mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-22 19:45:47 +08:00
Compare commits
21 Commits
modular-kl
...
requiremen
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
60e3284003 | ||
|
|
7b43d0e409 | ||
|
|
3879e32254 | ||
|
|
a88d11bc90 | ||
|
|
a9165eb749 | ||
|
|
eeb3445444 | ||
|
|
5b7d0dfab6 | ||
|
|
1de4402c26 | ||
|
|
024c2b9839 | ||
|
|
35d8d97c02 | ||
|
|
e52cabeff2 | ||
|
|
2c4d73d72d | ||
|
|
046be83946 | ||
|
|
b7fba892f5 | ||
|
|
ecbd907e76 | ||
|
|
d159ae025d | ||
|
|
756a1567f5 | ||
|
|
d2731ababa | ||
|
|
37d3887194 | ||
|
|
127e9a39d8 | ||
|
|
12ceecf077 |
@@ -413,9 +413,6 @@ else:
|
||||
_import_structure["modular_pipelines"].extend(
|
||||
[
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2KleinAutoBlocks",
|
||||
"Flux2KleinBaseAutoBlocks",
|
||||
"Flux2KleinModularPipeline",
|
||||
"Flux2ModularPipeline",
|
||||
"FluxAutoBlocks",
|
||||
"FluxKontextAutoBlocks",
|
||||
@@ -1149,9 +1146,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
else:
|
||||
from .modular_pipelines import (
|
||||
Flux2AutoBlocks,
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
Flux2ModularPipeline,
|
||||
FluxAutoBlocks,
|
||||
FluxKontextAutoBlocks,
|
||||
|
||||
@@ -89,8 +89,6 @@ class CustomBlocksCommand(BaseDiffusersCLICommand):
|
||||
# automap = self._create_automap(parent_class=parent_class, child_class=child_class)
|
||||
# with open(CONFIG, "w") as f:
|
||||
# json.dump(automap, f)
|
||||
with open("requirements.txt", "w") as f:
|
||||
f.write("")
|
||||
|
||||
def _choose_block(self, candidates, chosen=None):
|
||||
for cls, base in candidates:
|
||||
|
||||
@@ -54,10 +54,7 @@ else:
|
||||
]
|
||||
_import_structure["flux2"] = [
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2KleinAutoBlocks",
|
||||
"Flux2KleinBaseAutoBlocks",
|
||||
"Flux2ModularPipeline",
|
||||
"Flux2KleinModularPipeline",
|
||||
]
|
||||
_import_structure["qwenimage"] = [
|
||||
"QwenImageAutoBlocks",
|
||||
@@ -84,13 +81,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
else:
|
||||
from .components_manager import ComponentsManager
|
||||
from .flux import FluxAutoBlocks, FluxKontextAutoBlocks, FluxKontextModularPipeline, FluxModularPipeline
|
||||
from .flux2 import (
|
||||
Flux2AutoBlocks,
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
Flux2ModularPipeline,
|
||||
)
|
||||
from .flux2 import Flux2AutoBlocks, Flux2ModularPipeline
|
||||
from .modular_pipeline import (
|
||||
AutoPipelineBlocks,
|
||||
BlockState,
|
||||
|
||||
@@ -43,7 +43,7 @@ else:
|
||||
"Flux2ProcessImagesInputStep",
|
||||
"Flux2TextInputStep",
|
||||
]
|
||||
_import_structure["modular_blocks_flux2"] = [
|
||||
_import_structure["modular_blocks"] = [
|
||||
"ALL_BLOCKS",
|
||||
"AUTO_BLOCKS",
|
||||
"REMOTE_AUTO_BLOCKS",
|
||||
@@ -51,11 +51,10 @@ else:
|
||||
"IMAGE_CONDITIONED_BLOCKS",
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2AutoVaeEncoderStep",
|
||||
"Flux2CoreDenoiseStep",
|
||||
"Flux2BeforeDenoiseStep",
|
||||
"Flux2VaeEncoderSequentialStep",
|
||||
]
|
||||
_import_structure["modular_blocks_flux2_klein"] = ["Flux2KleinAutoBlocks", "Flux2KleinBaseAutoBlocks"]
|
||||
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline", "Flux2KleinModularPipeline"]
|
||||
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -86,7 +85,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
Flux2ProcessImagesInputStep,
|
||||
Flux2TextInputStep,
|
||||
)
|
||||
from .modular_blocks_flux2 import (
|
||||
from .modular_blocks import (
|
||||
ALL_BLOCKS,
|
||||
AUTO_BLOCKS,
|
||||
IMAGE_CONDITIONED_BLOCKS,
|
||||
@@ -94,14 +93,10 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
TEXT2IMAGE_BLOCKS,
|
||||
Flux2AutoBlocks,
|
||||
Flux2AutoVaeEncoderStep,
|
||||
Flux2CoreDenoiseStep,
|
||||
Flux2BeforeDenoiseStep,
|
||||
Flux2VaeEncoderSequentialStep,
|
||||
)
|
||||
from .modular_blocks_flux2_klein import (
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
)
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
from .modular_pipeline import Flux2ModularPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -129,9 +129,17 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
InputParam("num_inference_steps", default=50),
|
||||
InputParam("timesteps"),
|
||||
InputParam("sigmas"),
|
||||
InputParam("guidance_scale", default=4.0),
|
||||
InputParam("latents", type_hint=torch.Tensor),
|
||||
InputParam("num_images_per_prompt", default=1),
|
||||
InputParam("height", type_hint=int),
|
||||
InputParam("width", type_hint=int),
|
||||
InputParam(
|
||||
"batch_size",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -143,12 +151,13 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
type_hint=int,
|
||||
description="The number of denoising steps to perform at inference time",
|
||||
),
|
||||
OutputParam("guidance", type_hint=torch.Tensor, description="Guidance scale tensor"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
device = components._execution_device
|
||||
block_state.device = components._execution_device
|
||||
|
||||
scheduler = components.scheduler
|
||||
|
||||
@@ -174,7 +183,7 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
block_state.device,
|
||||
timesteps=timesteps,
|
||||
sigmas=sigmas,
|
||||
mu=mu,
|
||||
@@ -182,6 +191,11 @@ class Flux2SetTimestepsStep(ModularPipelineBlocks):
|
||||
block_state.timesteps = timesteps
|
||||
block_state.num_inference_steps = num_inference_steps
|
||||
|
||||
batch_size = block_state.batch_size * block_state.num_images_per_prompt
|
||||
guidance = torch.full([1], block_state.guidance_scale, device=block_state.device, dtype=torch.float32)
|
||||
guidance = guidance.expand(batch_size)
|
||||
block_state.guidance = guidance
|
||||
|
||||
components.scheduler.set_begin_index(0)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
@@ -339,6 +353,7 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="prompt_embeds", required=True),
|
||||
InputParam(name="latent_ids"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -350,6 +365,12 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for text tokens, used for RoPE calculation.",
|
||||
),
|
||||
OutputParam(
|
||||
name="latent_ids",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for image latents, used for RoPE calculation.",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
@@ -382,72 +403,6 @@ class Flux2RoPEInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinBaseRoPEInputsStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that prepares the 4D RoPE position IDs for Flux2-Klein base model denoising. Should be placed after text encoder and latent preparation steps."
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="prompt_embeds", required=True),
|
||||
InputParam(name="negative_prompt_embeds", required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
name="txt_ids",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for text tokens, used for RoPE calculation.",
|
||||
),
|
||||
OutputParam(
|
||||
name="negative_txt_ids",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs (T, H, W, L) for negative text tokens, used for RoPE calculation.",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _prepare_text_ids(x: torch.Tensor, t_coord: Optional[torch.Tensor] = None):
|
||||
"""Prepare 4D position IDs for text tokens."""
|
||||
B, L, _ = x.shape
|
||||
out_ids = []
|
||||
|
||||
for i in range(B):
|
||||
t = torch.arange(1) if t_coord is None else t_coord[i]
|
||||
h = torch.arange(1)
|
||||
w = torch.arange(1)
|
||||
seq_l = torch.arange(L)
|
||||
|
||||
coords = torch.cartesian_prod(t, h, w, seq_l)
|
||||
out_ids.append(coords)
|
||||
|
||||
return torch.stack(out_ids)
|
||||
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
prompt_embeds = block_state.prompt_embeds
|
||||
device = prompt_embeds.device
|
||||
|
||||
block_state.txt_ids = self._prepare_text_ids(prompt_embeds)
|
||||
block_state.txt_ids = block_state.txt_ids.to(device)
|
||||
|
||||
block_state.negative_txt_ids = None
|
||||
if block_state.negative_prompt_embeds is not None:
|
||||
block_state.negative_txt_ids = self._prepare_text_ids(block_state.negative_prompt_embeds)
|
||||
block_state.negative_txt_ids = block_state.negative_txt_ids.to(device)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2PrepareImageLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@@ -551,42 +506,3 @@ class Flux2PrepareImageLatentsStep(ModularPipelineBlocks):
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2PrepareGuidanceStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that prepares the guidance scale tensor for Flux2 inference"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("guidance_scale", default=4.0),
|
||||
InputParam("num_images_per_prompt", default=1),
|
||||
InputParam(
|
||||
"batch_size",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("guidance", type_hint=torch.Tensor, description="Guidance scale tensor"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
device = components._execution_device
|
||||
batch_size = block_state.batch_size * block_state.num_images_per_prompt
|
||||
guidance = torch.full([1], block_state.guidance_scale, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(batch_size)
|
||||
block_state.guidance = guidance
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -29,16 +29,29 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class Flux2UnpackLatentsStep(ModularPipelineBlocks):
|
||||
class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("vae", AutoencoderKLFlux2),
|
||||
ComponentSpec(
|
||||
"image_processor",
|
||||
Flux2ImageProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 32}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that unpacks the latents from the denoising step"
|
||||
return "Step that decodes the denoised latents into images using Flux2 VAE with batch norm denormalization"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("output_type", default="pil"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
@@ -57,9 +70,9 @@ class Flux2UnpackLatentsStep(ModularPipelineBlocks):
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoise latents from denoising step, unpacked with position IDs.",
|
||||
"images",
|
||||
type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
|
||||
description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
|
||||
)
|
||||
]
|
||||
|
||||
@@ -94,62 +107,6 @@ class Flux2UnpackLatentsStep(ModularPipelineBlocks):
|
||||
|
||||
return torch.stack(x_list, dim=0)
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
latents = block_state.latents
|
||||
latent_ids = block_state.latent_ids
|
||||
|
||||
latents = self._unpack_latents_with_ids(latents, latent_ids)
|
||||
|
||||
block_state.latents = latents
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("vae", AutoencoderKLFlux2),
|
||||
ComponentSpec(
|
||||
"image_processor",
|
||||
Flux2ImageProcessor,
|
||||
config=FrozenDict({"vae_scale_factor": 16, "vae_latent_channels": 32}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Step that decodes the denoised latents into images using Flux2 VAE with batch norm denormalization"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("output_type", default="pil"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoised latents from the denoising step",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"images",
|
||||
type_hint=Union[List[PIL.Image.Image], torch.Tensor, np.ndarray],
|
||||
description="The generated images, can be a list of PIL.Image.Image, torch.Tensor or a numpy array",
|
||||
)
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _unpatchify_latents(latents):
|
||||
"""Convert patchified latents back to regular format."""
|
||||
@@ -164,20 +121,26 @@ class Flux2DecodeStep(ModularPipelineBlocks):
|
||||
block_state = self.get_block_state(state)
|
||||
vae = components.vae
|
||||
|
||||
latents = block_state.latents
|
||||
if block_state.output_type == "latent":
|
||||
block_state.images = block_state.latents
|
||||
else:
|
||||
latents = block_state.latents
|
||||
latent_ids = block_state.latent_ids
|
||||
|
||||
latents_bn_mean = vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
|
||||
latents_bn_std = torch.sqrt(vae.bn.running_var.view(1, -1, 1, 1) + vae.config.batch_norm_eps).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents * latents_bn_std + latents_bn_mean
|
||||
latents = self._unpack_latents_with_ids(latents, latent_ids)
|
||||
|
||||
latents = self._unpatchify_latents(latents)
|
||||
latents_bn_mean = vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
|
||||
latents_bn_std = torch.sqrt(vae.bn.running_var.view(1, -1, 1, 1) + vae.config.batch_norm_eps).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents * latents_bn_std + latents_bn_mean
|
||||
|
||||
block_state.images = vae.decode(latents, return_dict=False)[0]
|
||||
block_state.images = components.image_processor.postprocess(
|
||||
block_state.images, output_type=block_state.output_type
|
||||
)
|
||||
latents = self._unpatchify_latents(latents)
|
||||
|
||||
block_state.images = vae.decode(latents, return_dict=False)[0]
|
||||
block_state.images = components.image_processor.postprocess(
|
||||
block_state.images, output_type=block_state.output_type
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -16,8 +16,6 @@ from typing import Any, List, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...guiders import ClassifierFreeGuidance
|
||||
from ...models import Flux2Transformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import is_torch_xla_available, logging
|
||||
@@ -27,8 +25,8 @@ from ..modular_pipeline import (
|
||||
ModularPipelineBlocks,
|
||||
PipelineState,
|
||||
)
|
||||
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2ModularPipeline
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
@@ -136,229 +134,6 @@ class Flux2LoopDenoiser(ModularPipelineBlocks):
|
||||
return components, block_state
|
||||
|
||||
|
||||
# same as Flux2LoopDenoiser but guidance=None
|
||||
class Flux2KleinLoopDenoiser(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [ComponentSpec("transformer", Flux2Transformer2DModel)]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Step within the denoising loop that denoises the latents for Flux2. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `Flux2DenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("joint_attention_kwargs"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to denoise. Shape: (B, seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="Packed image latents for conditioning. Shape: (B, img_seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latent_ids",
|
||||
type_hint=torch.Tensor,
|
||||
description="Position IDs for image latents. Shape: (B, img_seq_len, 4)",
|
||||
),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from Qwen3",
|
||||
),
|
||||
InputParam(
|
||||
"txt_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for text tokens (T, H, W, L)",
|
||||
),
|
||||
InputParam(
|
||||
"latent_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for latent tokens (T, H, W, L)",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, components: Flux2KleinModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
|
||||
) -> PipelineState:
|
||||
latents = block_state.latents
|
||||
latent_model_input = latents.to(components.transformer.dtype)
|
||||
img_ids = block_state.latent_ids
|
||||
|
||||
image_latents = getattr(block_state, "image_latents", None)
|
||||
if image_latents is not None:
|
||||
latent_model_input = torch.cat([latents, image_latents], dim=1).to(components.transformer.dtype)
|
||||
image_latent_ids = block_state.image_latent_ids
|
||||
img_ids = torch.cat([img_ids, image_latent_ids], dim=1)
|
||||
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
noise_pred = components.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep / 1000,
|
||||
guidance=None,
|
||||
encoder_hidden_states=block_state.prompt_embeds,
|
||||
txt_ids=block_state.txt_ids,
|
||||
img_ids=img_ids,
|
||||
joint_attention_kwargs=block_state.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
noise_pred = noise_pred[:, : latents.size(1)]
|
||||
block_state.noise_pred = noise_pred
|
||||
|
||||
return components, block_state
|
||||
|
||||
|
||||
# support CFG for Flux2-Klein base model
|
||||
class Flux2KleinBaseLoopDenoiser(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("transformer", Flux2Transformer2DModel),
|
||||
ComponentSpec(
|
||||
"guider",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 4.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(name="is_distilled", default=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Step within the denoising loop that denoises the latents for Flux2. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `Flux2DenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
return [
|
||||
InputParam("joint_attention_kwargs"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to denoise. Shape: (B, seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="Packed image latents for conditioning. Shape: (B, img_seq_len, C)",
|
||||
),
|
||||
InputParam(
|
||||
"image_latent_ids",
|
||||
type_hint=torch.Tensor,
|
||||
description="Position IDs for image latents. Shape: (B, img_seq_len, 4)",
|
||||
),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from Qwen3",
|
||||
),
|
||||
InputParam(
|
||||
"negative_prompt_embeds",
|
||||
required=False,
|
||||
type_hint=torch.Tensor,
|
||||
description="Negative text embeddings from Qwen3",
|
||||
),
|
||||
InputParam(
|
||||
"txt_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for text tokens (T, H, W, L)",
|
||||
),
|
||||
InputParam(
|
||||
"negative_txt_ids",
|
||||
required=False,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for negative text tokens (T, H, W, L)",
|
||||
),
|
||||
InputParam(
|
||||
"latent_ids",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="4D position IDs for latent tokens (T, H, W, L)",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self, components: Flux2KleinModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
|
||||
) -> PipelineState:
|
||||
latents = block_state.latents
|
||||
latent_model_input = latents.to(components.transformer.dtype)
|
||||
img_ids = block_state.latent_ids
|
||||
|
||||
image_latents = getattr(block_state, "image_latents", None)
|
||||
if image_latents is not None:
|
||||
latent_model_input = torch.cat([latents, image_latents], dim=1).to(components.transformer.dtype)
|
||||
image_latent_ids = block_state.image_latent_ids
|
||||
img_ids = torch.cat([img_ids, image_latent_ids], dim=1)
|
||||
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
guider_inputs = {
|
||||
"encoder_hidden_states": (
|
||||
getattr(block_state, "prompt_embeds", None),
|
||||
getattr(block_state, "negative_prompt_embeds", None),
|
||||
),
|
||||
"txt_ids": (
|
||||
getattr(block_state, "txt_ids", None),
|
||||
getattr(block_state, "negative_txt_ids", None),
|
||||
),
|
||||
}
|
||||
|
||||
components.guider.set_state(step=i, num_inference_steps=block_state.num_inference_steps, timestep=t)
|
||||
guider_state = components.guider.prepare_inputs(guider_inputs)
|
||||
|
||||
for guider_state_batch in guider_state:
|
||||
components.guider.prepare_models(components.transformer)
|
||||
cond_kwargs = {input_name: getattr(guider_state_batch, input_name) for input_name in guider_inputs.keys()}
|
||||
|
||||
noise_pred = components.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep / 1000,
|
||||
guidance=None,
|
||||
img_ids=img_ids,
|
||||
joint_attention_kwargs=block_state.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
**cond_kwargs,
|
||||
)[0]
|
||||
guider_state_batch.noise_pred = noise_pred[:, : latents.size(1)]
|
||||
components.guider.cleanup_models(components.transformer)
|
||||
|
||||
# perform guidance
|
||||
block_state.noise_pred = components.guider(guider_state)[0]
|
||||
|
||||
return components, block_state
|
||||
|
||||
|
||||
class Flux2LoopAfterDenoiser(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
@@ -475,35 +250,3 @@ class Flux2DenoiseStep(Flux2DenoiseLoopWrapper):
|
||||
" - `Flux2LoopAfterDenoiser`\n"
|
||||
"This block supports both text-to-image and image-conditioned generation."
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinDenoiseStep(Flux2DenoiseLoopWrapper):
|
||||
block_classes = [Flux2KleinLoopDenoiser, Flux2LoopAfterDenoiser]
|
||||
block_names = ["denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoises the latents for Flux2. \n"
|
||||
"Its loop logic is defined in `Flux2DenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `Flux2KleinLoopDenoiser`\n"
|
||||
" - `Flux2LoopAfterDenoiser`\n"
|
||||
"This block supports both text-to-image and image-conditioned generation."
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinBaseDenoiseStep(Flux2DenoiseLoopWrapper):
|
||||
block_classes = [Flux2KleinBaseLoopDenoiser, Flux2LoopAfterDenoiser]
|
||||
block_names = ["denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoises the latents for Flux2. \n"
|
||||
"Its loop logic is defined in `Flux2DenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `Flux2KleinBaseLoopDenoiser`\n"
|
||||
" - `Flux2LoopAfterDenoiser`\n"
|
||||
"This block supports both text-to-image and image-conditioned generation."
|
||||
)
|
||||
|
||||
@@ -15,15 +15,13 @@
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import AutoProcessor, Mistral3ForConditionalGeneration, Qwen2TokenizerFast, Qwen3ForCausalLM
|
||||
from transformers import AutoProcessor, Mistral3ForConditionalGeneration
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
from ...guiders import ClassifierFreeGuidance
|
||||
from ...models import AutoencoderKLFlux2
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
|
||||
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
from .modular_pipeline import Flux2ModularPipeline
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
@@ -81,8 +79,10 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("prompt_embeds", type_hint=torch.Tensor, required=False),
|
||||
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
|
||||
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(10, 20, 30), required=False),
|
||||
InputParam("joint_attention_kwargs"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -99,7 +99,14 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
prompt_embeds = getattr(block_state, "prompt_embeds", None)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. "
|
||||
"Please make sure to only forward one of the two."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@staticmethod
|
||||
@@ -158,6 +165,10 @@ class Flux2TextEncoderStep(ModularPipelineBlocks):
|
||||
|
||||
block_state.device = components._execution_device
|
||||
|
||||
if block_state.prompt_embeds is not None:
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
@@ -194,6 +205,7 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("prompt_embeds", type_hint=torch.Tensor, required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -210,8 +222,15 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(block_state.prompt)}")
|
||||
prompt_embeds = getattr(block_state, "prompt_embeds", None)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. "
|
||||
"Please make sure to only forward one of the two."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
@@ -225,6 +244,10 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
|
||||
block_state.device = components._execution_device
|
||||
|
||||
if block_state.prompt_embeds is not None:
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
@@ -247,289 +270,6 @@ class Flux2RemoteTextEncoderStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinTextEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Text Encoder step that generates text embeddings using Qwen3 to guide the image generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("text_encoder", Qwen3ForCausalLM),
|
||||
ComponentSpec("tokenizer", Qwen2TokenizerFast),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(name="is_distilled", default=True),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
|
||||
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from qwen3 used to guide the image generation",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@staticmethod
|
||||
# Copied from diffusers.pipelines.flux2.pipeline_flux2_klein.Flux2KleinPipeline._get_qwen3_prompt_embeds
|
||||
def _get_qwen3_prompt_embeds(
|
||||
text_encoder: Qwen3ForCausalLM,
|
||||
tokenizer: Qwen2TokenizerFast,
|
||||
prompt: Union[str, List[str]],
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
max_sequence_length: int = 512,
|
||||
hidden_states_layers: List[int] = (9, 18, 27),
|
||||
):
|
||||
dtype = text_encoder.dtype if dtype is None else dtype
|
||||
device = text_encoder.device if device is None else device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
all_input_ids = []
|
||||
all_attention_masks = []
|
||||
|
||||
for single_prompt in prompt:
|
||||
messages = [{"role": "user", "content": single_prompt}]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=False,
|
||||
)
|
||||
inputs = tokenizer(
|
||||
text,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_sequence_length,
|
||||
)
|
||||
|
||||
all_input_ids.append(inputs["input_ids"])
|
||||
all_attention_masks.append(inputs["attention_mask"])
|
||||
|
||||
input_ids = torch.cat(all_input_ids, dim=0).to(device)
|
||||
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
|
||||
|
||||
# Forward pass through the model
|
||||
output = text_encoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
output_hidden_states=True,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
# Only use outputs from intermediate layers and stack them
|
||||
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
|
||||
out = out.to(dtype=dtype, device=device)
|
||||
|
||||
batch_size, num_channels, seq_len, hidden_dim = out.shape
|
||||
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2KleinModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(block_state)
|
||||
|
||||
device = components._execution_device
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
block_state.prompt_embeds = self._get_qwen3_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
hidden_states_layers=block_state.text_encoder_out_layers,
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinBaseTextEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Text Encoder step that generates text embeddings using Qwen3 to guide the image generation"
|
||||
|
||||
@property
|
||||
def expected_components(self) -> List[ComponentSpec]:
|
||||
return [
|
||||
ComponentSpec("text_encoder", Qwen3ForCausalLM),
|
||||
ComponentSpec("tokenizer", Qwen2TokenizerFast),
|
||||
ComponentSpec(
|
||||
"guider",
|
||||
ClassifierFreeGuidance,
|
||||
config=FrozenDict({"guidance_scale": 4.0}),
|
||||
default_creation_method="from_config",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def expected_configs(self) -> List[ConfigSpec]:
|
||||
return [
|
||||
ConfigSpec(name="is_distilled", default=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("prompt"),
|
||||
InputParam("max_sequence_length", type_hint=int, default=512, required=False),
|
||||
InputParam("text_encoder_out_layers", type_hint=Tuple[int], default=(9, 18, 27), required=False),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Text embeddings from qwen3 used to guide the image generation",
|
||||
),
|
||||
OutputParam(
|
||||
"negative_prompt_embeds",
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Negative text embeddings from qwen3 used to guide the image generation",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(block_state):
|
||||
prompt = block_state.prompt
|
||||
|
||||
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
@staticmethod
|
||||
# Copied from diffusers.pipelines.flux2.pipeline_flux2_klein.Flux2KleinPipeline._get_qwen3_prompt_embeds
|
||||
def _get_qwen3_prompt_embeds(
|
||||
text_encoder: Qwen3ForCausalLM,
|
||||
tokenizer: Qwen2TokenizerFast,
|
||||
prompt: Union[str, List[str]],
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
max_sequence_length: int = 512,
|
||||
hidden_states_layers: List[int] = (9, 18, 27),
|
||||
):
|
||||
dtype = text_encoder.dtype if dtype is None else dtype
|
||||
device = text_encoder.device if device is None else device
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
all_input_ids = []
|
||||
all_attention_masks = []
|
||||
|
||||
for single_prompt in prompt:
|
||||
messages = [{"role": "user", "content": single_prompt}]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
enable_thinking=False,
|
||||
)
|
||||
inputs = tokenizer(
|
||||
text,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=max_sequence_length,
|
||||
)
|
||||
|
||||
all_input_ids.append(inputs["input_ids"])
|
||||
all_attention_masks.append(inputs["attention_mask"])
|
||||
|
||||
input_ids = torch.cat(all_input_ids, dim=0).to(device)
|
||||
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
|
||||
|
||||
# Forward pass through the model
|
||||
output = text_encoder(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
output_hidden_states=True,
|
||||
use_cache=False,
|
||||
)
|
||||
|
||||
# Only use outputs from intermediate layers and stack them
|
||||
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
|
||||
out = out.to(dtype=dtype, device=device)
|
||||
|
||||
batch_size, num_channels, seq_len, hidden_dim = out.shape
|
||||
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2KleinModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
self.check_inputs(block_state)
|
||||
|
||||
device = components._execution_device
|
||||
|
||||
prompt = block_state.prompt
|
||||
if prompt is None:
|
||||
prompt = ""
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
block_state.prompt_embeds = self._get_qwen3_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
hidden_states_layers=block_state.text_encoder_out_layers,
|
||||
)
|
||||
|
||||
if components.requires_unconditional_embeds:
|
||||
negative_prompt = [""] * len(prompt)
|
||||
block_state.negative_prompt_embeds = self._get_qwen3_prompt_embeds(
|
||||
text_encoder=components.text_encoder,
|
||||
tokenizer=components.tokenizer,
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
max_sequence_length=block_state.max_sequence_length,
|
||||
hidden_states_layers=block_state.text_encoder_out_layers,
|
||||
)
|
||||
else:
|
||||
block_state.negative_prompt_embeds = None
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2VaeEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ class Flux2TextInputStep(ModularPipelineBlocks):
|
||||
required=True,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
|
||||
description="Pre-generated text embeddings from Mistral3. Can be generated from text_encoder step.",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -89,90 +89,6 @@ class Flux2TextInputStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2KleinBaseTextInputStep(ModularPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"This step:\n"
|
||||
" 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
|
||||
" 2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("num_images_per_prompt", default=1),
|
||||
InputParam(
|
||||
"prompt_embeds",
|
||||
required=True,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Pre-generated text embeddings. Can be generated from text_encoder step.",
|
||||
),
|
||||
InputParam(
|
||||
"negative_prompt_embeds",
|
||||
required=False,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
type_hint=torch.Tensor,
|
||||
description="Pre-generated negative text embeddings. Can be generated from text_encoder step.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"batch_size",
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
|
||||
),
|
||||
OutputParam(
|
||||
"dtype",
|
||||
type_hint=torch.dtype,
|
||||
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
|
||||
),
|
||||
OutputParam(
|
||||
"prompt_embeds",
|
||||
type_hint=torch.Tensor,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="Text embeddings used to guide the image generation",
|
||||
),
|
||||
OutputParam(
|
||||
"negative_prompt_embeds",
|
||||
type_hint=torch.Tensor,
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="Negative text embeddings used to guide the image generation",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: Flux2ModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
block_state.batch_size = block_state.prompt_embeds.shape[0]
|
||||
block_state.dtype = block_state.prompt_embeds.dtype
|
||||
|
||||
_, seq_len, _ = block_state.prompt_embeds.shape
|
||||
block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
|
||||
block_state.prompt_embeds = block_state.prompt_embeds.view(
|
||||
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
|
||||
if block_state.negative_prompt_embeds is not None:
|
||||
_, seq_len, _ = block_state.negative_prompt_embeds.shape
|
||||
block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.repeat(
|
||||
1, block_state.num_images_per_prompt, 1
|
||||
)
|
||||
block_state.negative_prompt_embeds = block_state.negative_prompt_embeds.view(
|
||||
block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class Flux2ProcessImagesInputStep(ModularPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
|
||||
@@ -12,22 +12,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
from ..modular_pipeline_utils import InsertableDict
|
||||
from .before_denoise import (
|
||||
Flux2PrepareGuidanceStep,
|
||||
Flux2PrepareImageLatentsStep,
|
||||
Flux2PrepareLatentsStep,
|
||||
Flux2RoPEInputsStep,
|
||||
Flux2SetTimestepsStep,
|
||||
)
|
||||
from .decoders import Flux2DecodeStep, Flux2UnpackLatentsStep
|
||||
from .decoders import Flux2DecodeStep
|
||||
from .denoise import Flux2DenoiseStep
|
||||
from .encoders import (
|
||||
Flux2RemoteTextEncoderStep,
|
||||
@@ -47,6 +41,7 @@ Flux2VaeEncoderBlocks = InsertableDict(
|
||||
[
|
||||
("preprocess", Flux2ProcessImagesInputStep()),
|
||||
("encode", Flux2VaeEncoderStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
@@ -77,56 +72,33 @@ class Flux2AutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
)
|
||||
|
||||
|
||||
Flux2CoreDenoiseBlocks = InsertableDict(
|
||||
Flux2BeforeDenoiseBlocks = InsertableDict(
|
||||
[
|
||||
("input", Flux2TextInputStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_guidance", Flux2PrepareGuidanceStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2CoreDenoiseStep(SequentialPipelineBlocks):
|
||||
class Flux2BeforeDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
block_classes = Flux2CoreDenoiseBlocks.values()
|
||||
block_names = Flux2CoreDenoiseBlocks.keys()
|
||||
block_classes = Flux2BeforeDenoiseBlocks.values()
|
||||
block_names = Flux2BeforeDenoiseBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Core denoise step that performs the denoising process for Flux2-dev.\n"
|
||||
" - `Flux2TextInputStep` (input) standardizes the text inputs (prompt_embeds) for the denoising step.\n"
|
||||
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
|
||||
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
|
||||
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
|
||||
" - `Flux2PrepareGuidanceStep` (prepare_guidance) prepares the guidance tensor for the denoising step.\n"
|
||||
" - `Flux2RoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids) for the denoising step.\n"
|
||||
" - `Flux2DenoiseStep` (denoise) iteratively denoises the latents.\n"
|
||||
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents from the denoising step.",
|
||||
)
|
||||
]
|
||||
return "Before denoise step that prepares the inputs for the denoise step in Flux2 generation."
|
||||
|
||||
|
||||
AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", Flux2TextEncoderStep()),
|
||||
("vae_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("denoise", Flux2CoreDenoiseStep()),
|
||||
("text_input", Flux2TextInputStep()),
|
||||
("vae_image_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("before_denoise", Flux2BeforeDenoiseStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -135,8 +107,10 @@ AUTO_BLOCKS = InsertableDict(
|
||||
REMOTE_AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", Flux2RemoteTextEncoderStep()),
|
||||
("vae_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("denoise", Flux2CoreDenoiseStep()),
|
||||
("text_input", Flux2TextInputStep()),
|
||||
("vae_image_encoder", Flux2AutoVaeEncoderStep()),
|
||||
("before_denoise", Flux2BeforeDenoiseStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -156,16 +130,6 @@ class Flux2AutoBlocks(SequentialPipelineBlocks):
|
||||
"- For image-conditioned generation, you need to provide `image` (list of PIL images)."
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="images",
|
||||
type_hint=List[PIL.Image.Image],
|
||||
description="The images from the decoding step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
TEXT2IMAGE_BLOCKS = InsertableDict(
|
||||
[
|
||||
@@ -173,10 +137,8 @@ TEXT2IMAGE_BLOCKS = InsertableDict(
|
||||
("text_input", Flux2TextInputStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_guidance", Flux2PrepareGuidanceStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -190,10 +152,8 @@ IMAGE_CONDITIONED_BLOCKS = InsertableDict(
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_guidance", Flux2PrepareGuidanceStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2DenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
("decode", Flux2DecodeStep()),
|
||||
]
|
||||
)
|
||||
@@ -1,232 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
from .before_denoise import (
|
||||
Flux2KleinBaseRoPEInputsStep,
|
||||
Flux2PrepareImageLatentsStep,
|
||||
Flux2PrepareLatentsStep,
|
||||
Flux2RoPEInputsStep,
|
||||
Flux2SetTimestepsStep,
|
||||
)
|
||||
from .decoders import Flux2DecodeStep, Flux2UnpackLatentsStep
|
||||
from .denoise import Flux2KleinBaseDenoiseStep, Flux2KleinDenoiseStep
|
||||
from .encoders import (
|
||||
Flux2KleinBaseTextEncoderStep,
|
||||
Flux2KleinTextEncoderStep,
|
||||
Flux2VaeEncoderStep,
|
||||
)
|
||||
from .inputs import (
|
||||
Flux2KleinBaseTextInputStep,
|
||||
Flux2ProcessImagesInputStep,
|
||||
Flux2TextInputStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
################
|
||||
# VAE encoder
|
||||
################
|
||||
|
||||
Flux2KleinVaeEncoderBlocks = InsertableDict(
|
||||
[
|
||||
("preprocess", Flux2ProcessImagesInputStep()),
|
||||
("encode", Flux2VaeEncoderStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinVaeEncoderSequentialStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2"
|
||||
|
||||
block_classes = Flux2KleinVaeEncoderBlocks.values()
|
||||
block_names = Flux2KleinVaeEncoderBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "VAE encoder step that preprocesses and encodes the image inputs into their latent representations."
|
||||
|
||||
|
||||
class Flux2KleinAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [Flux2KleinVaeEncoderSequentialStep]
|
||||
block_names = ["img_conditioning"]
|
||||
block_trigger_inputs = ["image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"VAE encoder step that encodes the image inputs into their latent representations.\n"
|
||||
"This is an auto pipeline block that works for image conditioning tasks.\n"
|
||||
" - `Flux2KleinVaeEncoderSequentialStep` is used when `image` is provided.\n"
|
||||
" - If `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
###
|
||||
### Core denoise
|
||||
###
|
||||
|
||||
Flux2KleinCoreDenoiseBlocks = InsertableDict(
|
||||
[
|
||||
("input", Flux2TextInputStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_rope_inputs", Flux2RoPEInputsStep()),
|
||||
("denoise", Flux2KleinDenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
|
||||
block_classes = Flux2KleinCoreDenoiseBlocks.values()
|
||||
block_names = Flux2KleinCoreDenoiseBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Core denoise step that performs the denoising process for Flux2-Klein (distilled model).\n"
|
||||
" - `Flux2KleinTextInputStep` (input) standardizes the text inputs (prompt_embeds) for the denoising step.\n"
|
||||
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
|
||||
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
|
||||
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
|
||||
" - `Flux2RoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids) for the denoising step.\n"
|
||||
" - `Flux2KleinDenoiseStep` (denoise) iteratively denoises the latents.\n"
|
||||
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents from the denoising step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
Flux2KleinBaseCoreDenoiseBlocks = InsertableDict(
|
||||
[
|
||||
("input", Flux2KleinBaseTextInputStep()),
|
||||
("prepare_latents", Flux2PrepareLatentsStep()),
|
||||
("prepare_image_latents", Flux2PrepareImageLatentsStep()),
|
||||
("set_timesteps", Flux2SetTimestepsStep()),
|
||||
("prepare_rope_inputs", Flux2KleinBaseRoPEInputsStep()),
|
||||
("denoise", Flux2KleinBaseDenoiseStep()),
|
||||
("after_denoise", Flux2UnpackLatentsStep()),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
class Flux2KleinBaseCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
block_classes = Flux2KleinBaseCoreDenoiseBlocks.values()
|
||||
block_names = Flux2KleinBaseCoreDenoiseBlocks.keys()
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Core denoise step that performs the denoising process for Flux2-Klein (base model)."
|
||||
return (
|
||||
"Core denoise step that performs the denoising process for Flux2-Klein (base model).\n"
|
||||
" - `Flux2KleinBaseTextInputStep` (input) standardizes the text inputs (prompt_embeds + negative_prompt_embeds) for the denoising step.\n"
|
||||
" - `Flux2PrepareImageLatentsStep` (prepare_image_latents) prepares the image latents and image_latent_ids for the denoising step.\n"
|
||||
" - `Flux2PrepareLatentsStep` (prepare_latents) prepares the initial latents (latents) and latent_ids for the denoising step.\n"
|
||||
" - `Flux2SetTimestepsStep` (set_timesteps) sets the timesteps for the denoising step.\n"
|
||||
" - `Flux2KleinBaseRoPEInputsStep` (prepare_rope_inputs) prepares the RoPE inputs (txt_ids + negative_txt_ids) for the denoising step.\n"
|
||||
" - `Flux2KleinBaseDenoiseStep` (denoise) iteratively denoises the latents using Classifier-Free Guidance.\n"
|
||||
" - `Flux2UnpackLatentsStep` (after_denoise) unpacks the latents from the denoising step.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents from the denoising step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
###
|
||||
### Auto blocks
|
||||
###
|
||||
class Flux2KleinAutoBlocks(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
block_classes = [
|
||||
Flux2KleinTextEncoderStep(),
|
||||
Flux2KleinAutoVaeEncoderStep(),
|
||||
Flux2KleinCoreDenoiseStep(),
|
||||
Flux2DecodeStep(),
|
||||
]
|
||||
block_names = ["text_encoder", "vae_encoder", "denoise", "decode"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto blocks that perform the text-to-image and image-conditioned generation using Flux2-Klein.\n"
|
||||
+ " - for image-conditioned generation, you need to provide `image` (list of PIL images).\n"
|
||||
+ " - for text-to-image generation, all you need to provide is `prompt`.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="images",
|
||||
type_hint=List[PIL.Image.Image],
|
||||
description="The images from the decoding step.",
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
class Flux2KleinBaseAutoBlocks(SequentialPipelineBlocks):
|
||||
model_name = "flux2-klein"
|
||||
block_classes = [
|
||||
Flux2KleinBaseTextEncoderStep(),
|
||||
Flux2KleinAutoVaeEncoderStep(),
|
||||
Flux2KleinBaseCoreDenoiseStep(),
|
||||
Flux2DecodeStep(),
|
||||
]
|
||||
block_names = ["text_encoder", "vae_encoder", "denoise", "decode"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto blocks that perform the text-to-image and image-conditioned generation using Flux2-Klein (base model).\n"
|
||||
+ " - for image-conditioned generation, you need to provide `image` (list of PIL images).\n"
|
||||
+ " - for text-to-image generation, all you need to provide is `prompt`.\n"
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="images",
|
||||
type_hint=List[PIL.Image.Image],
|
||||
description="The images from the decoding step.",
|
||||
)
|
||||
]
|
||||
@@ -13,8 +13,6 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from ...loaders import Flux2LoraLoaderMixin
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import ModularPipeline
|
||||
@@ -57,56 +55,3 @@ class Flux2ModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
|
||||
if getattr(self, "transformer", None):
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
return num_channels_latents
|
||||
|
||||
|
||||
class Flux2KleinModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
|
||||
"""
|
||||
A ModularPipeline for Flux2-Klein.
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
if config_dict is not None and "is_distilled" in config_dict and config_dict["is_distilled"]:
|
||||
return "Flux2KleinAutoBlocks"
|
||||
else:
|
||||
return "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
@property
|
||||
def default_height(self):
|
||||
return self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
@property
|
||||
def default_width(self):
|
||||
return self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
@property
|
||||
def default_sample_size(self):
|
||||
return 128
|
||||
|
||||
@property
|
||||
def vae_scale_factor(self):
|
||||
vae_scale_factor = 8
|
||||
if getattr(self, "vae", None) is not None:
|
||||
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
return vae_scale_factor
|
||||
|
||||
@property
|
||||
def num_channels_latents(self):
|
||||
num_channels_latents = 32
|
||||
if getattr(self, "transformer", None):
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
return num_channels_latents
|
||||
|
||||
@property
|
||||
def requires_unconditional_embeds(self):
|
||||
if hasattr(self.config, "is_distilled") and self.config.is_distilled:
|
||||
return False
|
||||
|
||||
requires_unconditional_embeds = False
|
||||
if hasattr(self, "guider") and self.guider is not None:
|
||||
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
|
||||
|
||||
return requires_unconditional_embeds
|
||||
|
||||
@@ -39,6 +39,7 @@ from .modular_pipeline_utils import (
|
||||
InputParam,
|
||||
InsertableDict,
|
||||
OutputParam,
|
||||
_validate_requirements,
|
||||
format_components,
|
||||
format_configs,
|
||||
make_doc_string,
|
||||
@@ -59,7 +60,6 @@ MODULAR_PIPELINE_MAPPING = OrderedDict(
|
||||
("flux", "FluxModularPipeline"),
|
||||
("flux-kontext", "FluxKontextModularPipeline"),
|
||||
("flux2", "Flux2ModularPipeline"),
|
||||
("flux2-klein", "Flux2KleinModularPipeline"),
|
||||
("qwenimage", "QwenImageModularPipeline"),
|
||||
("qwenimage-edit", "QwenImageEditModularPipeline"),
|
||||
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),
|
||||
@@ -243,6 +243,7 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
|
||||
config_name = "modular_config.json"
|
||||
model_name = None
|
||||
_requirements: Optional[Dict[str, str]] = None
|
||||
|
||||
@classmethod
|
||||
def _get_signature_keys(cls, obj):
|
||||
@@ -305,6 +306,19 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
trust_remote_code: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
config = cls.load_config(pretrained_model_name_or_path)
|
||||
has_remote_code = "auto_map" in config and cls.__name__ in config["auto_map"]
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_remote_code
|
||||
)
|
||||
if not (has_remote_code and trust_remote_code):
|
||||
raise ValueError(
|
||||
"Selected model repository does not happear to have any custom code or does not have a valid `config.json` file."
|
||||
)
|
||||
|
||||
if "requirements" in config and config["requirements"] is not None:
|
||||
_ = _validate_requirements(config["requirements"])
|
||||
|
||||
hub_kwargs_names = [
|
||||
"cache_dir",
|
||||
"force_download",
|
||||
@@ -317,16 +331,6 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
]
|
||||
hub_kwargs = {name: kwargs.pop(name) for name in hub_kwargs_names if name in kwargs}
|
||||
|
||||
config = cls.load_config(pretrained_model_name_or_path, **hub_kwargs)
|
||||
has_remote_code = "auto_map" in config and cls.__name__ in config["auto_map"]
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_remote_code
|
||||
)
|
||||
if not has_remote_code and trust_remote_code:
|
||||
raise ValueError(
|
||||
"Selected model repository does not happear to have any custom code or does not have a valid `config.json` file."
|
||||
)
|
||||
|
||||
class_ref = config["auto_map"][cls.__name__]
|
||||
module_file, class_name = class_ref.split(".")
|
||||
module_file = module_file + ".py"
|
||||
@@ -351,8 +355,13 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
module = full_mod.rsplit(".", 1)[-1].replace("__dynamic__", "")
|
||||
parent_module = self.save_pretrained.__func__.__qualname__.split(".", 1)[0]
|
||||
auto_map = {f"{parent_module}": f"{module}.{cls_name}"}
|
||||
|
||||
self.register_to_config(auto_map=auto_map)
|
||||
|
||||
# resolve requirements
|
||||
requirements = _validate_requirements(getattr(self, "_requirements", None))
|
||||
if requirements:
|
||||
self.register_to_config(requirements=requirements)
|
||||
|
||||
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs)
|
||||
config = dict(self.config)
|
||||
self._internal_dict = FrozenDict(config)
|
||||
@@ -1155,6 +1164,14 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
expected_configs=self.expected_configs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _requirements(self) -> Dict[str, str]:
|
||||
requirements = {}
|
||||
for block_name, block in self.sub_blocks.items():
|
||||
if getattr(block, "_requirements", None):
|
||||
requirements[block_name] = block._requirements
|
||||
return requirements
|
||||
|
||||
|
||||
class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
"""
|
||||
|
||||
@@ -19,10 +19,12 @@ from dataclasses import dataclass, field, fields
|
||||
from typing import Any, Dict, List, Literal, Optional, Type, Union
|
||||
|
||||
import torch
|
||||
from packaging.specifiers import InvalidSpecifier, SpecifierSet
|
||||
|
||||
from ..configuration_utils import ConfigMixin, FrozenDict
|
||||
from ..loaders.single_file_utils import _is_single_file_path_or_url
|
||||
from ..utils import is_torch_available, logging
|
||||
from ..utils.import_utils import _is_package_available
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
@@ -690,3 +692,86 @@ def make_doc_string(
|
||||
output += format_output_params(outputs, indent_level=2)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def _validate_requirements(reqs):
|
||||
if reqs is None:
|
||||
normalized_reqs = {}
|
||||
else:
|
||||
if not isinstance(reqs, dict):
|
||||
raise ValueError(
|
||||
"Requirements must be provided as a dictionary mapping package names to version specifiers."
|
||||
)
|
||||
normalized_reqs = _normalize_requirements(reqs)
|
||||
|
||||
if not normalized_reqs:
|
||||
return {}
|
||||
|
||||
final: Dict[str, str] = {}
|
||||
for req, specified_ver in normalized_reqs.items():
|
||||
req_available, req_actual_ver = _is_package_available(req)
|
||||
if not req_available:
|
||||
logger.warning(f"{req} was specified in the requirements but wasn't found in the current environment.")
|
||||
|
||||
if specified_ver:
|
||||
try:
|
||||
specifier = SpecifierSet(specified_ver)
|
||||
except InvalidSpecifier as err:
|
||||
raise ValueError(f"Requirement specifier '{specified_ver}' for {req} is invalid.") from err
|
||||
|
||||
if req_actual_ver == "N/A":
|
||||
logger.warning(
|
||||
f"Version of {req} could not be determined to validate requirement '{specified_ver}'. Things might work unexpected."
|
||||
)
|
||||
elif not specifier.contains(req_actual_ver, prereleases=True):
|
||||
logger.warning(
|
||||
f"{req} requirement '{specified_ver}' is not satisfied by the installed version {req_actual_ver}. Things might work unexpected."
|
||||
)
|
||||
|
||||
final[req] = specified_ver
|
||||
|
||||
return final
|
||||
|
||||
|
||||
def _normalize_requirements(reqs):
|
||||
if not reqs:
|
||||
return {}
|
||||
|
||||
normalized: "OrderedDict[str, str]" = OrderedDict()
|
||||
|
||||
def _accumulate(mapping: Dict[str, Any]):
|
||||
for pkg, spec in mapping.items():
|
||||
if isinstance(spec, dict):
|
||||
# This is recursive because blocks are composable. This way, we can merge requirements
|
||||
# from multiple blocks.
|
||||
_accumulate(spec)
|
||||
continue
|
||||
|
||||
pkg_name = str(pkg).strip()
|
||||
if not pkg_name:
|
||||
raise ValueError("Requirement package name cannot be empty.")
|
||||
|
||||
spec_str = "" if spec is None else str(spec).strip()
|
||||
if spec_str and not spec_str.startswith(("<", ">", "=", "!", "~")):
|
||||
spec_str = f"=={spec_str}"
|
||||
|
||||
existing_spec = normalized.get(pkg_name)
|
||||
if existing_spec is not None:
|
||||
if not existing_spec and spec_str:
|
||||
normalized[pkg_name] = spec_str
|
||||
elif existing_spec and spec_str and existing_spec != spec_str:
|
||||
try:
|
||||
combined_spec = SpecifierSet(",".join(filter(None, [existing_spec, spec_str])))
|
||||
except InvalidSpecifier:
|
||||
logger.warning(
|
||||
f"Conflicting requirements for '{pkg_name}' detected: '{existing_spec}' vs '{spec_str}'. Keeping '{existing_spec}'."
|
||||
)
|
||||
else:
|
||||
normalized[pkg_name] = str(combined_spec)
|
||||
continue
|
||||
|
||||
normalized[pkg_name] = spec_str
|
||||
|
||||
_accumulate(reqs)
|
||||
|
||||
return normalized
|
||||
|
||||
@@ -14,7 +14,7 @@ from .scheduling_utils import SchedulerMixin
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -28,8 +28,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -100,13 +100,14 @@ def betas_for_alpha_bar(
|
||||
return torch.tensor(betas, dtype=torch.float32)
|
||||
|
||||
|
||||
def rescale_zero_terminal_snr(alphas_cumprod: torch.Tensor) -> torch.Tensor:
|
||||
def rescale_zero_terminal_snr(alphas_cumprod):
|
||||
"""
|
||||
Rescales betas to have zero terminal SNR Based on (Algorithm 1)[https://huggingface.co/papers/2305.08891]
|
||||
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||||
|
||||
|
||||
Args:
|
||||
alphas_cumprod (`torch.Tensor`):
|
||||
The alphas cumulative products that the scheduler is being initialized with.
|
||||
betas (`torch.Tensor`):
|
||||
the betas that the scheduler is being initialized with.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`: rescaled betas with zero terminal SNR
|
||||
@@ -141,11 +142,11 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
beta_start (`float`, defaults to 0.00085):
|
||||
beta_start (`float`, defaults to 0.0001):
|
||||
The starting `beta` value of inference.
|
||||
beta_end (`float`, defaults to 0.0120):
|
||||
beta_end (`float`, defaults to 0.02):
|
||||
The final `beta` value.
|
||||
beta_schedule (`str`, defaults to `"scaled_linear"`):
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
@@ -178,8 +179,6 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||||
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||||
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||||
snr_shift_scale (`float`, defaults to 3.0):
|
||||
Shift scale for SNR.
|
||||
"""
|
||||
|
||||
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
@@ -191,15 +190,15 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.00085,
|
||||
beta_end: float = 0.0120,
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "scaled_linear",
|
||||
beta_schedule: str = "scaled_linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
prediction_type: str = "epsilon",
|
||||
clip_sample_range: float = 1.0,
|
||||
sample_max_value: float = 1.0,
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
|
||||
timestep_spacing: str = "leading",
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
snr_shift_scale: float = 3.0,
|
||||
):
|
||||
@@ -209,15 +208,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float64,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -247,7 +238,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.num_inference_steps = None
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
||||
|
||||
def _get_variance(self, timestep: int, prev_timestep: int) -> torch.Tensor:
|
||||
def _get_variance(self, timestep, prev_timestep):
|
||||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
@@ -274,11 +265,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
return sample
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
) -> None:
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -330,7 +317,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
sample: torch.Tensor,
|
||||
eta: float = 0.0,
|
||||
use_clipped_model_output: bool = False,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
generator=None,
|
||||
variance_noise: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[DDIMSchedulerOutput, Tuple]:
|
||||
@@ -341,7 +328,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
@@ -500,5 +487,5 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
||||
return velocity
|
||||
|
||||
def __len__(self) -> int:
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
@@ -49,7 +49,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class DDIMParallelSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -48,7 +48,7 @@ class DDPMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -192,12 +192,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
variance_type: Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
|
||||
] = "fixed_small",
|
||||
clip_sample: bool = True,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
@@ -215,15 +210,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -350,14 +337,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
t: int,
|
||||
predicted_variance: Optional[torch.Tensor] = None,
|
||||
variance_type: Optional[
|
||||
Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
]
|
||||
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
|
||||
] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
@@ -492,10 +472,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
prev_t = self.previous_timestep(t)
|
||||
|
||||
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [
|
||||
"learned",
|
||||
"learned_range",
|
||||
]:
|
||||
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
||||
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
||||
else:
|
||||
predicted_variance = None
|
||||
@@ -544,10 +521,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
if t > 0:
|
||||
device = model_output.device
|
||||
variance_noise = randn_tensor(
|
||||
model_output.shape,
|
||||
generator=generator,
|
||||
device=device,
|
||||
dtype=model_output.dtype,
|
||||
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
||||
)
|
||||
if self.variance_type == "fixed_small_log":
|
||||
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
|
||||
|
||||
@@ -50,7 +50,7 @@ class DDPMParallelSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -64,8 +64,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -202,12 +202,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
variance_type: Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
|
||||
] = "fixed_small",
|
||||
clip_sample: bool = True,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
@@ -225,15 +220,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -363,14 +350,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
t: int,
|
||||
predicted_variance: Optional[torch.Tensor] = None,
|
||||
variance_type: Optional[
|
||||
Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
]
|
||||
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
|
||||
] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -52,7 +52,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -117,7 +117,7 @@ class BrownianTreeNoiseSampler:
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -131,8 +131,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -36,7 +36,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -50,8 +50,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -54,7 +54,7 @@ class EulerDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -68,8 +68,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class HeunDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -52,7 +52,7 @@ class KDPM2AncestralDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class KDPM2DiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -53,7 +53,7 @@ class LCMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -67,8 +67,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -49,7 +49,7 @@ class LMSDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -28,7 +28,7 @@ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, Schedul
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -42,8 +42,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -47,7 +47,7 @@ class RePaintSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -61,8 +61,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -35,7 +35,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -49,8 +49,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -52,7 +52,7 @@ class TCDSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -48,7 +48,7 @@ class UnCLIPSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -17,51 +17,6 @@ class Flux2AutoBlocks(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinAutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinBaseAutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2ModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -1,91 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import pytest
|
||||
|
||||
from diffusers.modular_pipelines import (
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
)
|
||||
|
||||
from ...testing_utils import floats_tensor, torch_device
|
||||
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
|
||||
|
||||
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
|
||||
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
|
||||
inputs["image"] = init_image
|
||||
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
@pytest.mark.skip(reason="batched inference is currently not supported")
|
||||
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
|
||||
return
|
||||
@@ -1,91 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import pytest
|
||||
|
||||
from diffusers.modular_pipelines import (
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinModularPipeline,
|
||||
)
|
||||
|
||||
from ...testing_utils import floats_tensor, torch_device
|
||||
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
|
||||
|
||||
|
||||
class TestFlux2ModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
|
||||
class TestFlux2ImageConditionedModularPipelineFast(ModularPipelineTesterMixin):
|
||||
pipeline_class = Flux2KleinModularPipeline
|
||||
pipeline_blocks_class = Flux2KleinBaseAutoBlocks
|
||||
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein-base-modular"
|
||||
|
||||
params = frozenset(["prompt", "height", "width", "image"])
|
||||
batch_params = frozenset(["prompt", "image"])
|
||||
|
||||
def get_dummy_inputs(self, seed=0):
|
||||
generator = self.get_generator(seed)
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
# TODO (Dhruv): Update text encoder config so that vocab_size matches tokenizer
|
||||
"max_sequence_length": 8, # bit of a hack to workaround vocab size mismatch
|
||||
"text_encoder_out_layers": (1,),
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"height": 32,
|
||||
"width": 32,
|
||||
"output_type": "pt",
|
||||
}
|
||||
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(torch_device)
|
||||
image = image.cpu().permute(0, 2, 3, 1)[0]
|
||||
init_image = PIL.Image.fromarray(np.uint8(image * 255)).convert("RGB")
|
||||
inputs["image"] = init_image
|
||||
|
||||
return inputs
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(9e-2)
|
||||
|
||||
@pytest.mark.skip(reason="batched inference is currently not supported")
|
||||
def test_inference_batch_single_identical(self, batch_size=2, expected_max_diff=0.0001):
|
||||
return
|
||||
@@ -1,4 +1,6 @@
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
import tempfile
|
||||
from typing import Callable, Union
|
||||
|
||||
@@ -8,9 +10,16 @@ import torch
|
||||
import diffusers
|
||||
from diffusers import ComponentsManager, ModularPipeline, ModularPipelineBlocks
|
||||
from diffusers.guiders import ClassifierFreeGuidance
|
||||
from diffusers.modular_pipelines import SequentialPipelineBlocks
|
||||
from diffusers.utils import logging
|
||||
|
||||
from ..testing_utils import backend_empty_cache, numpy_cosine_similarity_distance, require_accelerator, torch_device
|
||||
from ..testing_utils import (
|
||||
CaptureLogger,
|
||||
backend_empty_cache,
|
||||
numpy_cosine_similarity_distance,
|
||||
require_accelerator,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
class ModularPipelineTesterMixin:
|
||||
@@ -335,3 +344,53 @@ class ModularGuiderTesterMixin:
|
||||
assert out_cfg.shape == out_no_cfg.shape
|
||||
max_diff = torch.abs(out_cfg - out_no_cfg).max()
|
||||
assert max_diff > expected_max_diff, "Output with CFG must be different from normal inference"
|
||||
|
||||
|
||||
class TestCustomBlockRequirements:
|
||||
def get_dummy_block_pipe(self):
|
||||
class DummyBlockOne:
|
||||
# keep two arbitrary deps so that we can test warnings.
|
||||
_requirements = {"xyz": ">=0.8.0", "abc": ">=10.0.0"}
|
||||
|
||||
class DummyBlockTwo:
|
||||
# keep two dependencies that will be available during testing.
|
||||
_requirements = {"transformers": ">=4.44.0", "diffusers": ">=0.2.0"}
|
||||
|
||||
pipe = SequentialPipelineBlocks.from_blocks_dict(
|
||||
{"dummy_block_one": DummyBlockOne, "dummy_block_two": DummyBlockTwo}
|
||||
)
|
||||
return pipe
|
||||
|
||||
def test_custom_requirements_save_load(self):
|
||||
pipe = self.get_dummy_block_pipe()
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
pipe.save_pretrained(tmpdir)
|
||||
config_path = os.path.join(tmpdir, "modular_config.json")
|
||||
with open(config_path, "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
assert "requirements" in config
|
||||
requirements = config["requirements"]
|
||||
|
||||
expected_requirements = {
|
||||
"xyz": ">=0.8.0",
|
||||
"abc": ">=10.0.0",
|
||||
"transformers": ">=4.44.0",
|
||||
"diffusers": ">=0.2.0",
|
||||
}
|
||||
assert expected_requirements == requirements
|
||||
|
||||
def test_warnings(self):
|
||||
pipe = self.get_dummy_block_pipe()
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
logger = logging.get_logger("diffusers.modular_pipelines.modular_pipeline_utils")
|
||||
logger.setLevel(30)
|
||||
|
||||
with CaptureLogger(logger) as cap_logger:
|
||||
pipe.save_pretrained(tmpdir)
|
||||
|
||||
template = "{req} was specified in the requirements but wasn't found in the current environment"
|
||||
msg_xyz = template.format(req="xyz")
|
||||
msg_abc = template.format(req="abc")
|
||||
assert msg_xyz in str(cap_logger.out)
|
||||
assert msg_abc in str(cap_logger.out)
|
||||
|
||||
Reference in New Issue
Block a user