估本质上是主观的。但作为开发者和研究者,我们经常需要在众多可能性中做出审慎选择。那么当面对不同生成模型(如 GANs、Diffusion 等)时,该如何决策?
定性评估容易产生偏差,可能导致错误结论;而定量指标又未必能准确反映图像质量。因此,通常需要结合定性与定量评估来获得更可靠的模型选择依据。
本文档将系统介绍扩散模型的定性与定量评估方法(非穷尽列举)。对于定量方法,我们将重点演示如何结合 `diffusers` 库实现这些评估。
文档所示方法同样适用于评估不同[噪声调度器](https://huggingface.co/docs/diffusers/main/en/api/schedulers/overview)在固定生成模型下的表现差异。
## 评估场景
我们涵盖以下Diffusion模型管线的评估
- 文本引导图像生成(如 [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/text2img)
- 基于文本和输入图像的引导生成(如 [`StableDiffusionImg2ImgPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/img2img) 和 [`StableDiffusionInstructPix2PixPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pix2pix)
- 类别条件图像生成模型(如 [`DiTPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipe))
## 定性评估
定性评估通常涉及对生成图像的人工评判。评估维度包括构图质量、图文对齐度和空间关系等方面。标准化的提示词能为这些主观指标提供统一基准。DrawBench和PartiPrompts是常用的定性评估提示词数据集分别由[Imagen](https://imagen.research.google/)和[Parti](https://parti.research.google/)团队提出。
根据[Parti官方网站](https://parti.research.google/)说明:
> PartiPrompts (P2)是我们发布的包含1600多个英文提示词的丰富集合可用于测量模型在不同类别和挑战维度上的能力。
![parti-prompts](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts.png)
PartiPrompts包含以下字段
- Prompt提示词
- Category类别如"抽象"、"世界知识"等)
- Challenge难度等级如"基础"、"复杂"、"文字与符号"等)
这些基准测试支持对不同图像生成模型进行并排人工对比评估。为此,🧨 Diffusers团队构建了**Open Parti Prompts**——一个基于Parti Prompts的社区驱动型定性评估基准用于比较顶尖开源diffusion模型
- [Open Parti Prompts游戏](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts)展示10个parti提示词对应的4张生成图像用户选择最符合提示的图片
- [Open Parti Prompts排行榜](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard)对比当前最优开源diffusion模型的性能榜单
为进行手动图像对比,我们演示如何使用`diffusers`处理部分PartiPrompts提示词。
以下是从不同挑战维度(基础、复杂、语言结构、想象力、文字与符号)采样的提示词示例(使用[PartiPrompts作为数据集](https://huggingface.co/datasets/nateraw/parti-prompts)
```python
from datasets import load_dataset
# prompts = load_dataset("nateraw/parti-prompts", split="train")
# prompts = prompts.shuffle()
# sample_prompts = [prompts[i]["Prompt"] for i in range(5)]
# Fixing these sample prompts in the interest of reproducibility.
sample_prompts = [
"a corgi",
"a hot air balloon with a yin-yang symbol, with the moon visible in the daytime sky",
"a car with no windows",
"a cube made of porcupine",
'The saying "BE EXCELLENT TO EACH OTHER" written on a red brick wall with a graffiti image of a green alien wearing a tuxedo. A yellow fire hydrant is on a sidewalk in the foreground.',
]
```
现在我们可以使用Stable Diffusion[v1-4 checkpoint](https://huggingface.co/CompVis/stable-diffusion-v1-4))生成这些提示词对应的图像:
```python
import torch
seed = 0
generator = torch.manual_seed(seed)
images = sd_pipeline(sample_prompts, num_images_per_prompt=1, generator=generator).images
```
![parti-prompts-14](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-14.png)
我们也可以通过设置`num_images_per_prompt`参数来比较同一提示词生成的不同图像。使用不同检查点([v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5))运行相同流程后,结果如下:
![parti-prompts-15](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-15.png)
当使用多个待评估模型为所有提示词生成若干图像后这些结果将提交给人类评估员进行打分。有关DrawBench和PartiPrompts基准测试的更多细节请参阅各自的论文。
<Tip>
在模型训练过程中查看推理样本有助于评估训练进度。我们的[训练脚本](https://github.com/huggingface/diffusers/tree/main/examples/)支持此功能并额外提供TensorBoard和Weights & Biases日志记录功能。
</Tip>
## 定量评估
本节将指导您如何评估三种不同的扩散流程,使用以下指标:
- CLIP分数
- CLIP方向相似度
- FID弗雷歇起始距离
### 文本引导图像生成
[CLIP分数](https://huggingface.co/papers/2104.08718)用于衡量图像-标题对的匹配程度。CLIP分数越高表明匹配度越高🔼。该分数是对"匹配度"这一定性概念的量化测量也可以理解为图像与标题之间的语义相似度。研究发现CLIP分数与人类判断具有高度相关性。
首先加载[`StableDiffusionPipeline`]
```python
from diffusers import StableDiffusionPipeline
import torch
model_ckpt = "CompVis/stable-diffusion-v1-4"
sd_pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16).to("cuda")
```
使用多个提示词生成图像:
```python
prompts = [
"a photo of an astronaut riding a horse on mars",
"A high tech solarpunk utopia in the Amazon rainforest",
"A pikachu fine dining with a view to the Eiffel Tower",
"A mecha robot in a favela in expressionist style",
"an insect robot preparing a delicious meal",
"A small cabin on top of a snowy mountain in the style of Disney, artstation",
]
images = sd_pipeline(prompts, num_images_per_prompt=1, output_type="np").images
print(images.shape)
# (6, 512, 512, 3)
```
然后计算CLIP分数
```python
from torchmetrics.functional.multimodal import clip_score
from functools import partial
clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16")
def calculate_clip_score(images, prompts):
images_int = (images * 255).astype("uint8")
clip_score = clip_score_fn(torch.from_numpy(images_int).permute(0, 3, 1, 2), prompts).detach()
return round(float(clip_score), 4)
sd_clip_score = calculate_clip_score(images, prompts)
print(f"CLIP分数: {sd_clip_score}")
# CLIP分数: 35.7038
```
上述示例中,我们为每个提示生成一张图像。如果为每个提示生成多张图像,则需要计算每个提示生成图像的平均分数。
当需要比较两个兼容[`StableDiffusionPipeline`]的检查点时,应在调用管道时传入生成器。首先使用[v1-4 Stable Diffusion检查点](https://huggingface.co/CompVis/stable-diffusion-v1-4)以固定种子生成图像:
```python
seed = 0
generator = torch.manual_seed(seed)
images = sd_pipeline(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
```
然后加载[v1-5检查点](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)生成图像:
```python
model_ckpt_1_5 = "stable-diffusion-v1-5/stable-diffusion-v1-5"
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=torch.float16).to("cuda")
images_1_5 = sd_pipeline_1_5(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
```
最后比较两者的CLIP分数
```python
sd_clip_score_1_4 = calculate_clip_score(images, prompts)
print(f"v-1-4版本的CLIP分数: {sd_clip_score_1_4}")
# v-1-4版本的CLIP分数: 34.9102
sd_clip_score_1_5 = calculate_clip_score(images_1_5, prompts)
print(f"v-1-5版本的CLIP分数: {sd_clip_score_1_5}")
# v-1-5版本的CLIP分数: 36.2137
```
结果表明[v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)检查点性能优于前代。但需注意我们用于计算CLIP分数的提示词数量较少。实际评估时应使用更多样化且数量更大的提示词集。
<Tip warning={true}>
该分数存在固有局限性:训练数据中的标题是从网络爬取,并提取自图片关联的`alt`等标签。这些描述未必符合人类描述图像的方式,因此我们需要人工"设计"部分提示词。
</Tip>
### 图像条件式文本生成图像
这种情况下,生成管道同时接受输入图像和文本提示作为条件。以[`StableDiffusionInstructPix2PixPipeline`]为例,该管道接收编辑指令作为输入提示,并接受待编辑的输入图像。
示例图示:
![编辑指令](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-instruction.png)
评估此类模型的策略之一是测量两幅图像间变化的连贯性(通过[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)定义)中两个图像之间的变化与两个图像描述之间的变化的一致性(如论文[《CLIP-Guided Domain Adaptation of Image Generators》](https://huggingface.co/papers/2108.00946)所示)。这被称为“**CLIP方向相似度**”。
- **描述1**对应输入图像图像1即待编辑的图像。
- **描述2**对应编辑后的图像图像2应反映编辑指令。
以下是示意图:
![edit-consistency](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-consistency.png)
我们准备了一个小型数据集来实现该指标。首先加载数据集:
```python
from datasets import load_dataset
dataset = load_dataset("sayakpaul/instructpix2pix-demo", split="train")
dataset.features
```
```bash
{'input': Value(dtype='string', id=None),
'edit': Value(dtype='string', id=None),
'output': Value(dtype='string', id=None),
'image': Image(decode=True, id=None)}
```
数据字段说明
- `input``image`对应的原始描述
- `edit`编辑指令
- `output`反映`edit`指令的修改后描述
查看一个样本
```python
idx = 0
print(f"Original caption: {dataset[idx]['input']}")
print(f"Edit instruction: {dataset[idx]['edit']}")
print(f"Modified caption: {dataset[idx]['output']}")
```
```bash
Original caption: 2. FAROE ISLANDS: An archipelago of 18 mountainous isles in the North Atlantic Ocean between Norway and Iceland, the Faroe Islands has 'everything you could hope for', according to Big 7 Travel. It boasts 'crystal clear waterfalls, rocky cliffs that seem to jut out of nowhere and velvety green hills'
Edit instruction: make the isles all white marble
Modified caption: 2. WHITE MARBLE ISLANDS: An archipelago of 18 mountainous white marble isles in the North Atlantic Ocean between Norway and Iceland, the White Marble Islands has 'everything you could hope for', according to Big 7 Travel. It boasts 'crystal clear waterfalls, rocky cliffs that seem to jut out of nowhere and velvety green hills'
```
对应的图像
```python
dataset[idx]["image"]
```
![edit-dataset](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-dataset.png)
我们将根据编辑指令修改数据集中的图像并计算方向相似度
首先加载[`StableDiffusionInstructPix2PixPipeline`]
```python
from diffusers import StableDiffusionInstructPix2PixPipeline
instruct_pix2pix_pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix", torch_dtype=torch.float16
).to("cuda")
```
执行编辑操作
```python
import numpy as np
def edit_image(input_image, instruction):
image = instruct_pix2pix_pipeline(
instruction,
image=input_image,
output_type="np",
generator=generator,
).images[0]
return image
input_images = []
original_captions = []
modified_captions = []
edited_images = []
for idx in range(len(dataset)):
input_image = dataset[idx]["image"]
edit_instruction = dataset[idx]["edit"]
edited_image = edit_image(input_image, edit_instruction)
input_images.append(np.array(input_image))
original_captions.append(dataset[idx]["input"])
modified_captions.append(dataset[idx]["output"])
edited_images.append(edited_image)
```
为测量方向相似度我们首先加载CLIP的图像和文本编码器
```python
from transformers import (
CLIPTokenizer,
CLIPTextModelWithProjection,
CLIPVisionModelWithProjection,
CLIPImageProcessor,
)
clip_id = "openai/clip-vit-large-patch14"
tokenizer = CLIPTokenizer.from_pretrained(clip_id)
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to("cuda")
image_processor = CLIPImageProcessor.from_pretrained(clip_id)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to("cuda")
```
注意我们使用的是特定CLIP检查点——`openai/clip-vit-large-patch14`因为Stable Diffusion预训练正是基于此CLIP变体。详见[文档](https://huggingface.co/docs/transformers/model_doc/clip)。
接着准备计算方向相似度的PyTorch `nn.Module`
```python
import torch.nn as nn
import torch.nn.functional as F
class DirectionalSimilarity(nn.Module):
def __init__(self, tokenizer, text_encoder, image_processor, image_encoder):
super().__init__()
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.image_processor = image_processor
self.image_encoder = image_encoder
def preprocess_image(self, image):
image = self.image_processor(image, return_tensors="pt")["pixel_values"]
return {"pixel_values": image.to("cuda")}
def tokenize_text(self, text):
inputs = self.tokenizer(
text,
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)
return {"input_ids": inputs.input_ids.to("cuda")}
def encode_image(self, image):
preprocessed_image = self.preprocess_image(image)
image_features = self.image_encoder(**preprocessed_image).image_embeds
image_features = image_features / image_features.norm(dim=1, keepdim=True)
return image_features
def encode_text(self, text):
tokenized_text = self.tokenize_text(text)
text_features = self.text_encoder(**tokenized_text).text_embeds
text_features = text_features / text_features.norm(dim=1, keepdim=True)
return text_features
def compute_directional_similarity(self, img_feat_one, img_feat_two, text_feat_one, text_feat_two):
sim_direction = F.cosine_similarity(img_feat_two - img_feat_one, text_feat_two - text_feat_one)
return sim_direction
def forward(self, image_one, image_two, caption_one, caption_two):
img_feat_one = self.encode_image(image_one)
img_feat_two = self.encode_image(image_two)
text_feat_one = self.encode_text(caption_one)
text_feat_two = self.encode_text(caption_two)
directional_similarity = self.compute_directional_similarity(
img_feat_one, img_feat_two, text_feat_one, text_feat_two
)
return directional_similarity
```
现在让我们使用`DirectionalSimilarity`模块:
```python
dir_similarity = DirectionalSimilarity(tokenizer, text_encoder, image_processor, image_encoder)
scores = []
for i in range(len(input_images)):
original_image = input_images[i]
original_caption = original_captions[i]
edited_image = edited_images[i]
modified_caption = modified_captions[i]
similarity_score = dir_similarity(original_image, edited_image, original_caption, modified_caption)
scores.append(float(similarity_score.detach().cpu()))
print(f"CLIP方向相似度: {np.mean(scores)}")
# CLIP方向相似度: 0.0797976553440094
```
与CLIP分数类似CLIP方向相似度数值越高越好。
需要注意的是,`StableDiffusionInstructPix2PixPipeline`提供了两个控制参数`image_guidance_scale``guidance_scale`来调节最终编辑图像的质量。建议您尝试调整这两个参数,观察它们对方向相似度的影响。
我们可以扩展这个度量标准来评估原始图像与编辑版本的相似度,只需计算`F.cosine_similarity(img_feat_two, img_feat_one)`。对于这类编辑任务,我们仍希望尽可能保留图像的主要语义特征(即保持较高的相似度分数)。
该度量方法同样适用于类似流程,例如[`StableDiffusionPix2PixZeroPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pix2pix_zero#diffusers.StableDiffusionPix2PixZeroPipeline)。
<Tip>
CLIP分数和CLIP方向相似度都依赖CLIP模型可能导致评估结果存在偏差。
</Tip>
***扩展IS、FID后文讨论或KID等指标存在困难***,当被评估模型是在大型图文数据集(如[LAION-5B数据集](https://laion.ai/blog/laion-5b/)上预训练时。因为这些指标的底层都使用了在ImageNet-1k数据集上预训练的InceptionNet来提取图像特征。Stable Diffusion的预训练数据集与InceptionNet的预训练数据集可能重叠有限因此不适合作为特征提取器。
***上述指标更适合评估类别条件模型***,例如[DiT](https://huggingface.co/docs/diffusers/main/en/api/pipelines/dit)。该模型是在ImageNet-1k类别条件下预训练的。
这是9篇文档中的第8部分。
### 基于类别的图像生成
基于类别的生成模型通常是在带有类别标签的数据集(如[ImageNet-1k](https://huggingface.co/datasets/imagenet-1k)上进行预训练的。评估这些模型的常用指标包括Fréchet Inception DistanceFID、Kernel Inception DistanceKID和Inception ScoreIS。本文档重点介绍FID[Heusel等人](https://huggingface.co/papers/1706.08500)),并展示如何使用[`DiTPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/dit)计算该指标,该管道底层使用了[DiT模型](https://huggingface.co/papers/2212.09748)。
FID旨在衡量两组图像数据集的相似程度。根据[此资源](https://mmgeneration.readthedocs.io/en/latest/quick_run.html#fid)
> Fréchet Inception Distance是衡量两组图像数据集相似度的指标。研究表明其与人类对视觉质量的主观判断高度相关因此最常用于评估生成对抗网络GAN生成样本的质量。FID通过计算Inception网络特征表示所拟合的两个高斯分布之间的Fréchet距离来实现。
这两个数据集本质上是真实图像数据集和生成图像数据集本例中为人工生成的图像。FID通常基于两个大型数据集计算但本文档将使用两个小型数据集进行演示。
首先下载ImageNet-1k训练集中的部分图像
```python
from zipfile import ZipFile
import requests
def download(url, local_filepath):
r = requests.get(url)
with open(local_filepath, "wb") as f:
f.write(r.content)
return local_filepath
dummy_dataset_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/sample-imagenet-images.zip"
local_filepath = download(dummy_dataset_url, dummy_dataset_url.split("/")[-1])
with ZipFile(local_filepath, "r") as zipper:
zipper.extractall(".")
```
```python
from PIL import Image
import os
import numpy as np
dataset_path = "sample-imagenet-images"
image_paths = sorted([os.path.join(dataset_path, x) for x in os.listdir(dataset_path)])
real_images = [np.array(Image.open(path).convert("RGB")) for path in image_paths]
```
这些是来自以下ImageNet-1k类别的10张图像"cassette_player"、"chain_saw"2张、"church"、"gas_pump"3张、"parachute"2张和"tench"。
<p align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/real-images.png" alt="真实图像"><br>
<em>真实图像</em>
</p>
加载图像后我们对其进行轻量级预处理以便用于FID计算
```python
from torchvision.transforms import functional as F
import torch
def preprocess_image(image):
image = torch.tensor(image).unsqueeze(0)
image = image.permute(0, 3, 1, 2) / 255.0
return F.center_crop(image, (256, 256))
real_images = torch.stack([dit_pipeline.preprocess_image(image) for image in real_images])
print(real_images.shape)
# torch.Size([10, 3, 256, 256])
```
我们现在加载[`DiTPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/dit)来生成基于上述类别的条件图像。
```python
from diffusers import DiTPipeline, DPMSolverMultistepScheduler
dit_pipeline = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16)
dit_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(dit_pipeline.scheduler.config)
dit_pipeline = dit_pipeline.to("cuda")
seed = 0
generator = torch.manual_seed(seed)
words = [
"cassette player",
"chainsaw",
"chainsaw",
"church",
"gas pump",
"gas pump",
"gas pump",
"parachute",
"parachute",
"tench",
]
class_ids = dit_pipeline.get_label_ids(words)
output = dit_pipeline(class_labels=class_ids, generator=generator, output_type="np")
fake_images = output.images
fake_images = torch.tensor(fake_images)
fake_images = fake_images.permute(0, 3, 1, 2)
print(fake_images.shape)
# torch.Size([10, 3, 256, 256])
```
现在,我们可以使用[`torchmetrics`](https://torchmetrics.readthedocs.io/)计算FID分数。
```python
from torchmetrics.image.fid import FrechetInceptionDistance
fid = FrechetInceptionDistance(normalize=True)
fid.update(real_images, real=True)
fid.update(fake_images, real=False)
print(f"FID分数: {float(fid.compute())}")
# FID分数: 177.7147216796875
```
FID分数越低越好。以下因素会影响FID结果
- 图像数量(包括真实图像和生成图像)
- 扩散过程中引入的随机性
- 扩散过程的推理步数
- 扩散过程中使用的调度器
对于最后两点,最佳实践是使用不同的随机种子和推理步数进行多次评估,然后报告平均结果。
<Tip warning={true}>
FID结果往往具有脆弱性因为它依赖于许多因素
* 计算过程中使用的特定Inception模型
* 计算实现的准确性
* 图像格式PNG和JPG的起点不同
需要注意的是FID通常在比较相似实验时最有用但除非作者仔细公开FID测量代码否则很难复现论文结果。
这些注意事项同样适用于其他相关指标如KID和IS。
</Tip>
最后,让我们可视化检查这些`fake_images`
<p align="center">
<img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/fake-images.png" alt="生成图像"><br>
<em>生成图像示例</em>
</p>

View File

@@ -0,0 +1,104 @@
<!--版权 2025 HuggingFace 团队。保留所有权利。
根据 Apache 许可证 2.0 版本("许可证")授权;
除非符合许可证要求,否则不得使用本文件。
您可以在以下网址获取许可证副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,本软件按"原样"分发,
无任何明示或暗示的担保或条件。详见许可证中
的特定语言规定和限制。
-->
# 设计哲学
🧨 Diffusers 提供**最先进**的预训练扩散模型支持多模态任务。
其目标是成为推理和训练通用的**模块化工具箱**。
我们致力于构建一个经得起时间考验的库因此对API设计极为重视。
简而言之Diffusers 被设计为 PyTorch 的自然延伸。因此,我们的多数设计决策都基于 [PyTorch 设计原则](https://pytorch.org/docs/stable/community/design.html#pytorch-design-philosophy)。以下是核心原则:
## 可用性优先于性能
- 尽管 Diffusers 包含众多性能优化特性(参见[内存与速度优化](https://huggingface.co/docs/diffusers/optimization/fp16)),模型默认总是以最高精度和最低优化级别加载。因此除非用户指定,扩散流程(pipeline)默认在CPU上以float32精度初始化。这确保了跨平台和加速器的可用性意味着运行本库无需复杂安装。
- Diffusers 追求**轻量化**,仅有少量必需依赖,但提供诸多可选依赖以提升性能(如`accelerate``safetensors``onnx`等)。我们竭力保持库的轻量级特性,使其能轻松作为其他包的依赖项。
- Diffusers 偏好简单、自解释的代码而非浓缩的"魔法"代码。这意味着lambda函数等简写语法和高级PyTorch操作符通常不被采用。
## 简洁优于简易
正如PyTorch所言**显式优于隐式****简洁优于复杂**。这一哲学体现在库的多个方面:
- 我们遵循PyTorch的API设计例如使用[`DiffusionPipeline.to`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.to)让用户自主管理设备。
- 明确的错误提示优于静默纠正错误输入。Diffusers 旨在教育用户,而非单纯降低使用难度。
- 暴露复杂的模型与调度器(scheduler)交互逻辑而非内部魔法处理。调度器/采样器与扩散模型分离且相互依赖最小化,迫使用户编写展开的去噪循环。但这种分离便于调试,并赋予用户更多控制权来调整去噪过程或切换模型/调度器。
- 扩散流程中独立训练的组件如文本编码器、UNet、变分自编码器各有专属模型类。这要求用户处理组件间交互且序列化格式将组件分存不同文件。但此举便于调试和定制得益于组件分离DreamBooth或Textual Inversion训练变得极为简单。
## 可定制与贡献友好优于抽象
库的大部分沿用了[Transformers库](https://github.com/huggingface/transformers)的重要设计原则:宁要重复代码,勿要仓促抽象。这一原则与[DRY原则](https://en.wikipedia.org/wiki/Don%27t_repeat_yourself)形成鲜明对比。
简言之正如Transformers对建模文件的做法Diffusers对流程(pipeline)和调度器(scheduler)保持极低抽象度与高度自包含代码。函数、长代码块甚至类可能在多文件中重复初看像是糟糕的松散设计。但该设计已被Transformers证明极其成功对社区驱动的开源机器学习库意义重大
- 机器学习领域发展迅猛,范式、模型架构和算法快速迭代,难以定义长效代码抽象。
- ML从业者常需快速修改现有代码进行研究因此偏好自包含代码而非多重抽象。
- 开源库依赖社区贡献,必须构建易于参与的代码库。抽象度越高、依赖越复杂、可读性越差,贡献难度越大。过度抽象的库会吓退贡献者。若贡献不会破坏核心功能,不仅吸引新贡献者,也更便于并行审查和修改。
Hugging Face称此设计为**单文件政策**——即某个类的几乎所有代码都应写在单一自包含文件中。更多哲学探讨可参阅[此博文](https://huggingface.co/blog/transformers-design-philosophy)。
Diffusers对流程和调度器完全遵循该哲学但对diffusion模型仅部分适用。原因在于多数扩散流程如[DDPM](https://huggingface.co/docs/diffusers/api/pipelines/ddpm)、[Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/overview#stable-diffusion-pipelines)、[unCLIP (DALL·E 2)](https://huggingface.co/docs/diffusers/api/pipelines/unclip)和[Imagen](https://imagen.research.google/))都基于相同扩散模型——[UNet](https://huggingface.co/docs/diffusers/api/models/unet2d-cond)。
现在您应已理解🧨 Diffusers的设计理念🤗。我们力求在全库贯彻这些原则但仍存在少数例外或欠佳设计。如有反馈我们❤欢迎在[GitHub提交](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=)。
## 设计哲学细节
现在深入探讨设计细节。Diffusers主要包含三类[流程(pipeline)](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines)、[模型](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models)和[调度器(scheduler)](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)。以下是各类的具体设计决策。
### 流程(Pipelines)
流程设计追求易用性(因此不完全遵循[*简洁优于简易*](#简洁优于简易)),不要求功能完备,应视为使用[模型](#模型)和[调度器](#调度器schedulers)进行推理的示例。
遵循原则:
- 采用单文件政策。所有流程位于src/diffusers/pipelines下的独立目录。一个流程文件夹对应一篇扩散论文/项目/发布。如[`src/diffusers/pipelines/stable-diffusion`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/stable_diffusion)可包含多个流程文件。若流程功能相似,可使用[# Copied from机制](https://github.com/huggingface/diffusers/blob/125d783076e5bd9785beb05367a2d2566843a271/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py#L251)。
- 所有流程继承[`DiffusionPipeline`]。
- 每个流程由不同模型和调度器组件构成,这些组件记录于[`model_index.json`文件](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/model_index.json),可通过同名属性访问,并可用[`DiffusionPipeline.components`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.components)在流程间共享。
- 所有流程应能通过[`DiffusionPipeline.from_pretrained`](https://huggingface.co/docs/diffusers/main/en/api/diffusion_pipeline#diffusers.DiffusionPipeline.from_pretrained)加载。
- 流程**仅**用于推理。
- 流程代码应具备高可读性、自解释性和易修改性。
- 流程应设计为可相互构建便于集成到高层API。
- 流程**非**功能完备的用户界面。完整UI推荐[InvokeAI](https://github.com/invoke-ai/InvokeAI)、[Diffuzers](https://github.com/abhishekkrthakur/diffuzers)或[lama-cleaner](https://github.com/Sanster/lama-cleaner)。
- 每个流程应通过唯一的`__call__`方法运行,且参数命名应跨流程统一。
- 流程应以其解决的任务命名。
- 几乎所有新diffusion流程都应在新文件夹/文件中实现。
### 模型
模型设计为可配置的工具箱,是[PyTorch Module类](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)的自然延伸,仅部分遵循**单文件政策**。
遵循原则:
- 模型对应**特定架构类型**。如[`UNet2DConditionModel`]类适用于所有需要2D图像输入且受上下文调节的UNet变体。
- 所有模型位于[`src/diffusers/models`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/models),每种架构应有独立文件,如[`unets/unet_2d_condition.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_condition.py)、[`transformers/transformer_2d.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformers/transformer_2d.py)等。
- 模型**不**采用单文件政策,应使用小型建模模块如[`attention.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py)、[`resnet.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py)、[`embeddings.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py)等。**注意**这与Transformers的建模文件截然不同表明模型未完全遵循单文件政策。
- 模型意图暴露复杂度类似PyTorch的`Module`类),并提供明确错误提示。
- 所有模型继承`ModelMixin``ConfigMixin`
- 当不涉及重大代码变更、保持向后兼容性且显著提升内存/计算效率时,可对模型进行性能优化。
- 模型默认应具备最高精度和最低性能设置。
- 若新模型检查点可归类为现有架构,应适配现有架构而非新建文件。仅当架构根本性不同时才创建新文件。
- 模型设计应便于未来扩展。可通过限制公开函数参数、配置参数和"预见"变更实现。例如:优先采用可扩展的`string`类型参数而非布尔型`is_..._type`参数。对现有架构的修改应保持最小化。
- 模型设计需在代码可读性与多检查点支持间权衡。多数情况下应适配现有类,但某些例外(如[UNet块](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unets/unet_2d_blocks.py)和[注意力处理器](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py))需新建类以保证长期可读性。
### 调度器(Schedulers)
调度器负责引导推理去噪过程及定义训练噪声计划。它们设计为独立的可加载配置类,严格遵循**单文件政策**。
遵循原则:
- 所有调度器位于[`src/diffusers/schedulers`](https://github.com/huggingface/diffusers/tree/main/src/diffusers/schedulers)。
- 调度器**禁止**从大型工具文件导入,必须保持高度自包含。
- 一个调度器Python文件对应一种算法如论文定义的算法
- 若调度器功能相似,可使用`# Copied from`机制。
- 所有调度器继承`SchedulerMixin``ConfigMixin`
- 调度器可通过[`ConfigMixin.from_config`](https://huggingface.co/docs/diffusers/main/en/api/configuration#diffusers.ConfigMixin.from_config)轻松切换(详见[此处](../using-diffusers/schedulers))。
- 每个调度器必须包含`set_num_inference_steps``step`函数。在每次去噪过程前(即调用`step(...)`前)必须调用`set_num_inference_steps(...)`
- 每个调度器通过`timesteps`属性暴露需要"循环"的时间步,这是模型将被调用的时间步数组。
- `step(...)`函数接收模型预测输出和"当前"样本(x_t),返回"前一个"略去噪的样本(x_t-1)。
- 鉴于扩散调度器的复杂性,`step`函数不暴露全部细节,可视为"黑盒"。
- 几乎所有新调度器都应在新文件中实现。

Some files were not shown because too many files have changed in this diff Show More