Compare commits

..

1 Commits

Author SHA1 Message Date
Sayak Paul
537d4de2cc Update distributed_inference.md to reposition sections 2026-01-13 20:38:37 +05:30
56 changed files with 1022 additions and 11167 deletions

View File

@@ -1 +0,0 @@
docs/source/en/conceptual/contribution.md

506
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,506 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# How to contribute to Diffusers 🧨
We ❤️ contributions from the open-source community! Everyone is welcome, and all types of participation not just code are valued and appreciated. Answering questions, helping others, reaching out, and improving the documentation are all immensely valuable to the community, so don't be afraid and get involved if you're up for it!
Everyone is encouraged to start by saying 👋 in our public Discord channel. We discuss the latest trends in diffusion models, ask questions, show off personal projects, help each other with contributions, or just hang out ☕. <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=Discord&logoColor=white"></a>
Whichever way you choose to contribute, we strive to be part of an open, welcoming, and kind community. Please, read our [code of conduct](https://github.com/huggingface/diffusers/blob/main/CODE_OF_CONDUCT.md) and be mindful to respect it during your interactions. We also recommend you become familiar with the [ethical guidelines](https://huggingface.co/docs/diffusers/conceptual/ethical_guidelines) that guide our project and ask you to adhere to the same principles of transparency and responsibility.
We enormously value feedback from the community, so please do not be afraid to speak up if you believe you have valuable feedback that can help improve the library - every message, comment, issue, and pull request (PR) is read and considered.
## Overview
You can contribute in many ways ranging from answering questions on issues to adding new diffusion models to
the core library.
In the following, we give an overview of different ways to contribute, ranked by difficulty in ascending order. All of them are valuable to the community.
* 1. Asking and answering questions on [the Diffusers discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers) or on [Discord](https://discord.gg/G7tWnz98XR).
* 2. Opening new issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues/new/choose).
* 3. Answering issues on [the GitHub Issues tab](https://github.com/huggingface/diffusers/issues).
* 4. Fix a simple issue, marked by the "Good first issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
* 5. Contribute to the [documentation](https://github.com/huggingface/diffusers/tree/main/docs/source).
* 6. Contribute a [Community Pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3Acommunity-examples).
* 7. Contribute to the [examples](https://github.com/huggingface/diffusers/tree/main/examples).
* 8. Fix a more difficult issue, marked by the "Good second issue" label, see [here](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22).
* 9. Add a new pipeline, model, or scheduler, see ["New Pipeline/Model"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) and ["New scheduler"](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) issues. For this contribution, please have a look at [Design Philosophy](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md).
As said before, **all contributions are valuable to the community**.
In the following, we will explain each contribution a bit more in detail.
For all contributions 4-9, you will need to open a PR. It is explained in detail how to do so in [Opening a pull request](#how-to-open-a-pr).
### 1. Asking and answering questions on the Diffusers discussion forum or on the Diffusers Discord
Any question or comment related to the Diffusers library can be asked on the [discussion forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/) or on [Discord](https://discord.gg/G7tWnz98XR). Such questions and comments include (but are not limited to):
- Reports of training or inference experiments in an attempt to share knowledge
- Presentation of personal projects
- Questions to non-official training examples
- Project proposals
- General feedback
- Paper summaries
- Asking for help on personal projects that build on top of the Diffusers library
- General questions
- Ethical questions regarding diffusion models
- ...
Every question that is asked on the forum or on Discord actively encourages the community to publicly
share knowledge and might very well help a beginner in the future who has the same question you're
having. Please do pose any questions you might have.
In the same spirit, you are of immense help to the community by answering such questions because this way you are publicly documenting knowledge for everybody to learn from.
**Please** keep in mind that the more effort you put into asking or answering a question, the higher
the quality of the publicly documented knowledge. In the same way, well-posed and well-answered questions create a high-quality knowledge database accessible to everybody, while badly posed questions or answers reduce the overall quality of the public knowledge database.
In short, a high quality question or answer is *precise*, *concise*, *relevant*, *easy-to-understand*, *accessible*, and *well-formatted/well-posed*. For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
**NOTE about channels**:
[*The forum*](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) is much better indexed by search engines, such as Google. Posts are ranked by popularity rather than chronologically. Hence, it's easier to look up questions and answers that we posted some time ago.
In addition, questions and answers posted in the forum can easily be linked to.
In contrast, *Discord* has a chat-like format that invites fast back-and-forth communication.
While it will most likely take less time for you to get an answer to your question on Discord, your
question won't be visible anymore over time. Also, it's much harder to find information that was posted a while back on Discord. We therefore strongly recommend using the forum for high-quality questions and answers in an attempt to create long-lasting knowledge for the community. If discussions on Discord lead to very interesting answers and conclusions, we recommend posting the results on the forum to make the information more available for future readers.
### 2. Opening new issues on the GitHub issues tab
The 🧨 Diffusers library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
Remember, GitHub issues are reserved for technical questions directly related to the Diffusers library, bug reports, feature requests, or feedback on the library design.
In a nutshell, this means that everything that is **not** related to the **code of the Diffusers library** (including the documentation) should **not** be asked on GitHub, but rather on either the [forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
**Please consider the following guidelines when opening a new issue**:
- Make sure you have searched whether your issue has already been asked before (use the search bar on GitHub under Issues).
- Please never report a new issue on another (related) issue. If another issue is highly related, please
open a new issue nevertheless and link to the related issue.
- Make sure your issue is written in English. Please use one of the great, free online translation services, such as [DeepL](https://www.deepl.com/translator) to translate from your native language to English if you are not comfortable in English.
- Check whether your issue might be solved by updating to the newest Diffusers version. Before posting your issue, please make sure that `python -c "import diffusers; print(diffusers.__version__)"` is higher or matches the latest Diffusers version.
- Remember that the more effort you put into opening a new issue, the higher the quality of your answer will be and the better the overall quality of the Diffusers issues.
New issues usually include the following.
#### 2.1. Reproducible, minimal bug reports
A bug report should always have a reproducible code snippet and be as minimal and concise as possible.
This means in more detail:
- Narrow the bug down as much as you can, **do not just dump your whole code file**.
- Format your code.
- Do not include any external libraries except for Diffusers depending on them.
- **Always** provide all necessary information about your environment; for this, you can run: `diffusers-cli env` in your shell and copy-paste the displayed information to the issue.
- Explain the issue. If the reader doesn't know what the issue is and why it is an issue, she cannot solve it.
- **Always** make sure the reader can reproduce your issue with as little effort as possible. If your code snippet cannot be run because of missing libraries or undefined variables, the reader cannot help you. Make sure your reproducible code snippet is as minimal as possible and can be copy-pasted into a simple Python shell.
- If in order to reproduce your issue a model and/or dataset is required, make sure the reader has access to that model or dataset. You can always upload your model or dataset to the [Hub](https://huggingface.co) to make it easily downloadable. Try to keep your model and dataset as small as possible, to make the reproduction of your issue as effortless as possible.
For more information, please have a look through the [How to write a good issue](#how-to-write-a-good-issue) section.
You can open a bug report [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&projects=&template=bug-report.yml).
#### 2.2. Feature requests
A world-class feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
You can open a feature request [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feature_request.md&title=).
#### 2.3 Feedback
Feedback about the library design and why it is good or not good helps the core maintainers immensely to build a user-friendly library. To understand the philosophy behind the current design philosophy, please have a look [here](https://huggingface.co/docs/diffusers/conceptual/philosophy). If you feel like a certain design choice does not fit with the current design philosophy, please explain why and how it should be changed. If a certain design choice follows the design philosophy too much, hence restricting use cases, explain why and how it should be changed.
If a certain design choice is very useful for you, please also leave a note as this is great feedback for future design decisions.
You can open an issue about feedback [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=).
#### 2.4 Technical questions
Technical questions are mainly about why certain code of the library was written in a certain way, or what a certain part of the code does. Please make sure to link to the code in question and please provide detail on
why this part of the code is difficult to understand.
You can open an issue about a technical question [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=bug&template=bug-report.yml).
#### 2.5 Proposal to add a new model, scheduler, or pipeline
If the diffusion model community released a new model, pipeline, or scheduler that you would like to see in the Diffusers library, please provide the following information:
* Short description of the diffusion pipeline, model, or scheduler and link to the paper or public release.
* Link to any of its open-source implementation.
* Link to the model weights if they are available.
If you are willing to contribute to the model yourself, let us know so we can best guide you. Also, don't forget
to tag the original author of the component (model, scheduler, pipeline, etc.) by GitHub handle if you can find it.
You can open a request for a model/pipeline/scheduler [here](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=New+model%2Fpipeline%2Fscheduler&template=new-model-addition.yml).
### 3. Answering issues on the GitHub issues tab
Answering issues on GitHub might require some technical knowledge of Diffusers, but we encourage everybody to give it a try even if you are not 100% certain that your answer is correct.
Some tips to give a high-quality answer to an issue:
- Be as concise and minimal as possible.
- Stay on topic. An answer to the issue should concern the issue and only the issue.
- Provide links to code, papers, or other sources that prove or encourage your point.
- Answer in code. If a simple code snippet is the answer to the issue or shows how the issue can be solved, please provide a fully reproducible code snippet.
Also, many issues tend to be simply off-topic, duplicates of other issues, or irrelevant. It is of great
help to the maintainers if you can answer such issues, encouraging the author of the issue to be
more precise, provide the link to a duplicated issue or redirect them to [the forum](https://discuss.huggingface.co/c/discussion-related-to-httpsgithubcomhuggingfacediffusers/63) or [Discord](https://discord.gg/G7tWnz98XR).
If you have verified that the issued bug report is correct and requires a correction in the source code,
please have a look at the next sections.
For all of the following contributions, you will need to open a PR. It is explained in detail how to do so in the [Opening a pull request](#how-to-open-a-pr) section.
### 4. Fixing a "Good first issue"
*Good first issues* are marked by the [Good first issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) label. Usually, the issue already
explains how a potential solution should look so that it is easier to fix.
If the issue hasn't been closed and you would like to try to fix this issue, you can just leave a message "I would like to try this issue.". There are usually three scenarios:
- a.) The issue description already proposes a fix. In this case and if the solution makes sense to you, you can open a PR or draft PR to fix it.
- b.) The issue description does not propose a fix. In this case, you can ask what a proposed fix could look like and someone from the Diffusers team should answer shortly. If you have a good idea of how to fix it, feel free to directly open a PR.
- c.) There is already an open PR to fix the issue, but the issue hasn't been closed yet. If the PR has gone stale, you can simply open a new PR and link to the stale PR. PRs often go stale if the original contributor who wanted to fix the issue suddenly cannot find the time anymore to proceed. This often happens in open-source and is very normal. In this case, the community will be very happy if you give it a new try and leverage the knowledge of the existing PR. If there is already a PR and it is active, you can help the author by giving suggestions, reviewing the PR or even asking whether you can contribute to the PR.
### 5. Contribute to the documentation
A good library **always** has good documentation! The official documentation is often one of the first points of contact for new users of the library, and therefore contributing to the documentation is a **highly
valuable contribution**.
Contributing to the library can have many forms:
- Correcting spelling or grammatical errors.
- Correct incorrect formatting of the docstring. If you see that the official documentation is weirdly displayed or a link is broken, we are very happy if you take some time to correct it.
- Correct the shape or dimensions of a docstring input or output tensor.
- Clarify documentation that is hard to understand or incorrect.
- Update outdated code examples.
- Translating the documentation to another language.
Anything displayed on [the official Diffusers doc page](https://huggingface.co/docs/diffusers/index) is part of the official documentation and can be corrected, adjusted in the respective [documentation source](https://github.com/huggingface/diffusers/tree/main/docs/source).
Please have a look at [this page](https://github.com/huggingface/diffusers/tree/main/docs) on how to verify changes made to the documentation locally.
### 6. Contribute a community pipeline
[Pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) are usually the first point of contact between the Diffusers library and the user.
Pipelines are examples of how to use Diffusers [models](https://huggingface.co/docs/diffusers/api/models/overview) and [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview).
We support two types of pipelines:
- Official Pipelines
- Community Pipelines
Both official and community pipelines follow the same design and consist of the same type of components.
Official pipelines are tested and maintained by the core maintainers of Diffusers. Their code
resides in [src/diffusers/pipelines](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines).
In contrast, community pipelines are contributed and maintained purely by the **community** and are **not** tested.
They reside in [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and while they can be accessed via the [PyPI diffusers package](https://pypi.org/project/diffusers/), their code is not part of the PyPI distribution.
The reason for the distinction is that the core maintainers of the Diffusers library cannot maintain and test all
possible ways diffusion models can be used for inference, but some of them may be of interest to the community.
Officially released diffusion pipelines,
such as Stable Diffusion are added to the core src/diffusers/pipelines package which ensures
high quality of maintenance, no backward-breaking code changes, and testing.
More bleeding edge pipelines should be added as community pipelines. If usage for a community pipeline is high, the pipeline can be moved to the official pipelines upon request from the community. This is one of the ways we strive to be a community-driven library.
To add a community pipeline, one should add a <name-of-the-community>.py file to [examples/community](https://github.com/huggingface/diffusers/tree/main/examples/community) and adapt the [examples/community/README.md](https://github.com/huggingface/diffusers/tree/main/examples/community/README.md) to include an example of the new pipeline.
An example can be seen [here](https://github.com/huggingface/diffusers/pull/2400).
Community pipeline PRs are only checked at a superficial level and ideally they should be maintained by their original authors.
Contributing a community pipeline is a great way to understand how Diffusers models and schedulers work. Having contributed a community pipeline is usually the first stepping stone to contributing an official pipeline to the
core package.
### 7. Contribute to training examples
Diffusers examples are a collection of training scripts that reside in [examples](https://github.com/huggingface/diffusers/tree/main/examples).
We support two types of training examples:
- Official training examples
- Research training examples
Research training examples are located in [examples/research_projects](https://github.com/huggingface/diffusers/tree/main/examples/research_projects) whereas official training examples include all folders under [examples](https://github.com/huggingface/diffusers/tree/main/examples) except the `research_projects` and `community` folders.
The official training examples are maintained by the Diffusers' core maintainers whereas the research training examples are maintained by the community.
This is because of the same reasons put forward in [6. Contribute a community pipeline](#6-contribute-a-community-pipeline) for official pipelines vs. community pipelines: It is not feasible for the core maintainers to maintain all possible training methods for diffusion models.
If the Diffusers core maintainers and the community consider a certain training paradigm to be too experimental or not popular enough, the corresponding training code should be put in the `research_projects` folder and maintained by the author.
Both official training and research examples consist of a directory that contains one or more training scripts, a `requirements.txt` file, and a `README.md` file. In order for the user to make use of the
training examples, it is required to clone the repository:
```bash
git clone https://github.com/huggingface/diffusers
```
as well as to install all additional dependencies required for training:
```bash
cd diffusers
pip install -r examples/<your-example-folder>/requirements.txt
```
Therefore when adding an example, the `requirements.txt` file shall define all pip dependencies required for your training example so that once all those are installed, the user can run the example's training script. See, for example, the [DreamBooth `requirements.txt` file](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/requirements.txt).
Training examples of the Diffusers library should adhere to the following philosophy:
- All the code necessary to run the examples should be found in a single Python file.
- One should be able to run the example from the command line with `python <your-example>.py --args`.
- Examples should be kept simple and serve as **an example** on how to use Diffusers for training. The purpose of example scripts is **not** to create state-of-the-art diffusion models, but rather to reproduce known training schemes without adding too much custom logic. As a byproduct of this point, our examples also strive to serve as good educational materials.
To contribute an example, it is highly recommended to look at already existing examples such as [dreambooth](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py) to get an idea of how they should look like.
We strongly advise contributors to make use of the [Accelerate library](https://github.com/huggingface/accelerate) as it's tightly integrated
with Diffusers.
Once an example script works, please make sure to add a comprehensive `README.md` that states how to use the example exactly. This README should include:
- An example command on how to run the example script as shown [here e.g.](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth#running-locally-with-pytorch).
- A link to some training results (logs, models, ...) that show what the user can expect as shown [here e.g.](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
- If you are adding a non-official/research training example, **please don't forget** to add a sentence that you are maintaining this training example which includes your git handle as shown [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/intel_opts#diffusers-examples-with-intel-optimizations).
If you are contributing to the official training examples, please also make sure to add a test to [examples/test_examples.py](https://github.com/huggingface/diffusers/blob/main/examples/test_examples.py). This is not necessary for non-official training examples.
### 8. Fixing a "Good second issue"
*Good second issues* are marked by the [Good second issue](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22Good+second+issue%22) label. Good second issues are
usually more complicated to solve than [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22).
The issue description usually gives less guidance on how to fix the issue and requires
a decent understanding of the library by the interested contributor.
If you are interested in tackling a good second issue, feel free to open a PR to fix it and link the PR to the issue. If you see that a PR has already been opened for this issue but did not get merged, have a look to understand why it wasn't merged and try to open an improved PR.
Good second issues are usually more difficult to get merged compared to good first issues, so don't hesitate to ask for help from the core maintainers. If your PR is almost finished the core maintainers can also jump into your PR and commit to it in order to get it merged.
### 9. Adding pipelines, models, schedulers
Pipelines, models, and schedulers are the most important pieces of the Diffusers library.
They provide easy access to state-of-the-art diffusion technologies and thus allow the community to
build powerful generative AI applications.
By adding a new model, pipeline, or scheduler you might enable a new powerful use case for any of the user interfaces relying on Diffusers which can be of immense value for the whole generative AI ecosystem.
Diffusers has a couple of open feature requests for all three components - feel free to gloss over them
if you don't know yet what specific component you would like to add:
- [Model or pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22)
- [Scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Before adding any of the three components, it is strongly recommended that you give the [Philosophy guide](https://github.com/huggingface/diffusers/blob/main/PHILOSOPHY.md) a read to better understand the design of any of the three components. Please be aware that
we cannot merge model, scheduler, or pipeline additions that strongly diverge from our design philosophy
as it will lead to API inconsistencies. If you fundamentally disagree with a design choice, please
open a [Feedback issue](https://github.com/huggingface/diffusers/issues/new?assignees=&labels=&template=feedback.md&title=) instead so that it can be discussed whether a certain design
pattern/design choice shall be changed everywhere in the library and whether we shall update our design philosophy. Consistency across the library is very important for us.
Please make sure to add links to the original codebase/paper to the PR and ideally also ping the
original author directly on the PR so that they can follow the progress and potentially help with questions.
If you are unsure or stuck in the PR, don't hesitate to leave a message to ask for a first review or help.
## How to write a good issue
**The better your issue is written, the higher the chances that it will be quickly resolved.**
1. Make sure that you've used the correct template for your issue. You can pick between *Bug Report*, *Feature Request*, *Feedback about API Design*, *New model/pipeline/scheduler addition*, *Forum*, or a blank issue. Make sure to pick the correct one when opening [a new issue](https://github.com/huggingface/diffusers/issues/new/choose).
2. **Be precise**: Give your issue a fitting title. Try to formulate your issue description as simple as possible. The more precise you are when submitting an issue, the less time it takes to understand the issue and potentially solve it. Make sure to open an issue for one issue only and not for multiple issues. If you found multiple issues, simply open multiple issues. If your issue is a bug, try to be as precise as possible about what bug it is - you should not just write "Error in diffusers".
3. **Reproducibility**: No reproducible code snippet == no solution. If you encounter a bug, maintainers **have to be able to reproduce** it. Make sure that you include a code snippet that can be copy-pasted into a Python interpreter to reproduce the issue. Make sure that your code snippet works, *i.e.* that there are no missing imports or missing links to images, ... Your issue should contain an error message **and** a code snippet that can be copy-pasted without any changes to reproduce the exact same error message. If your issue is using local model weights or local data that cannot be accessed by the reader, the issue cannot be solved. If you cannot share your data or model, try to make a dummy model or dummy data.
4. **Minimalistic**: Try to help the reader as much as you can to understand the issue as quickly as possible by staying as concise as possible. Remove all code / all information that is irrelevant to the issue. If you have found a bug, try to create the easiest code example you can to demonstrate your issue, do not just dump your whole workflow into the issue as soon as you have found a bug. E.g., if you train a model and get an error at some point during the training, you should first try to understand what part of the training code is responsible for the error and try to reproduce it with a couple of lines. Try to use dummy data instead of full datasets.
5. Add links. If you are referring to a certain naming, method, or model make sure to provide a link so that the reader can better understand what you mean. If you are referring to a specific PR or issue, make sure to link it to your issue. Do not assume that the reader knows what you are talking about. The more links you add to your issue the better.
6. Formatting. Make sure to nicely format your issue by formatting code into Python code syntax, and error messages into normal code syntax. See the [official GitHub formatting docs](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) for more information.
7. Think of your issue not as a ticket to be solved, but rather as a beautiful entry to a well-written encyclopedia. Every added issue is a contribution to publicly available knowledge. By adding a nicely written issue you not only make it easier for maintainers to solve your issue, but you are helping the whole community to better understand a certain aspect of the library.
## How to write a good PR
1. Be a chameleon. Understand existing design patterns and syntax and make sure your code additions flow seamlessly into the existing code base. Pull requests that significantly diverge from existing design patterns or user interfaces will not be merged.
2. Be laser focused. A pull request should solve one problem and one problem only. Make sure to not fall into the trap of "also fixing another problem while we're adding it". It is much more difficult to review pull requests that solve multiple, unrelated problems at once.
3. If helpful, try to add a code snippet that displays an example of how your addition can be used.
4. The title of your pull request should be a summary of its contribution.
5. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
6. To indicate a work in progress please prefix the title with `[WIP]`. These
are useful to avoid duplicated work, and to differentiate it from PRs ready
to be merged;
7. Try to formulate and format your text as explained in [How to write a good issue](#how-to-write-a-good-issue).
8. Make sure existing tests pass;
9. Add high-coverage tests. No quality testing = no merge.
- If you are adding new `@slow` tests, make sure they pass using
`RUN_SLOW=1 python -m pytest tests/test_my_new_model.py`.
CircleCI does not run the slow tests, but GitHub Actions does every night!
10. All public methods must have informative docstrings that work nicely with markdown. See [`pipeline_latent_diffusion.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py) for an example.
11. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
[`hf-internal-testing`](https://huggingface.co/hf-internal-testing) or [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images) to place these files.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
## How to open a PR
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🧨 Diffusers. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/diffusers/blob/42f25d601a910dceadaee6c44345896b4cfa9928/setup.py#L270)):
1. Fork the [repository](https://github.com/huggingface/diffusers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone git@github.com:<your GitHub handle>/diffusers.git
$ cd diffusers
$ git remote add upstream https://github.com/huggingface/diffusers.git
```
3. Create a new branch to hold your development changes:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a virtual environment:
```bash
$ pip install -e ".[dev]"
```
If you have already cloned the repo, you might need to `git pull` to get the most recent changes in the
library.
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
Before you run the tests, please make sure you install the dependencies required for testing. You can do so
with this command:
```bash
$ pip install -e ".[test]"
```
You can also run the full test suite with the following command, but it takes
a beefy machine to produce a result in a decent amount of time now that
Diffusers has grown a lot. Here is the command for it:
```bash
$ make test
```
🧨 Diffusers relies on `ruff` and `isort` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
```bash
$ make style
```
🧨 Diffusers also uses `ruff` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however, you can also run the same checks with:
```bash
$ make quality
```
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit -m "A descriptive message about your changes."
```
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
$ git pull upstream main
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied, go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/diffusers/tree/main/tests).
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
$ python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
In fact, that's how `make test` is implemented!
You can specify a smaller set of tests in order to test only the feature
you're working on.
By default, slow tests are skipped. Set the `RUN_SLOW` environment variable to
`yes` to run them. This will download many gigabytes of models — make sure you
have enough disk space and a good Internet connection, or a lot of patience!
```bash
$ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/
```
`unittest` is fully supported, here's how to run tests with it:
```bash
$ python -m unittest discover -s tests -t . -v
$ python -m unittest discover -s examples -t examples -v
```
### Syncing forked main with upstream (HuggingFace) main
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead, merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```bash
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
$ git push --set-upstream origin your-branch-for-syncing
```
### Style guide
For documentation strings, 🧨 Diffusers follows the [Google style](https://google.github.io/styleguide/pyguide.html).

View File

@@ -346,8 +346,6 @@
title: Flux2Transformer2DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/glm_image_transformer2d
title: GlmImageTransformer2DModel
- local: api/models/hidream_image_transformer
title: HiDreamImageTransformer2DModel
- local: api/models/hunyuan_transformer2d
@@ -496,8 +494,6 @@
title: Bria 3.2
- local: api/pipelines/bria_fibo
title: Bria Fibo
- local: api/pipelines/bria_fibo_edit
title: Bria Fibo Edit
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogview3
@@ -544,8 +540,6 @@
title: Flux2
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/glm_image
title: GLM-Image
- local: api/pipelines/hidream
title: HiDream-I1
- local: api/pipelines/hunyuandit

View File

@@ -1,18 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# GlmImageTransformer2DModel
A Diffusion Transformer model for 2D data from [GlmImageTransformer2DModel] (TODO).
## GlmImageTransformer2DModel
[[autodoc]] GlmImageTransformer2DModel

View File

@@ -1,33 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Bria Fibo Edit
Fibo Edit is an 8B parameter image-to-image model that introduces a new paradigm of structured control, operating on JSON inputs paired with source images to enable deterministic and repeatable editing workflows.
Featuring native masking for granular precision, it moves beyond simple prompt-based diffusion to offer explicit, interpretable control optimized for production environments.
Its lightweight architecture is designed for deep customization, empowering researchers to build specialized "Edit" models for domain-specific tasks while delivering top-tier aesthetic quality
## Usage
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/Fibo-Edit), fill in the form and accept the gate. Once you are in, you need to login so that your system knows youve accepted the gate._
Use the command below to log in:
```bash
hf auth login
```
## BriaFiboEditPipeline
[[autodoc]] BriaFiboEditPipeline
- all
- __call__

View File

@@ -99,9 +99,3 @@ image.save("chroma-single-file.png")
[[autodoc]] ChromaImg2ImgPipeline
- all
- __call__
## ChromaInpaintPipeline
[[autodoc]] ChromaInpaintPipeline
- all
- __call__

View File

@@ -35,11 +35,5 @@ The [official implementation](https://github.com/black-forest-labs/flux2/blob/5a
## Flux2Pipeline
[[autodoc]] Flux2Pipeline
- all
- __call__
## Flux2KleinPipeline
[[autodoc]] Flux2KleinPipeline
- all
- __call__

View File

@@ -1,95 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# GLM-Image
## Overview
GLM-Image is an image generation model adopts a hybrid autoregressive + diffusion decoder architecture, effectively pushing the upper bound of visual fidelity and fine-grained details. In general image generation quality, it aligns with industry-standard LDM-based approaches, while demonstrating significant advantages in knowledge-intensive image generation scenarios.
Model architecture: a hybrid autoregressive + diffusion decoder design、
+ Autoregressive generator: a 9B-parameter model initialized from [GLM-4-9B-0414](https://huggingface.co/zai-org/GLM-4-9B-0414), with an expanded vocabulary to incorporate visual tokens. The model first generates a compact encoding of approximately 256 tokens, then expands to 1K4K tokens, corresponding to 1K2K high-resolution image outputs. You can check AR model in class `GlmImageForConditionalGeneration` of `transformers` library.
+ Diffusion Decoder: a 7B-parameter decoder based on a single-stream DiT architecture for latent-space image decoding. It is equipped with a Glyph Encoder text module, significantly improving accurate text rendering within images.
Post-training with decoupled reinforcement learning: the model introduces a fine-grained, modular feedback strategy using the GRPO algorithm, substantially enhancing both semantic understanding and visual detail quality.
+ Autoregressive module: provides low-frequency feedback signals focused on aesthetics and semantic alignment, improving instruction following and artistic expressiveness.
+ Decoder module: delivers high-frequency feedback targeting detail fidelity and text accuracy, resulting in highly realistic textures, lighting, and color reproduction, as well as more precise text rendering.
GLM-Image supports both text-to-image and image-to-image generation within a single model
+ Text-to-image: generates high-detail images from textual descriptions, with particularly strong performance in information-dense scenarios.
+ Image-to-image: supports a wide range of tasks, including image editing, style transfer, multi-subject consistency, and identity-preserving generation for people and objects.
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The codebase can be found [here](https://huggingface.co/zai-org/GLM-Image).
## Usage examples
### Text to Image Generation
```python
import torch
from diffusers.pipelines.glm_image import GlmImagePipeline
pipe = GlmImagePipeline.from_pretrained("zai-org/GLM-Image",torch_dtype=torch.bfloat16,device_map="cuda")
prompt = "A beautifully designed modern food magazine style dessert recipe illustration, themed around a raspberry mousse cake. The overall layout is clean and bright, divided into four main areas: the top left features a bold black title 'Raspberry Mousse Cake Recipe Guide', with a soft-lit close-up photo of the finished cake on the right, showcasing a light pink cake adorned with fresh raspberries and mint leaves; the bottom left contains an ingredient list section, titled 'Ingredients' in a simple font, listing 'Flour 150g', 'Eggs 3', 'Sugar 120g', 'Raspberry puree 200g', 'Gelatin sheets 10g', 'Whipping cream 300ml', and 'Fresh raspberries', each accompanied by minimalist line icons (like a flour bag, eggs, sugar jar, etc.); the bottom right displays four equally sized step boxes, each containing high-definition macro photos and corresponding instructions, arranged from top to bottom as follows: Step 1 shows a whisk whipping white foam (with the instruction 'Whip egg whites to stiff peaks'), Step 2 shows a red-and-white mixture being folded with a spatula (with the instruction 'Gently fold in the puree and batter'), Step 3 shows pink liquid being poured into a round mold (with the instruction 'Pour into mold and chill for 4 hours'), Step 4 shows the finished cake decorated with raspberries and mint leaves (with the instruction 'Decorate with raspberries and mint'); a light brown information bar runs along the bottom edge, with icons on the left representing 'Preparation time: 30 minutes', 'Cooking time: 20 minutes', and 'Servings: 8'. The overall color scheme is dominated by creamy white and light pink, with a subtle paper texture in the background, featuring compact and orderly text and image layout with clear information hierarchy."
image = pipe(
prompt=prompt,
height=32 * 32,
width=36 * 32,
num_inference_steps=30,
guidance_scale=1.5,
generator=torch.Generator(device="cuda").manual_seed(42),
).images[0]
image.save("output_t2i.png")
```
### Image to Image Generation
```python
import torch
from diffusers.pipelines.glm_image import GlmImagePipeline
from PIL import Image
pipe = GlmImagePipeline.from_pretrained("zai-org/GLM-Image",torch_dtype=torch.bfloat16,device_map="cuda")
image_path = "cond.jpg"
prompt = "Replace the background of the snow forest with an underground station featuring an automatic escalator."
image = Image.open(image_path).convert("RGB")
image = pipe(
prompt=prompt,
image=[image], # can input multiple images for multi-image-to-image generation such as [image, image1]
height=33 * 32,
width=32 * 32,
num_inference_steps=30,
guidance_scale=1.5,
generator=torch.Generator(device="cuda").manual_seed(42),
).images[0]
image.save("output_i2i.png")
```
+ Since the AR model used in GLM-Image is configured with `do_sample=True` and a temperature of `0.95` by default, the generated images can vary significantly across runs. We do not recommend setting do_sample=False, as this may lead to incorrect or degenerate outputs from the AR model.
## GlmImagePipeline
[[autodoc]] pipelines.glm_image.pipeline_glm_image.GlmImagePipeline
- all
- __call__
## GlmImagePipelineOutput
[[autodoc]] pipelines.glm_image.pipeline_output.GlmImagePipelineOutput

View File

@@ -24,7 +24,7 @@ The Modular Diffusers docs are organized as shown below.
## Quickstart
- The [quickstart](./quickstart) shows you how to run a modular pipeline, understand its structure, and customize it by modifying the blocks that compose it.
- A [quickstart](./quickstart) demonstrating how to implement an example workflow with Modular Diffusers.
## ModularPipelineBlocks

View File

@@ -12,250 +12,333 @@ specific language governing permissions and limitations under the License.
# Quickstart
Modular Diffusers is a framework for quickly building flexible and customizable pipelines. At the core of Modular Diffusers are [`ModularPipelineBlocks`] that can be combined with other blocks to adapt to new workflows. The blocks are converted into a [`ModularPipeline`], a friendly user-facing interface for running generation tasks.
Modular Diffusers is a framework for quickly building flexible and customizable pipelines. At the core of Modular Diffusers are [`ModularPipelineBlocks`] that can be combined with other blocks to adapt to new workflows. The blocks are converted into a [`ModularPipeline`], a friendly user-facing interface developers can use.
This guide shows you how to run a modular pipeline, understand its structure, and customize it by modifying the blocks that compose it.
This doc will show you how to implement a [Differential Diffusion](https://differential-diffusion.github.io/) pipeline with the modular framework.
## Run a pipeline
## ModularPipelineBlocks
[`ModularPipeline`] is the main interface for loading, running, and managing modular pipelines.
[`ModularPipelineBlocks`] are *definitions* that specify the components, inputs, outputs, and computation logic for a single step in a pipeline. There are four types of blocks.
- [`ModularPipelineBlocks`] is the most basic block for a single step.
- [`SequentialPipelineBlocks`] is a multi-block that composes other blocks linearly. The outputs of one block are the inputs to the next block.
- [`LoopSequentialPipelineBlocks`] is a multi-block that runs iteratively and is designed for iterative workflows.
- [`AutoPipelineBlocks`] is a collection of blocks for different workflows and it selects which block to run based on the input. It is designed to conveniently package multiple workflows into a single pipeline.
[Differential Diffusion](https://differential-diffusion.github.io/) is an image-to-image workflow. Start with the `IMAGE2IMAGE_BLOCKS` preset, a collection of `ModularPipelineBlocks` for image-to-image generation.
```py
from diffusers.modular_pipelines.stable_diffusion_xl import IMAGE2IMAGE_BLOCKS
IMAGE2IMAGE_BLOCKS = InsertableDict([
("text_encoder", StableDiffusionXLTextEncoderStep),
("image_encoder", StableDiffusionXLVaeEncoderStep),
("input", StableDiffusionXLInputStep),
("set_timesteps", StableDiffusionXLImg2ImgSetTimestepsStep),
("prepare_latents", StableDiffusionXLImg2ImgPrepareLatentsStep),
("prepare_add_cond", StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep),
("denoise", StableDiffusionXLDenoiseStep),
("decode", StableDiffusionXLDecodeStep)
])
```
## Pipeline and block states
Modular Diffusers uses *state* to communicate data between blocks. There are two types of states.
- [`PipelineState`] is a global state that can be used to track all inputs and outputs across all blocks.
- [`BlockState`] is a local view of relevant variables from [`PipelineState`] for an individual block.
## Customizing blocks
[Differential Diffusion](https://differential-diffusion.github.io/) differs from standard image-to-image in its `prepare_latents` and `denoise` blocks. All the other blocks can be reused, but you'll need to modify these two.
Create placeholder `ModularPipelineBlocks` for `prepare_latents` and `denoise` by copying and modifying the existing ones.
Print the `denoise` block to see that it is composed of [`LoopSequentialPipelineBlocks`] with three sub-blocks, `before_denoiser`, `denoiser`, and `after_denoiser`. Only the `before_denoiser` sub-block needs to be modified to prepare the latent input for the denoiser based on the change map.
```py
denoise_blocks = IMAGE2IMAGE_BLOCKS["denoise"]()
print(denoise_blocks)
```
Replace the `StableDiffusionXLLoopBeforeDenoiser` sub-block with the new `SDXLDiffDiffLoopBeforeDenoiser` block.
```py
# Copy existing blocks as placeholders
class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks):
"""Copied from StableDiffusionXLImg2ImgPrepareLatentsStep - will modify later"""
# ... same implementation as StableDiffusionXLImg2ImgPrepareLatentsStep
class SDXLDiffDiffDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLLoopDenoiser, StableDiffusionXLLoopAfterDenoiser]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
```
### prepare_latents
The `prepare_latents` block requires the following changes.
- a processor to process the change map
- a new `inputs` to accept the user-provided change map, `timestep` for precomputing all the latents and `num_inference_steps` to create the mask for updating the image regions
- update the computation in the `__call__` method for processing the change map and creating the masks, and storing it in the [`BlockState`]
```diff
class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks):
@property
def expected_components(self) -> List[ComponentSpec]:
return [
ComponentSpec("vae", AutoencoderKL),
ComponentSpec("scheduler", EulerDiscreteScheduler),
+ ComponentSpec("mask_processor", VaeImageProcessor, config=FrozenDict({"do_normalize": False, "do_convert_grayscale": True}))
]
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("generator"),
+ InputParam("diffdiff_map", required=True),
- InputParam("latent_timestep", required=True, type_hint=torch.Tensor),
+ InputParam("timesteps", type_hint=torch.Tensor),
+ InputParam("num_inference_steps", type_hint=int),
]
@property
def intermediate_outputs(self) -> List[OutputParam]:
return [
+ OutputParam("original_latents", type_hint=torch.Tensor),
+ OutputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, state: PipelineState):
# ... existing logic ...
+ # Process change map and create masks
+ diffdiff_map = components.mask_processor.preprocess(block_state.diffdiff_map, height=latent_height, width=latent_width)
+ thresholds = torch.arange(block_state.num_inference_steps, dtype=diffdiff_map.dtype) / block_state.num_inference_steps
+ block_state.diffdiff_masks = diffdiff_map > (thresholds + (block_state.denoising_start or 0))
+ block_state.original_latents = block_state.latents
```
### denoise
The `before_denoiser` sub-block requires the following changes.
- a new `inputs` to accept a `denoising_start` parameter, `original_latents` and `diffdiff_masks` from the `prepare_latents` block
- update the computation in the `__call__` method for applying Differential Diffusion
```diff
class SDXLDiffDiffLoopBeforeDenoiser(ModularPipelineBlocks):
@property
def description(self) -> str:
return (
"Step within the denoising loop for differential diffusion that prepare the latent input for the denoiser"
)
@property
def inputs(self) -> List[str]:
return [
InputParam("latents", required=True, type_hint=torch.Tensor),
+ InputParam("denoising_start"),
+ InputParam("original_latents", type_hint=torch.Tensor),
+ InputParam("diffdiff_masks", type_hint=torch.Tensor),
]
def __call__(self, components, block_state, i, t):
+ # Apply differential diffusion logic
+ if i == 0 and block_state.denoising_start is None:
+ block_state.latents = block_state.original_latents[:1]
+ else:
+ block_state.mask = block_state.diffdiff_masks[i].unsqueeze(0).unsqueeze(1)
+ block_state.latents = block_state.original_latents[i] * block_state.mask + block_state.latents * (1 - block_state.mask)
# ... rest of existing logic ...
```
## Assembling the blocks
You should have all the blocks you need at this point to create a [`ModularPipeline`].
Copy the existing `IMAGE2IMAGE_BLOCKS` preset and for the `set_timesteps` block, use the `set_timesteps` from the `TEXT2IMAGE_BLOCKS` because Differential Diffusion doesn't require a `strength` parameter.
Set the `prepare_latents` and `denoise` blocks to the `SDXLDiffDiffPrepareLatentsStep` and `SDXLDiffDiffDenoiseStep` blocks you just modified.
Call [`SequentialPipelineBlocks.from_blocks_dict`] on the blocks to create a `SequentialPipelineBlocks`.
```py
DIFFDIFF_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
DIFFDIFF_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
DIFFDIFF_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
DIFFDIFF_BLOCKS["denoise"] = SDXLDiffDiffDenoiseStep
dd_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_BLOCKS)
print(dd_blocks)
```
## ModularPipeline
Convert the [`SequentialPipelineBlocks`] into a [`ModularPipeline`] with the [`ModularPipeline.init_pipeline`] method. This initializes the expected components to load from a `modular_model_index.json` file. Explicitly load the components by calling [`ModularPipeline.load_components`].
It is a good idea to initialize the [`ComponentManager`] with the pipeline to help manage the different components. Once you call [`~ModularPipeline.load_components`], the components are registered to the [`ComponentManager`] and can be shared between workflows. The example below uses the `collection` argument to assign the components a `"diffdiff"` label for better organization.
```py
from diffusers.modular_pipelines import ComponentsManager
components = ComponentManager()
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", components_manager=components, collection="diffdiff")
dd_pipeline.load_componenets(torch_dtype=torch.float16)
dd_pipeline.to("cuda")
```
## Adding workflows
Other workflows can be added to the [`ModularPipeline`] to support additional features without rewriting the entire pipeline from scratch.
This section demonstrates how to add an IP-Adapter or ControlNet.
### IP-Adapter
Stable Diffusion XL already has a preset IP-Adapter block that you can use and doesn't require any changes to the existing Differential Diffusion pipeline.
```py
from diffusers.modular_pipelines.stable_diffusion_xl.encoders import StableDiffusionXLAutoIPAdapterStep
ip_adapter_block = StableDiffusionXLAutoIPAdapterStep()
```
Use the [`sub_blocks.insert`] method to insert it into the [`ModularPipeline`]. The example below inserts the `ip_adapter_block` at position `0`. Print the pipeline to see that the `ip_adapter_block` is added and it requires an `ip_adapter_image`. This also added two components to the pipeline, the `image_encoder` and `feature_extractor`.
```py
dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0)
```
Call [`~ModularPipeline.init_pipeline`] to initialize a [`ModularPipeline`] and use [`~ModularPipeline.load_components`] to load the model components. Load and set the IP-Adapter to run the pipeline.
```py
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
dd_pipeline.loader.set_ip_adapter_scale(0.6)
dd_pipeline = dd_pipeline.to(device)
ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device=device).manual_seed(42)
image = dd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
ip_adapter_image=ip_adapter_image,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
### ControlNet
Stable Diffusion XL already has a preset ControlNet block that can readily be used.
```py
from diffusers.modular_pipelines.stable_diffusion_xl.modular_blocks import StableDiffusionXLAutoControlNetInputStep
control_input_block = StableDiffusionXLAutoControlNetInputStep()
```
However, it requires modifying the `denoise` block because that's where the ControlNet injects the control information into the UNet.
Modify the `denoise` block by replacing the `StableDiffusionXLLoopDenoiser` sub-block with the `StableDiffusionXLControlNetLoopDenoiser`.
```py
class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper):
block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLControlNetLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser]
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep()
```
Insert the `controlnet_input` block and replace the `denoise` block with the new `controlnet_denoise_block`. Initialize a [`ModularPipeline`] and [`~ModularPipeline.load_components`] into it.
```py
dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7)
dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block
dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
dd_pipeline = dd_pipeline.to(device)
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device=device).manual_seed(42)
image = dd_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
control_image=control_image,
controlnet_conditioning_scale=0.5,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
### AutoPipelineBlocks
The Differential Diffusion, IP-Adapter, and ControlNet workflows can be bundled into a single [`ModularPipeline`] by using [`AutoPipelineBlocks`]. This allows automatically selecting which sub-blocks to run based on the inputs like `control_image` or `ip_adapter_image`. If none of these inputs are passed, then it defaults to the Differential Diffusion.
Use `block_trigger_inputs` to only run the `SDXLDiffDiffControlNetDenoiseStep` block if a `control_image` input is provided. Otherwise, the `SDXLDiffDiffDenoiseStep` is used.
```py
class SDXLDiffDiffAutoDenoiseStep(AutoPipelineBlocks):
block_classes = [SDXLDiffDiffControlNetDenoiseStep, SDXLDiffDiffDenoiseStep]
block_names = ["controlnet_denoise", "denoise"]
block_trigger_inputs = ["controlnet_cond", None]
```
Add the `ip_adapter` and `controlnet_input` blocks.
```py
DIFFDIFF_AUTO_BLOCKS = IMAGE2IMAGE_BLOCKS.copy()
DIFFDIFF_AUTO_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep
DIFFDIFF_AUTO_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"]
DIFFDIFF_AUTO_BLOCKS["denoise"] = SDXLDiffDiffAutoDenoiseStep
DIFFDIFF_AUTO_BLOCKS.insert("ip_adapter", StableDiffusionXLAutoIPAdapterStep, 0)
DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoInput, 7)
```
Call [`SequentialPipelineBlocks.from_blocks_dict`] to create a [`SequentialPipelineBlocks`] and create a [`ModularPipeline`] and load in the model components to run.
```py
dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS)
dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff")
dd_pipeline.load_components(torch_dtype=torch.float16)
```
## Share
Add your [`ModularPipeline`] to the Hub with [`~ModularPipeline.save_pretrained`] and set `push_to_hub` argument to `True`.
```py
dd_pipeline.save_pretrained("YiYiXu/test_modular_doc", push_to_hub=True)
```
Other users can load the [`ModularPipeline`] with [`~ModularPipeline.from_pretrained`].
```py
import torch
from diffusers import ModularPipeline
from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
pipe = ModularPipeline.from_pretrained("Qwen/Qwen-Image")
pipe.load_components(torch_dtype=torch.bfloat16)
pipe.to("cuda")
components = ComponentsManager()
image = pipe(
prompt="cat wizard with red hat, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney",
).images[0]
image
diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_components(torch_dtype=torch.float16)
```
[`~ModularPipeline.from_pretrained`] uses lazy loading - it reads the configuration to learn where to load each component from, but doesn't actually load the model weights until you call [`~ModularPipeline.load_components`]. This gives you control over when and how components are loaded.
Learn more about creating and loading pipelines in the [Creating a pipeline](https://huggingface.co/docs/diffusers/modular_diffusers/modular_pipeline#creating-a-pipeline) and [Loading components](https://huggingface.co/docs/diffusers/modular_diffusers/modular_pipeline#loading-components) guides.
## Understand the structure
A [`ModularPipeline`] has two parts:
- **State**: the loaded components (models, schedulers, processors) and configuration
- **Definition**: the [`ModularPipelineBlocks`] that specify inputs, outputs, expected components and computation logic
The blocks define *what* the pipeline does. Access them through `pipe.blocks`.
```py
print(pipe.blocks)
```
```
QwenImageAutoBlocks(
Class: SequentialPipelineBlocks
Description: Auto Modular pipeline for text-to-image, image-to-image, inpainting, and controlnet tasks using QwenImage.
Supported workflows:
- `text2image`: requires `prompt`
- `image2image`: requires `prompt`, `image`
- `inpainting`: requires `prompt`, `mask_image`, `image`
- `controlnet_text2image`: requires `prompt`, `control_image`
...
Components:
text_encoder (`Qwen2_5_VLForConditionalGeneration`)
vae (`AutoencoderKLQwenImage`)
transformer (`QwenImageTransformer2DModel`)
...
Sub-Blocks:
[0] text_encoder (QwenImageAutoTextEncoderStep)
[1] vae_encoder (QwenImageAutoVaeEncoderStep)
[2] controlnet_vae_encoder (QwenImageOptionalControlNetVaeEncoderStep)
[3] denoise (QwenImageAutoCoreDenoiseStep)
[4] decode (QwenImageAutoDecodeStep)
)
```
The output returns:
- The supported workflows (text2image, image2image, inpainting, etc.)
- The Sub-Blocks it's composed of (text_encoder, vae_encoder, denoise, decode)
### Workflows
`QwenImageAutoBlocks` is a [`ConditionalPipelineBlocks`], so this pipeline supports multiple workflows and adapts its behavior based on the inputs you provide. For example, if you pass `image` to the pipeline, it runs an image-to-image workflow instead of text-to-image.
```py
from diffusers.utils import load_image
input_image = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/cute_cat.png?raw=true")
image = pipe(
prompt="cat wizard with red hat, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney",
image=input_image,
).images[0]
```
Use `get_workflow()` to extract the blocks for a specific workflow.
```py
img2img_blocks = pipe.blocks.get_workflow("image2image")
```
Conditional blocks are convenient for users, but their conditional logic adds complexity when customizing or debugging. Extracting a workflow gives you the specific blocks relevant to your workflow, making it easier to work with. Learn more in the [AutoPipelineBlocks](https://huggingface.co/docs/diffusers/modular_diffusers/auto_pipeline_blocks) guide.
### Sub-blocks
`QwenImageAutoBlocks` is itself composed of smaller blocks: `text_encoder`, `vae_encoder`, `controlnet_vae_encoder`, `denoise`, and `decode`. Access them through the `sub_blocks` property.
The `doc` property is useful for seeing the full documentation of any block, including its inputs, outputs, and components.
```py
vae_encoder_block = pipe.blocks.sub_blocks["vae_encoder"]
print(vae_encoder_block.doc)
```
This block can be converted to a pipeline and run on its own with [`~ModularPipelineBlocks.init_pipeline`].
```py
vae_encoder_pipe = vae_encoder_block.init_pipeline()
# Reuse the VAE we already loaded, we can reuse it with update_components() method
vae_encoder_pipe.update_components(vae=pipe.vae)
# Run just this block
image_latents = vae_encoder_pipe(image=input_image).image_latents
print(image_latents.shape)
```
It reuses the VAE from our original pipeline instead of reloading it, keeping memory usage efficient. Learn more in the [Loading components](https://huggingface.co/docs/diffusers/modular_diffusers/modular_pipeline#loading-components) guide.
Since blocks are composable, you can modify the pipeline's definition by adding, removing, or swapping blocks to create new workflows. In the next section, we'll add a canny edge detection block to a ControlNet pipeline, so you can pass a regular image instead of a pre-processed canny edge map.
## Compose new workflows
Let's add a canny edge detection block to a ControlNet pipeline. First, load a pre-built canny block from the Hub (see [Building Custom Blocks](https://huggingface.co/docs/diffusers/modular_diffusers/custom_blocks) to create your own).
```py
from diffusers.modular_pipelines import ModularPipelineBlocks
# Load a canny block from the Hub
canny_block = ModularPipelineBlocks.from_pretrained(
"diffusers-internal-dev/canny-filtering",
trust_remote_code=True,
)
print(canny_block.doc)
```
```
class CannyBlock
Inputs:
image (`Union[Image, ndarray]`):
Image to compute canny filter on
low_threshold (`int`, *optional*, defaults to 50):
Low threshold for the canny filter.
high_threshold (`int`, *optional*, defaults to 200):
High threshold for the canny filter.
...
Outputs:
control_image (`PIL.Image`):
Canny map for input image
```
Use `get_workflow` to extract the ControlNet workflow from [`QwenImageAutoBlocks`].
```py
# Get the controlnet workflow that we want to work with
blocks = pipe.blocks.get_workflow("controlnet_text2image")
print(blocks.doc)
```
```
class SequentialPipelineBlocks
Inputs:
prompt (`str`):
The prompt or prompts to guide image generation.
control_image (`Image`):
Control image for ControlNet conditioning.
...
```
It requires control_image as input. After inserting the canny block, the pipeline will accept a regular image instead.
```py
# and insert canny at the beginning
blocks.sub_blocks.insert("canny", canny_block, 0)
# Check the updated structure: CannyBlock is now listed as first sub-block
print(blocks)
# Check the updated doc: notice the pipeline now takes "image" as input
# even though it's a controlnet pipeline, because canny preprocesses it into control_image
print(blocks.doc)
```
```
class SequentialPipelineBlocks
Inputs:
image (`Union[Image, ndarray]`):
Image to compute canny filter on
low_threshold (`int`, *optional*, defaults to 50):
Low threshold for the canny filter.
high_threshold (`int`, *optional*, defaults to 200):
High threshold for the canny filter.
prompt (`str`):
The prompt or prompts to guide image generation.
...
```
Now the pipeline takes `image` as input - the canny block will preprocess it into `control_image` automatically.
Create a pipeline from the modified blocks and load a ControlNet model. We use [`ComponentsManager`] to enable CPU offloading for reduced memory usage (learn more in the [ComponentsManager](./components_manager) guide).
```py
from diffusers import ComponentsManager
manager = ComponentsManager()
manager.enable_auto_cpu_offload(device="cuda:0")
pipeline = blocks.init_pipeline("Qwen/Qwen-Image", components_manager=manager)
pipeline.load_components(torch_dtype=torch.bfloat16)
# Load the ControlNet model
controlnet_spec = pipeline.get_component_spec("controlnet")
controlnet_spec.pretrained_model_name_or_path = "InstantX/Qwen-Image-ControlNet-Union"
controlnet = controlnet_spec.load(torch_dtype=torch.bfloat16)
pipeline.update_components(controlnet=controlnet)
```
Now run the pipeline - the canny block preprocesses the image for ControlNet.
```py
from diffusers.utils import load_image
prompt = "cat wizard with red hat, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney"
image = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/cute_cat.png?raw=true")
output = pipeline(
prompt=prompt,
image=image,
).images[0]
output
```
## Next steps
<hfoptions id="next">
<hfoption id="Build custom blocks">
Learn how to create your own blocks with custom logic in the [Building Custom Blocks](./custom_blocks) guide.
</hfoption>
<hfoption id="Share components">
Use [`ComponentsManager`](./components_manager) to share models across multiple pipelines and manage memory efficiently.
</hfoption>
<hfoption id="Visual interface">
Connect modular pipelines to [Mellon](https://github.com/cubiq/Mellon), a visual node-based interface for building workflows. Custom blocks built with Modular Diffusers work out of the box with Mellon - no UI code required. Read more in Mellon guide.
</hfoption>
</hfoptions>

View File

@@ -1,22 +1,14 @@
# DreamBooth training example for FLUX.2 [dev] and FLUX 2 [klein]
# DreamBooth training example for FLUX.2 [dev]
[DreamBooth](https://huggingface.co/papers/2208.12242) is a method to personalize image generation models given just a few (3~5) images of a subject/concept.
[LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters.
The `train_dreambooth_lora_flux2.py`, `train_dreambooth_lora_flux2_klein.py` scripts shows how to implement the training procedure for [LoRAs](https://huggingface.co/blog/lora) and adapt it for [FLUX.2 [dev]](https://huggingface.co/black-forest-labs/FLUX.2-dev) and [FLUX 2 [klein]](https://huggingface.co/black-forest-labs/FLUX.2-klein).
> [!NOTE]
> **Model Variants**
>
> We support two FLUX model families:
> - **FLUX.2 [dev]**: The full-size model using Mistral Small 3.1 as the text encoder. Very capable but memory intensive.
> - **FLUX 2 [klein]**: Available in 4B and 9B parameter variants, using Qwen VL as the text encoder. Much more memory efficient and suitable for consumer hardware.
The `train_dreambooth_lora_flux2.py` script shows how to implement the training procedure for [LoRAs](https://huggingface.co/blog/lora) and adapt it for [FLUX.2 [dev]](https://github.com/black-forest-labs/flux2).
> [!NOTE]
> **Memory consumption**
>
> FLUX.2 [dev] can be quite expensive to run on consumer hardware devices and as a result finetuning it comes with high memory requirements -
> a LoRA with a rank of 16 can exceed XXGB of VRAM for training. FLUX 2 [klein] models (4B and 9B) are significantly more memory efficient alternatives. Below we provide some tips and tricks to reduce memory consumption during training.
> Flux can be quite expensive to run on consumer hardware devices and as a result finetuning it comes with high memory requirements -
> a LoRA with a rank of 16 can exceed XXGB of VRAM for training. below we provide some tips and tricks to reduce memory consumption during training.
> For more tips & guidance on training on a resource-constrained device and general good practices please check out these great guides and trainers for FLUX:
> 1) [`@bghira`'s guide](https://github.com/bghira/SimpleTuner/blob/main/documentation/quickstart/FLUX2.md)
@@ -25,7 +17,7 @@ The `train_dreambooth_lora_flux2.py`, `train_dreambooth_lora_flux2_klein.py` scr
> [!NOTE]
> **Gated model**
>
> As the model is gated, before using it with diffusers you first need to go to the [FLUX.2 [dev] Hugging Face page](https://huggingface.co/black-forest-labs/FLUX.2-dev), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you've accepted the gate. Use the command below to log in:
> As the model is gated, before using it with diffusers you first need to go to the [FLUX.2 [dev] Hugging Face page](https://huggingface.co/black-forest-labs/FLUX.2-dev), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows youve accepted the gate. Use the command below to log in:
```bash
hf auth login
@@ -96,32 +88,23 @@ snapshot_download(
This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform.
As mentioned, Flux2 LoRA training is *very* memory intensive (especially for FLUX.2 [dev]). Here are memory optimizations we can use (some still experimental) for a more memory efficient training:
As mentioned, Flux2 LoRA training is *very* memory intensive. Here are memory optimizations we can use (some still experimental) for a more memory efficient training:
## Memory Optimizations
> [!NOTE] many of these techniques complement each other and can be used together to further reduce memory consumption.
> However some techniques may be mutually exclusive so be sure to check before launching a training run.
### Remote Text Encoder
FLUX.2 [dev] uses Mistral Small 3.1 as text encoder which is quite large and can take up a lot of memory. To mitigate this, we can use the `--remote_text_encoder` flag to enable remote computation of the prompt embeddings using the HuggingFace Inference API.
Flux.2 uses Mistral Small 3.1 as text encoder which is quite large and can take up a lot of memory. To mitigate this, we can use the `--remote_text_encoder` flag to enable remote computation of the prompt embeddings using the HuggingFace Inference API.
This way, the text encoder model is not loaded into memory during training.
> [!IMPORTANT]
> **Remote text encoder is only supported for FLUX.2 [dev]**. FLUX 2 [klein] models use the Qwen VL text encoder and do not support remote text encoding.
> [!NOTE]
> to enable remote text encoding you must either be logged in to your HuggingFace account (`hf auth login`) OR pass a token with `--hub_token`.
### FSDP Text Encoder
FLUX.2 [dev] uses Mistral Small 3.1 as text encoder which is quite large and can take up a lot of memory. To mitigate this, we can use the `--fsdp_text_encoder` flag to enable distributed computation of the prompt embeddings.
Flux.2 uses Mistral Small 3.1 as text encoder which is quite large and can take up a lot of memory. To mitigate this, we can use the `--fsdp_text_encoder` flag to enable distributed computation of the prompt embeddings.
This way, it distributes the memory cost across multiple nodes.
### CPU Offloading
To offload parts of the model to CPU memory, you can use `--offload` flag. This will offload the vae and text encoder to CPU memory and only move them to GPU when needed.
### Latent Caching
Pre-encode the training images with the vae, and then delete it to free up some memory. To enable `latent_caching` simply pass `--cache_latents`.
### QLoRA: Low Precision Training with Quantization
Perform low precision training using 8-bit or 4-bit quantization to reduce memory usage. You can use the following flags:
- **FP8 training** with `torchao`:
@@ -131,29 +114,22 @@ enable FP8 training by passing `--do_fp8_training`.
- **NF4 training** with `bitsandbytes`:
Alternatively, you can use 8-bit or 4-bit quantization with `bitsandbytes` by passing:
`--bnb_quantization_config_path` to enable 4-bit NF4 quantization.
### Gradient Checkpointing and Accumulation
* `--gradient accumulation` refers to the number of updates steps to accumulate before performing a backward/update pass.
by passing a value > 1 you can reduce the amount of backward/update passes and hence also memory reqs.
* with `--gradient checkpointing` we can save memory by not storing all intermediate activations during the forward pass.
Instead, only a subset of these activations (the checkpoints) are stored and the rest is recomputed as needed during the backward pass. Note that this comes at the expanse of a slower backward pass.
### 8-bit-Adam Optimizer
When training with `AdamW`(doesn't apply to `prodigy`) You can pass `--use_8bit_adam` to reduce the memory requirements of training.
Make sure to install `bitsandbytes` if you want to do so.
### Image Resolution
An easy way to mitigate some of the memory requirements is through `--resolution`. `--resolution` refers to the resolution for input images, all the images in the train/validation dataset are resized to this.
Note that by default, images are resized to resolution of 512, but it's good to keep in mind in case you're accustomed to training on higher resolutions.
### Precision of saved LoRA layers
By default, trained transformer layers are saved in the precision dtype in which training was performed. E.g. when training in mixed precision is enabled with `--mixed_precision="bf16"`, final finetuned layers will be saved in `torch.bfloat16` as well.
This reduces memory requirements significantly w/o a significant quality loss. Note that if you do wish to save the final layers in float32 at the expanse of more memory usage, you can do so by passing `--upcast_before_saving`.
## Training Examples
### FLUX.2 [dev] Training
To perform DreamBooth with LoRA on FLUX.2 [dev], run:
```bash
export MODEL_NAME="black-forest-labs/FLUX.2-dev"
export INSTANCE_DIR="dog"
@@ -185,84 +161,13 @@ accelerate launch train_dreambooth_lora_flux2.py \
--push_to_hub
```
### FLUX 2 [klein] Training
FLUX 2 [klein] models are more memory efficient alternatives available in 4B and 9B parameter variants. They use the Qwen VL text encoder instead of Mistral Small 3.1.
> [!NOTE]
> The `--remote_text_encoder` flag is **not supported** for FLUX 2 [klein] models. The Qwen VL text encoder must be loaded locally, but offloading is still supported.
**FLUX 2 [klein] 4B:**
```bash
export MODEL_NAME="black-forest-labs/FLUX.2-klein-4B"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-flux2-klein-4b"
accelerate launch train_dreambooth_lora_flux2_klein.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--do_fp8_training \
--gradient_checkpointing \
--cache_latents \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--guidance_scale=1 \
--use_8bit_adam \
--gradient_accumulation_steps=4 \
--optimizer="adamW" \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=100 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```
**FLUX 2 [klein] 9B:**
```bash
export MODEL_NAME="black-forest-labs/FLUX.2-klein-9B"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-flux2-klein-9b"
accelerate launch train_dreambooth_lora_flux2_klein.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--do_fp8_training \
--gradient_checkpointing \
--cache_latents \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--guidance_scale=1 \
--use_8bit_adam \
--gradient_accumulation_steps=4 \
--optimizer="adamW" \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=100 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```
To better track our training experiments, we're using the following flags in the command above:
* `report_to="wandb` will ensure the training runs are tracked on [Weights and Biases](https://wandb.ai/site). To use it, be sure to install `wandb` with `pip install wandb`. Don't forget to call `wandb login <your_api_key>` before training if you haven't done it before.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
> [!NOTE]
> If you want to train using long prompts, you can use `--max_sequence_length` to set the token limit. Note that this will use more resources and may slow down the training in some cases.
> If you want to train using long prompts with the T5 text encoder, you can use `--max_sequence_length` to set the token limit. The default is 77, but it can be increased to as high as 512. Note that this will use more resources and may slow down the training in some cases.
### FSDP on the transformer
By setting the accelerate configuration with FSDP, the transformer block will be wrapped automatically. E.g. set the configuration to:
@@ -284,6 +189,12 @@ fsdp_config:
fsdp_cpu_ram_efficient_loading: false
```
## LoRA + DreamBooth
[LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.
### Prodigy Optimizer
Prodigy is an adaptive optimizer that dynamically adjusts the learning rate learned parameters based on past gradients, allowing for more efficient convergence.
By using prodigy we can "eliminate" the need for manual learning rate tuning. read more [here](https://huggingface.co/blog/sdxl_lora_advanced_script#adaptive-optimizers).
@@ -295,6 +206,8 @@ to use prodigy, first make sure to install the prodigyopt library: `pip install
> [!TIP]
> When using prodigy it's generally good practice to set- `--learning_rate=1.0`
To perform DreamBooth with LoRA, run:
```bash
export MODEL_NAME="black-forest-labs/FLUX.2-dev"
export INSTANCE_DIR="dog"
@@ -358,10 +271,13 @@ the exact modules for LoRA training. Here are some examples of target modules yo
> keep in mind that while training more layers can improve quality and expressiveness, it also increases the size of the output LoRA weights.
## Training Image-to-Image
Flux.2 lets us perform image editing as well as image generation. We provide a simple script for image-to-image(I2I) LoRA fine-tuning in [train_dreambooth_lora_flux2_img2img.py](./train_dreambooth_lora_flux2_img2img.py) for both T2I and I2I. The optimizations discussed above apply this script, too.
**important**
**Important**
To make sure you can successfully run the latest version of the image-to-image example script, we highly recommend installing from source, specifically from the commit mentioned below. To do this, execute the following steps in a new virtual environment:
@@ -418,6 +334,5 @@ we've added aspect ratio bucketing support which allows training on images with
To enable aspect ratio bucketing, pass `--aspect_ratio_buckets` argument with a semicolon-separated list of height,width pairs, such as:
`--aspect_ratio_buckets="672,1568;688,1504;720,1456;752,1392;800,1328;832,1248;880,1184;944,1104;1024,1024;1104,944;1184,880;1248,832;1328,800;1392,752;1456,720;1504,688;1568,672"
Since Flux.2 finetuning is still an experimental phase, we encourage you to explore different settings and share your insights! 🤗
`
Since Flux.2 finetuning is still an experimental phase, we encourage you to explore different settings and share your insights! 🤗

View File

@@ -1,262 +0,0 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import sys
import tempfile
import safetensors
from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY
sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class DreamBoothLoRAFlux2Klein(ExamplesTestsAccelerate):
instance_data_dir = "docs/source/en/imgs"
instance_prompt = "dog"
pretrained_model_name_or_path = "hf-internal-testing/tiny-flux2-klein"
script_path = "examples/dreambooth/train_dreambooth_lora_flux2_klein.py"
transformer_layer_type = "single_transformer_blocks.0.attn.to_qkv_mlp_proj"
def test_dreambooth_lora_flux2(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--max_sequence_length 8
--text_encoder_out_layers 1
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# when not training the text encoder, all the parameters in the state dict should start
# with `"transformer"` in their names.
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_latent_caching(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--cache_latents
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--max_sequence_length 8
--text_encoder_out_layers 1
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# when not training the text encoder, all the parameters in the state dict should start
# with `"transformer"` in their names.
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys())
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_layers(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--cache_latents
--learning_rate 5.0e-04
--scale_lr
--lora_layers {self.transformer_layer_type}
--lr_scheduler constant
--lr_warmup_steps 0
--max_sequence_length 8
--text_encoder_out_layers 1
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))
# make sure the state_dict has the correct naming in the parameters.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
is_lora = all("lora" in k for k in lora_state_dict.keys())
self.assertTrue(is_lora)
# when not training the text encoder, all the parameters in the state dict should start
# with `"transformer"` in their names. In this test, we only params of
# transformer.single_transformer_blocks.0.attn.to_k should be in the state dict
starts_with_transformer = all(
key.startswith(f"transformer.{self.transformer_layer_type}") for key in lora_state_dict.keys()
)
self.assertTrue(starts_with_transformer)
def test_dreambooth_lora_flux2_checkpointing_checkpoints_total_limit(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path={self.pretrained_model_name_or_path}
--instance_data_dir={self.instance_data_dir}
--output_dir={tmpdir}
--instance_prompt={self.instance_prompt}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=6
--checkpoints_total_limit=2
--max_sequence_length 8
--checkpointing_steps=2
--text_encoder_out_layers 1
""".split()
run_command(self._launch_args + test_args)
self.assertEqual(
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
{"checkpoint-4", "checkpoint-6"},
)
def test_dreambooth_lora_flux2_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path={self.pretrained_model_name_or_path}
--instance_data_dir={self.instance_data_dir}
--output_dir={tmpdir}
--instance_prompt={self.instance_prompt}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=4
--checkpointing_steps=2
--max_sequence_length 8
--text_encoder_out_layers 1
""".split()
run_command(self._launch_args + test_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"})
resume_run_args = f"""
{self.script_path}
--pretrained_model_name_or_path={self.pretrained_model_name_or_path}
--instance_data_dir={self.instance_data_dir}
--output_dir={tmpdir}
--instance_prompt={self.instance_prompt}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--max_train_steps=8
--checkpointing_steps=2
--resume_from_checkpoint=checkpoint-4
--checkpoints_total_limit=2
--max_sequence_length 8
--text_encoder_out_layers 1
""".split()
run_command(self._launch_args + resume_run_args)
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
def test_dreambooth_lora_with_metadata(self):
# Use a `lora_alpha` that is different from `rank`.
lora_alpha = 8
rank = 4
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
{self.script_path}
--pretrained_model_name_or_path {self.pretrained_model_name_or_path}
--instance_data_dir {self.instance_data_dir}
--instance_prompt {self.instance_prompt}
--resolution 64
--train_batch_size 1
--gradient_accumulation_steps 1
--max_train_steps 2
--lora_alpha={lora_alpha}
--rank={rank}
--learning_rate 5.0e-04
--scale_lr
--lr_scheduler constant
--lr_warmup_steps 0
--max_sequence_length 8
--text_encoder_out_layers 1
--output_dir {tmpdir}
""".split()
run_command(self._launch_args + test_args)
# save_pretrained smoke test
state_dict_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors")
self.assertTrue(os.path.isfile(state_dict_file))
# Check if the metadata was properly serialized.
with safetensors.torch.safe_open(state_dict_file, framework="pt", device="cpu") as f:
metadata = f.metadata() or {}
metadata.pop("format", None)
raw = metadata.get(LORA_ADAPTER_METADATA_KEY)
if raw:
raw = json.loads(raw)
loaded_lora_alpha = raw["transformer.lora_alpha"]
self.assertTrue(loaded_lora_alpha == lora_alpha)
loaded_lora_rank = raw["transformer.r"]
self.assertTrue(loaded_lora_rank == rank)

View File

@@ -127,7 +127,7 @@ def save_model_card(
)
model_description = f"""
# Flux.2 DreamBooth LoRA - {repo_id}
# Flux DreamBooth LoRA - {repo_id}
<Gallery />

File diff suppressed because it is too large Load Diff

View File

@@ -44,7 +44,7 @@ CTX = init_empty_weights if is_accelerate_available() else nullcontext
parser = argparse.ArgumentParser()
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
parser.add_argument("--vae_filename", default="flux2-vae.sft", type=str)
parser.add_argument("--dit_filename", default="flux2-dev.safetensors", type=str)
parser.add_argument("--dit_filename", default="flux-dev-dummy.sft", type=str)
parser.add_argument("--vae", action="store_true")
parser.add_argument("--dit", action="store_true")
parser.add_argument("--vae_dtype", type=str, default="fp32")
@@ -385,9 +385,9 @@ def update_state_dict(state_dict: Dict[str, Any], old_key: str, new_key: str) ->
def get_flux2_transformer_config(model_type: str) -> Tuple[Dict[str, Any], ...]:
if model_type == "flux2-dev":
if model_type == "test" or model_type == "dummy-flux2":
config = {
"model_id": "black-forest-labs/FLUX.2-dev",
"model_id": "diffusers-internal-dev/dummy-flux2",
"diffusers_config": {
"patch_size": 1,
"in_channels": 128,
@@ -405,53 +405,6 @@ def get_flux2_transformer_config(model_type: str) -> Tuple[Dict[str, Any], ...]:
}
rename_dict = FLUX2_TRANSFORMER_KEYS_RENAME_DICT
special_keys_remap = TRANSFORMER_SPECIAL_KEYS_REMAP
elif model_type == "klein-4b":
config = {
"model_id": "diffusers-internal-dev/dummy0115",
"diffusers_config": {
"patch_size": 1,
"in_channels": 128,
"num_layers": 5,
"num_single_layers": 20,
"attention_head_dim": 128,
"num_attention_heads": 24,
"joint_attention_dim": 7680,
"timestep_guidance_channels": 256,
"mlp_ratio": 3.0,
"axes_dims_rope": (32, 32, 32, 32),
"rope_theta": 2000,
"eps": 1e-6,
"guidance_embeds": False,
},
}
rename_dict = FLUX2_TRANSFORMER_KEYS_RENAME_DICT
special_keys_remap = TRANSFORMER_SPECIAL_KEYS_REMAP
elif model_type == "klein-9b":
config = {
"model_id": "diffusers-internal-dev/dummy0115",
"diffusers_config": {
"patch_size": 1,
"in_channels": 128,
"num_layers": 8,
"num_single_layers": 24,
"attention_head_dim": 128,
"num_attention_heads": 32,
"joint_attention_dim": 12288,
"timestep_guidance_channels": 256,
"mlp_ratio": 3.0,
"axes_dims_rope": (32, 32, 32, 32),
"rope_theta": 2000,
"eps": 1e-6,
"guidance_embeds": False,
},
}
rename_dict = FLUX2_TRANSFORMER_KEYS_RENAME_DICT
special_keys_remap = TRANSFORMER_SPECIAL_KEYS_REMAP
else:
raise ValueError(f"Unknown model_type: {model_type}. Choose from: flux2-dev, klein-4b, klein-9b")
return config, rename_dict, special_keys_remap
@@ -494,14 +447,7 @@ def main(args):
if args.dit:
original_dit_ckpt = load_original_checkpoint(args, filename=args.dit_filename)
if "klein-4b" in args.dit_filename:
model_type = "klein-4b"
elif "klein-9b" in args.dit_filename:
model_type = "klein-9b"
else:
model_type = "flux2-dev"
transformer = convert_flux2_transformer_to_diffusers(original_dit_ckpt, model_type)
transformer = convert_flux2_transformer_to_diffusers(original_dit_ckpt, "test")
if not args.full_pipe:
dit_dtype = torch.bfloat16 if args.dit_dtype == "bf16" else torch.float32
transformer.to(dit_dtype).save_pretrained(f"{args.output_path}/transformer")
@@ -519,15 +465,8 @@ def main(args):
"black-forest-labs/FLUX.1-dev", subfolder="scheduler"
)
if_distilled = "base" not in args.dit_filename
pipe = Flux2Pipeline(
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
if_distilled=if_distilled,
vae=vae, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler
)
pipe.save_pretrained(args.output_path)

View File

@@ -23,7 +23,6 @@ from .utils import (
is_torchao_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
)
@@ -226,7 +225,6 @@ else:
"FluxControlNetModel",
"FluxMultiControlNetModel",
"FluxTransformer2DModel",
"GlmImageTransformer2DModel",
"HiDreamImageTransformer2DModel",
"HunyuanDiT2DControlNetModel",
"HunyuanDiT2DModel",
@@ -457,11 +455,9 @@ else:
"AuraFlowPipeline",
"BlipDiffusionControlNetPipeline",
"BlipDiffusionPipeline",
"BriaFiboEditPipeline",
"BriaFiboPipeline",
"BriaPipeline",
"ChromaImg2ImgPipeline",
"ChromaInpaintPipeline",
"ChromaPipeline",
"ChronoEditPipeline",
"CLIPImageProjection",
@@ -482,7 +478,6 @@ else:
"EasyAnimateControlPipeline",
"EasyAnimateInpaintPipeline",
"EasyAnimatePipeline",
"Flux2KleinPipeline",
"Flux2Pipeline",
"FluxControlImg2ImgPipeline",
"FluxControlInpaintPipeline",
@@ -497,7 +492,6 @@ else:
"FluxKontextPipeline",
"FluxPipeline",
"FluxPriorReduxPipeline",
"GlmImagePipeline",
"HiDreamImagePipeline",
"HunyuanDiTControlNetPipeline",
"HunyuanDiTPAGPipeline",
@@ -985,7 +979,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
FluxControlNetModel,
FluxMultiControlNetModel,
FluxTransformer2DModel,
GlmImageTransformer2DModel,
HiDreamImageTransformer2DModel,
HunyuanDiT2DControlNetModel,
HunyuanDiT2DModel,
@@ -1186,11 +1179,9 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
AudioLDM2UNet2DConditionModel,
AudioLDMPipeline,
AuraFlowPipeline,
BriaFiboEditPipeline,
BriaFiboPipeline,
BriaPipeline,
ChromaImg2ImgPipeline,
ChromaInpaintPipeline,
ChromaPipeline,
ChronoEditPipeline,
CLIPImageProjection,
@@ -1211,7 +1202,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
EasyAnimateControlPipeline,
EasyAnimateInpaintPipeline,
EasyAnimatePipeline,
Flux2KleinPipeline,
Flux2Pipeline,
FluxControlImg2ImgPipeline,
FluxControlInpaintPipeline,
@@ -1226,7 +1216,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
FluxKontextPipeline,
FluxPipeline,
FluxPriorReduxPipeline,
GlmImagePipeline,
HiDreamImagePipeline,
HunyuanDiTControlNetPipeline,
HunyuanDiTPAGPipeline,

View File

@@ -40,9 +40,6 @@ from .single_file_utils import (
convert_hunyuan_video_transformer_to_diffusers,
convert_ldm_unet_checkpoint,
convert_ldm_vae_checkpoint,
convert_ltx2_audio_vae_to_diffusers,
convert_ltx2_transformer_to_diffusers,
convert_ltx2_vae_to_diffusers,
convert_ltx_transformer_checkpoint_to_diffusers,
convert_ltx_vae_checkpoint_to_diffusers,
convert_lumina2_to_diffusers,
@@ -179,18 +176,6 @@ SINGLE_FILE_LOADABLE_CLASSES = {
"ZImageControlNetModel": {
"checkpoint_mapping_fn": convert_z_image_controlnet_checkpoint_to_diffusers,
},
"LTX2VideoTransformer3DModel": {
"checkpoint_mapping_fn": convert_ltx2_transformer_to_diffusers,
"default_subfolder": "transformer",
},
"AutoencoderKLLTX2Video": {
"checkpoint_mapping_fn": convert_ltx2_vae_to_diffusers,
"default_subfolder": "vae",
},
"AutoencoderKLLTX2Audio": {
"checkpoint_mapping_fn": convert_ltx2_audio_vae_to_diffusers,
"default_subfolder": "audio_vae",
},
}

View File

@@ -112,8 +112,7 @@ CHECKPOINT_KEY_NAMES = {
"model.diffusion_model.transformer_blocks.27.scale_shift_table",
"patchify_proj.weight",
"transformer_blocks.27.scale_shift_table",
"vae.decoder.last_scale_shift_table", # 0.9.1, 0.9.5, 0.9.7, 0.9.8
"vae.decoder.up_blocks.9.res_blocks.0.conv1.conv.weight", # 0.9.0
"vae.per_channel_statistics.mean-of-means",
],
"autoencoder-dc": "decoder.stages.1.op_list.0.main.conv.conv.bias",
"autoencoder-dc-sana": "encoder.project_in.conv.bias",
@@ -148,11 +147,6 @@ CHECKPOINT_KEY_NAMES = {
"net.pos_embedder.dim_spatial_range",
],
"flux2": ["model.diffusion_model.single_stream_modulation.lin.weight", "single_stream_modulation.lin.weight"],
"ltx2": [
"model.diffusion_model.av_ca_a2v_gate_adaln_single.emb.timestep_embedder.linear_1.weight",
"vae.per_channel_statistics.mean-of-means",
"audio_vae.per_channel_statistics.mean-of-means",
],
}
DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
@@ -234,7 +228,6 @@ DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
"z-image-turbo-controlnet": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union"},
"z-image-turbo-controlnet-2.0": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.0"},
"z-image-turbo-controlnet-2.1": {"pretrained_model_name_or_path": "hlky/Z-Image-Turbo-Fun-Controlnet-Union-2.1"},
"ltx2-dev": {"pretrained_model_name_or_path": "Lightricks/LTX-2"},
}
# Use to configure model sample size when original config is provided
@@ -803,9 +796,6 @@ def infer_diffusers_model_type(checkpoint):
elif CHECKPOINT_KEY_NAMES["z-image-turbo-controlnet"] in checkpoint:
model_type = "z-image-turbo-controlnet"
elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["ltx2"]):
model_type = "ltx2-dev"
else:
model_type = "v1"
@@ -3930,161 +3920,3 @@ def convert_z_image_controlnet_checkpoint_to_diffusers(checkpoint, config, **kwa
return converted_state_dict
else:
raise ValueError("Unknown Z-Image Turbo ControlNet type.")
def convert_ltx2_transformer_to_diffusers(checkpoint, **kwargs):
LTX_2_0_TRANSFORMER_KEYS_RENAME_DICT = {
# Transformer prefix
"model.diffusion_model.": "",
# Input Patchify Projections
"patchify_proj": "proj_in",
"audio_patchify_proj": "audio_proj_in",
# Modulation Parameters
# Handle adaln_single --> time_embed, audioln_single --> audio_time_embed separately as the original keys are
# substrings of the other modulation parameters below
"av_ca_video_scale_shift_adaln_single": "av_cross_attn_video_scale_shift",
"av_ca_a2v_gate_adaln_single": "av_cross_attn_video_a2v_gate",
"av_ca_audio_scale_shift_adaln_single": "av_cross_attn_audio_scale_shift",
"av_ca_v2a_gate_adaln_single": "av_cross_attn_audio_v2a_gate",
# Transformer Blocks
# Per-Block Cross Attention Modulation Parameters
"scale_shift_table_a2v_ca_video": "video_a2v_cross_attn_scale_shift_table",
"scale_shift_table_a2v_ca_audio": "audio_a2v_cross_attn_scale_shift_table",
# Attention QK Norms
"q_norm": "norm_q",
"k_norm": "norm_k",
}
def update_state_dict_inplace(state_dict, old_key: str, new_key: str) -> None:
state_dict[new_key] = state_dict.pop(old_key)
def remove_keys_inplace(key: str, state_dict) -> None:
state_dict.pop(key)
def convert_ltx2_transformer_adaln_single(key: str, state_dict) -> None:
# Skip if not a weight, bias
if ".weight" not in key and ".bias" not in key:
return
if key.startswith("adaln_single."):
new_key = key.replace("adaln_single.", "time_embed.")
param = state_dict.pop(key)
state_dict[new_key] = param
if key.startswith("audio_adaln_single."):
new_key = key.replace("audio_adaln_single.", "audio_time_embed.")
param = state_dict.pop(key)
state_dict[new_key] = param
return
LTX_2_0_TRANSFORMER_SPECIAL_KEYS_REMAP = {
"video_embeddings_connector": remove_keys_inplace,
"audio_embeddings_connector": remove_keys_inplace,
"adaln_single": convert_ltx2_transformer_adaln_single,
}
converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys())}
# Handle official code --> diffusers key remapping via the remap dict
for key in list(converted_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in LTX_2_0_TRANSFORMER_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_inplace(converted_state_dict, key, new_key)
# Handle any special logic which can't be expressed by a simple 1:1 remapping with the handlers in
# special_keys_remap
for key in list(converted_state_dict.keys()):
for special_key, handler_fn_inplace in LTX_2_0_TRANSFORMER_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, converted_state_dict)
return converted_state_dict
def convert_ltx2_vae_to_diffusers(checkpoint, **kwargs):
LTX_2_0_VIDEO_VAE_RENAME_DICT = {
# Video VAE prefix
"vae.": "",
# Encoder
"down_blocks.0": "down_blocks.0",
"down_blocks.1": "down_blocks.0.downsamplers.0",
"down_blocks.2": "down_blocks.1",
"down_blocks.3": "down_blocks.1.downsamplers.0",
"down_blocks.4": "down_blocks.2",
"down_blocks.5": "down_blocks.2.downsamplers.0",
"down_blocks.6": "down_blocks.3",
"down_blocks.7": "down_blocks.3.downsamplers.0",
"down_blocks.8": "mid_block",
# Decoder
"up_blocks.0": "mid_block",
"up_blocks.1": "up_blocks.0.upsamplers.0",
"up_blocks.2": "up_blocks.0",
"up_blocks.3": "up_blocks.1.upsamplers.0",
"up_blocks.4": "up_blocks.1",
"up_blocks.5": "up_blocks.2.upsamplers.0",
"up_blocks.6": "up_blocks.2",
# Common
# For all 3D ResNets
"res_blocks": "resnets",
"per_channel_statistics.mean-of-means": "latents_mean",
"per_channel_statistics.std-of-means": "latents_std",
}
def update_state_dict_inplace(state_dict, old_key: str, new_key: str) -> None:
state_dict[new_key] = state_dict.pop(old_key)
def remove_keys_inplace(key: str, state_dict) -> None:
state_dict.pop(key)
LTX_2_0_VAE_SPECIAL_KEYS_REMAP = {
"per_channel_statistics.channel": remove_keys_inplace,
"per_channel_statistics.mean-of-stds": remove_keys_inplace,
}
converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys())}
# Handle official code --> diffusers key remapping via the remap dict
for key in list(converted_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in LTX_2_0_VIDEO_VAE_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_inplace(converted_state_dict, key, new_key)
# Handle any special logic which can't be expressed by a simple 1:1 remapping with the handlers in
# special_keys_remap
for key in list(converted_state_dict.keys()):
for special_key, handler_fn_inplace in LTX_2_0_VAE_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, converted_state_dict)
return converted_state_dict
def convert_ltx2_audio_vae_to_diffusers(checkpoint, **kwargs):
LTX_2_0_AUDIO_VAE_RENAME_DICT = {
# Audio VAE prefix
"audio_vae.": "",
"per_channel_statistics.mean-of-means": "latents_mean",
"per_channel_statistics.std-of-means": "latents_std",
}
def update_state_dict_inplace(state_dict, old_key: str, new_key: str) -> None:
state_dict[new_key] = state_dict.pop(old_key)
converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys())}
# Handle official code --> diffusers key remapping via the remap dict
for key in list(converted_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in LTX_2_0_AUDIO_VAE_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
update_state_dict_inplace(converted_state_dict, key, new_key)
return converted_state_dict

View File

@@ -98,7 +98,6 @@ if is_torch_available():
_import_structure["transformers.transformer_easyanimate"] = ["EasyAnimateTransformer3DModel"]
_import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"]
_import_structure["transformers.transformer_flux2"] = ["Flux2Transformer2DModel"]
_import_structure["transformers.transformer_glm_image"] = ["GlmImageTransformer2DModel"]
_import_structure["transformers.transformer_hidream_image"] = ["HiDreamImageTransformer2DModel"]
_import_structure["transformers.transformer_hunyuan_video"] = ["HunyuanVideoTransformer3DModel"]
_import_structure["transformers.transformer_hunyuan_video15"] = ["HunyuanVideo15Transformer3DModel"]
@@ -209,7 +208,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
EasyAnimateTransformer3DModel,
Flux2Transformer2DModel,
FluxTransformer2DModel,
GlmImageTransformer2DModel,
HiDreamImageTransformer2DModel,
HunyuanDiT2DModel,
HunyuanImageTransformer2DModel,

View File

@@ -235,10 +235,6 @@ class _AttentionBackendRegistry:
def get_active_backend(cls):
return cls._active_backend, cls._backends[cls._active_backend]
@classmethod
def set_active_backend(cls, backend: str):
cls._active_backend = backend
@classmethod
def list_backends(cls):
return list(cls._backends.keys())
@@ -298,12 +294,12 @@ def attention_backend(backend: Union[str, AttentionBackendName] = AttentionBacke
_maybe_download_kernel_for_backend(backend)
old_backend = _AttentionBackendRegistry._active_backend
_AttentionBackendRegistry.set_active_backend(backend)
_AttentionBackendRegistry._active_backend = backend
try:
yield
finally:
_AttentionBackendRegistry.set_active_backend(old_backend)
_AttentionBackendRegistry._active_backend = old_backend
def dispatch_attention_fn(
@@ -352,7 +348,6 @@ def dispatch_attention_fn(
check(**kwargs)
kwargs = {k: v for k, v in kwargs.items() if k in _AttentionBackendRegistry._supported_arg_names[backend_name]}
return backend_fn(**kwargs)
@@ -1578,6 +1573,8 @@ def _templated_context_parallel_attention(
backward_op,
_parallel_config: Optional["ParallelConfig"] = None,
):
if attn_mask is not None:
raise ValueError("Attention mask is not yet supported for templated attention.")
if is_causal:
raise ValueError("Causal attention is not yet supported for templated attention.")
if enable_gqa:

View File

@@ -355,9 +355,8 @@ def _load_shard_file(
state_dict_folder=None,
ignore_mismatched_sizes=False,
low_cpu_mem_usage=False,
disable_mmap=False,
):
state_dict = load_state_dict(shard_file, dduf_entries=dduf_entries, disable_mmap=disable_mmap)
state_dict = load_state_dict(shard_file, dduf_entries=dduf_entries)
mismatched_keys = _find_mismatched_keys(
state_dict,
model_state_dict,
@@ -403,7 +402,6 @@ def _load_shard_files_with_threadpool(
state_dict_folder=None,
ignore_mismatched_sizes=False,
low_cpu_mem_usage=False,
disable_mmap=False,
):
# Do not spawn anymore workers than you need
num_workers = min(len(shard_files), DEFAULT_HF_PARALLEL_LOADING_WORKERS)
@@ -430,7 +428,6 @@ def _load_shard_files_with_threadpool(
state_dict_folder=state_dict_folder,
ignore_mismatched_sizes=ignore_mismatched_sizes,
low_cpu_mem_usage=low_cpu_mem_usage,
disable_mmap=disable_mmap,
)
tqdm_kwargs = {"total": len(shard_files), "desc": "Loading checkpoint shards"}

View File

@@ -599,7 +599,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
from .attention import AttentionModuleMixin
from .attention_dispatch import (
AttentionBackendName,
_AttentionBackendRegistry,
_check_attention_backend_requirements,
_maybe_download_kernel_for_backend,
)
@@ -608,16 +607,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
from .attention_processor import Attention, MochiAttention
logger.warning("Attention backends are an experimental feature and the API may be subject to change.")
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
parallel_config_set = False
for module in self.modules():
if not isinstance(module, attention_classes):
continue
processor = module.processor
if getattr(processor, "_parallel_config", None) is not None:
parallel_config_set = True
break
backend = backend.lower()
available_backends = {x.value for x in AttentionBackendName.__members__.values()}
@@ -625,17 +614,10 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
raise ValueError(f"`{backend=}` must be one of the following: " + ", ".join(available_backends))
backend = AttentionBackendName(backend)
if parallel_config_set and not _AttentionBackendRegistry._is_context_parallel_available(backend):
compatible_backends = sorted(_AttentionBackendRegistry._supports_context_parallel)
raise ValueError(
f"Context parallelism is enabled but current attention backend '{backend.value}' "
f"does not support context parallelism. "
f"Please set a compatible attention backend: {compatible_backends} using `model.set_attention_backend()`."
)
_check_attention_backend_requirements(backend)
_maybe_download_kernel_for_backend(backend)
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
for module in self.modules():
if not isinstance(module, attention_classes):
continue
@@ -644,9 +626,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
continue
processor._attention_backend = backend
# Important to set the active backend so that it propagates gracefully throughout.
_AttentionBackendRegistry.set_active_backend(backend)
def reset_attention_backend(self) -> None:
"""
Resets the attention backend for the model. Following calls to `forward` will use the environment default, if
@@ -1327,7 +1306,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
keep_in_fp32_modules=keep_in_fp32_modules,
dduf_entries=dduf_entries,
is_parallel_loading_enabled=is_parallel_loading_enabled,
disable_mmap=disable_mmap,
)
loading_info = {
"missing_keys": missing_keys,
@@ -1382,12 +1360,12 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
# Checks if the model has been loaded in 4-bit or 8-bit with BNB
if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
if getattr(self, "is_loaded_in_8bit", False) and is_bitsandbytes_version("<", "0.48.0"):
if getattr(self, "is_loaded_in_8bit", False):
raise ValueError(
"Calling `cuda()` is not supported for `8-bit` quantized models with the installed version of bitsandbytes. "
f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.48.0."
"Calling `cuda()` is not supported for `8-bit` quantized models. "
" Please use the model as it is, since the model has already been set to the correct devices."
)
elif getattr(self, "is_loaded_in_4bit", False) and is_bitsandbytes_version("<", "0.43.2"):
elif is_bitsandbytes_version("<", "0.43.2"):
raise ValueError(
"Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
@@ -1434,16 +1412,17 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
)
if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
if getattr(self, "is_loaded_in_8bit", False) and is_bitsandbytes_version("<", "0.48.0"):
if getattr(self, "is_loaded_in_8bit", False):
raise ValueError(
"Calling `to()` is not supported for `8-bit` quantized models with the installed version of bitsandbytes. "
f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.48.0."
"`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the"
" model has already been set to the correct devices and casted to the correct `dtype`."
)
elif getattr(self, "is_loaded_in_4bit", False) and is_bitsandbytes_version("<", "0.43.2"):
elif is_bitsandbytes_version("<", "0.43.2"):
raise ValueError(
"Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
)
if _is_group_offload_enabled(self) and device_arg_or_kwarg_present:
logger.warning(
f"The module '{self.__class__.__name__}' is group offloaded and moving it using `.to()` is not supported."
@@ -1559,7 +1538,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
f"Context parallelism is enabled but the attention processor '{processor.__class__.__name__}' "
f"is using backend '{attention_backend.value}' which does not support context parallelism. "
f"Please set a compatible attention backend: {compatible_backends} using `model.set_attention_backend()` before "
f"calling `model.enable_parallelism()`."
f"calling `enable_parallelism()`."
)
# All modules use the same attention processor and backend. We don't need to
@@ -1613,7 +1592,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
offload_folder: Optional[Union[str, os.PathLike]] = None,
dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
is_parallel_loading_enabled: Optional[bool] = False,
disable_mmap: bool = False,
):
model_state_dict = model.state_dict()
expected_keys = list(model_state_dict.keys())
@@ -1682,7 +1660,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
state_dict_folder=state_dict_folder,
ignore_mismatched_sizes=ignore_mismatched_sizes,
low_cpu_mem_usage=low_cpu_mem_usage,
disable_mmap=disable_mmap,
)
if is_parallel_loading_enabled:

View File

@@ -27,7 +27,6 @@ if is_torch_available():
from .transformer_easyanimate import EasyAnimateTransformer3DModel
from .transformer_flux import FluxTransformer2DModel
from .transformer_flux2 import Flux2Transformer2DModel
from .transformer_glm_image import GlmImageTransformer2DModel
from .transformer_hidream_image import HiDreamImageTransformer2DModel
from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel
from .transformer_hunyuan_video15 import HunyuanVideo15Transformer3DModel

View File

@@ -585,13 +585,7 @@ class Flux2PosEmbed(nn.Module):
class Flux2TimestepGuidanceEmbeddings(nn.Module):
def __init__(
self,
in_channels: int = 256,
embedding_dim: int = 6144,
bias: bool = False,
guidance_embeds: bool = True,
):
def __init__(self, in_channels: int = 256, embedding_dim: int = 6144, bias: bool = False):
super().__init__()
self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
@@ -599,24 +593,20 @@ class Flux2TimestepGuidanceEmbeddings(nn.Module):
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
if guidance_embeds:
self.guidance_embedder = TimestepEmbedding(
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
else:
self.guidance_embedder = None
self.guidance_embedder = TimestepEmbedding(
in_channels=in_channels, time_embed_dim=embedding_dim, sample_proj_bias=bias
)
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor) -> torch.Tensor:
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(timestep.dtype)) # (N, D)
if guidance is not None and self.guidance_embedder is not None:
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(guidance.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb
return time_guidance_emb
else:
return timesteps_emb
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(guidance.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb
return time_guidance_emb
class Flux2Modulation(nn.Module):
@@ -708,7 +698,6 @@ class Flux2Transformer2DModel(
axes_dims_rope: Tuple[int, ...] = (32, 32, 32, 32),
rope_theta: int = 2000,
eps: float = 1e-6,
guidance_embeds: bool = True,
):
super().__init__()
self.out_channels = out_channels or in_channels
@@ -719,10 +708,7 @@ class Flux2Transformer2DModel(
# 2. Combined timestep + guidance embedding
self.time_guidance_embed = Flux2TimestepGuidanceEmbeddings(
in_channels=timestep_guidance_channels,
embedding_dim=self.inner_dim,
bias=False,
guidance_embeds=guidance_embeds,
in_channels=timestep_guidance_channels, embedding_dim=self.inner_dim, bias=False
)
# 3. Modulation (double stream and single stream blocks share modulation parameters, resp.)
@@ -829,9 +815,7 @@ class Flux2Transformer2DModel(
# 1. Calculate timestep embedding and modulation parameters
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
guidance = guidance.to(hidden_states.dtype) * 1000
temb = self.time_guidance_embed(timestep, guidance)

View File

@@ -1,621 +0,0 @@
# Copyright 2025 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_dispatch import dispatch_attention_fn
from ..attention_processor import Attention
from ..cache_utils import CacheMixin
from ..embeddings import PixArtAlphaTextProjection, TimestepEmbedding, Timesteps
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import LayerNorm, RMSNorm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class GlmImageCombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
super().__init__()
self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(
self,
timestep: torch.Tensor,
target_size: torch.Tensor,
crop_coords: torch.Tensor,
hidden_dtype: torch.dtype,
) -> torch.Tensor:
timesteps_proj = self.time_proj(timestep)
crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1)
target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1)
# (B, 2 * condition_dim)
condition_proj = torch.cat([crop_coords_proj, target_size_proj], dim=1)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
conditioning = timesteps_emb + condition_emb
conditioning = F.silu(conditioning)
return conditioning
class GlmImageImageProjector(nn.Module):
def __init__(
self,
in_channels: int = 16,
hidden_size: int = 2560,
patch_size: int = 2,
):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, channel, height, width = hidden_states.shape
post_patch_height = height // self.patch_size
post_patch_width = width // self.patch_size
hidden_states = hidden_states.reshape(
batch_size, channel, post_patch_height, self.patch_size, post_patch_width, self.patch_size
)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).flatten(3, 5).flatten(1, 2)
hidden_states = self.proj(hidden_states)
return hidden_states
class GlmImageAdaLayerNormZero(nn.Module):
def __init__(self, embedding_dim: int, dim: int) -> None:
super().__init__()
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.norm_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True)
def forward(
self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
dtype = hidden_states.dtype
norm_hidden_states = self.norm(hidden_states).to(dtype=dtype)
norm_encoder_hidden_states = self.norm_context(encoder_hidden_states).to(dtype=dtype)
emb = self.linear(temb)
(
shift_msa,
c_shift_msa,
scale_msa,
c_scale_msa,
gate_msa,
c_gate_msa,
shift_mlp,
c_shift_mlp,
scale_mlp,
c_scale_mlp,
gate_mlp,
c_gate_mlp,
) = emb.chunk(12, dim=1)
hidden_states = norm_hidden_states * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_msa.unsqueeze(1)) + c_shift_msa.unsqueeze(1)
return (
hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
encoder_hidden_states,
c_gate_msa,
c_shift_mlp,
c_scale_mlp,
c_gate_mlp,
)
class GlmImageLayerKVCache:
"""KV cache for GlmImage model."""
def __init__(self):
self.k_cache = None
self.v_cache = None
self.mode: Optional[str] = None # "write", "read", "skip"
def store(self, k: torch.Tensor, v: torch.Tensor):
if self.k_cache is None:
self.k_cache = k
self.v_cache = v
else:
self.k_cache = torch.cat([self.k_cache, k], dim=1)
self.v_cache = torch.cat([self.v_cache, v], dim=1)
def get(self, k: torch.Tensor, v: torch.Tensor):
if self.k_cache.shape[0] != k.shape[0]:
k_cache_expanded = self.k_cache.expand(k.shape[0], -1, -1, -1)
v_cache_expanded = self.v_cache.expand(v.shape[0], -1, -1, -1)
else:
k_cache_expanded = self.k_cache
v_cache_expanded = self.v_cache
k_cache = torch.cat([k_cache_expanded, k], dim=1)
v_cache = torch.cat([v_cache_expanded, v], dim=1)
return k_cache, v_cache
def clear(self):
self.k_cache = None
self.v_cache = None
self.mode = None
class GlmImageKVCache:
"""Container for all layers' KV caches."""
def __init__(self, num_layers: int):
self.num_layers = num_layers
self.caches = [GlmImageLayerKVCache() for _ in range(num_layers)]
def __getitem__(self, layer_idx: int) -> GlmImageLayerKVCache:
return self.caches[layer_idx]
def set_mode(self, mode: Optional[str]):
if mode is not None and mode not in ["write", "read", "skip"]:
raise ValueError(f"Invalid mode: {mode}, must be one of 'write', 'read', 'skip'")
for cache in self.caches:
cache.mode = mode
def clear(self):
for cache in self.caches:
cache.clear()
class GlmImageAttnProcessor:
"""
Processor for implementing scaled dot-product attention for the GlmImage model. It applies a rotary embedding on
query and key vectors, but does not include spatial normalization.
The processor supports passing an attention mask for text tokens. The attention mask should have shape (batch_size,
text_seq_length) where 1 indicates a non-padded token and 0 indicates a padded token.
"""
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("GlmImageAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
kv_cache: Optional[GlmImageLayerKVCache] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
dtype = encoder_hidden_states.dtype
batch_size, text_seq_length, embed_dim = encoder_hidden_states.shape
batch_size, image_seq_length, embed_dim = hidden_states.shape
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
# 1. QKV projections
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
# 2. QK normalization
if attn.norm_q is not None:
query = attn.norm_q(query).to(dtype=dtype)
if attn.norm_k is not None:
key = attn.norm_k(key).to(dtype=dtype)
# 3. Rotational positional embeddings applied to latent stream
if image_rotary_emb is not None:
from ..embeddings import apply_rotary_emb
query[:, text_seq_length:, :, :] = apply_rotary_emb(
query[:, text_seq_length:, :, :], image_rotary_emb, sequence_dim=1, use_real_unbind_dim=-2
)
key[:, text_seq_length:, :, :] = apply_rotary_emb(
key[:, text_seq_length:, :, :], image_rotary_emb, sequence_dim=1, use_real_unbind_dim=-2
)
if kv_cache is not None:
if kv_cache.mode == "write":
kv_cache.store(key, value)
elif kv_cache.mode == "read":
key, value = kv_cache.get(key, value)
elif kv_cache.mode == "skip":
pass
# 4. Attention
if attention_mask is not None:
text_attn_mask = attention_mask
assert text_attn_mask.dim() == 2, "the shape of text_attn_mask should be (batch_size, text_seq_length)"
text_attn_mask = text_attn_mask.float().to(query.device)
mix_attn_mask = torch.ones((batch_size, text_seq_length + image_seq_length), device=query.device)
mix_attn_mask[:, :text_seq_length] = text_attn_mask
mix_attn_mask = mix_attn_mask.unsqueeze(2)
attn_mask_matrix = mix_attn_mask @ mix_attn_mask.transpose(1, 2)
attention_mask = (attn_mask_matrix > 0).unsqueeze(1).to(query.dtype)
hidden_states = dispatch_attention_fn(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(query.dtype)
# 5. Output projection
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states, hidden_states = hidden_states.split(
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
)
return hidden_states, encoder_hidden_states
@maybe_allow_in_graph
class GlmImageTransformerBlock(nn.Module):
def __init__(
self,
dim: int = 2560,
num_attention_heads: int = 64,
attention_head_dim: int = 40,
time_embed_dim: int = 512,
) -> None:
super().__init__()
# 1. Attention
self.norm1 = GlmImageAdaLayerNormZero(time_embed_dim, dim)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
out_dim=dim,
bias=True,
qk_norm="layer_norm",
elementwise_affine=False,
eps=1e-5,
processor=GlmImageAttnProcessor(),
)
# 2. Feedforward
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
] = None,
attention_mask: Optional[Dict[str, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
kv_cache: Optional[GlmImageLayerKVCache] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Timestep conditioning
(
norm_hidden_states,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
norm_encoder_hidden_states,
c_gate_msa,
c_shift_mlp,
c_scale_mlp,
c_gate_mlp,
) = self.norm1(hidden_states, encoder_hidden_states, temb)
# 2. Attention
attention_kwargs = attention_kwargs or {}
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
attention_mask=attention_mask,
kv_cache=kv_cache,
**attention_kwargs,
)
hidden_states = hidden_states + attn_hidden_states * gate_msa.unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + attn_encoder_hidden_states * c_gate_msa.unsqueeze(1)
# 3. Feedforward
norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) * (
1 + c_scale_mlp.unsqueeze(1)
) + c_shift_mlp.unsqueeze(1)
ff_output = self.ff(norm_hidden_states)
ff_output_context = self.ff(norm_encoder_hidden_states)
hidden_states = hidden_states + ff_output * gate_mlp.unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + ff_output_context * c_gate_mlp.unsqueeze(1)
return hidden_states, encoder_hidden_states
class GlmImageRotaryPosEmbed(nn.Module):
def __init__(self, dim: int, patch_size: int, theta: float = 10000.0) -> None:
super().__init__()
self.dim = dim
self.patch_size = patch_size
self.theta = theta
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, num_channels, height, width = hidden_states.shape
height, width = height // self.patch_size, width // self.patch_size
dim_h, dim_w = self.dim // 2, self.dim // 2
h_inv_freq = 1.0 / (
self.theta ** (torch.arange(0, dim_h, 2, dtype=torch.float32)[: (dim_h // 2)].float() / dim_h)
)
w_inv_freq = 1.0 / (
self.theta ** (torch.arange(0, dim_w, 2, dtype=torch.float32)[: (dim_w // 2)].float() / dim_w)
)
h_seq = torch.arange(height)
w_seq = torch.arange(width)
freqs_h = torch.outer(h_seq, h_inv_freq)
freqs_w = torch.outer(w_seq, w_inv_freq)
# Create position matrices for height and width
# [height, 1, dim//4] and [1, width, dim//4]
freqs_h = freqs_h.unsqueeze(1)
freqs_w = freqs_w.unsqueeze(0)
# Broadcast freqs_h and freqs_w to [height, width, dim//4]
freqs_h = freqs_h.expand(height, width, -1)
freqs_w = freqs_w.expand(height, width, -1)
# Concatenate along last dimension to get [height, width, dim//2]
freqs = torch.cat([freqs_h, freqs_w], dim=-1)
freqs = torch.cat([freqs, freqs], dim=-1) # [height, width, dim]
freqs = freqs.reshape(height * width, -1)
return (freqs.cos(), freqs.sin())
class GlmImageAdaLayerNormContinuous(nn.Module):
"""
GlmImage-only final AdaLN: LN(x) -> Linear(cond) -> chunk -> affine. Matches Megatron: **no activation** before the
Linear on conditioning embedding.
"""
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
elementwise_affine: bool = True,
eps: float = 1e-5,
bias: bool = True,
norm_type: str = "layer_norm",
):
super().__init__()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
elif norm_type == "rms_norm":
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
# *** NO SiLU here ***
emb = self.linear(conditioning_embedding.to(x.dtype))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
class GlmImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, CacheMixin):
r"""
Args:
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
attention_head_dim (`int`, defaults to `40`):
The number of channels in each head.
num_attention_heads (`int`, defaults to `64`):
The number of heads to use for multi-head attention.
out_channels (`int`, defaults to `16`):
The number of channels in the output.
text_embed_dim (`int`, defaults to `1472`):
Input dimension of text embeddings from the text encoder.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
condition_dim (`int`, defaults to `256`):
The embedding dimension of the input SDXL-style resolution conditions (original_size, target_size,
crop_coords).
pos_embed_max_size (`int`, defaults to `128`):
The maximum resolution of the positional embeddings, from which slices of shape `H x W` are taken and added
to input patched latents, where `H` and `W` are the latent height and width respectively. A value of 128
means that the maximum supported height and width for image generation is `128 * vae_scale_factor *
patch_size => 128 * 8 * 2 => 2048`.
sample_size (`int`, defaults to `128`):
The base resolution of input latents. If height/width is not provided during generation, this value is used
to determine the resolution as `sample_size * vae_scale_factor => 128 * 8 => 1024`
"""
_supports_gradient_checkpointing = True
_no_split_modules = [
"GlmImageTransformerBlock",
"GlmImageImageProjector",
"GlmImageImageProjector",
]
_skip_layerwise_casting_patterns = ["patch_embed", "norm", "proj_out"]
_skip_keys = ["kv_caches"]
@register_to_config
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
out_channels: int = 16,
num_layers: int = 30,
attention_head_dim: int = 40,
num_attention_heads: int = 64,
text_embed_dim: int = 1472,
time_embed_dim: int = 512,
condition_dim: int = 256,
prior_vq_quantizer_codebook_size: int = 16384,
):
super().__init__()
# GlmImage uses 2 additional SDXL-like conditions - target_size, crop_coords
# Each of these are sincos embeddings of shape 2 * condition_dim
pooled_projection_dim = 2 * 2 * condition_dim
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels
# 1. RoPE
self.rope = GlmImageRotaryPosEmbed(attention_head_dim, patch_size, theta=10000.0)
# 2. Patch & Text-timestep embedding
self.image_projector = GlmImageImageProjector(in_channels, inner_dim, patch_size)
self.glyph_projector = FeedForward(text_embed_dim, inner_dim, inner_dim=inner_dim, activation_fn="gelu")
self.prior_token_embedding = nn.Embedding(prior_vq_quantizer_codebook_size, inner_dim)
self.prior_projector = FeedForward(inner_dim, inner_dim, inner_dim=inner_dim, activation_fn="linear-silu")
self.time_condition_embed = GlmImageCombinedTimestepSizeEmbeddings(
embedding_dim=time_embed_dim,
condition_dim=condition_dim,
pooled_projection_dim=pooled_projection_dim,
timesteps_dim=time_embed_dim,
)
# 3. Transformer blocks
self.transformer_blocks = nn.ModuleList(
[
GlmImageTransformerBlock(inner_dim, num_attention_heads, attention_head_dim, time_embed_dim)
for _ in range(num_layers)
]
)
# 4. Output projection
self.norm_out = GlmImageAdaLayerNormContinuous(inner_dim, time_embed_dim, elementwise_affine=False)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels, bias=True)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
prior_token_id: torch.Tensor,
prior_token_drop: torch.Tensor,
timestep: torch.LongTensor,
target_size: torch.Tensor,
crop_coords: torch.Tensor,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
attention_mask: Optional[torch.Tensor] = None,
kv_caches: Optional[GlmImageKVCache] = None,
image_rotary_emb: Optional[
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
] = None,
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
batch_size, num_channels, height, width = hidden_states.shape
# 1. RoPE
if image_rotary_emb is None:
image_rotary_emb = self.rope(hidden_states)
# 2. Patch & Timestep embeddings
p = self.config.patch_size
post_patch_height = height // p
post_patch_width = width // p
hidden_states = self.image_projector(hidden_states)
encoder_hidden_states = self.glyph_projector(encoder_hidden_states)
prior_embedding = self.prior_token_embedding(prior_token_id)
prior_embedding[prior_token_drop] *= 0.0
prior_hidden_states = self.prior_projector(prior_embedding)
hidden_states = hidden_states + prior_hidden_states
temb = self.time_condition_embed(timestep, target_size, crop_coords, hidden_states.dtype)
# 3. Transformer blocks
for idx, block in enumerate(self.transformer_blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
attention_mask,
attention_kwargs,
kv_caches[idx] if kv_caches is not None else None,
)
else:
hidden_states, encoder_hidden_states = block(
hidden_states,
encoder_hidden_states,
temb,
image_rotary_emb,
attention_mask,
attention_kwargs,
kv_cache=kv_caches[idx] if kv_caches is not None else None,
)
# 4. Output norm & projection
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
hidden_states = hidden_states.reshape(batch_size, post_patch_height, post_patch_width, -1, p, p)
# Rearrange tensor from (B, H_p, W_p, C, p, p) to (B, C, H_p * p, W_p * p)
output = hidden_states.permute(0, 3, 1, 4, 2, 5).flatten(4, 5).flatten(2, 3)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)

View File

@@ -761,14 +761,11 @@ class QwenImageTransformer2DModel(
_no_split_modules = ["QwenImageTransformerBlock"]
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
_repeated_blocks = ["QwenImageTransformerBlock"]
# Make CP plan compatible with https://github.com/huggingface/diffusers/pull/12702
_cp_plan = {
"transformer_blocks.0": {
"": {
"hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
"encoder_hidden_states": ContextParallelInput(split_dim=1, expected_dims=3, split_output=False),
},
"transformer_blocks.*": {
"modulate_index": ContextParallelInput(split_dim=1, expected_dims=2, split_output=False),
"encoder_hidden_states_mask": ContextParallelInput(split_dim=1, expected_dims=2, split_output=False),
},
"pos_embed": {
0: ContextParallelInput(split_dim=0, expected_dims=2, split_output=True),

View File

@@ -4,7 +4,7 @@ import os
# Simple typed wrapper for parameter overrides
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Union
from typing import Any, Dict, Optional, Union
from huggingface_hub import create_repo, hf_hub_download, upload_folder
from huggingface_hub.utils import (
@@ -23,18 +23,10 @@ logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class MellonParam:
"""
Parameter definition for Mellon nodes.
Parameter definition for Mellon nodes.
Use factory methods for common params (e.g., MellonParam.seed()) or create custom ones with
MellonParam(name="...", label="...", type="...").
Example:
```python
# Custom param
MellonParam(name="my_param", label="My Param", type="float", default=0.5)
# Output in Mellon node definition:
# "my_param": {"label": "My Param", "type": "float", "default": 0.5}
```
Use factory methods for common params (e.g., MellonParam.seed()) or create custom ones with MellonParam(name="...",
label="...", type="...").
"""
name: str
@@ -50,165 +42,55 @@ class MellonParam:
fieldOptions: Optional[Dict[str, Any]] = None
onChange: Any = None
onSignal: Any = None
required_block_params: Optional[Union[str, List[str]]] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dict for Mellon schema, excluding None values and name."""
data = asdict(self)
return {k: v for k, v in data.items() if v is not None and k not in ("name", "required_block_params")}
return {k: v for k, v in data.items() if v is not None and k != "name"}
@classmethod
def image(cls) -> "MellonParam":
"""
Image input parameter.
Mellon node definition:
"image": {"label": "Image", "type": "image", "display": "input"}
"""
return cls(name="image", label="Image", type="image", display="input", required_block_params=["image"])
return cls(name="image", label="Image", type="image", display="input")
@classmethod
def images(cls) -> "MellonParam":
"""
Images output parameter.
Mellon node definition:
"images": {"label": "Images", "type": "image", "display": "output"}
"""
return cls(name="images", label="Images", type="image", display="output", required_block_params=["images"])
return cls(name="images", label="Images", type="image", display="output")
@classmethod
def control_image(cls, display: str = "input") -> "MellonParam":
"""
Control image parameter for ControlNet.
Mellon node definition (display="input"):
"control_image": {"label": "Control Image", "type": "image", "display": "input"}
"""
return cls(
name="control_image",
label="Control Image",
type="image",
display=display,
required_block_params=["control_image"],
)
return cls(name="control_image", label="Control Image", type="image", display=display)
@classmethod
def latents(cls, display: str = "input") -> "MellonParam":
"""
Latents parameter.
Mellon node definition (display="input"):
"latents": {"label": "Latents", "type": "latents", "display": "input"}
Mellon node definition (display="output"):
"latents": {"label": "Latents", "type": "latents", "display": "output"}
"""
return cls(name="latents", label="Latents", type="latents", display=display, required_block_params=["latents"])
return cls(name="latents", label="Latents", type="latents", display=display)
@classmethod
def image_latents(cls, display: str = "input") -> "MellonParam":
"""
Image latents parameter for img2img workflows.
Mellon node definition (display="input"):
"image_latents": {"label": "Image Latents", "type": "latents", "display": "input"}
"""
return cls(
name="image_latents",
label="Image Latents",
type="latents",
display=display,
required_block_params=["image_latents"],
)
@classmethod
def first_frame_latents(cls, display: str = "input") -> "MellonParam":
"""
First frame latents for video generation.
Mellon node definition (display="input"):
"first_frame_latents": {"label": "First Frame Latents", "type": "latents", "display": "input"}
"""
return cls(
name="first_frame_latents",
label="First Frame Latents",
type="latents",
display=display,
required_block_params=["first_frame_latents"],
)
return cls(name="image_latents", label="Image Latents", type="latents", display=display)
@classmethod
def image_latents_with_strength(cls) -> "MellonParam":
"""
Image latents with strength-based onChange behavior. When connected, shows strength slider; when disconnected,
shows height/width.
Mellon node definition:
"image_latents": {
"label": "Image Latents", "type": "latents", "display": "input", "onChange": {"false": ["height",
"width"], "true": ["strength"]}
}
"""
return cls(
name="image_latents",
label="Image Latents",
type="latents",
display="input",
onChange={"false": ["height", "width"], "true": ["strength"]},
required_block_params=["image_latents", "strength"],
)
@classmethod
def latents_preview(cls) -> "MellonParam":
"""
Latents preview output for visualizing latents in the UI.
Mellon node definition:
"latents_preview": {"label": "Latents Preview", "type": "latent", "display": "output"}
`Latents Preview` is a special output parameter that is used to preview the latents in the UI.
"""
return cls(name="latents_preview", label="Latents Preview", type="latent", display="output")
@classmethod
def embeddings(cls, display: str = "output") -> "MellonParam":
"""
Text embeddings parameter.
Mellon node definition (display="output"):
"embeddings": {"label": "Text Embeddings", "type": "embeddings", "display": "output"}
Mellon node definition (display="input"):
"embeddings": {"label": "Text Embeddings", "type": "embeddings", "display": "input"}
"""
return cls(name="embeddings", label="Text Embeddings", type="embeddings", display=display)
@classmethod
def image_embeds(cls, display: str = "output") -> "MellonParam":
"""
Image embeddings parameter for IP-Adapter workflows.
Mellon node definition (display="output"):
"image_embeds": {"label": "Image Embeddings", "type": "image_embeds", "display": "output"}
"""
return cls(
name="image_embeds",
label="Image Embeddings",
type="image_embeds",
display=display,
required_block_params=["image_embeds"],
)
@classmethod
def controlnet_conditioning_scale(cls, default: float = 0.5) -> "MellonParam":
"""
ControlNet conditioning scale slider.
Mellon node definition (default=0.5):
"controlnet_conditioning_scale": {
"label": "Controlnet Conditioning Scale", "type": "float", "default": 0.5, "min": 0.0, "max": 1.0,
"step": 0.01
}
"""
return cls(
name="controlnet_conditioning_scale",
label="Controlnet Conditioning Scale",
@@ -217,20 +99,10 @@ class MellonParam:
min=0.0,
max=1.0,
step=0.01,
required_block_params=["controlnet_conditioning_scale"],
)
@classmethod
def control_guidance_start(cls, default: float = 0.0) -> "MellonParam":
"""
Control guidance start timestep.
Mellon node definition (default=0.0):
"control_guidance_start": {
"label": "Control Guidance Start", "type": "float", "default": 0.0, "min": 0.0, "max": 1.0, "step":
0.01
}
"""
return cls(
name="control_guidance_start",
label="Control Guidance Start",
@@ -239,19 +111,10 @@ class MellonParam:
min=0.0,
max=1.0,
step=0.01,
required_block_params=["control_guidance_start"],
)
@classmethod
def control_guidance_end(cls, default: float = 1.0) -> "MellonParam":
"""
Control guidance end timestep.
Mellon node definition (default=1.0):
"control_guidance_end": {
"label": "Control Guidance End", "type": "float", "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01
}
"""
return cls(
name="control_guidance_end",
label="Control Guidance End",
@@ -260,73 +123,22 @@ class MellonParam:
min=0.0,
max=1.0,
step=0.01,
required_block_params=["control_guidance_end"],
)
@classmethod
def prompt(cls, default: str = "") -> "MellonParam":
"""
Text prompt input as textarea.
Mellon node definition (default=""):
"prompt": {"label": "Prompt", "type": "string", "default": "", "display": "textarea"}
"""
return cls(
name="prompt",
label="Prompt",
type="string",
default=default,
display="textarea",
required_block_params=["prompt"],
)
return cls(name="prompt", label="Prompt", type="string", default=default, display="textarea")
@classmethod
def negative_prompt(cls, default: str = "") -> "MellonParam":
"""
Negative prompt input as textarea.
Mellon node definition (default=""):
"negative_prompt": {"label": "Negative Prompt", "type": "string", "default": "", "display": "textarea"}
"""
return cls(
name="negative_prompt",
label="Negative Prompt",
type="string",
default=default,
display="textarea",
required_block_params=["negative_prompt"],
)
return cls(name="negative_prompt", label="Negative Prompt", type="string", default=default, display="textarea")
@classmethod
def strength(cls, default: float = 0.5) -> "MellonParam":
"""
Denoising strength for img2img.
Mellon node definition (default=0.5):
"strength": {"label": "Strength", "type": "float", "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}
"""
return cls(
name="strength",
label="Strength",
type="float",
default=default,
min=0.0,
max=1.0,
step=0.01,
required_block_params=["strength"],
)
return cls(name="strength", label="Strength", type="float", default=default, min=0.0, max=1.0, step=0.01)
@classmethod
def guidance_scale(cls, default: float = 5.0) -> "MellonParam":
"""
CFG guidance scale slider.
Mellon node definition (default=5.0):
"guidance_scale": {
"label": "Guidance Scale", "type": "float", "display": "slider", "default": 5.0, "min": 1.0, "max":
30.0, "step": 0.1
}
"""
return cls(
name="guidance_scale",
label="Guidance Scale",
@@ -340,273 +152,103 @@ class MellonParam:
@classmethod
def height(cls, default: int = 1024) -> "MellonParam":
"""
Image height in pixels.
Mellon node definition (default=1024):
"height": {"label": "Height", "type": "int", "default": 1024, "min": 64, "step": 8}
"""
return cls(
name="height",
label="Height",
type="int",
default=default,
min=64,
step=8,
required_block_params=["height"],
)
return cls(name="height", label="Height", type="int", default=default, min=64, step=8)
@classmethod
def width(cls, default: int = 1024) -> "MellonParam":
"""
Image width in pixels.
Mellon node definition (default=1024):
"width": {"label": "Width", "type": "int", "default": 1024, "min": 64, "step": 8}
"""
return cls(
name="width", label="Width", type="int", default=default, min=64, step=8, required_block_params=["width"]
)
return cls(name="width", label="Width", type="int", default=default, min=64, step=8)
@classmethod
def seed(cls, default: int = 0) -> "MellonParam":
"""
Random seed with randomize button.
Mellon node definition (default=0):
"seed": {
"label": "Seed", "type": "int", "default": 0, "min": 0, "max": 4294967295, "display": "random"
}
"""
return cls(
name="seed",
label="Seed",
type="int",
default=default,
min=0,
max=4294967295,
display="random",
required_block_params=["generator"],
)
return cls(name="seed", label="Seed", type="int", default=default, min=0, max=4294967295, display="random")
@classmethod
def num_inference_steps(cls, default: int = 25) -> "MellonParam":
"""
Number of denoising steps slider.
Mellon node definition (default=25):
"num_inference_steps": {
"label": "Steps", "type": "int", "default": 25, "min": 1, "max": 100, "display": "slider"
}
"""
return cls(
name="num_inference_steps",
label="Steps",
type="int",
default=default,
min=1,
max=100,
display="slider",
required_block_params=["num_inference_steps"],
name="num_inference_steps", label="Steps", type="int", default=default, min=1, max=100, display="slider"
)
@classmethod
def num_frames(cls, default: int = 81) -> "MellonParam":
"""
Number of video frames slider.
Mellon node definition (default=81):
"num_frames": {"label": "Frames", "type": "int", "default": 81, "min": 1, "max": 480, "display": "slider"}
"""
return cls(
name="num_frames",
label="Frames",
type="int",
default=default,
min=1,
max=480,
display="slider",
required_block_params=["num_frames"],
)
@classmethod
def layers(cls, default: int = 4) -> "MellonParam":
"""
Number of layers slider (for layered diffusion).
Mellon node definition (default=4):
"layers": {"label": "Layers", "type": "int", "default": 4, "min": 1, "max": 10, "display": "slider"}
"""
return cls(
name="layers",
label="Layers",
type="int",
default=default,
min=1,
max=10,
display="slider",
required_block_params=["layers"],
)
return cls(name="num_frames", label="Frames", type="int", default=default, min=1, max=480, display="slider")
@classmethod
def videos(cls) -> "MellonParam":
"""
Video output parameter.
Mellon node definition:
"videos": {"label": "Videos", "type": "video", "display": "output"}
"""
return cls(name="videos", label="Videos", type="video", display="output", required_block_params=["videos"])
return cls(name="videos", label="Videos", type="video", display="output")
@classmethod
def vae(cls) -> "MellonParam":
"""
VAE model input.
VAE model info dict.
Mellon node definition:
"vae": {"label": "VAE", "type": "diffusers_auto_model", "display": "input"}
Note: The value received is a model info dict with keys like 'model_id', 'repo_id', 'execution_device'. Use
components.get_one(model_id) to retrieve the actual model.
Contains keys like 'model_id', 'repo_id', 'execution_device' etc. Use components.get_one(model_id) to retrieve
the actual model.
"""
return cls(
name="vae", label="VAE", type="diffusers_auto_model", display="input", required_block_params=["vae"]
)
@classmethod
def image_encoder(cls) -> "MellonParam":
"""
Image encoder model input.
Mellon node definition:
"image_encoder": {"label": "Image Encoder", "type": "diffusers_auto_model", "display": "input"}
Note: The value received is a model info dict with keys like 'model_id', 'repo_id', 'execution_device'. Use
components.get_one(model_id) to retrieve the actual model.
"""
return cls(
name="image_encoder",
label="Image Encoder",
type="diffusers_auto_model",
display="input",
required_block_params=["image_encoder"],
)
return cls(name="vae", label="VAE", type="diffusers_auto_model", display="input")
@classmethod
def unet(cls) -> "MellonParam":
"""
Denoising model (UNet/Transformer) input.
Denoising model (UNet/Transformer) info dict.
Mellon node definition:
"unet": {"label": "Denoise Model", "type": "diffusers_auto_model", "display": "input"}
Note: The value received is a model info dict with keys like 'model_id', 'repo_id', 'execution_device'. Use
components.get_one(model_id) to retrieve the actual model.
Contains keys like 'model_id', 'repo_id', 'execution_device' etc. Use components.get_one(model_id) to retrieve
the actual model.
"""
return cls(name="unet", label="Denoise Model", type="diffusers_auto_model", display="input")
@classmethod
def scheduler(cls) -> "MellonParam":
"""
Scheduler model input.
Scheduler model info dict.
Mellon node definition:
"scheduler": {"label": "Scheduler", "type": "diffusers_auto_model", "display": "input"}
Note: The value received is a model info dict with keys like 'model_id', 'repo_id'. Use
components.get_one(model_id) to retrieve the actual scheduler.
Contains keys like 'model_id', 'repo_id' etc. Use components.get_one(model_id) to retrieve the actual
scheduler.
"""
return cls(name="scheduler", label="Scheduler", type="diffusers_auto_model", display="input")
@classmethod
def controlnet(cls) -> "MellonParam":
"""
ControlNet model input.
ControlNet model info dict.
Mellon node definition:
"controlnet": {"label": "ControlNet Model", "type": "diffusers_auto_model", "display": "input"}
Note: The value received is a model info dict with keys like 'model_id', 'repo_id', 'execution_device'. Use
components.get_one(model_id) to retrieve the actual model.
Contains keys like 'model_id', 'repo_id', 'execution_device' etc. Use components.get_one(model_id) to retrieve
the actual model.
"""
return cls(
name="controlnet",
label="ControlNet Model",
type="diffusers_auto_model",
display="input",
required_block_params=["controlnet"],
)
return cls(name="controlnet", label="ControlNet Model", type="diffusers_auto_model", display="input")
@classmethod
def text_encoders(cls) -> "MellonParam":
"""
Text encoders dict input (multiple encoders).
Dict of text encoder model info dicts.
Mellon node definition:
"text_encoders": {"label": "Text Encoders", "type": "diffusers_auto_models", "display": "input"}
Note: The value received is a dict of model info dicts:
{
'text_encoder': {'model_id': ..., 'execution_device': ..., ...}, 'tokenizer': {'model_id': ..., ...},
'repo_id': '...'
}
Use components.get_one(model_id) to retrieve each model.
Structure: {
'text_encoder': {'model_id': ..., 'execution_device': ..., ...}, 'tokenizer': {'model_id': ..., ...},
'repo_id': '...'
} Use components.get_one(model_id) to retrieve each model.
"""
return cls(
name="text_encoders",
label="Text Encoders",
type="diffusers_auto_models",
display="input",
required_block_params=["text_encoder"],
)
return cls(name="text_encoders", label="Text Encoders", type="diffusers_auto_models", display="input")
@classmethod
def controlnet_bundle(cls, display: str = "input") -> "MellonParam":
"""
ControlNet bundle containing model and processed control inputs. Output from ControlNet node, input to Denoise
node.
ControlNet bundle containing model info and processed control inputs.
Mellon node definition (display="input"):
"controlnet_bundle": {"label": "ControlNet", "type": "custom_controlnet", "display": "input"}
Structure: {
'controlnet': {'model_id': ..., ...}, # controlnet model info dict 'control_image': ..., # processed
control image/embeddings 'controlnet_conditioning_scale': ..., ... # other inputs expected by denoise
blocks
}
Mellon node definition (display="output"):
"controlnet_bundle": {"label": "ControlNet", "type": "custom_controlnet", "display": "output"}
Note: The value is a dict containing:
{
'controlnet': {'model_id': ..., ...}, # controlnet model info 'control_image': ..., # processed control
image/embeddings 'controlnet_conditioning_scale': ..., # and other denoise block inputs
}
Output from Controlnet node, input to Denoise node.
"""
return cls(
name="controlnet_bundle",
label="ControlNet",
type="custom_controlnet",
display=display,
required_block_params="controlnet_image",
)
return cls(name="controlnet_bundle", label="ControlNet", type="custom_controlnet", display=display)
@classmethod
def ip_adapter(cls) -> "MellonParam":
"""
IP-Adapter input.
Mellon node definition:
"ip_adapter": {"label": "IP Adapter", "type": "custom_ip_adapter", "display": "input"}
"""
return cls(name="ip_adapter", label="IP Adapter", type="custom_ip_adapter", display="input")
@classmethod
def guider(cls) -> "MellonParam":
"""
Custom guider input. When connected, hides the guidance_scale slider.
Mellon node definition:
"guider": {
"label": "Guider", "type": "custom_guider", "display": "input", "onChange": {false: ["guidance_scale"],
true: []}
}
"""
return cls(
name="guider",
label="Guider",
@@ -617,96 +259,9 @@ class MellonParam:
@classmethod
def doc(cls) -> "MellonParam":
"""
Documentation output for inspecting the underlying modular pipeline.
Mellon node definition:
"doc": {"label": "Doc", "type": "string", "display": "output"}
"""
return cls(name="doc", label="Doc", type="string", display="output")
DEFAULT_NODE_SPECS = {
"controlnet": None,
"denoise": {
"inputs": [
MellonParam.embeddings(display="input"),
MellonParam.width(),
MellonParam.height(),
MellonParam.seed(),
MellonParam.num_inference_steps(),
MellonParam.num_frames(),
MellonParam.guidance_scale(),
MellonParam.strength(),
MellonParam.image_latents_with_strength(),
MellonParam.image_latents(),
MellonParam.first_frame_latents(),
MellonParam.controlnet_bundle(display="input"),
],
"model_inputs": [
MellonParam.unet(),
MellonParam.guider(),
MellonParam.scheduler(),
],
"outputs": [
MellonParam.latents(display="output"),
MellonParam.latents_preview(),
MellonParam.doc(),
],
"required_inputs": ["embeddings"],
"required_model_inputs": ["unet", "scheduler"],
"block_name": "denoise",
},
"vae_encoder": {
"inputs": [
MellonParam.image(),
],
"model_inputs": [
MellonParam.vae(),
],
"outputs": [
MellonParam.image_latents(display="output"),
MellonParam.doc(),
],
"required_inputs": ["image"],
"required_model_inputs": ["vae"],
"block_name": "vae_encoder",
},
"text_encoder": {
"inputs": [
MellonParam.prompt(),
MellonParam.negative_prompt(),
],
"model_inputs": [
MellonParam.text_encoders(),
],
"outputs": [
MellonParam.embeddings(display="output"),
MellonParam.doc(),
],
"required_inputs": ["prompt"],
"required_model_inputs": ["text_encoders"],
"block_name": "text_encoder",
},
"decoder": {
"inputs": [
MellonParam.latents(display="input"),
],
"model_inputs": [
MellonParam.vae(),
],
"outputs": [
MellonParam.images(),
MellonParam.videos(),
MellonParam.doc(),
],
"required_inputs": ["latents"],
"required_model_inputs": ["vae"],
"block_name": "decode",
},
}
def mark_required(label: str, marker: str = " *") -> str:
"""Add required marker to label if not already present."""
if label.endswith(marker):
@@ -881,42 +436,20 @@ class MellonPipelineConfig:
default_dtype: Default dtype (e.g., "float16", "bfloat16")
"""
# Convert all node specs to Mellon format immediately
self.node_specs = node_specs
self.node_params = {}
for node_type, spec in node_specs.items():
if spec is None:
self.node_params[node_type] = None
else:
self.node_params[node_type] = node_spec_to_mellon_dict(spec, node_type)
self.label = label
self.default_repo = default_repo
self.default_dtype = default_dtype
@property
def node_params(self) -> Dict[str, Any]:
"""Lazily compute node_params from node_specs."""
if self.node_specs is None:
return self._node_params
params = {}
for node_type, spec in self.node_specs.items():
if spec is None:
params[node_type] = None
else:
params[node_type] = node_spec_to_mellon_dict(spec, node_type)
return params
def __repr__(self) -> str:
lines = [
f"MellonPipelineConfig(label={self.label!r}, default_repo={self.default_repo!r}, default_dtype={self.default_dtype!r})"
]
for node_type, spec in self.node_specs.items():
if spec is None:
lines.append(f" {node_type}: None")
else:
inputs = [p.name for p in spec.get("inputs", [])]
model_inputs = [p.name for p in spec.get("model_inputs", [])]
outputs = [p.name for p in spec.get("outputs", [])]
lines.append(f" {node_type}:")
lines.append(f" inputs: {inputs}")
lines.append(f" model_inputs: {model_inputs}")
lines.append(f" outputs: {outputs}")
return "\n".join(lines)
node_types = list(self.node_params.keys())
return f"MellonPipelineConfig(label={self.label!r}, default_repo={self.default_repo!r}, default_dtype={self.default_dtype!r}, node_params={node_types})"
def to_dict(self) -> Dict[str, Any]:
"""Convert to a JSON-serializable dictionary."""
@@ -935,8 +468,7 @@ class MellonPipelineConfig:
Note: The mellon_params are already in Mellon format when loading from JSON.
"""
instance = cls.__new__(cls)
instance.node_specs = None
instance._node_params = data.get("node_params", {})
instance.node_params = data.get("node_params", {})
instance.label = data.get("label", "")
instance.default_repo = data.get("default_repo", "")
instance.default_dtype = data.get("default_dtype", "")
@@ -1068,85 +600,3 @@ class MellonPipelineConfig:
return cls.from_json_file(config_file)
except (json.JSONDecodeError, UnicodeDecodeError):
raise EnvironmentError(f"The config file at '{config_file}' is not a valid JSON file.")
@classmethod
def from_blocks(
cls,
blocks,
template: Dict[str, Optional[Dict[str, Any]]] = None,
label: str = "",
default_repo: str = "",
default_dtype: str = "bfloat16",
) -> "MellonPipelineConfig":
"""
Create MellonPipelineConfig by matching template against actual pipeline blocks.
"""
if template is None:
template = DEFAULT_NODE_SPECS
sub_block_map = dict(blocks.sub_blocks)
def filter_spec_for_block(template_spec: Dict[str, Any], block) -> Optional[Dict[str, Any]]:
"""Filter template spec params based on what the block actually supports."""
block_input_names = set(block.input_names)
block_output_names = set(block.intermediate_output_names)
block_component_names = set(block.component_names)
filtered_inputs = [
p
for p in template_spec.get("inputs", [])
if p.required_block_params is None
or all(name in block_input_names for name in p.required_block_params)
]
filtered_model_inputs = [
p
for p in template_spec.get("model_inputs", [])
if p.required_block_params is None
or all(name in block_component_names for name in p.required_block_params)
]
filtered_outputs = [
p
for p in template_spec.get("outputs", [])
if p.required_block_params is None
or all(name in block_output_names for name in p.required_block_params)
]
filtered_input_names = {p.name for p in filtered_inputs}
filtered_model_input_names = {p.name for p in filtered_model_inputs}
filtered_required_inputs = [
r for r in template_spec.get("required_inputs", []) if r in filtered_input_names
]
filtered_required_model_inputs = [
r for r in template_spec.get("required_model_inputs", []) if r in filtered_model_input_names
]
return {
"inputs": filtered_inputs,
"model_inputs": filtered_model_inputs,
"outputs": filtered_outputs,
"required_inputs": filtered_required_inputs,
"required_model_inputs": filtered_required_model_inputs,
"block_name": template_spec.get("block_name"),
}
# Build node specs
node_specs = {}
for node_type, template_spec in template.items():
if template_spec is None:
node_specs[node_type] = None
continue
block_name = template_spec.get("block_name")
if block_name is None or block_name not in sub_block_map:
node_specs[node_type] = None
continue
node_specs[node_type] = filter_spec_for_block(template_spec, sub_block_map[block_name])
return cls(
node_specs=node_specs,
label=label or getattr(blocks, "model_name", ""),
default_repo=default_repo,
default_dtype=default_dtype,
)

View File

@@ -84,7 +84,7 @@ class WanImage2VideoImageEncoderStep(SequentialPipelineBlocks):
class WanImage2VideoVaeImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [WanImageResizeStep, WanVaeImageEncoderStep]
block_names = ["image_resize", "vae_encoder"]
block_names = ["image_resize", "vae_image_encoder"]
@property
def description(self):
@@ -142,7 +142,7 @@ class WanFLF2VImageEncoderStep(SequentialPipelineBlocks):
class WanFLF2VVaeImageEncoderStep(SequentialPipelineBlocks):
model_name = "wan"
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameVaeImageEncoderStep]
block_names = ["image_resize", "last_image_resize", "vae_encoder"]
block_names = ["image_resize", "last_image_resize", "vae_image_encoder"]
@property
def description(self):
@@ -203,7 +203,7 @@ class WanAutoImageEncoderStep(AutoPipelineBlocks):
## vae encoder
class WanAutoVaeImageEncoderStep(AutoPipelineBlocks):
block_classes = [WanFLF2VVaeImageEncoderStep, WanImage2VideoVaeImageEncoderStep]
block_names = ["flf2v_vae_encoder", "image2video_vae_encoder"]
block_names = ["flf2v_vae_image_encoder", "image2video_vae_image_encoder"]
block_trigger_inputs = ["last_image", "image"]
@property
@@ -251,7 +251,7 @@ class WanAutoBlocks(SequentialPipelineBlocks):
block_names = [
"text_encoder",
"image_encoder",
"vae_encoder",
"vae_image_encoder",
"denoise",
"decode",
]
@@ -353,7 +353,7 @@ class Wan22AutoBlocks(SequentialPipelineBlocks):
]
block_names = [
"text_encoder",
"vae_encoder",
"vae_image_encoder",
"denoise",
"decode",
]
@@ -384,7 +384,7 @@ IMAGE2VIDEO_BLOCKS = InsertableDict(
[
("image_resize", WanImageResizeStep),
("image_encoder", WanImage2VideoImageEncoderStep),
("vae_encoder", WanImage2VideoVaeImageEncoderStep),
("vae_image_encoder", WanImage2VideoVaeImageEncoderStep),
("input", WanTextInputStep),
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"])),
("set_timesteps", WanSetTimestepsStep),
@@ -401,7 +401,7 @@ FLF2V_BLOCKS = InsertableDict(
("image_resize", WanImageResizeStep),
("last_image_resize", WanImageCropResizeStep),
("image_encoder", WanFLF2VImageEncoderStep),
("vae_encoder", WanFLF2VVaeImageEncoderStep),
("vae_image_encoder", WanFLF2VVaeImageEncoderStep),
("input", WanTextInputStep),
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"])),
("set_timesteps", WanSetTimestepsStep),
@@ -416,7 +416,7 @@ AUTO_BLOCKS = InsertableDict(
[
("text_encoder", WanTextEncoderStep),
("image_encoder", WanAutoImageEncoderStep),
("vae_encoder", WanAutoVaeImageEncoderStep),
("vae_image_encoder", WanAutoVaeImageEncoderStep),
("denoise", WanAutoDenoiseStep),
("decode", WanImageVaeDecoderStep),
]
@@ -438,7 +438,7 @@ TEXT2VIDEO_BLOCKS_WAN22 = InsertableDict(
IMAGE2VIDEO_BLOCKS_WAN22 = InsertableDict(
[
("image_resize", WanImageResizeStep),
("vae_encoder", WanImage2VideoVaeImageEncoderStep),
("vae_image_encoder", WanImage2VideoVaeImageEncoderStep),
("input", WanTextInputStep),
("set_timesteps", WanSetTimestepsStep),
("prepare_latents", WanPrepareLatentsStep),
@@ -450,7 +450,7 @@ IMAGE2VIDEO_BLOCKS_WAN22 = InsertableDict(
AUTO_BLOCKS_WAN22 = InsertableDict(
[
("text_encoder", WanTextEncoderStep),
("vae_encoder", WanAutoVaeImageEncoderStep),
("vae_image_encoder", WanAutoVaeImageEncoderStep),
("denoise", Wan22AutoDenoiseStep),
("decode", WanImageVaeDecoderStep),
]

View File

@@ -15,7 +15,6 @@ from ..utils import (
is_torch_available,
is_torch_npu_available,
is_transformers_available,
is_transformers_version,
)
@@ -129,8 +128,8 @@ else:
"AnimateDiffVideoToVideoControlNetPipeline",
]
_import_structure["bria"] = ["BriaPipeline"]
_import_structure["bria_fibo"] = ["BriaFiboPipeline", "BriaFiboEditPipeline"]
_import_structure["flux2"] = ["Flux2Pipeline", "Flux2KleinPipeline"]
_import_structure["bria_fibo"] = ["BriaFiboPipeline"]
_import_structure["flux2"] = ["Flux2Pipeline"]
_import_structure["flux"] = [
"FluxControlPipeline",
"FluxControlInpaintPipeline",
@@ -155,7 +154,7 @@ else:
"AudioLDM2UNet2DConditionModel",
]
_import_structure["blip_diffusion"] = ["BlipDiffusionPipeline"]
_import_structure["chroma"] = ["ChromaPipeline", "ChromaImg2ImgPipeline", "ChromaInpaintPipeline"]
_import_structure["chroma"] = ["ChromaPipeline", "ChromaImg2ImgPipeline"]
_import_structure["cogvideo"] = [
"CogVideoXPipeline",
"CogVideoXImageToVideoPipeline",
@@ -435,8 +434,6 @@ else:
"QwenImageLayeredPipeline",
]
_import_structure["chronoedit"] = ["ChronoEditPipeline"]
_import_structure["glm_image"] = ["GlmImagePipeline"]
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
@@ -597,8 +594,8 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from .aura_flow import AuraFlowPipeline
from .blip_diffusion import BlipDiffusionPipeline
from .bria import BriaPipeline
from .bria_fibo import BriaFiboEditPipeline, BriaFiboPipeline
from .chroma import ChromaImg2ImgPipeline, ChromaInpaintPipeline, ChromaPipeline
from .bria_fibo import BriaFiboPipeline
from .chroma import ChromaImg2ImgPipeline, ChromaPipeline
from .chronoedit import ChronoEditPipeline
from .cogvideo import (
CogVideoXFunControlPipeline,
@@ -678,8 +675,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
FluxPriorReduxPipeline,
ReduxImageEncoder,
)
from .flux2 import Flux2KleinPipeline, Flux2Pipeline
from .glm_image import GlmImagePipeline
from .flux2 import Flux2Pipeline
from .hidream_image import HiDreamImagePipeline
from .hunyuan_image import HunyuanImagePipeline, HunyuanImageRefinerPipeline
from .hunyuan_video import (

View File

@@ -52,8 +52,6 @@ from .flux import (
FluxKontextPipeline,
FluxPipeline,
)
from .flux2 import Flux2KleinPipeline, Flux2Pipeline
from .glm_image import GlmImagePipeline
from .hunyuandit import HunyuanDiTPipeline
from .kandinsky import (
KandinskyCombinedPipeline,
@@ -165,14 +163,11 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
("flux-control", FluxControlPipeline),
("flux-controlnet", FluxControlNetPipeline),
("flux-kontext", FluxKontextPipeline),
("flux2-klein", Flux2KleinPipeline),
("flux2", Flux2Pipeline),
("lumina", LuminaPipeline),
("lumina2", Lumina2Pipeline),
("chroma", ChromaPipeline),
("cogview3", CogView3PlusPipeline),
("cogview4", CogView4Pipeline),
("glm_image", GlmImagePipeline),
("cogview4-control", CogView4ControlPipeline),
("qwenimage", QwenImagePipeline),
("qwenimage-controlnet", QwenImageControlNetPipeline),
@@ -205,8 +200,6 @@ AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict(
("flux-controlnet", FluxControlNetImg2ImgPipeline),
("flux-control", FluxControlImg2ImgPipeline),
("flux-kontext", FluxKontextPipeline),
("flux2-klein", Flux2KleinPipeline),
("flux2", Flux2Pipeline),
("qwenimage", QwenImageImg2ImgPipeline),
("qwenimage-edit", QwenImageEditPipeline),
("qwenimage-edit-plus", QwenImageEditPlusPipeline),

View File

@@ -23,8 +23,6 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_bria_fibo"] = ["BriaFiboPipeline"]
_import_structure["pipeline_bria_fibo_edit"] = ["BriaFiboEditPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
@@ -35,7 +33,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_bria_fibo import BriaFiboPipeline
from .pipeline_bria_fibo_edit import BriaFiboEditPipeline
else:
import sys

File diff suppressed because it is too large Load Diff

View File

@@ -24,7 +24,6 @@ except OptionalDependencyNotAvailable:
else:
_import_structure["pipeline_chroma"] = ["ChromaPipeline"]
_import_structure["pipeline_chroma_img2img"] = ["ChromaImg2ImgPipeline"]
_import_structure["pipeline_chroma_inpainting"] = ["ChromaInpaintPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
@@ -34,7 +33,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
else:
from .pipeline_chroma import ChromaPipeline
from .pipeline_chroma_img2img import ChromaImg2ImgPipeline
from .pipeline_chroma_inpainting import ChromaInpaintPipeline
else:
import sys

File diff suppressed because it is too large Load Diff

View File

@@ -84,6 +84,7 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(

View File

@@ -23,7 +23,6 @@ except OptionalDependencyNotAvailable:
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_flux2"] = ["Flux2Pipeline"]
_import_structure["pipeline_flux2_klein"] = ["Flux2KleinPipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
@@ -32,7 +31,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_flux2 import Flux2Pipeline
from .pipeline_flux2_klein import Flux2KleinPipeline
else:
import sys

View File

@@ -725,8 +725,8 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
return self._guidance_scale
@property
def attention_kwargs(self):
return self._attention_kwargs
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
@@ -975,7 +975,7 @@ class Flux2Pipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids, # B, text_seq_len, 4
img_ids=latent_image_ids, # B, image_seq_len, 4
joint_attention_kwargs=self.attention_kwargs,
joint_attention_kwargs=self._attention_kwargs,
return_dict=False,
)[0]

View File

@@ -1,918 +0,0 @@
# Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from transformers import Qwen2TokenizerFast, Qwen3ForCausalLM
from ...loaders import Flux2LoraLoaderMixin
from ...models import AutoencoderKLFlux2, Flux2Transformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from .image_processor import Flux2ImageProcessor
from .pipeline_output import Flux2PipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import Flux2KleinPipeline
>>> pipe = Flux2KleinPipeline.from_pretrained(
... "black-forest-labs/FLUX.2-klein-base-9B", torch_dtype=torch.bfloat16
... )
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, num_inference_steps=50, guidance_scale=4.0).images[0]
>>> image.save("flux2_output.png")
```
"""
# Copied from diffusers.pipelines.flux2.pipeline_flux2.compute_empirical_mu
def compute_empirical_mu(image_seq_len: int, num_steps: int) -> float:
a1, b1 = 8.73809524e-05, 1.89833333
a2, b2 = 0.00016927, 0.45666666
if image_seq_len > 4300:
mu = a2 * image_seq_len + b2
return float(mu)
m_200 = a2 * image_seq_len + b2
m_10 = a1 * image_seq_len + b1
a = (m_200 - m_10) / 190.0
b = m_200 - 200.0 * a
mu = a * num_steps + b
return float(mu)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class Flux2KleinPipeline(DiffusionPipeline, Flux2LoraLoaderMixin):
r"""
The Flux2 Klein pipeline for text-to-image generation.
Reference:
[https://bfl.ai/blog/flux2-klein-towards-interactive-visual-intelligence](https://bfl.ai/blog/flux2-klein-towards-interactive-visual-intelligence)
Args:
transformer ([`Flux2Transformer2DModel`]):
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLFlux2`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`Qwen3ForCausalLM`]):
[Qwen3ForCausalLM](https://huggingface.co/docs/transformers/en/model_doc/qwen3#transformers.Qwen3ForCausalLM)
tokenizer (`Qwen2TokenizerFast`):
Tokenizer of class
[Qwen2TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/qwen2#transformers.Qwen2TokenizerFast).
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKLFlux2,
text_encoder: Qwen3ForCausalLM,
tokenizer: Qwen2TokenizerFast,
transformer: Flux2Transformer2DModel,
is_distilled: bool = False,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
transformer=transformer,
)
self.register_to_config(is_distilled=is_distilled)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.image_processor = Flux2ImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.tokenizer_max_length = 512
self.default_sample_size = 128
@staticmethod
def _get_qwen3_prompt_embeds(
text_encoder: Qwen3ForCausalLM,
tokenizer: Qwen2TokenizerFast,
prompt: Union[str, List[str]],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
max_sequence_length: int = 512,
hidden_states_layers: List[int] = (9, 18, 27),
):
dtype = text_encoder.dtype if dtype is None else dtype
device = text_encoder.device if device is None else device
prompt = [prompt] if isinstance(prompt, str) else prompt
all_input_ids = []
all_attention_masks = []
for single_prompt in prompt:
messages = [{"role": "user", "content": single_prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
inputs = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_sequence_length,
)
all_input_ids.append(inputs["input_ids"])
all_attention_masks.append(inputs["attention_mask"])
input_ids = torch.cat(all_input_ids, dim=0).to(device)
attention_mask = torch.cat(all_attention_masks, dim=0).to(device)
# Forward pass through the model
output = text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
use_cache=False,
)
# Only use outputs from intermediate layers and stack them
out = torch.stack([output.hidden_states[k] for k in hidden_states_layers], dim=1)
out = out.to(dtype=dtype, device=device)
batch_size, num_channels, seq_len, hidden_dim = out.shape
prompt_embeds = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, num_channels * hidden_dim)
return prompt_embeds
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._prepare_text_ids
def _prepare_text_ids(
x: torch.Tensor, # (B, L, D) or (L, D)
t_coord: Optional[torch.Tensor] = None,
):
B, L, _ = x.shape
out_ids = []
for i in range(B):
t = torch.arange(1) if t_coord is None else t_coord[i]
h = torch.arange(1)
w = torch.arange(1)
l = torch.arange(L)
coords = torch.cartesian_prod(t, h, w, l)
out_ids.append(coords)
return torch.stack(out_ids)
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._prepare_latent_ids
def _prepare_latent_ids(
latents: torch.Tensor, # (B, C, H, W)
):
r"""
Generates 4D position coordinates (T, H, W, L) for latent tensors.
Args:
latents (torch.Tensor):
Latent tensor of shape (B, C, H, W)
Returns:
torch.Tensor:
Position IDs tensor of shape (B, H*W, 4) All batches share the same coordinate structure: T=0,
H=[0..H-1], W=[0..W-1], L=0
"""
batch_size, _, height, width = latents.shape
t = torch.arange(1) # [0] - time dimension
h = torch.arange(height)
w = torch.arange(width)
l = torch.arange(1) # [0] - layer dimension
# Create position IDs: (H*W, 4)
latent_ids = torch.cartesian_prod(t, h, w, l)
# Expand to batch: (B, H*W, 4)
latent_ids = latent_ids.unsqueeze(0).expand(batch_size, -1, -1)
return latent_ids
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._prepare_image_ids
def _prepare_image_ids(
image_latents: List[torch.Tensor], # [(1, C, H, W), (1, C, H, W), ...]
scale: int = 10,
):
r"""
Generates 4D time-space coordinates (T, H, W, L) for a sequence of image latents.
This function creates a unique coordinate for every pixel/patch across all input latent with different
dimensions.
Args:
image_latents (List[torch.Tensor]):
A list of image latent feature tensors, typically of shape (C, H, W).
scale (int, optional):
A factor used to define the time separation (T-coordinate) between latents. T-coordinate for the i-th
latent is: 'scale + scale * i'. Defaults to 10.
Returns:
torch.Tensor:
The combined coordinate tensor. Shape: (1, N_total, 4) Where N_total is the sum of (H * W) for all
input latents.
Coordinate Components (Dimension 4):
- T (Time): The unique index indicating which latent image the coordinate belongs to.
- H (Height): The row index within that latent image.
- W (Width): The column index within that latent image.
- L (Seq. Length): A sequence length dimension, which is always fixed at 0 (size 1)
"""
if not isinstance(image_latents, list):
raise ValueError(f"Expected `image_latents` to be a list, got {type(image_latents)}.")
# create time offset for each reference image
t_coords = [scale + scale * t for t in torch.arange(0, len(image_latents))]
t_coords = [t.view(-1) for t in t_coords]
image_latent_ids = []
for x, t in zip(image_latents, t_coords):
x = x.squeeze(0)
_, height, width = x.shape
x_ids = torch.cartesian_prod(t, torch.arange(height), torch.arange(width), torch.arange(1))
image_latent_ids.append(x_ids)
image_latent_ids = torch.cat(image_latent_ids, dim=0)
image_latent_ids = image_latent_ids.unsqueeze(0)
return image_latent_ids
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._patchify_latents
def _patchify_latents(latents):
batch_size, num_channels_latents, height, width = latents.shape
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 1, 3, 5, 2, 4)
latents = latents.reshape(batch_size, num_channels_latents * 4, height // 2, width // 2)
return latents
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._unpatchify_latents
def _unpatchify_latents(latents):
batch_size, num_channels_latents, height, width = latents.shape
latents = latents.reshape(batch_size, num_channels_latents // (2 * 2), 2, 2, height, width)
latents = latents.permute(0, 1, 4, 2, 5, 3)
latents = latents.reshape(batch_size, num_channels_latents // (2 * 2), height * 2, width * 2)
return latents
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._pack_latents
def _pack_latents(latents):
"""
pack latents: (batch_size, num_channels, height, width) -> (batch_size, height * width, num_channels)
"""
batch_size, num_channels, height, width = latents.shape
latents = latents.reshape(batch_size, num_channels, height * width).permute(0, 2, 1)
return latents
@staticmethod
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._unpack_latents_with_ids
def _unpack_latents_with_ids(x: torch.Tensor, x_ids: torch.Tensor) -> list[torch.Tensor]:
"""
using position ids to scatter tokens into place
"""
x_list = []
for data, pos in zip(x, x_ids):
_, ch = data.shape # noqa: F841
h_ids = pos[:, 1].to(torch.int64)
w_ids = pos[:, 2].to(torch.int64)
h = torch.max(h_ids) + 1
w = torch.max(w_ids) + 1
flat_ids = h_ids * w + w_ids
out = torch.zeros((h * w, ch), device=data.device, dtype=data.dtype)
out.scatter_(0, flat_ids.unsqueeze(1).expand(-1, ch), data)
# reshape from (H * W, C) to (H, W, C) and permute to (C, H, W)
out = out.view(h, w, ch).permute(2, 0, 1)
x_list.append(out)
return torch.stack(x_list, dim=0)
def encode_prompt(
self,
prompt: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 512,
text_encoder_out_layers: Tuple[int] = (9, 18, 27),
):
device = device or self._execution_device
if prompt is None:
prompt = ""
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt_embeds is None:
prompt_embeds = self._get_qwen3_prompt_embeds(
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
prompt=prompt,
device=device,
max_sequence_length=max_sequence_length,
hidden_states_layers=text_encoder_out_layers,
)
batch_size, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
text_ids = self._prepare_text_ids(prompt_embeds)
text_ids = text_ids.to(device)
return prompt_embeds, text_ids
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline._encode_vae_image
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if image.ndim != 4:
raise ValueError(f"Expected image dims 4, got {image.ndim}.")
image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
image_latents = self._patchify_latents(image_latents)
latents_bn_mean = self.vae.bn.running_mean.view(1, -1, 1, 1).to(image_latents.device, image_latents.dtype)
latents_bn_std = torch.sqrt(self.vae.bn.running_var.view(1, -1, 1, 1) + self.vae.config.batch_norm_eps)
image_latents = (image_latents - latents_bn_mean) / latents_bn_std
return image_latents
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_latents_channels,
height,
width,
dtype,
device,
generator: torch.Generator,
latents: Optional[torch.Tensor] = None,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, num_latents_channels * 4, height // 2, width // 2)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
latent_ids = self._prepare_latent_ids(latents)
latent_ids = latent_ids.to(device)
latents = self._pack_latents(latents) # [B, C, H, W] -> [B, H*W, C]
return latents, latent_ids
# Copied from diffusers.pipelines.flux2.pipeline_flux2.Flux2Pipeline.prepare_image_latents
def prepare_image_latents(
self,
images: List[torch.Tensor],
batch_size,
generator: torch.Generator,
device,
dtype,
):
image_latents = []
for image in images:
image = image.to(device=device, dtype=dtype)
imagge_latent = self._encode_vae_image(image=image, generator=generator)
image_latents.append(imagge_latent) # (1, 128, 32, 32)
image_latent_ids = self._prepare_image_ids(image_latents)
# Pack each latent and concatenate
packed_latents = []
for latent in image_latents:
# latent: (1, 128, 32, 32)
packed = self._pack_latents(latent) # (1, 1024, 128)
packed = packed.squeeze(0) # (1024, 128) - remove batch dim
packed_latents.append(packed)
# Concatenate all reference tokens along sequence dimension
image_latents = torch.cat(packed_latents, dim=0) # (N*1024, 128)
image_latents = image_latents.unsqueeze(0) # (1, N*1024, 128)
image_latents = image_latents.repeat(batch_size, 1, 1)
image_latent_ids = image_latent_ids.repeat(batch_size, 1, 1)
image_latent_ids = image_latent_ids.to(device)
return image_latents, image_latent_ids
def check_inputs(
self,
prompt,
height,
width,
prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
guidance_scale=None,
):
if (
height is not None
and height % (self.vae_scale_factor * 2) != 0
or width is not None
and width % (self.vae_scale_factor * 2) != 0
):
logger.warning(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if guidance_scale > 1.0 and self.config.is_distilled:
logger.warning(f"Guidance scale {guidance_scale} is ignored for step-wise distilled models.")
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1 and not self.config.is_distilled
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: Optional[Union[List[PIL.Image.Image], PIL.Image.Image]] = None,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
sigmas: Optional[List[float]] = None,
guidance_scale: Optional[float] = 4.0,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[Union[str, List[str]]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
text_encoder_out_layers: Tuple[int] = (9, 18, 27),
):
r"""
Function invoked when calling the pipeline for generation.
Args:
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
guidance_scale (`float`, *optional*, defaults to 4.0):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality. For step-wise distilled models,
`guidance_scale` is ignored.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will be generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Note that "" is used as the negative prompt in this pipeline.
If not provided, will be generated from "".
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
text_encoder_out_layers (`Tuple[int]`):
Layer indices to use in the `text_encoder` to derive the final prompt embeddings.
Examples:
Returns:
[`~pipelines.flux2.Flux2PipelineOutput`] or `tuple`: [`~pipelines.flux2.Flux2PipelineOutput`] if
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
generated images.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt=prompt,
height=height,
width=width,
prompt_embeds=prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
guidance_scale=guidance_scale,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. prepare text embeddings
prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_embeds=prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
text_encoder_out_layers=text_encoder_out_layers,
)
if self.do_classifier_free_guidance:
negative_prompt = ""
if prompt is not None and isinstance(prompt, list):
negative_prompt = [negative_prompt] * len(prompt)
negative_prompt_embeds, negative_text_ids = self.encode_prompt(
prompt=negative_prompt,
prompt_embeds=negative_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
text_encoder_out_layers=text_encoder_out_layers,
)
# 4. process images
if image is not None and not isinstance(image, list):
image = [image]
condition_images = None
if image is not None:
for img in image:
self.image_processor.check_image_input(img)
condition_images = []
for img in image:
image_width, image_height = img.size
if image_width * image_height > 1024 * 1024:
img = self.image_processor._resize_to_target_area(img, 1024 * 1024)
image_width, image_height = img.size
multiple_of = self.vae_scale_factor * 2
image_width = (image_width // multiple_of) * multiple_of
image_height = (image_height // multiple_of) * multiple_of
img = self.image_processor.preprocess(img, height=image_height, width=image_width, resize_mode="crop")
condition_images.append(img)
height = height or image_height
width = width or image_width
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 5. prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_ids = self.prepare_latents(
batch_size=batch_size * num_images_per_prompt,
num_latents_channels=num_channels_latents,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=latents,
)
image_latents = None
image_latent_ids = None
if condition_images is not None:
image_latents, image_latent_ids = self.prepare_image_latents(
images=condition_images,
batch_size=batch_size * num_images_per_prompt,
generator=generator,
device=device,
dtype=self.vae.dtype,
)
# 6. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
if hasattr(self.scheduler.config, "use_flow_sigmas") and self.scheduler.config.use_flow_sigmas:
sigmas = None
image_seq_len = latents.shape[1]
mu = compute_empirical_mu(image_seq_len=image_seq_len, num_steps=num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 7. Denoising loop
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
self.scheduler.set_begin_index(0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
latent_model_input = latents.to(self.transformer.dtype)
latent_image_ids = latent_ids
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1).to(self.transformer.dtype)
latent_image_ids = torch.cat([latent_ids, image_latent_ids], dim=1)
with self.transformer.cache_context("cond"):
noise_pred = self.transformer(
hidden_states=latent_model_input, # (B, image_seq_len, C)
timestep=timestep / 1000,
guidance=None,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids, # B, text_seq_len, 4
img_ids=latent_image_ids, # B, image_seq_len, 4
joint_attention_kwargs=self.attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1) :]
if self.do_classifier_free_guidance:
with self.transformer.cache_context("uncond"):
neg_noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=None,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self._attention_kwargs,
return_dict=False,
)[0]
neg_noise_pred = neg_noise_pred[:, : latents.size(1) :]
noise_pred = neg_noise_pred + guidance_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
latents = self._unpack_latents_with_ids(latents, latent_ids)
latents_bn_mean = self.vae.bn.running_mean.view(1, -1, 1, 1).to(latents.device, latents.dtype)
latents_bn_std = torch.sqrt(self.vae.bn.running_var.view(1, -1, 1, 1) + self.vae.config.batch_norm_eps).to(
latents.device, latents.dtype
)
latents = latents * latents_bn_std + latents_bn_mean
latents = self._unpatchify_latents(latents)
if output_type == "latent":
image = latents
else:
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return Flux2PipelineOutput(images=image)

View File

@@ -1,59 +0,0 @@
from typing import TYPE_CHECKING
from ...utils import (
DIFFUSERS_SLOW_IMPORT,
OptionalDependencyNotAvailable,
_LazyModule,
get_objects_from_module,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
_dummy_objects = {}
_additional_imports = {}
_import_structure = {"pipeline_output": ["GlmImagePipelineOutput"]}
# Import transformers components so they can be resolved during pipeline loading
if is_transformers_available() and is_transformers_version(">=", "4.57.4"):
try:
from transformers import GlmImageForConditionalGeneration, GlmImageProcessor
_additional_imports["GlmImageForConditionalGeneration"] = GlmImageForConditionalGeneration
_additional_imports["GlmImageProcessor"] = GlmImageProcessor
except ImportError:
pass
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils import dummy_torch_and_transformers_objects # noqa F403
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
else:
_import_structure["pipeline_glm_image"] = ["GlmImagePipeline"]
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_glm_image import GlmImagePipeline
else:
import sys
sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
for name, value in _additional_imports.items():
setattr(sys.modules[__name__], name, value)

View File

@@ -1,825 +0,0 @@
# Copyright 2025 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import re
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from transformers import ByT5Tokenizer, PreTrainedModel, ProcessorMixin, T5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import VaeImageProcessor
from ...models import AutoencoderKL, GlmImageTransformer2DModel
from ...models.transformers.transformer_glm_image import GlmImageKVCache
from ...pipelines.pipeline_utils import DiffusionPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, is_transformers_version, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from .pipeline_output import GlmImagePipelineOutput
# Because it's not released in stable as of 13/01/2026. So this is just a proxy.
GlmImageProcessor = ProcessorMixin
GlmImageForConditionalGeneration = PreTrainedModel
if is_transformers_version(">=", "5.0.0.dev0"):
from transformers import GlmImageForConditionalGeneration, GlmImageProcessor
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> from diffusers import GlmImagePipeline
>>> pipe = GlmImagePipeline.from_pretrained("zai-org/GLM-Image", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt).images[0]
>>> image.save("output.png")
```
"""
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
base_shift: float = 0.25,
max_shift: float = 0.75,
) -> float:
m = (image_seq_len / base_seq_len) ** 0.5
mu = m * max_shift + base_shift
return mu
# Copied from diffusers.pipelines.cogview4.pipeline_cogview4.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
accepts_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if timesteps is not None and sigmas is not None:
if not accepts_timesteps and not accepts_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep or sigma schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif timesteps is not None and sigmas is None:
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif timesteps is None and sigmas is not None:
if not accepts_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class GlmImagePipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using GLM-Image.
This pipeline integrates both the AR (autoregressive) model for token generation and the DiT (diffusion
transformer) model for image decoding.
Args:
tokenizer (`PreTrainedTokenizer`):
Tokenizer for the text encoder.
processor (`AutoProcessor`):
Processor for the AR model to handle chat templates and tokenization.
text_encoder ([`T5EncoderModel`]):
Frozen text-encoder for glyph embeddings.
vision_language_encoder ([`GlmImageForConditionalGeneration`]):
The AR model that generates image tokens from text prompts.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
transformer ([`GlmImageTransformer2DModel`]):
A text conditioned transformer to denoise the encoded image latents (DiT).
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""
_optional_components = []
model_cpu_offload_seq = "vision_language_encoder->text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds"]
def __init__(
self,
tokenizer: ByT5Tokenizer,
processor: GlmImageProcessor,
text_encoder: T5EncoderModel,
vision_language_encoder: GlmImageForConditionalGeneration,
vae: AutoencoderKL,
transformer: GlmImageTransformer2DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
tokenizer=tokenizer,
processor=processor,
text_encoder=text_encoder,
vision_language_encoder=vision_language_encoder,
vae=vae,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = (
self.transformer.config.sample_size
if hasattr(self, "transformer")
and self.transformer is not None
and hasattr(self.transformer.config, "sample_size")
else 128
)
@staticmethod
def _compute_generation_params(
image_grid_thw,
is_text_to_image: bool,
):
grid_sizes = []
grid_hw = []
for i in range(image_grid_thw.shape[0]):
t, h, w = image_grid_thw[i].tolist()
grid_sizes.append(int(h * w))
grid_hw.append((int(h), int(w)))
if not is_text_to_image:
max_new_tokens = grid_sizes[-1] + 1
large_image_start_offset = 0
target_grid_h, target_grid_w = grid_hw[-1]
else:
total_tokens = sum(grid_sizes)
max_new_tokens = total_tokens + 1
large_image_start_offset = sum(grid_sizes[1:])
target_grid_h, target_grid_w = grid_hw[0]
return max_new_tokens, large_image_start_offset, target_grid_h, target_grid_w
@staticmethod
def _extract_large_image_tokens(
outputs: torch.Tensor, input_length: int, large_image_start_offset: int, large_image_tokens: int
) -> torch.Tensor:
generated_tokens = outputs[0][input_length:]
large_image_start = large_image_start_offset
large_image_end = large_image_start + large_image_tokens
return generated_tokens[large_image_start:large_image_end]
@staticmethod
def _upsample_token_ids(token_ids: torch.Tensor, token_h: int, token_w: int) -> torch.Tensor:
token_ids = token_ids.view(1, 1, token_h, token_w)
token_ids = torch.nn.functional.interpolate(token_ids.float(), scale_factor=2, mode="nearest").to(
dtype=torch.long
)
token_ids = token_ids.view(1, -1)
return token_ids
def generate_prior_tokens(
self,
prompt: str,
height: int,
width: int,
image: Optional[List[PIL.Image.Image]] = None,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
is_text_to_image = image is None or len(image) == 0
content = []
if image is not None:
for img in image:
content.append({"type": "image", "image": img})
content.append({"type": "text", "text": prompt})
messages = [{"role": "user", "content": content}]
inputs = self.processor.apply_chat_template(
messages,
tokenize=True,
target_h=height,
target_w=width,
return_dict=True,
return_tensors="pt",
).to(device)
image_grid_thw = inputs.get("image_grid_thw")
max_new_tokens, large_image_offset, token_h, token_w = self._compute_generation_params(
image_grid_thw=image_grid_thw, is_text_to_image=is_text_to_image
)
prior_token_image_ids = None
if image is not None:
prior_token_image_embed = self.vision_language_encoder.get_image_features(
inputs["pixel_values"], image_grid_thw[:-1]
)
prior_token_image_embed = torch.cat(prior_token_image_embed, dim=0)
prior_token_image_ids = self.vision_language_encoder.get_image_tokens(
prior_token_image_embed, image_grid_thw[:-1]
)
# For GLM-Image, greedy decoding is not allowed; it may cause repetitive outputs.
# max_new_tokens must be exactly grid_h * grid_w + 1 (the +1 is for EOS).
outputs = self.vision_language_encoder.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
)
prior_token_ids_d32 = self._extract_large_image_tokens(
outputs, inputs["input_ids"].shape[-1], large_image_offset, token_h * token_w
)
prior_token_ids = self._upsample_token_ids(prior_token_ids_d32, token_h, token_w)
return prior_token_ids, prior_token_image_ids
def get_glyph_texts(self, prompt):
prompt = prompt[0] if isinstance(prompt, list) else prompt
ocr_texts = (
re.findall(r"'([^']*)'", prompt)
+ re.findall(r"“([^“”]*)”", prompt)
+ re.findall(r'"([^"]*)"', prompt)
+ re.findall(r"「([^「」]*)」", prompt)
)
return ocr_texts
def _get_glyph_embeds(
self,
prompt: Union[str, List[str]] = None,
max_sequence_length: int = 2048,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
glyph_texts = self.get_glyph_texts(prompt)
input_ids = self.tokenizer(
glyph_texts if len(glyph_texts) > 0 else [""],
max_length=max_sequence_length,
truncation=True,
).input_ids
input_ids = [
[self.tokenizer.pad_token_id] * ((len(input_ids) + 1) % 2) + input_ids_ for input_ids_ in input_ids
]
max_length = max(len(input_ids_) for input_ids_ in input_ids)
attention_mask = torch.tensor(
[[1] * len(input_ids_) + [0] * (max_length - len(input_ids_)) for input_ids_ in input_ids], device=device
)
input_ids = torch.tensor(
[input_ids_ + [self.tokenizer.pad_token_id] * (max_length - len(input_ids_)) for input_ids_ in input_ids],
device=device,
)
outputs = self.text_encoder(input_ids, attention_mask=attention_mask)
glyph_embeds = outputs.last_hidden_state[attention_mask.bool()].unsqueeze(0)
return glyph_embeds.to(device=device, dtype=dtype)
def encode_prompt(
self,
prompt: Union[str, List[str]],
do_classifier_free_guidance: bool = True,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
max_sequence_length: int = 2048,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_images_per_prompt (`int`, *optional*, defaults to 1):
Number of images that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
max_sequence_length (`int`, defaults to `2048`):
Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_glyph_embeds(prompt, max_sequence_length, device, dtype)
seq_len = prompt_embeds.size(1)
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For GLM-Image, negative_prompt must be "" instead of None
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
negative_prompt_embeds = self._get_glyph_embeds(negative_prompt, max_sequence_length, device, dtype)
seq_len = negative_prompt_embeds.size(1)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, negative_prompt_embeds
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
if latents is not None:
return latents.to(device)
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def check_inputs(
self,
prompt,
height,
width,
callback_on_step_end_tensor_inputs,
prompt_embeds=None,
negative_prompt_embeds=None,
prior_token_ids=None,
prior_image_token_ids=None,
):
if (
height is not None
and height % (self.vae_scale_factor * self.transformer.config.patch_size * 2) != 0
or width is not None
and width % (self.transformer.config.patch_size * 2) != 0
):
# GLM-Image uses 32× downsampling, so the image dimensions must be multiples of 32.
raise ValueError(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 4} but are {height} and {width}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt is not None and prior_token_ids is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prior_token_ids`: {prior_token_ids}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prior_token_ids is None:
raise ValueError(
"Provide either `prompt` or `prior_token_ids`. Cannot leave both `prompt` and `prior_token_ids` undefined."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if (prior_token_ids is None and prior_image_token_ids is not None) or (
prior_token_ids is not None and prior_image_token_ids is None
):
raise ValueError(
f"Cannot forward only one `prior_token_ids`: {prior_token_ids} or `prior_image_token_ids`:"
f" {prior_image_token_ids} provided. Please make sure both are provided or neither."
)
if prior_token_ids is not None and prompt_embeds is None:
raise ValueError("`prompt_embeds` must also be provided with `prior_token_ids`.")
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def attention_kwargs(self):
return self._attention_kwargs
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
image: Optional[
Union[
torch.Tensor, PIL.Image.Image, np.ndarray, List[torch.Tensor], List[PIL.Image.Image], List[np.ndarray]
]
] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 1.5,
num_images_per_prompt: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prior_token_ids: Optional[torch.FloatTensor] = None,
prior_image_token_ids: Optional[torch.Tensor] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
output_type: str = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 2048,
) -> Union[GlmImagePipelineOutput, Tuple]:
"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. Must contain shape info in the format '<sop>H
W<eop>' where H and W are token dimensions (d32). Example: "A beautiful sunset<sop>36 24<eop>"
generates a 1152x768 image.
image: Optional condition images for image-to-image generation.
height (`int`, *optional*):
The height in pixels. If not provided, derived from prompt shape info.
width (`int`, *optional*):
The width in pixels. If not provided, derived from prompt shape info.
num_inference_steps (`int`, *optional*, defaults to `50`):
The number of denoising steps for DiT.
guidance_scale (`float`, *optional*, defaults to `1.5`):
Guidance scale for classifier-free guidance.
num_images_per_prompt (`int`, *optional*, defaults to `1`):
The number of images to generate per prompt.
generator (`torch.Generator`, *optional*):
Random generator for reproducibility.
output_type (`str`, *optional*, defaults to `"pil"`):
Output format: "pil", "np", or "latent".
Examples:
Returns:
[`GlmImagePipelineOutput`] or `tuple`: Generated images.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs
self.check_inputs(
prompt,
height,
width,
callback_on_step_end_tensor_inputs,
prompt_embeds,
negative_prompt_embeds,
prior_token_ids,
prior_image_token_ids,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if batch_size != 1:
raise ValueError(f"batch_size must be 1 due to AR model limitations, got {batch_size}")
device = self._execution_device
# 2. Preprocess image tokens and prompt tokens
if prior_token_ids is None:
prior_token_ids, prior_token_image_ids = self.generate_prior_tokens(
prompt=prompt[0] if isinstance(prompt, list) else prompt,
image=image,
height=height,
width=width,
device=device,
)
# 3. Preprocess image
if image is not None:
preprocessed_condition_images = []
for img in image:
image_height, image_width = img.size[::-1] if isinstance(img, PIL.Image.Image) else img.shape[:2]
multiple_of = self.vae_scale_factor * self.transformer.config.patch_size
image_height = (image_height // multiple_of) * multiple_of
image_width = (image_width // multiple_of) * multiple_of
img = self.image_processor.preprocess(img, height=image_height, width=image_width)
preprocessed_condition_images.append(img)
height = height or image_height
width = width or image_width
image = preprocessed_condition_images
# 5. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
self.do_classifier_free_guidance,
num_images_per_prompt=num_images_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
dtype=self.dtype,
)
# 4. Prepare latents and (optional) image kv cache
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size=batch_size * num_images_per_prompt,
num_channels_latents=latent_channels,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=latents,
)
kv_caches = GlmImageKVCache(num_layers=self.transformer.config.num_layers)
if image is not None:
kv_caches.set_mode("write")
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, self.vae.config.latent_channels, 1, 1)
latents_std = torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.latent_channels, 1, 1)
latents_mean = latents_mean.to(device=device, dtype=prompt_embeds.dtype)
latents_std = latents_std.to(device=device, dtype=prompt_embeds.dtype)
for condition_image, condition_image_prior_token_id in zip(image, prior_token_image_ids):
condition_image = condition_image.to(device=device, dtype=prompt_embeds.dtype)
condition_latent = retrieve_latents(
self.vae.encode(condition_image), generator=generator, sample_mode="argmax"
)
condition_latent = (condition_latent - latents_mean) / latents_std
# Do not remove.
# It would be use to run the reference image through a
# forward pass at timestep 0 and keep the KV cache.
_ = self.transformer(
hidden_states=condition_latent,
encoder_hidden_states=torch.zeros_like(prompt_embeds)[:1, :0, ...],
prior_token_id=condition_image_prior_token_id,
prior_token_drop=torch.full_like(condition_image_prior_token_id, False, dtype=torch.bool),
timestep=torch.zeros((1,), device=device),
target_size=torch.tensor([condition_image.shape[-2:]], device=device),
crop_coords=torch.zeros((1, 2), device=device),
attention_kwargs=attention_kwargs,
kv_caches=kv_caches,
)
# 6. Prepare additional timestep conditions
target_size = (height, width)
target_size = torch.tensor([target_size], dtype=prompt_embeds.dtype, device=device)
crops_coords_top_left = torch.tensor([crops_coords_top_left], dtype=prompt_embeds.dtype, device=device)
target_size = target_size.repeat(batch_size * num_images_per_prompt, 1)
crops_coords_top_left = crops_coords_top_left.repeat(batch_size * num_images_per_prompt, 1)
# Prepare timesteps
image_seq_len = ((height // self.vae_scale_factor) * (width // self.vae_scale_factor)) // (
self.transformer.config.patch_size**2
)
timesteps = (
np.linspace(self.scheduler.config.num_train_timesteps, 1.0, num_inference_steps + 1)[:-1]
if timesteps is None
else np.array(timesteps)
)
timesteps = timesteps.astype(np.int64).astype(np.float32)
sigmas = timesteps / self.scheduler.config.num_train_timesteps if sigmas is None else sigmas
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("base_shift", 0.25),
self.scheduler.config.get("max_shift", 0.75),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu
)
self._num_timesteps = len(timesteps)
# 7. Denoising loop
transformer_dtype = self.transformer.dtype
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
prior_token_drop_cond = torch.full_like(prior_token_ids, False, dtype=torch.bool)
prior_token_drop_uncond = torch.full_like(prior_token_ids, True, dtype=torch.bool)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0]) - 1
if image is not None:
kv_caches.set_mode("read")
noise_pred_cond = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds,
prior_token_id=prior_token_ids,
prior_token_drop=prior_token_drop_cond,
timestep=timestep,
target_size=target_size,
crop_coords=crops_coords_top_left,
attention_kwargs=attention_kwargs,
return_dict=False,
kv_caches=kv_caches,
)[0].float()
# perform guidance
if self.do_classifier_free_guidance:
if image is not None:
kv_caches.set_mode("skip")
noise_pred_uncond = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=negative_prompt_embeds,
prior_token_id=prior_token_ids,
prior_token_drop=prior_token_drop_uncond,
timestep=timestep,
target_size=target_size,
crop_coords=crops_coords_top_left,
attention_kwargs=attention_kwargs,
return_dict=False,
kv_caches=kv_caches,
)[0].float()
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
else:
noise_pred = noise_pred_cond
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, self.scheduler.sigmas[i], callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
kv_caches.clear()
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.latent_channels, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = (
torch.tensor(self.vae.config.latents_std)
.view(1, self.vae.config.latent_channels, 1, 1)
.to(latents.device, latents.dtype)
)
latents = latents * latents_std + latents_mean
image = self.vae.decode(latents, return_dict=False, generator=generator)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return GlmImagePipelineOutput(images=image)

View File

@@ -1,21 +0,0 @@
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import PIL.Image
from ...utils import BaseOutput
@dataclass
class GlmImagePipelineOutput(BaseOutput):
"""
Output class for CogView3 pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
"""
images: Union[List[PIL.Image.Image], np.ndarray]

View File

@@ -53,6 +53,7 @@ EXAMPLE_DOC_STRING = """
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> from diffusers import HiDreamImagePipeline
>>> tokenizer_4 = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
... "meta-llama/Meta-Llama-3.1-8B-Instruct",

View File

@@ -260,10 +260,10 @@ class LongCatImagePipeline(DiffusionPipeline, FromSingleFileMixin):
text = self.text_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
all_text.append(text)
inputs = self.text_processor(text=all_text, padding=True, return_tensors="pt").to(self.text_encoder.device)
inputs = self.text_processor(text=all_text, padding=True, return_tensors="pt").to(device)
self.text_encoder.to(device)
generated_ids = self.text_encoder.generate(**inputs, max_new_tokens=self.tokenizer_max_length)
generated_ids.to(device)
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = self.text_processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False

View File

@@ -85,6 +85,7 @@ EXAMPLE_DOC_STRING = """
>>> from diffusers import ControlNetModel, StableDiffusionXLControlNetPAGImg2ImgPipeline, AutoencoderKL
>>> from diffusers.utils import load_image
>>> depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
>>> feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
>>> controlnet = ControlNetModel.from_pretrained(

View File

@@ -758,7 +758,6 @@ def load_sub_model(
use_safetensors: bool,
dduf_entries: Optional[Dict[str, DDUFEntry]],
provider_options: Any,
disable_mmap: bool,
quantization_config: Optional[Any] = None,
):
"""Helper method to load the module `name` from `library_name` and `class_name`"""
@@ -860,9 +859,6 @@ def load_sub_model(
else:
loading_kwargs["low_cpu_mem_usage"] = False
if is_diffusers_model:
loading_kwargs["disable_mmap"] = disable_mmap
if is_transformers_model and is_transformers_version(">=", "4.57.0"):
loading_kwargs.pop("offload_state_dict")

View File

@@ -60,7 +60,6 @@ from ..utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
is_bitsandbytes_version,
is_hpu_available,
is_torch_npu_available,
is_torch_version,
@@ -445,10 +444,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
_, _, is_loaded_in_8bit_bnb = _check_bnb_status(module)
# https://github.com/huggingface/accelerate/pull/3907
if is_loaded_in_8bit_bnb and (
is_bitsandbytes_version("<", "0.48.0") or is_accelerate_version("<", "1.13.0.dev0")
):
if is_loaded_in_8bit_bnb:
return False
return hasattr(module, "_hf_hook") and (
@@ -527,10 +523,9 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
)
if is_loaded_in_8bit_bnb and device is not None and is_bitsandbytes_version("<", "0.48.0"):
if is_loaded_in_8bit_bnb and device is not None:
logger.warning(
f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
"You need to upgrade bitsandbytes to at least 0.48.0"
)
# Note: we also handle this at the ModelMixin level. The reason for doing it here too is that modeling
@@ -547,14 +542,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
# https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
module.to(device=device)
# added here https://github.com/huggingface/transformers/pull/43258
if (
is_loaded_in_8bit_bnb
and device is not None
and is_transformers_version(">", "4.58.0")
and is_bitsandbytes_version(">=", "0.48.0")
):
module.to(device=device)
elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb and not is_group_offloaded:
module.to(device, dtype)
@@ -721,9 +708,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
loading `from_flax`.
dduf_file(`str`, *optional*):
Load weights from the specified dduf file.
disable_mmap ('bool', *optional*, defaults to 'False'):
Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
> [!TIP] > To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in
with `hf > auth login`.
@@ -775,7 +759,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
use_onnx = kwargs.pop("use_onnx", None)
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
quantization_config = kwargs.pop("quantization_config", None)
disable_mmap = kwargs.pop("disable_mmap", False)
if torch_dtype is not None and not isinstance(torch_dtype, dict) and not isinstance(torch_dtype, torch.dtype):
torch_dtype = torch.float32
@@ -1063,7 +1046,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
use_safetensors=use_safetensors,
dduf_entries=dduf_entries,
provider_options=provider_options,
disable_mmap=disable_mmap,
quantization_config=quantization_config,
)
logger.info(
@@ -1241,9 +1223,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
# This is because the model would already be placed on a CUDA device.
_, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
if is_loaded_in_8bit_bnb and (
is_transformers_version("<", "4.58.0") or is_bitsandbytes_version("<", "0.48.0")
):
if is_loaded_in_8bit_bnb:
logger.info(
f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
)

View File

@@ -459,6 +459,7 @@ class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMix
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline
>>> import torch
>>> pipeline = StableDiffusionPipeline.from_pretrained(
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
... )

View File

@@ -15,7 +15,7 @@
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
import math
from typing import List, Literal, Optional, Tuple, Union
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
@@ -36,30 +36,27 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
methods the library implements for all schedulers such as loading and saving.
Args:
sigma_min (`float`, defaults to `0.3`):
sigma_min (`float`, *optional*, defaults to 0.3):
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
sigma_max (`float`, defaults to `500`):
sigma_max (`float`, *optional*, defaults to 500):
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
sigma_data (`float`, defaults to `1.0`):
sigma_data (`float`, *optional*, defaults to 1.0):
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
sigma_schedule (`str`, defaults to `"exponential"`):
Sigma schedule to compute the `sigmas`. Must be one of `"exponential"` or `"karras"`. The exponential
schedule was incorporated in [stabilityai/cosxl](https://huggingface.co/stabilityai/cosxl). The Karras
schedule is introduced in the [EDM](https://huggingface.co/papers/2206.00364) paper.
num_train_timesteps (`int`, defaults to `1000`):
sigma_schedule (`str`, *optional*, defaults to `exponential`):
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
(https://huggingface.co/papers/2206.00364). Other acceptable value is "exponential". The exponential
schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl.
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
solver_order (`int`, defaults to `2`):
solver_order (`int`, defaults to 2):
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
prediction_type (`str`, defaults to `"v_prediction"`):
Prediction type of the scheduler function. Must be one of `"epsilon"` (predicts the noise of the diffusion
process), `"sample"` (directly predicts the noisy sample), or `"v_prediction"` (see section 2.4 of [Imagen
prediction_type (`str`, defaults to `v_prediction`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://huggingface.co/papers/2210.02303) paper).
rho (`float`, defaults to `7.0`):
The parameter for calculating the Karras sigma schedule from the EDM
[paper](https://huggingface.co/papers/2206.00364).
solver_type (`str`, defaults to `"midpoint"`):
Solver type for the second-order solver. Must be one of `"midpoint"` or `"heun"`. The solver type slightly
affects the sample quality, especially for a small number of steps. It is recommended to use `"midpoint"`.
solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
@@ -68,9 +65,8 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
steps, but sometimes may result in blurring.
final_sigmas_type (`str`, defaults to `"zero"`):
The final `sigma` value for the noise schedule during the sampling process. Must be one of `"zero"` or
`"sigma_min"`. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If
`"zero"`, the final sigma is set to 0.
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
"""
_compatibles = []
@@ -82,16 +78,16 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
sigma_min: float = 0.3,
sigma_max: float = 500,
sigma_data: float = 1.0,
sigma_schedule: Literal["exponential", "karras"] = "exponential",
sigma_schedule: str = "exponential",
num_train_timesteps: int = 1000,
solver_order: int = 2,
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "v_prediction",
prediction_type: str = "v_prediction",
rho: float = 7.0,
solver_type: Literal["midpoint", "heun"] = "midpoint",
solver_type: str = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
final_sigmas_type: Literal["zero", "sigma_min"] = "zero",
) -> None:
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
):
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
@@ -117,40 +113,26 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self) -> float:
"""
The standard deviation of the initial noise distribution.
Returns:
`float`:
The initial noise sigma value computed as `sqrt(sigma_max^2 + 1)`.
"""
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
return (self.config.sigma_max**2 + 1) ** 0.5
@property
def step_index(self) -> Optional[int]:
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
Returns:
`int` or `None`:
The current step index, or `None` if not yet initialized.
"""
return self._step_index
@property
def begin_index(self) -> Optional[int]:
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
Returns:
`int` or `None`:
The begin index, or `None` if not yet set.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0) -> None:
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
@@ -179,18 +161,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
scaled_sample = sample * c_in
return scaled_sample
def precondition_noise(self, sigma: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Precondition the noise level by computing a normalized timestep representation.
Args:
sigma (`float` or `torch.Tensor`):
The sigma (noise level) value to precondition.
Returns:
`torch.Tensor`:
The preconditioned noise value computed as `atan(sigma) / pi * 2`.
"""
def precondition_noise(self, sigma):
if not isinstance(sigma, torch.Tensor):
sigma = torch.tensor([sigma])
@@ -257,14 +228,12 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
self.is_scale_input_called = True
return sample
def set_timesteps(
self, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None
) -> None:
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`, *optional*):
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
@@ -365,7 +334,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
def _sigma_to_t(self, sigma, log_sigmas):
"""
Convert sigma values to corresponding timestep values through interpolation.
@@ -401,19 +370,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
t = t.reshape(sigma.shape)
return t
def _sigma_to_alpha_sigma_t(self, sigma: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Convert sigma to alpha and sigma_t values for the diffusion process.
Args:
sigma (`torch.Tensor`):
The sigma (noise level) value.
Returns:
`Tuple[torch.Tensor, torch.Tensor]`:
A tuple containing `alpha_t` (always 1 since inputs are pre-scaled) and `sigma_t` (same as input
sigma).
"""
def _sigma_to_alpha_sigma_t(self, sigma):
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
sigma_t = sigma
@@ -579,7 +536,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
return step_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep: Union[int, torch.Tensor]) -> None:
def _init_step_index(self, timestep):
"""
Initialize the step_index counter for the scheduler.
@@ -600,7 +557,7 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator: Optional[torch.Generator] = None,
generator=None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
@@ -610,19 +567,20 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int` or `torch.Tensor`):
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, defaults to `True`):
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
@@ -744,12 +702,5 @@ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
return c_in
def __len__(self) -> int:
"""
Returns the number of training timesteps.
Returns:
`int`:
The number of training timesteps configured for the scheduler.
"""
def __len__(self):
return self.config.num_train_timesteps

View File

@@ -982,21 +982,6 @@ class FluxTransformer2DModel(metaclass=DummyObject):
requires_backends(cls, ["torch"])
class GlmImageTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class HiDreamImageTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]

View File

@@ -587,21 +587,6 @@ class AuraFlowPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class BriaFiboEditPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class BriaFiboPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -647,21 +632,6 @@ class ChromaImg2ImgPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class ChromaInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class ChromaPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -962,21 +932,6 @@ class EasyAnimatePipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class Flux2KleinPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class Flux2Pipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
@@ -1187,21 +1142,6 @@ class FluxPriorReduxPipeline(metaclass=DummyObject):
requires_backends(cls, ["torch", "transformers"])
class GlmImagePipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
class HiDreamImagePipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]

View File

@@ -1,192 +0,0 @@
# Copyright 2024 Bria AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer
from transformers.models.smollm3.modeling_smollm3 import SmolLM3Config, SmolLM3ForCausalLM
from diffusers import (
AutoencoderKLWan,
BriaFiboEditPipeline,
FlowMatchEulerDiscreteScheduler,
)
from diffusers.models.transformers.transformer_bria_fibo import BriaFiboTransformer2DModel
from tests.pipelines.test_pipelines_common import PipelineTesterMixin
from ...testing_utils import (
enable_full_determinism,
torch_device,
)
enable_full_determinism()
class BriaFiboPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = BriaFiboEditPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
test_layerwise_casting = False
test_group_offloading = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
transformer = BriaFiboTransformer2DModel(
patch_size=1,
in_channels=16,
num_layers=1,
num_single_layers=1,
attention_head_dim=8,
num_attention_heads=2,
joint_attention_dim=64,
text_encoder_dim=32,
pooled_projection_dim=None,
axes_dims_rope=[0, 4, 4],
)
vae = AutoencoderKLWan(
base_dim=80,
decoder_base_dim=128,
dim_mult=[1, 2, 4, 4],
dropout=0.0,
in_channels=12,
latents_mean=[0.0] * 16,
latents_std=[1.0] * 16,
is_residual=True,
num_res_blocks=2,
out_channels=12,
patch_size=2,
scale_factor_spatial=16,
scale_factor_temporal=4,
temperal_downsample=[False, True, True],
z_dim=16,
)
scheduler = FlowMatchEulerDiscreteScheduler()
text_encoder = SmolLM3ForCausalLM(SmolLM3Config(hidden_size=32))
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
components = {
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"transformer": transformer,
"vae": vae,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": '{"text": "A painting of a squirrel eating a burger","edit_instruction": "A painting of a squirrel eating a burger"}',
"negative_prompt": "bad, ugly",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 192,
"width": 336,
"output_type": "np",
}
image = Image.new("RGB", (336, 192), (255, 255, 255))
inputs["image"] = image
return inputs
@unittest.skip(reason="will not be supported due to dim-fusion")
def test_encode_prompt_works_in_isolation(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_num_images_per_prompt(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_inference_batch_consistent(self):
pass
@unittest.skip(reason="Batching is not supported yet")
def test_inference_batch_single_identical(self):
pass
def test_bria_fibo_different_prompts(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
output_same_prompt = pipe(**inputs).images[0]
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = {"edit_instruction": "a different prompt"}
output_different_prompts = pipe(**inputs).images[0]
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
assert max_diff > 1e-6
def test_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (64, 64), (32, 64)]
for height, width in height_width_pairs:
expected_height = height
expected_width = width
inputs.update({"height": height, "width": width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
assert (output_height, output_width) == (expected_height, expected_width)
def test_bria_fibo_edit_mask(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((192, 336)) * 255).astype(np.uint8), mode="L")
inputs.update({"mask": mask})
output = pipe(**inputs).images[0]
assert output.shape == (192, 336, 3)
def test_bria_fibo_edit_mask_image_size_mismatch(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((64, 64)) * 255).astype(np.uint8), mode="L")
inputs.update({"mask": mask})
with self.assertRaisesRegex(ValueError, "Mask and image must have the same size"):
pipe(**inputs)
def test_bria_fibo_edit_mask_no_image(self):
pipe = self.pipeline_class(**self.get_dummy_components())
pipe = pipe.to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
mask = Image.fromarray((np.ones((32, 32)) * 255).astype(np.uint8), mode="L")
# Remove image from inputs if it's there (it shouldn't be by default from get_dummy_inputs)
inputs.pop("image", None)
inputs.update({"mask": mask})
with self.assertRaisesRegex(ValueError, "If mask is provided, image must also be provided"):
pipe(**inputs)

View File

@@ -1,183 +0,0 @@
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import Qwen2TokenizerFast, Qwen3Config, Qwen3ForCausalLM
from diffusers import (
AutoencoderKLFlux2,
FlowMatchEulerDiscreteScheduler,
Flux2KleinPipeline,
Flux2Transformer2DModel,
)
from ...testing_utils import torch_device
from ..test_pipelines_common import PipelineTesterMixin, check_qkv_fused_layers_exist
class Flux2KleinPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = Flux2KleinPipeline
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds"])
batch_params = frozenset(["prompt"])
test_xformers_attention = False
test_layerwise_casting = True
test_group_offloading = True
supports_dduf = False
def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
torch.manual_seed(0)
transformer = Flux2Transformer2DModel(
patch_size=1,
in_channels=4,
num_layers=num_layers,
num_single_layers=num_single_layers,
attention_head_dim=16,
num_attention_heads=2,
joint_attention_dim=16,
timestep_guidance_channels=256,
axes_dims_rope=[4, 4, 4, 4],
guidance_embeds=False,
)
# Create minimal Qwen3 config
config = Qwen3Config(
intermediate_size=16,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
vocab_size=151936,
max_position_embeddings=512,
)
torch.manual_seed(0)
text_encoder = Qwen3ForCausalLM(config)
# Use a simple tokenizer for testing
tokenizer = Qwen2TokenizerFast.from_pretrained(
"hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
)
torch.manual_seed(0)
vae = AutoencoderKLFlux2(
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownEncoderBlock2D",),
up_block_types=("UpDecoderBlock2D",),
block_out_channels=(4,),
layers_per_block=1,
latent_channels=1,
norm_num_groups=1,
use_quant_conv=False,
use_post_quant_conv=False,
)
scheduler = FlowMatchEulerDiscreteScheduler()
return {
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"transformer": transformer,
"vae": vae,
}
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "a dog is dancing",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 4.0,
"height": 8,
"width": 8,
"max_sequence_length": 64,
"output_type": "np",
"text_encoder_out_layers": (1,),
}
return inputs
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
original_image_slice = image[0, -3:, -3:, -1]
pipe.transformer.fuse_qkv_projections()
self.assertTrue(
check_qkv_fused_layers_exist(pipe.transformer, ["to_qkv"]),
("Something wrong with the fused attention layers. Expected all the attention projections to be fused."),
)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_fused = image[0, -3:, -3:, -1]
pipe.transformer.unfuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice_disabled = image[0, -3:, -3:, -1]
self.assertTrue(
np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3),
("Fusion of QKV projections shouldn't affect the outputs."),
)
self.assertTrue(
np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3),
("Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."),
)
self.assertTrue(
np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2),
("Original outputs should match when fused QKV projections are disabled."),
)
def test_image_output_shape(self):
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
height_width_pairs = [(32, 32), (72, 57)]
for height, width in height_width_pairs:
expected_height = height - height % (pipe.vae_scale_factor * 2)
expected_width = width - width % (pipe.vae_scale_factor * 2)
inputs.update({"height": height, "width": width})
image = pipe(**inputs).images[0]
output_height, output_width, _ = image.shape
self.assertEqual(
(output_height, output_width),
(expected_height, expected_width),
f"Output shape {image.shape} does not match expected shape {(expected_height, expected_width)}",
)
def test_image_input(self):
device = "cpu"
pipe = self.pipeline_class(**self.get_dummy_components()).to(device)
inputs = self.get_dummy_inputs(device)
inputs["image"] = Image.new("RGB", (64, 64))
image = pipe(**inputs).images.flatten()
generated_slice = np.concatenate([image[:8], image[-8:]])
# fmt: off
expected_slice = np.array(
[
0.8255048 , 0.66054785, 0.6643694 , 0.67462724, 0.5494932 , 0.3480271 , 0.52535003, 0.44510138, 0.23549396, 0.21372932, 0.21166152, 0.63198495, 0.49942136, 0.39147034, 0.49156153, 0.3713916
]
)
# fmt: on
assert np.allclose(expected_slice, generated_slice, atol=1e-4, rtol=1e-4)
@unittest.skip("Needs to be revisited")
def test_encode_prompt_works_in_isolation(self):
pass

View File

@@ -1,227 +0,0 @@
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, GlmImagePipeline, GlmImageTransformer2DModel
from diffusers.utils import is_transformers_version
from ...testing_utils import enable_full_determinism, require_torch_accelerator, require_transformers_version_greater
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
if is_transformers_version(">=", "5.0.0.dev0"):
from transformers import GlmImageConfig, GlmImageForConditionalGeneration, GlmImageProcessor
enable_full_determinism()
@require_transformers_version_greater("4.57.4")
@require_torch_accelerator
class GlmImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = GlmImagePipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "negative_prompt"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
test_attention_slicing = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
glm_config = GlmImageConfig(
text_config={
"vocab_size": 168064,
"hidden_size": 32,
"intermediate_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 2,
"num_key_value_heads": 2,
"max_position_embeddings": 512,
"vision_vocab_size": 128,
"rope_parameters": {"mrope_section": (4, 2, 2)},
},
vision_config={
"depth": 2,
"hidden_size": 32,
"num_heads": 2,
"image_size": 32,
"patch_size": 8,
"intermediate_size": 32,
},
vq_config={"embed_dim": 32, "num_embeddings": 128, "latent_channels": 32},
)
torch.manual_seed(0)
vision_language_encoder = GlmImageForConditionalGeneration(glm_config)
processor = GlmImageProcessor.from_pretrained("zai-org/GLM-Image", subfolder="processor")
torch.manual_seed(0)
# For GLM-Image, the relationship between components must satisfy:
# patch_size × vae_scale_factor = 16 (since AR tokens are upsampled 2× from d32)
transformer = GlmImageTransformer2DModel(
patch_size=2,
in_channels=4,
out_channels=4,
num_layers=2,
attention_head_dim=8,
num_attention_heads=2,
text_embed_dim=text_encoder.config.hidden_size,
time_embed_dim=16,
condition_dim=8,
prior_vq_quantizer_codebook_size=128,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=(4, 8, 16, 16),
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=4,
sample_size=128,
latents_mean=[0.0] * 4,
latents_std=[1.0] * 4,
)
scheduler = FlowMatchEulerDiscreteScheduler()
components = {
"tokenizer": tokenizer,
"processor": processor,
"text_encoder": text_encoder,
"vision_language_encoder": vision_language_encoder,
"vae": vae,
"transformer": transformer,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
height, width = 32, 32
inputs = {
"prompt": "A photo of a cat",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 1.5,
"height": height,
"width": width,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images[0]
generated_slice = image.flatten()
generated_slice = np.concatenate([generated_slice[:8], generated_slice[-8:]])
# fmt: off
expected_slice = np.array(
[
0.5796329, 0.5005878, 0.45881274, 0.45331675, 0.43688118, 0.4899527, 0.54017603, 0.50983673, 0.3387968, 0.38074082, 0.29942477, 0.33733928, 0.3672544, 0.38462338, 0.40991822, 0.46641728
]
)
# fmt: on
self.assertEqual(image.shape, (3, 32, 32))
self.assertTrue(np.allclose(expected_slice, generated_slice, atol=1e-4, rtol=1e-4))
@unittest.skip("Not supported.")
def test_inference_batch_single_identical(self):
# GLM-Image has batch_size=1 constraint due to AR model
pass
@unittest.skip("Not supported.")
def test_inference_batch_consistent(self):
# GLM-Image has batch_size=1 constraint due to AR model
pass
@unittest.skip("Not supported.")
def test_num_images_per_prompt(self):
# GLM-Image has batch_size=1 constraint due to AR model
pass
@unittest.skip("Needs to be revisited.")
def test_encode_prompt_works_in_isolation(self):
pass
@unittest.skip("Needs to be revisited.")
def test_pipeline_level_group_offloading_inference(self):
pass
@unittest.skip(
"Follow set of tests are relaxed because this pipeline doesn't guarantee same outputs for the same inputs in consecutive runs."
)
def test_dict_tuple_outputs_equivalent(self):
pass
@unittest.skip("Skipped")
def test_cpu_offload_forward_pass_twice(self):
pass
@unittest.skip("Skipped")
def test_sequential_offload_forward_pass_twice(self):
pass
@unittest.skip("Skipped")
def test_float16_inference(self):
pass
@unittest.skip("Skipped")
def test_save_load_float16(self):
pass
@unittest.skip("Skipped")
def test_save_load_local(self):
pass

View File

@@ -288,29 +288,31 @@ class BnB8bitBasicTests(Base8bitTests):
self.assertTrue(linear.weight.__class__ == bnb.nn.Int8Params)
self.assertTrue(hasattr(linear.weight, "SCB"))
@require_bitsandbytes_version_greater("0.48.0")
def test_device_and_dtype_assignment(self):
r"""
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
Checks also if other models are casted correctly.
"""
with self.assertRaises(ValueError):
# Tries with `str`
self.model_8bit.to("cpu")
with self.assertRaises(ValueError):
# Tries with a `dtype``
self.model_8bit.to(torch.float16)
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.to(torch.device(f"{torch_device}:0"))
with self.assertRaises(ValueError):
# Tries with a `device`
self.model_8bit.float()
with self.assertRaises(ValueError):
# Tries with a `dtype`
# Tries with a `device`
self.model_8bit.half()
# This should work with 0.48.0
self.model_8bit.to("cpu")
self.model_8bit.to(torch.device(f"{torch_device}:0"))
# Test if we did not break anything
self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device)
input_dict_for_transformer = self.get_dummy_inputs()
@@ -835,7 +837,7 @@ class BaseBnb8bitSerializationTests(Base8bitTests):
@require_torch_version_greater_equal("2.6.0")
@require_bitsandbytes_version_greater("0.48.0")
@require_bitsandbytes_version_greater("0.45.5")
class Bnb8BitCompileTests(QuantCompileTests, unittest.TestCase):
@property
def quantization_config(self):
@@ -846,7 +848,7 @@ class Bnb8BitCompileTests(QuantCompileTests, unittest.TestCase):
)
@pytest.mark.xfail(
reason="Test fails because of a type change when recompiling."
reason="Test fails because of an offloading problem from Accelerate with confusion in hooks."
" Test passes without recompilation context manager. Refer to https://github.com/huggingface/diffusers/pull/12002/files#r2240462757 for details."
)
def test_torch_compile(self):
@@ -856,5 +858,6 @@ class Bnb8BitCompileTests(QuantCompileTests, unittest.TestCase):
def test_torch_compile_with_cpu_offload(self):
super()._test_torch_compile_with_cpu_offload(torch_dtype=torch.float16)
@pytest.mark.xfail(reason="Test fails because of an offloading problem from Accelerate with confusion in hooks.")
def test_torch_compile_with_group_offload_leaf(self):
super()._test_torch_compile_with_group_offload_leaf(torch_dtype=torch.float16, use_stream=True)