Compare commits

...

8 Commits

Author SHA1 Message Date
Álvaro Somoza
2b16351270 conversion 2026-02-11 16:05:55 -03:00
Dhruv Nair
c3a4cd14b8 [CI] Refactor Wan Model Tests (#13082)
* update

* update

* update

* update

* update

* update

* update

* update
2026-02-11 14:42:58 +05:30
Sayak Paul
4d00980e25 [lora] fix non-diffusers lora key handling for flux2 (#13119)
fix non-diffusers lora key handling for flux2
2026-02-11 08:06:36 +05:30
Álvaro Somoza
5bf248ddd8 [SkyReelsV2] Fix ftfy import (#13113)
fix
2026-02-10 12:56:13 +05:30
Dhruv Nair
bedc67c75f [Docs] Add guide for AutoModel with custom code (#13099)
update
2026-02-10 12:19:44 +05:30
Sayak Paul
20efb79d49 [modular] add modular tests for Z-Image and Wan (#13078)
* add wan modular tests

* style.

* add z-image tests and other fixes.

* style.

* increase tolerance for zimage

* style

* address reviewer feedback.

* address reviewer feedback.

* remove unneeded func

* simplify even more.
2026-02-09 08:27:59 -10:00
Linoy Tsaban
8933686770 Z image lora training (#13056)
* initial commit

* initial commit

* initial commit

* initial commit

* initial commit

* initial commit

* initial commit

* fix vae

* fix prompts

* Apply style fixes

* fix license

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2026-02-09 15:45:59 +02:00
dg845
baaa8d040b LTX 2 Improve encode_video by Accepting More Input Types (#13057)
* Support different pipeline outputs for LTX 2 encode_video

* Update examples to use improved encode_video function

* Fix comment

* Address review comments

* make style and make quality

* Have non-iterator video inputs respect video_chunks_number

* make style and make quality

* Add warning when encode_video receives a non-denormalized np.ndarray

* make style and make quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-02-08 19:40:34 -08:00
28 changed files with 3309 additions and 196 deletions

View File

@@ -106,8 +106,6 @@ video, audio = pipe(
output_type="np",
return_dict=False,
)
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
encode_video(
video[0],
@@ -185,8 +183,6 @@ video, audio = pipe(
output_type="np",
return_dict=False,
)
video = (video * 255).round().astype("uint8")
video = torch.from_numpy(video)
encode_video(
video[0],

View File

@@ -29,8 +29,31 @@ text_encoder = AutoModel.from_pretrained(
)
```
## Custom models
[`AutoModel`] also loads models from the [Hub](https://huggingface.co/models) that aren't included in Diffusers. Set `trust_remote_code=True` in [`AutoModel.from_pretrained`] to load custom models.
A custom model repository needs a Python module with the model class, and a `config.json` with an `auto_map` entry that maps `"AutoModel"` to `"module_file.ClassName"`.
```
custom/custom-transformer-model/
├── config.json
├── my_model.py
└── diffusion_pytorch_model.safetensors
```
The `config.json` includes the `auto_map` field pointing to the custom class.
```json
{
"auto_map": {
"AutoModel": "my_model.MyCustomModel"
}
}
```
Then load it with `trust_remote_code=True`.
```py
import torch
from diffusers import AutoModel
@@ -40,7 +63,39 @@ transformer = AutoModel.from_pretrained(
)
```
For a real-world example, [Overworld/Waypoint-1-Small](https://huggingface.co/Overworld/Waypoint-1-Small/tree/main/transformer) hosts a custom `WorldModel` class across several modules in its `transformer` subfolder.
```
transformer/
├── config.json # auto_map: "model.WorldModel"
├── model.py
├── attn.py
├── nn.py
├── cache.py
├── quantize.py
├── __init__.py
└── diffusion_pytorch_model.safetensors
```
```py
import torch
from diffusers import AutoModel
transformer = AutoModel.from_pretrained(
"Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)
```
If the custom model inherits from the [`ModelMixin`] class, it gets access to the same features as Diffusers model classes, like [regional compilation](../optimization/fp16#regional-compilation) and [group offloading](../optimization/memory#group-offloading).
> [!WARNING]
> As a precaution with `trust_remote_code=True`, pass a commit hash to the `revision` argument in [`AutoModel.from_pretrained`] to make sure the code hasn't been updated with new malicious code (unless you fully trust the model owners).
>
> ```py
> transformer = AutoModel.from_pretrained(
> "Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, revision="a3d8cb2"
> )
> ```
> [!NOTE]
> Learn more about implementing custom models in the [Community components](../using-diffusers/custom_pipeline_overview#community-components) guide.

View File

@@ -0,0 +1,347 @@
# DreamBooth training example for Z-Image
[DreamBooth](https://huggingface.co/papers/2208.12242) is a method to personalize image generation models given just a few (3~5) images of a subject/concept.
[LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) is a popular parameter-efficient fine-tuning technique that allows you to achieve full-finetuning like performance but with a fraction of learnable parameters.
The `train_dreambooth_lora_z_image.py` script shows how to implement the training procedure for [LoRAs](https://huggingface.co/blog/lora) and adapt it for [Z-Image](https://huggingface.co/Tongyi-MAI/Z-Image).
> [!NOTE]
> **About Z-Image**
>
> Z-Image is a high-quality text-to-image generation model from Alibaba's Tongyi Lab. It uses a DiT (Diffusion Transformer) architecture with Qwen3 as the text encoder. The model excels at generating images with accurate text rendering, especially for Chinese characters.
> [!NOTE]
> **Memory consumption**
>
> Z-Image is relatively memory efficient compared to other large-scale diffusion models. Below we provide some tips and tricks to further reduce memory consumption during training.
## Running locally with PyTorch
### Installing the dependencies
Before running the scripts, make sure to install the library's training dependencies:
**Important**
To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```
Then cd in the `examples/dreambooth` folder and run
```bash
pip install -r requirements_z_image.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell (e.g., a notebook)
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.
### Dog toy example
Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.
Let's first download it locally:
```python
from huggingface_hub import snapshot_download
local_dir = "./dog"
snapshot_download(
"diffusers/dog-example",
local_dir=local_dir, repo_type="dataset",
ignore_patterns=".gitattributes",
)
```
This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform.
## Memory Optimizations
> [!NOTE]
> Many of these techniques complement each other and can be used together to further reduce memory consumption. However some techniques may be mutually exclusive so be sure to check before launching a training run.
### CPU Offloading
To offload parts of the model to CPU memory, you can use `--offload` flag. This will offload the VAE and text encoder to CPU memory and only move them to GPU when needed.
### Latent Caching
Pre-encode the training images with the VAE, and then delete it to free up some memory. To enable `latent_caching` simply pass `--cache_latents`.
### QLoRA: Low Precision Training with Quantization
Perform low precision training using 8-bit or 4-bit quantization to reduce memory usage. You can use the following flags:
- **FP8 training** with `torchao`:
Enable FP8 training by passing `--do_fp8_training`.
> [!IMPORTANT]
> Since we are utilizing FP8 tensor cores we need CUDA GPUs with compute capability at least 8.9 or greater. If you're looking for memory-efficient training on relatively older cards, we encourage you to check out other trainers.
- **NF4 training** with `bitsandbytes`:
Alternatively, you can use 8-bit or 4-bit quantization with `bitsandbytes` by passing `--bnb_quantization_config_path` to enable 4-bit NF4 quantization.
### Gradient Checkpointing and Accumulation
* `--gradient_accumulation` refers to the number of updates steps to accumulate before performing a backward/update pass. By passing a value > 1 you can reduce the amount of backward/update passes and hence also memory requirements.
* With `--gradient_checkpointing` we can save memory by not storing all intermediate activations during the forward pass. Instead, only a subset of these activations (the checkpoints) are stored and the rest is recomputed as needed during the backward pass. Note that this comes at the expense of a slower backward pass.
### 8-bit-Adam Optimizer
When training with `AdamW` (doesn't apply to `prodigy`) you can pass `--use_8bit_adam` to reduce the memory requirements of training. Make sure to install `bitsandbytes` if you want to do so.
### Image Resolution
An easy way to mitigate some of the memory requirements is through `--resolution`. `--resolution` refers to the resolution for input images, all the images in the train/validation dataset are resized to this.
Note that by default, images are resized to resolution of 1024, but it's good to keep in mind in case you're training on higher resolutions.
### Precision of saved LoRA layers
By default, trained transformer layers are saved in the precision dtype in which training was performed. E.g. when training in mixed precision is enabled with `--mixed_precision="bf16"`, final finetuned layers will be saved in `torch.bfloat16` as well.
This reduces memory requirements significantly without a significant quality loss. Note that if you do wish to save the final layers in float32 at the expense of more memory usage, you can do so by passing `--upcast_before_saving`.
## Training Examples
### Z-Image Training
To perform DreamBooth with LoRA on Z-Image, run:
```bash
export MODEL_NAME="Tongyi-MAI/Z-Image"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-z-image-lora"
accelerate launch train_dreambooth_lora_z_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--mixed_precision="bf16" \
--gradient_checkpointing \
--cache_latents \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--guidance_scale=5.0 \
--use_8bit_adam \
--gradient_accumulation_steps=4 \
--optimizer="adamW" \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=100 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```
To better track our training experiments, we're using the following flags in the command above:
* `report_to="wandb"` will ensure the training runs are tracked on [Weights and Biases](https://wandb.ai/site). To use it, be sure to install `wandb` with `pip install wandb`. Don't forget to call `wandb login <your_api_key>` before training if you haven't done it before.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.
> [!NOTE]
> If you want to train using long prompts, you can use `--max_sequence_length` to set the token limit. The default is 512. Note that this will use more resources and may slow down the training in some cases.
### Training with FP8 Quantization
For reduced memory usage with FP8 training:
```bash
export MODEL_NAME="Tongyi-MAI/Z-Image"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-z-image-lora-fp8"
accelerate launch train_dreambooth_lora_z_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--do_fp8_training \
--gradient_checkpointing \
--cache_latents \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--guidance_scale=5.0 \
--use_8bit_adam \
--gradient_accumulation_steps=4 \
--optimizer="adamW" \
--learning_rate=1e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=100 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```
### FSDP on the transformer
By setting the accelerate configuration with FSDP, the transformer block will be wrapped automatically. E.g. set the configuration to:
```yaml
distributed_type: FSDP
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_sharding_strategy: HYBRID_SHARD
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: ZImageTransformerBlock
fsdp_forward_prefetch: true
fsdp_sync_module_states: false
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_use_orig_params: false
fsdp_activation_checkpointing: true
fsdp_reshard_after_forward: true
fsdp_cpu_ram_efficient_loading: false
```
### Prodigy Optimizer
Prodigy is an adaptive optimizer that dynamically adjusts the learning rate learned parameters based on past gradients, allowing for more efficient convergence.
By using prodigy we can "eliminate" the need for manual learning rate tuning. Read more [here](https://huggingface.co/blog/sdxl_lora_advanced_script#adaptive-optimizers).
To use prodigy, first make sure to install the prodigyopt library: `pip install prodigyopt`, and then specify:
```bash
--optimizer="prodigy"
```
> [!TIP]
> When using prodigy it's generally good practice to set `--learning_rate=1.0`
```bash
export MODEL_NAME="Tongyi-MAI/Z-Image"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-z-image-lora-prodigy"
accelerate launch train_dreambooth_lora_z_image.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--mixed_precision="bf16" \
--gradient_checkpointing \
--cache_latents \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--guidance_scale=5.0 \
--gradient_accumulation_steps=4 \
--optimizer="prodigy" \
--learning_rate=1.0 \
--report_to="wandb" \
--lr_scheduler="constant_with_warmup" \
--lr_warmup_steps=100 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```
### LoRA Rank and Alpha
Two key LoRA hyperparameters are LoRA rank and LoRA alpha:
- `--rank`: Defines the dimension of the trainable LoRA matrices. A higher rank means more expressiveness and capacity to learn (and more parameters).
- `--lora_alpha`: A scaling factor for the LoRA's output. The LoRA update is scaled by `lora_alpha / lora_rank`.
**lora_alpha vs. rank:**
This ratio dictates the LoRA's effective strength:
- `lora_alpha == rank`: Scaling factor is 1. The LoRA is applied with its learned strength. (e.g., alpha=16, rank=16)
- `lora_alpha < rank`: Scaling factor < 1. Reduces the LoRA's impact. Useful for subtle changes or to prevent overpowering the base model. (e.g., alpha=8, rank=16)
- `lora_alpha > rank`: Scaling factor > 1. Amplifies the LoRA's impact. Allows a lower rank LoRA to have a stronger effect. (e.g., alpha=32, rank=16)
> [!TIP]
> A common starting point is to set `lora_alpha` equal to `rank`.
> Some also set `lora_alpha` to be twice the `rank` (e.g., lora_alpha=32 for lora_rank=16)
> to give the LoRA updates more influence without increasing parameter count.
> If you find your LoRA is "overcooking" or learning too aggressively, consider setting `lora_alpha` to half of `rank`
> (e.g., lora_alpha=8 for rank=16). Experimentation is often key to finding the optimal balance for your use case.
### Target Modules
When LoRA was first adapted from language models to diffusion models, it was applied to the cross-attention layers in the UNet that relate the image representations with the prompts that describe them.
More recently, SOTA text-to-image diffusion models replaced the UNet with a diffusion Transformer (DiT). With this change, we may also want to explore applying LoRA training onto different types of layers and blocks.
To allow more flexibility and control over the targeted modules we added `--lora_layers`, in which you can specify in a comma separated string the exact modules for LoRA training. Here are some examples of target modules you can provide:
- For attention only layers: `--lora_layers="to_k,to_q,to_v,to_out.0"`
- For attention and feed-forward layers: `--lora_layers="to_k,to_q,to_v,to_out.0,ff.net.0.proj,ff.net.2"`
> [!NOTE]
> `--lora_layers` can also be used to specify which **blocks** to apply LoRA training to. To do so, simply add a block prefix to each layer in the comma separated string.
> [!NOTE]
> Keep in mind that while training more layers can improve quality and expressiveness, it also increases the size of the output LoRA weights.
### Aspect Ratio Bucketing
We've added aspect ratio bucketing support which allows training on images with different aspect ratios without cropping them to a single square resolution. This technique helps preserve the original composition of training images and can improve training efficiency.
To enable aspect ratio bucketing, pass `--aspect_ratio_buckets` argument with a semicolon-separated list of height,width pairs, such as:
```bash
--aspect_ratio_buckets="672,1568;688,1504;720,1456;752,1392;800,1328;832,1248;880,1184;944,1104;1024,1024;1104,944;1184,880;1248,832;1328,800;1392,752;1456,720;1504,688;1568,672"
```
### Bilingual Prompts
Z-Image has strong support for both Chinese and English prompts. When training with Chinese prompts, ensure your dataset captions are properly encoded in UTF-8:
```bash
--instance_prompt="一只sks狗的照片"
--validation_prompt="一只sks狗在桶里的照片"
```
> [!TIP]
> Z-Image excels at text rendering in generated images, especially for Chinese characters. If your use case involves generating images with text, consider including text-related examples in your training data.
## Inference
Once you have trained a LoRA, you can load it for inference:
```python
import torch
from diffusers import ZImagePipeline
pipe = ZImagePipeline.from_pretrained("Tongyi-MAI/Z-Image", torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Load your trained LoRA
pipe.load_lora_weights("path/to/your/trained-z-image-lora")
# Generate an image
image = pipe(
prompt="A photo of sks dog in a bucket",
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=5.0,
generator=torch.Generator("cuda").manual_seed(42),
).images[0]
image.save("output.png")
```
---
Since Z-Image finetuning is still in an experimental phase, we encourage you to explore different settings and share your insights! 🤗

File diff suppressed because it is too large Load Diff

View File

@@ -2321,6 +2321,14 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
prefix = "diffusion_model."
original_state_dict = {k[len(prefix) :]: v for k, v in state_dict.items()}
has_lora_down_up = any("lora_down" in k or "lora_up" in k for k in original_state_dict.keys())
if has_lora_down_up:
temp_state_dict = {}
for k, v in original_state_dict.items():
new_key = k.replace("lora_down", "lora_A").replace("lora_up", "lora_B")
temp_state_dict[new_key] = v
original_state_dict = temp_state_dict
num_double_layers = 0
num_single_layers = 0
for key in original_state_dict.keys():
@@ -2337,13 +2345,15 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
attn_prefix = f"single_transformer_blocks.{sl}.attn"
for lora_key in lora_keys:
converted_state_dict[f"{attn_prefix}.to_qkv_mlp_proj.{lora_key}.weight"] = original_state_dict.pop(
f"{single_block_prefix}.linear1.{lora_key}.weight"
)
linear1_key = f"{single_block_prefix}.linear1.{lora_key}.weight"
if linear1_key in original_state_dict:
converted_state_dict[f"{attn_prefix}.to_qkv_mlp_proj.{lora_key}.weight"] = original_state_dict.pop(
linear1_key
)
converted_state_dict[f"{attn_prefix}.to_out.{lora_key}.weight"] = original_state_dict.pop(
f"{single_block_prefix}.linear2.{lora_key}.weight"
)
linear2_key = f"{single_block_prefix}.linear2.{lora_key}.weight"
if linear2_key in original_state_dict:
converted_state_dict[f"{attn_prefix}.to_out.{lora_key}.weight"] = original_state_dict.pop(linear2_key)
for dl in range(num_double_layers):
transformer_block_prefix = f"transformer_blocks.{dl}"
@@ -2352,6 +2362,10 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
for attn_type in attn_types:
attn_prefix = f"{transformer_block_prefix}.attn"
qkv_key = f"double_blocks.{dl}.{attn_type}.qkv.{lora_key}.weight"
if qkv_key not in original_state_dict:
continue
fused_qkv_weight = original_state_dict.pop(qkv_key)
if lora_key == "lora_A":
@@ -2383,8 +2397,9 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
for org_proj, diff_proj in proj_mappings:
for lora_key in lora_keys:
original_key = f"double_blocks.{dl}.{org_proj}.{lora_key}.weight"
diffusers_key = f"{transformer_block_prefix}.{diff_proj}.{lora_key}.weight"
converted_state_dict[diffusers_key] = original_state_dict.pop(original_key)
if original_key in original_state_dict:
diffusers_key = f"{transformer_block_prefix}.{diff_proj}.{lora_key}.weight"
converted_state_dict[diffusers_key] = original_state_dict.pop(original_key)
mlp_mappings = [
("img_mlp.0", "ff.linear_in"),
@@ -2395,8 +2410,27 @@ def _convert_non_diffusers_flux2_lora_to_diffusers(state_dict):
for org_mlp, diff_mlp in mlp_mappings:
for lora_key in lora_keys:
original_key = f"double_blocks.{dl}.{org_mlp}.{lora_key}.weight"
diffusers_key = f"{transformer_block_prefix}.{diff_mlp}.{lora_key}.weight"
converted_state_dict[diffusers_key] = original_state_dict.pop(original_key)
if original_key in original_state_dict:
diffusers_key = f"{transformer_block_prefix}.{diff_mlp}.{lora_key}.weight"
converted_state_dict[diffusers_key] = original_state_dict.pop(original_key)
extra_mappings = {
"img_in": "x_embedder",
"txt_in": "context_embedder",
"time_in.in_layer": "time_guidance_embed.timestep_embedder.linear_1",
"time_in.out_layer": "time_guidance_embed.timestep_embedder.linear_2",
"final_layer.linear": "proj_out",
"final_layer.adaLN_modulation.1": "norm_out.linear",
"single_stream_modulation.lin": "single_stream_modulation.linear",
"double_stream_modulation_img.lin": "double_stream_modulation_img.linear",
"double_stream_modulation_txt.lin": "double_stream_modulation_txt.linear",
}
for org_key, diff_key in extra_mappings.items():
for lora_key in lora_keys:
original_key = f"{org_key}.{lora_key}.weight"
if original_key in original_state_dict:
converted_state_dict[f"{diff_key}.{lora_key}.weight"] = original_state_dict.pop(original_key)
if len(original_state_dict) > 0:
raise ValueError(f"`original_state_dict` should be empty at this point but has {original_state_dict.keys()=}.")
@@ -2421,18 +2455,22 @@ def _convert_non_diffusers_z_image_lora_to_diffusers(state_dict):
if has_diffusion_model:
state_dict = {k.removeprefix("diffusion_model."): v for k, v in state_dict.items()}
has_lora_unet = any(k.startswith("lora_unet_") for k in state_dict)
has_lora_unet = any(k.startswith("lora_unet_") or k.startswith("lora_unet__") for k in state_dict)
if has_lora_unet:
state_dict = {k.removeprefix("lora_unet_"): v for k, v in state_dict.items()}
state_dict = {k.removeprefix("lora_unet__").removeprefix("lora_unet_"): v for k, v in state_dict.items()}
def convert_key(key: str) -> str:
# ZImage has: layers, noise_refiner, context_refiner blocks
# Keys may be like: layers_0_attention_to_q.lora_down.weight
if "." in key:
base, suffix = key.rsplit(".", 1)
else:
base, suffix = key, ""
suffix = ""
for sfx in (".lora_down.weight", ".lora_up.weight", ".alpha"):
if key.endswith(sfx):
base = key[: -len(sfx)]
suffix = sfx
break
else:
base = key
# Protected n-grams that must keep their internal underscores
protected = {
@@ -2443,6 +2481,9 @@ def _convert_non_diffusers_z_image_lora_to_diffusers(state_dict):
("to", "out"),
# feed_forward
("feed", "forward"),
# noise and context refiner
("noise", "refiner"),
("context", "refiner"),
}
prot_by_len = {}
@@ -2467,7 +2508,7 @@ def _convert_non_diffusers_z_image_lora_to_diffusers(state_dict):
i += 1
converted_base = ".".join(merged)
return converted_base + (("." + suffix) if suffix else "")
return converted_base + suffix
state_dict = {convert_key(k): v for k, v in state_dict.items()}

View File

@@ -43,7 +43,7 @@ def _get_qkv_projections(attn: "WanAttention", hidden_states: torch.Tensor, enco
encoder_hidden_states = hidden_states
if attn.fused_projections:
if attn.cross_attention_dim_head is None:
if not attn.is_cross_attention:
# In self-attention layers, we can fuse the entire QKV projection into a single linear
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
else:
@@ -219,7 +219,10 @@ class WanAttention(torch.nn.Module, AttentionModuleMixin):
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.norm_added_k = torch.nn.RMSNorm(dim_head * heads, eps=eps)
self.is_cross_attention = cross_attention_dim_head is not None
if is_cross_attention is not None:
self.is_cross_attention = is_cross_attention
else:
self.is_cross_attention = cross_attention_dim_head is not None
self.set_processor(processor)
@@ -227,7 +230,7 @@ class WanAttention(torch.nn.Module, AttentionModuleMixin):
if getattr(self, "fused_projections", False):
return
if self.cross_attention_dim_head is None:
if not self.is_cross_attention:
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape

View File

@@ -42,7 +42,7 @@ def _get_qkv_projections(attn: "WanAttention", hidden_states: torch.Tensor, enco
encoder_hidden_states = hidden_states
if attn.fused_projections:
if attn.cross_attention_dim_head is None:
if not attn.is_cross_attention:
# In self-attention layers, we can fuse the entire QKV projection into a single linear
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
else:
@@ -214,7 +214,10 @@ class WanAttention(torch.nn.Module, AttentionModuleMixin):
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.norm_added_k = torch.nn.RMSNorm(dim_head * heads, eps=eps)
self.is_cross_attention = cross_attention_dim_head is not None
if is_cross_attention is not None:
self.is_cross_attention = is_cross_attention
else:
self.is_cross_attention = cross_attention_dim_head is not None
self.set_processor(processor)
@@ -222,7 +225,7 @@ class WanAttention(torch.nn.Module, AttentionModuleMixin):
if getattr(self, "fused_projections", False):
return
if self.cross_attention_dim_head is None:
if not self.is_cross_attention:
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape

View File

@@ -54,7 +54,7 @@ def _get_qkv_projections(attn: "WanAttention", hidden_states: torch.Tensor, enco
encoder_hidden_states = hidden_states
if attn.fused_projections:
if attn.cross_attention_dim_head is None:
if not attn.is_cross_attention:
# In self-attention layers, we can fuse the entire QKV projection into a single linear
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
else:
@@ -502,13 +502,16 @@ class WanAnimateFaceBlockCrossAttention(nn.Module, AttentionModuleMixin):
dim_head: int = 64,
eps: float = 1e-6,
cross_attention_dim_head: Optional[int] = None,
bias: bool = True,
processor=None,
):
super().__init__()
self.inner_dim = dim_head * heads
self.heads = heads
self.cross_attention_head_dim = cross_attention_dim_head
self.cross_attention_dim_head = cross_attention_dim_head
self.kv_inner_dim = self.inner_dim if cross_attention_dim_head is None else cross_attention_dim_head * heads
self.use_bias = bias
self.is_cross_attention = cross_attention_dim_head is not None
# 1. Pre-Attention Norms for the hidden_states (video latents) and encoder_hidden_states (motion vector).
# NOTE: this is not used in "vanilla" WanAttention
@@ -516,10 +519,10 @@ class WanAnimateFaceBlockCrossAttention(nn.Module, AttentionModuleMixin):
self.pre_norm_kv = nn.LayerNorm(dim, eps, elementwise_affine=False)
# 2. QKV and Output Projections
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=True)
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=True)
self.to_out = torch.nn.Linear(self.inner_dim, dim, bias=True)
self.to_q = torch.nn.Linear(dim, self.inner_dim, bias=bias)
self.to_k = torch.nn.Linear(dim, self.kv_inner_dim, bias=bias)
self.to_v = torch.nn.Linear(dim, self.kv_inner_dim, bias=bias)
self.to_out = torch.nn.Linear(self.inner_dim, dim, bias=bias)
# 3. QK Norm
# NOTE: this is applied after the reshape, so only over dim_head rather than dim_head * heads
@@ -682,7 +685,10 @@ class WanAttention(torch.nn.Module, AttentionModuleMixin):
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True)
self.norm_added_k = torch.nn.RMSNorm(dim_head * heads, eps=eps)
self.is_cross_attention = cross_attention_dim_head is not None
if is_cross_attention is not None:
self.is_cross_attention = is_cross_attention
else:
self.is_cross_attention = cross_attention_dim_head is not None
self.set_processor(processor)
@@ -690,7 +696,7 @@ class WanAttention(torch.nn.Module, AttentionModuleMixin):
if getattr(self, "fused_projections", False):
return
if self.cross_attention_dim_head is None:
if not self.is_cross_attention:
concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
out_features, in_features = concatenated_weights.shape

View File

@@ -76,6 +76,7 @@ class WanVACETransformerBlock(nn.Module):
eps=eps,
added_kv_proj_dim=added_kv_proj_dim,
processor=WanAttnProcessor(),
is_cross_attention=True,
)
self.norm2 = FP32LayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
@@ -178,6 +179,7 @@ class WanVACETransformer3DModel(
_no_split_modules = ["WanTransformerBlock", "WanVACETransformerBlock"]
_keep_in_fp32_modules = ["time_embedder", "scale_shift_table", "norm1", "norm2", "norm3"]
_keys_to_ignore_on_load_unexpected = ["norm_added_q"]
_repeated_blocks = ["WanTransformerBlock", "WanVACETransformerBlock"]
@register_to_config
def __init__(

View File

@@ -13,12 +13,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterator
from fractions import Fraction
from typing import Optional
from itertools import chain
from typing import List, Optional, Union
import numpy as np
import PIL.Image
import torch
from tqdm import tqdm
from ...utils import is_av_available
from ...utils import get_logger, is_av_available
logger = get_logger(__name__) # pylint: disable=invalid-name
_CAN_USE_AV = is_av_available()
@@ -101,11 +109,59 @@ def _write_audio(
def encode_video(
video: torch.Tensor, fps: int, audio: Optional[torch.Tensor], audio_sample_rate: Optional[int], output_path: str
video: Union[List[PIL.Image.Image], np.ndarray, torch.Tensor, Iterator[torch.Tensor]],
fps: int,
audio: Optional[torch.Tensor],
audio_sample_rate: Optional[int],
output_path: str,
video_chunks_number: int = 1,
) -> None:
video_np = video.cpu().numpy()
"""
Encodes a video with audio using the PyAV library. Based on code from the original LTX-2 repo:
https://github.com/Lightricks/LTX-2/blob/4f410820b198e05074a1e92de793e3b59e9ab5a0/packages/ltx-pipelines/src/ltx_pipelines/utils/media_io.py#L182
_, height, width, _ = video_np.shape
Args:
video (`List[PIL.Image.Image]` or `np.ndarray` or `torch.Tensor`):
A video tensor of shape [frames, height, width, channels] with integer pixel values in [0, 255]. If the
input is a `np.ndarray`, it is expected to be a float array with values in [0, 1] (which is what pipelines
usually return with `output_type="np"`).
fps (`int`)
The frames per second (FPS) of the encoded video.
audio (`torch.Tensor`, *optional*):
An audio waveform of shape [audio_channels, samples].
audio_sample_rate: (`int`, *optional*):
The sampling rate of the audio waveform. For LTX 2, this is typically 24000 (24 kHz).
output_path (`str`):
The path to save the encoded video to.
video_chunks_number (`int`, *optional*, defaults to `1`):
The number of chunks to split the video into for encoding. Each chunk will be encoded separately. The
number of chunks to use often depends on the tiling config for the video VAE.
"""
if isinstance(video, list) and isinstance(video[0], PIL.Image.Image):
# Pipeline output_type="pil"; assumes each image is in "RGB" mode
video_frames = [np.array(frame) for frame in video]
video = np.stack(video_frames, axis=0)
video = torch.from_numpy(video)
elif isinstance(video, np.ndarray):
# Pipeline output_type="np"
is_denormalized = np.logical_and(np.zeros_like(video) <= video, video <= np.ones_like(video))
if np.all(is_denormalized):
video = (video * 255).round().astype("uint8")
else:
logger.warning(
"Supplied `numpy.ndarray` does not have values in [0, 1]. The values will be assumed to be pixel "
"values in [0, ..., 255] and will be used as is."
)
video = torch.from_numpy(video)
if isinstance(video, torch.Tensor):
# Split into video_chunks_number along the frame dimension
video = torch.tensor_split(video, video_chunks_number, dim=0)
video = iter(video)
first_chunk = next(video)
_, height, width, _ = first_chunk.shape
container = av.open(output_path, mode="w")
stream = container.add_stream("libx264", rate=int(fps))
@@ -119,10 +175,12 @@ def encode_video(
audio_stream = _prepare_audio_stream(container, audio_sample_rate)
for frame_array in video_np:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
for video_chunk in tqdm(chain([first_chunk], video), total=video_chunks_number, desc="Encoding video chunks"):
video_chunk_cpu = video_chunk.to("cpu").numpy()
for frame_array in video_chunk_cpu:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
for packet in stream.encode(frame):
container.mux(packet)
# Flush encoder
for packet in stream.encode():

View File

@@ -69,8 +69,6 @@ EXAMPLE_DOC_STRING = """
... output_type="np",
... return_dict=False,
... )
>>> video = (video * 255).round().astype("uint8")
>>> video = torch.from_numpy(video)
>>> encode_video(
... video[0],

View File

@@ -75,8 +75,6 @@ EXAMPLE_DOC_STRING = """
... output_type="np",
... return_dict=False,
... )
>>> video = (video * 255).round().astype("uint8")
>>> video = torch.from_numpy(video)
>>> encode_video(
... video[0],

View File

@@ -76,8 +76,6 @@ EXAMPLE_DOC_STRING = """
... output_type="np",
... return_dict=False,
... )[0]
>>> video = (video * 255).round().astype("uint8")
>>> video = torch.from_numpy(video)
>>> encode_video(
... video[0],

View File

@@ -18,7 +18,6 @@ import re
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
import ftfy
import torch
from transformers import AutoTokenizer, UMT5EncoderModel

View File

@@ -18,7 +18,6 @@ import re
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import ftfy
import PIL
import torch
from transformers import AutoTokenizer, UMT5EncoderModel

View File

@@ -19,7 +19,6 @@ import re
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
import ftfy
import torch
from PIL import Image
from transformers import AutoTokenizer, UMT5EncoderModel

View File

@@ -41,7 +41,7 @@ class GGUFQuantizer(DiffusersQuantizer):
self.compute_dtype = quantization_config.compute_dtype
self.pre_quantized = quantization_config.pre_quantized
self.modules_to_not_convert = quantization_config.modules_to_not_convert
self.modules_to_not_convert = quantization_config.modules_to_not_convert or []
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]

View File

@@ -446,16 +446,17 @@ class ModelTesterMixin:
torch_device not in ["cuda", "xpu"],
reason="float16 and bfloat16 can only be used with an accelerator",
)
def test_keep_in_fp32_modules(self):
def test_keep_in_fp32_modules(self, tmp_path):
model = self.model_class(**self.get_init_dict())
fp32_modules = model._keep_in_fp32_modules
if fp32_modules is None or len(fp32_modules) == 0:
pytest.skip("Model does not have _keep_in_fp32_modules defined.")
# Test with float16
model.to(torch_device)
model.to(torch.float16)
# Save the model and reload with float16 dtype
# _keep_in_fp32_modules is only enforced during from_pretrained loading
model.save_pretrained(tmp_path)
model = self.model_class.from_pretrained(tmp_path, torch_dtype=torch.float16).to(torch_device)
for name, param in model.named_parameters():
if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in fp32_modules):
@@ -470,7 +471,7 @@ class ModelTesterMixin:
)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
@torch.no_grad()
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype, atol=1e-4, rtol=0):
model = self.model_class(**self.get_init_dict())
model.to(torch_device)
fp32_modules = model._keep_in_fp32_modules or []
@@ -490,10 +491,6 @@ class ModelTesterMixin:
output = model(**inputs, return_dict=False)[0]
output_loaded = model_loaded(**inputs, return_dict=False)[0]
self._check_dtype_inference_output(output, output_loaded, dtype)
def _check_dtype_inference_output(self, output, output_loaded, dtype, atol=1e-4, rtol=0):
"""Check dtype inference output with configurable tolerance."""
assert_tensors_close(
output, output_loaded, atol=atol, rtol=rtol, msg=f"Loaded model output differs for {dtype}"
)

View File

@@ -176,15 +176,7 @@ class QuantizationTesterMixin:
model_quantized = self._create_quantized_model(config_kwargs)
model_quantized.to(torch_device)
# Get model dtype from first parameter
model_dtype = next(model_quantized.parameters()).dtype
inputs = self.get_dummy_inputs()
# Cast inputs to model dtype
inputs = {
k: v.to(model_dtype) if isinstance(v, torch.Tensor) and v.is_floating_point() else v
for k, v in inputs.items()
}
output = model_quantized(**inputs, return_dict=False)[0]
assert output is not None, "Model output is None"
@@ -229,6 +221,8 @@ class QuantizationTesterMixin:
init_lora_weights=False,
)
model.add_adapter(lora_config)
# Move LoRA adapter weights to device (they default to CPU)
model.to(torch_device)
inputs = self.get_dummy_inputs()
output = model(**inputs, return_dict=False)[0]
@@ -1021,9 +1015,6 @@ class GGUFTesterMixin(GGUFConfigMixin, QuantizationTesterMixin):
"""Test that dequantize() works correctly."""
self._test_dequantize({"compute_dtype": torch.bfloat16})
def test_gguf_quantized_layers(self):
self._test_quantized_layers({"compute_dtype": torch.bfloat16})
@is_quantization
@is_modelopt

View File

@@ -12,57 +12,57 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
import torch
from diffusers import WanTransformer3DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
torch_device,
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
)
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
class WanTransformer3DTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return WanTransformer3DModel
@property
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
def pretrained_model_name_or_path(self):
return "hf-internal-testing/tiny-wan22-transformer"
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
@property
def output_shape(self) -> tuple[int, ...]:
return (4, 2, 16, 16)
@property
def input_shape(self) -> tuple[int, ...]:
return (4, 2, 16, 16)
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int] | tuple | str | bool]:
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
}
@property
def input_shape(self):
return (4, 1, 16, 16)
@property
def output_shape(self):
return (4, 1, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
@@ -76,16 +76,160 @@ class WanTransformer3DTests(ModelTesterMixin, unittest.TestCase):
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
batch_size = 1
num_channels = 4
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
return {
"hidden_states": randn_tensor(
(batch_size, num_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"encoder_hidden_states": randn_tensor(
(batch_size, sequence_length, text_encoder_embedding_dim),
generator=self.generator,
device=torch_device,
),
"timestep": torch.randint(0, 1000, size=(batch_size,), generator=self.generator).to(torch_device),
}
class TestWanTransformer3D(WanTransformer3DTesterConfig, ModelTesterMixin):
"""Core model tests for Wan Transformer 3D."""
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
# Skip: fp16/bf16 require very high atol to pass, providing little signal.
# Dtype preservation is already tested by test_from_save_pretrained_dtype and test_keep_in_fp32_modules.
pytest.skip("Tolerance requirements too high for meaningful test")
class TestWanTransformer3DMemory(WanTransformer3DTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Wan Transformer 3D."""
class TestWanTransformer3DTraining(WanTransformer3DTesterConfig, TrainingTesterMixin):
"""Training tests for Wan Transformer 3D."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class WanTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = WanTransformer3DModel
class TestWanTransformer3DAttention(WanTransformer3DTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Wan Transformer 3D."""
def prepare_init_args_and_inputs_for_common(self):
return WanTransformer3DTests().prepare_init_args_and_inputs_for_common()
class TestWanTransformer3DCompile(WanTransformer3DTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for Wan Transformer 3D."""
class TestWanTransformer3DBitsAndBytes(WanTransformer3DTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Wan Transformer 3D."""
@property
def torch_dtype(self):
return torch.float16
def get_dummy_inputs(self):
"""Override to provide inputs matching the tiny Wan model dimensions."""
return {
"hidden_states": randn_tensor(
(1, 36, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanTransformer3DTorchAo(WanTransformer3DTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Wan Transformer 3D."""
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the tiny Wan model dimensions."""
return {
"hidden_states": randn_tensor(
(1, 36, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanTransformer3DGGUF(WanTransformer3DTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Wan Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-I2V-A14B-GGUF/blob/main/LowNoise/Wan2.2-I2V-A14B-LowNoise-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def _create_quantized_model(self, config_kwargs=None, **extra_kwargs):
return super()._create_quantized_model(
config_kwargs, config="Wan-AI/Wan2.2-I2V-A14B-Diffusers", subfolder="transformer", **extra_kwargs
)
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan I2V model dimensions.
Wan 2.2 I2V: in_channels=36, text_dim=4096
"""
return {
"hidden_states": randn_tensor(
(1, 36, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanTransformer3DGGUFCompile(WanTransformer3DTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Wan Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-I2V-A14B-GGUF/blob/main/LowNoise/Wan2.2-I2V-A14B-LowNoise-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def _create_quantized_model(self, config_kwargs=None, **extra_kwargs):
return super()._create_quantized_model(
config_kwargs, config="Wan-AI/Wan2.2-I2V-A14B-Diffusers", subfolder="transformer", **extra_kwargs
)
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan I2V model dimensions.
Wan 2.2 I2V: in_channels=36, text_dim=4096
"""
return {
"hidden_states": randn_tensor(
(1, 36, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}

View File

@@ -12,76 +12,62 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
import torch
from diffusers import WanAnimateTransformer3DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import (
enable_full_determinism,
torch_device,
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
)
from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
class WanAnimateTransformer3DTests(ModelTesterMixin, unittest.TestCase):
model_class = WanAnimateTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
class WanAnimateTransformer3DTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return WanAnimateTransformer3DModel
@property
def dummy_input(self):
batch_size = 1
num_channels = 4
num_frames = 20 # To make the shapes work out; for complicated reasons we want 21 to divide num_frames + 1
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
clip_seq_len = 12
clip_dim = 16
inference_segment_length = 77 # The inference segment length in the full Wan2.2-Animate-14B model
face_height = 16 # Should be square and match `motion_encoder_size` below
face_width = 16
hidden_states = torch.randn((batch_size, 2 * num_channels + 4, num_frames + 1, height, width)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_encoder_embedding_dim)).to(torch_device)
clip_ref_features = torch.randn((batch_size, clip_seq_len, clip_dim)).to(torch_device)
pose_latents = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
face_pixel_values = torch.randn((batch_size, 3, inference_segment_length, face_height, face_width)).to(
torch_device
)
return {
"hidden_states": hidden_states,
"timestep": timestep,
"encoder_hidden_states": encoder_hidden_states,
"encoder_hidden_states_image": clip_ref_features,
"pose_hidden_states": pose_latents,
"face_pixel_values": face_pixel_values,
}
def pretrained_model_name_or_path(self):
return "hf-internal-testing/tiny-wan-animate-transformer"
@property
def input_shape(self):
return (12, 1, 16, 16)
def output_shape(self) -> tuple[int, ...]:
# Output has fewer channels than input (4 vs 12)
return (4, 21, 16, 16)
@property
def output_shape(self):
return (4, 1, 16, 16)
def input_shape(self) -> tuple[int, ...]:
return (12, 21, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int] | tuple | str | bool | float | dict]:
# Use custom channel sizes since the default Wan Animate channel sizes will cause the motion encoder to
# contain the vast majority of the parameters in the test model
channel_sizes = {"4": 16, "8": 16, "16": 16}
init_dict = {
return {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
@@ -105,22 +91,219 @@ class WanAnimateTransformer3DTests(ModelTesterMixin, unittest.TestCase):
"face_encoder_num_heads": 2,
"inject_face_latents_blocks": 2,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
batch_size = 1
num_channels = 4
num_frames = 20 # To make the shapes work out; for complicated reasons we want 21 to divide num_frames + 1
height = 16
width = 16
text_encoder_embedding_dim = 16
sequence_length = 12
clip_seq_len = 12
clip_dim = 16
inference_segment_length = 77 # The inference segment length in the full Wan2.2-Animate-14B model
face_height = 16 # Should be square and match `motion_encoder_size`
face_width = 16
return {
"hidden_states": randn_tensor(
(batch_size, 2 * num_channels + 4, num_frames + 1, height, width),
generator=self.generator,
device=torch_device,
),
"timestep": torch.randint(0, 1000, size=(batch_size,), generator=self.generator).to(torch_device),
"encoder_hidden_states": randn_tensor(
(batch_size, sequence_length, text_encoder_embedding_dim),
generator=self.generator,
device=torch_device,
),
"encoder_hidden_states_image": randn_tensor(
(batch_size, clip_seq_len, clip_dim),
generator=self.generator,
device=torch_device,
),
"pose_hidden_states": randn_tensor(
(batch_size, num_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"face_pixel_values": randn_tensor(
(batch_size, 3, inference_segment_length, face_height, face_width),
generator=self.generator,
device=torch_device,
),
}
class TestWanAnimateTransformer3D(WanAnimateTransformer3DTesterConfig, ModelTesterMixin):
"""Core model tests for Wan Animate Transformer 3D."""
def test_output(self):
# Override test_output because the transformer output is expected to have less channels
# than the main transformer input.
expected_output_shape = (1, 4, 21, 16, 16)
super().test_output(expected_output_shape=expected_output_shape)
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
# Skip: fp16/bf16 require very high atol (~1e-2) to pass, providing little signal.
# Dtype preservation is already tested by test_from_save_pretrained_dtype and test_keep_in_fp32_modules.
pytest.skip("Tolerance requirements too high for meaningful test")
class TestWanAnimateTransformer3DMemory(WanAnimateTransformer3DTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Wan Animate Transformer 3D."""
class TestWanAnimateTransformer3DTraining(WanAnimateTransformer3DTesterConfig, TrainingTesterMixin):
"""Training tests for Wan Animate Transformer 3D."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanAnimateTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
# Override test_output because the transformer output is expected to have less channels than the main transformer
# input.
def test_output(self):
expected_output_shape = (1, 4, 21, 16, 16)
super().test_output(expected_output_shape=expected_output_shape)
class TestWanAnimateTransformer3DAttention(WanAnimateTransformer3DTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Wan Animate Transformer 3D."""
class WanAnimateTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = WanAnimateTransformer3DModel
class TestWanAnimateTransformer3DCompile(WanAnimateTransformer3DTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for Wan Animate Transformer 3D."""
def prepare_init_args_and_inputs_for_common(self):
return WanAnimateTransformer3DTests().prepare_init_args_and_inputs_for_common()
def test_torch_compile_recompilation_and_graph_break(self):
# Skip: F.pad with mode="replicate" in WanAnimateFaceEncoder triggers importlib.import_module
# internally, which dynamo doesn't support tracing through.
pytest.skip("F.pad with replicate mode triggers unsupported import in torch.compile")
class TestWanAnimateTransformer3DBitsAndBytes(WanAnimateTransformer3DTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Wan Animate Transformer 3D."""
@property
def torch_dtype(self):
return torch.float16
def get_dummy_inputs(self):
"""Override to provide inputs matching the tiny Wan Animate model dimensions."""
return {
"hidden_states": randn_tensor(
(1, 36, 21, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states_image": randn_tensor(
(1, 257, 1280), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"pose_hidden_states": randn_tensor(
(1, 16, 20, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"face_pixel_values": randn_tensor(
(1, 3, 77, 512, 512), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanAnimateTransformer3DTorchAo(WanAnimateTransformer3DTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Wan Animate Transformer 3D."""
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the tiny Wan Animate model dimensions."""
return {
"hidden_states": randn_tensor(
(1, 36, 21, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states_image": randn_tensor(
(1, 257, 1280), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"pose_hidden_states": randn_tensor(
(1, 16, 20, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"face_pixel_values": randn_tensor(
(1, 3, 77, 512, 512), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanAnimateTransformer3DGGUF(WanAnimateTransformer3DTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Wan Animate Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-Animate-14B-GGUF/blob/main/Wan2.2-Animate-14B-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan Animate model dimensions.
Wan 2.2 Animate: in_channels=36 (2*16+4), text_dim=4096, image_dim=1280
"""
return {
"hidden_states": randn_tensor(
(1, 36, 21, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states_image": randn_tensor(
(1, 257, 1280), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"pose_hidden_states": randn_tensor(
(1, 16, 20, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"face_pixel_values": randn_tensor(
(1, 3, 77, 512, 512), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanAnimateTransformer3DGGUFCompile(WanAnimateTransformer3DTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Wan Animate Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.2-Animate-14B-GGUF/blob/main/Wan2.2-Animate-14B-Q2_K.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan Animate model dimensions.
Wan 2.2 Animate: in_channels=36 (2*16+4), text_dim=4096, image_dim=1280
"""
return {
"hidden_states": randn_tensor(
(1, 36, 21, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states_image": randn_tensor(
(1, 257, 1280), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"pose_hidden_states": randn_tensor(
(1, 16, 20, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"face_pixel_values": randn_tensor(
(1, 3, 77, 512, 512), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}

View File

@@ -0,0 +1,271 @@
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from diffusers import WanVACETransformer3DModel
from diffusers.utils.torch_utils import randn_tensor
from ...testing_utils import enable_full_determinism, torch_device
from ..testing_utils import (
AttentionTesterMixin,
BaseModelTesterConfig,
BitsAndBytesTesterMixin,
GGUFCompileTesterMixin,
GGUFTesterMixin,
MemoryTesterMixin,
ModelTesterMixin,
TorchAoTesterMixin,
TorchCompileTesterMixin,
TrainingTesterMixin,
)
enable_full_determinism()
class WanVACETransformer3DTesterConfig(BaseModelTesterConfig):
@property
def model_class(self):
return WanVACETransformer3DModel
@property
def pretrained_model_name_or_path(self):
return "hf-internal-testing/tiny-wan-vace-transformer"
@property
def output_shape(self) -> tuple[int, ...]:
return (16, 2, 16, 16)
@property
def input_shape(self) -> tuple[int, ...]:
return (16, 2, 16, 16)
@property
def main_input_name(self) -> str:
return "hidden_states"
@property
def generator(self):
return torch.Generator("cpu").manual_seed(0)
def get_init_dict(self) -> dict[str, int | list[int] | tuple | str | bool | None]:
return {
"patch_size": (1, 2, 2),
"num_attention_heads": 2,
"attention_head_dim": 12,
"in_channels": 16,
"out_channels": 16,
"text_dim": 32,
"freq_dim": 256,
"ffn_dim": 32,
"num_layers": 4,
"cross_attn_norm": True,
"qk_norm": "rms_norm_across_heads",
"rope_max_seq_len": 32,
"vace_layers": [0, 2],
"vace_in_channels": 48, # 3 * in_channels = 3 * 16 = 48
}
def get_dummy_inputs(self) -> dict[str, torch.Tensor]:
batch_size = 1
num_channels = 16
num_frames = 2
height = 16
width = 16
text_encoder_embedding_dim = 32
sequence_length = 12
# VACE requires control_hidden_states with vace_in_channels (3 * in_channels)
vace_in_channels = 48
return {
"hidden_states": randn_tensor(
(batch_size, num_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"encoder_hidden_states": randn_tensor(
(batch_size, sequence_length, text_encoder_embedding_dim),
generator=self.generator,
device=torch_device,
),
"control_hidden_states": randn_tensor(
(batch_size, vace_in_channels, num_frames, height, width),
generator=self.generator,
device=torch_device,
),
"timestep": torch.randint(0, 1000, size=(batch_size,), generator=self.generator).to(torch_device),
}
class TestWanVACETransformer3D(WanVACETransformer3DTesterConfig, ModelTesterMixin):
"""Core model tests for Wan VACE Transformer 3D."""
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16], ids=["fp16", "bf16"])
def test_from_save_pretrained_dtype_inference(self, tmp_path, dtype):
# Skip: fp16/bf16 require very high atol to pass, providing little signal.
# Dtype preservation is already tested by test_from_save_pretrained_dtype and test_keep_in_fp32_modules.
pytest.skip("Tolerance requirements too high for meaningful test")
def test_model_parallelism(self, tmp_path):
# Skip: Device mismatch between cuda:0 and cuda:1 in VACE control flow
pytest.skip("Model parallelism not yet supported for WanVACE")
class TestWanVACETransformer3DMemory(WanVACETransformer3DTesterConfig, MemoryTesterMixin):
"""Memory optimization tests for Wan VACE Transformer 3D."""
class TestWanVACETransformer3DTraining(WanVACETransformer3DTesterConfig, TrainingTesterMixin):
"""Training tests for Wan VACE Transformer 3D."""
def test_gradient_checkpointing_is_applied(self):
expected_set = {"WanVACETransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class TestWanVACETransformer3DAttention(WanVACETransformer3DTesterConfig, AttentionTesterMixin):
"""Attention processor tests for Wan VACE Transformer 3D."""
class TestWanVACETransformer3DCompile(WanVACETransformer3DTesterConfig, TorchCompileTesterMixin):
"""Torch compile tests for Wan VACE Transformer 3D."""
def test_torch_compile_repeated_blocks(self):
# WanVACE has two block types (WanTransformerBlock and WanVACETransformerBlock),
# so we need recompile_limit=2 instead of the default 1.
import torch._dynamo
import torch._inductor.utils
init_dict = self.get_init_dict()
inputs_dict = self.get_dummy_inputs()
model = self.model_class(**init_dict).to(torch_device)
model.eval()
model.compile_repeated_blocks(fullgraph=True)
with (
torch._inductor.utils.fresh_inductor_cache(),
torch._dynamo.config.patch(recompile_limit=2),
):
_ = model(**inputs_dict)
_ = model(**inputs_dict)
class TestWanVACETransformer3DBitsAndBytes(WanVACETransformer3DTesterConfig, BitsAndBytesTesterMixin):
"""BitsAndBytes quantization tests for Wan VACE Transformer 3D."""
@property
def torch_dtype(self):
return torch.float16
def get_dummy_inputs(self):
"""Override to provide inputs matching the tiny Wan VACE model dimensions."""
return {
"hidden_states": randn_tensor(
(1, 16, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"control_hidden_states": randn_tensor(
(1, 96, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanVACETransformer3DTorchAo(WanVACETransformer3DTesterConfig, TorchAoTesterMixin):
"""TorchAO quantization tests for Wan VACE Transformer 3D."""
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the tiny Wan VACE model dimensions."""
return {
"hidden_states": randn_tensor(
(1, 16, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"control_hidden_states": randn_tensor(
(1, 96, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanVACETransformer3DGGUF(WanVACETransformer3DTesterConfig, GGUFTesterMixin):
"""GGUF quantization tests for Wan VACE Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/blob/main/Wan2.1_14B_VACE-Q3_K_S.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan VACE model dimensions.
Wan 2.1 VACE: in_channels=16, text_dim=4096, vace_in_channels=96
"""
return {
"hidden_states": randn_tensor(
(1, 16, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"control_hidden_states": randn_tensor(
(1, 96, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}
class TestWanVACETransformer3DGGUFCompile(WanVACETransformer3DTesterConfig, GGUFCompileTesterMixin):
"""GGUF + compile tests for Wan VACE Transformer 3D."""
@property
def gguf_filename(self):
return "https://huggingface.co/QuantStack/Wan2.1_14B_VACE-GGUF/blob/main/Wan2.1_14B_VACE-Q3_K_S.gguf"
@property
def torch_dtype(self):
return torch.bfloat16
def get_dummy_inputs(self):
"""Override to provide inputs matching the real Wan VACE model dimensions.
Wan 2.1 VACE: in_channels=16, text_dim=4096, vace_in_channels=96
"""
return {
"hidden_states": randn_tensor(
(1, 16, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"encoder_hidden_states": randn_tensor(
(1, 512, 4096), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"control_hidden_states": randn_tensor(
(1, 96, 2, 64, 64), generator=self.generator, device=torch_device, dtype=self.torch_dtype
),
"timestep": torch.tensor([1.0]).to(torch_device, self.torch_dtype),
}

View File

@@ -37,6 +37,9 @@ class ModularPipelineTesterMixin:
optional_params = frozenset(["num_inference_steps", "num_images_per_prompt", "latents", "output_type"])
# this is modular specific: generator needs to be a intermediate input because it's mutable
intermediate_params = frozenset(["generator"])
# Output type for the pipeline (e.g., "images" for image pipelines, "videos" for video pipelines)
# Subclasses can override this to change the expected output type
output_name = "images"
def get_generator(self, seed=0):
generator = torch.Generator("cpu").manual_seed(seed)
@@ -163,7 +166,7 @@ class ModularPipelineTesterMixin:
logger.setLevel(level=diffusers.logging.WARNING)
for batch_size, batched_input in zip(batch_sizes, batched_inputs):
output = pipe(**batched_input, output="images")
output = pipe(**batched_input, output=self.output_name)
assert len(output) == batch_size, "Output is different from expected batch size"
def test_inference_batch_single_identical(
@@ -197,12 +200,16 @@ class ModularPipelineTesterMixin:
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
output = pipe(**inputs, output="images")
output_batch = pipe(**batched_inputs, output="images")
output = pipe(**inputs, output=self.output_name)
output_batch = pipe(**batched_inputs, output=self.output_name)
assert output_batch.shape[0] == batch_size
max_diff = torch.abs(output_batch[0] - output[0]).max()
# For batch comparison, we only need to compare the first item
if output_batch.shape[0] == batch_size and output.shape[0] == 1:
output_batch = output_batch[0:1]
max_diff = torch.abs(output_batch - output).max()
assert max_diff < expected_max_diff, "Batch inference results different from single inference results"
@require_accelerator
@@ -217,19 +224,32 @@ class ModularPipelineTesterMixin:
# Reset generator in case it is used inside dummy inputs
if "generator" in inputs:
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs, output="images")
output = pipe(**inputs, output=self.output_name)
fp16_inputs = self.get_dummy_inputs()
# Reset generator in case it is used inside dummy inputs
if "generator" in fp16_inputs:
fp16_inputs["generator"] = self.get_generator(0)
output_fp16 = pipe_fp16(**fp16_inputs, output="images")
output = output.cpu()
output_fp16 = output_fp16.cpu()
output_fp16 = pipe_fp16(**fp16_inputs, output=self.output_name)
max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten())
assert max_diff < expected_max_diff, "FP16 inference is different from FP32 inference"
output_tensor = output.float().cpu()
output_fp16_tensor = output_fp16.float().cpu()
# Check for NaNs in outputs (can happen with tiny models in FP16)
if torch.isnan(output_tensor).any() or torch.isnan(output_fp16_tensor).any():
pytest.skip("FP16 inference produces NaN values - this is a known issue with tiny models")
max_diff = numpy_cosine_similarity_distance(
output_tensor.flatten().numpy(), output_fp16_tensor.flatten().numpy()
)
# Check if cosine similarity is NaN (which can happen if vectors are zero or very small)
if torch.isnan(torch.tensor(max_diff)):
pytest.skip("Cosine similarity is NaN - outputs may be too small for reliable comparison")
assert max_diff < expected_max_diff, f"FP16 inference is different from FP32 inference (max_diff: {max_diff})"
@require_accelerator
def test_to_device(self):
@@ -251,14 +271,16 @@ class ModularPipelineTesterMixin:
def test_inference_is_not_nan_cpu(self):
pipe = self.get_pipeline().to("cpu")
output = pipe(**self.get_dummy_inputs(), output="images")
inputs = self.get_dummy_inputs()
output = pipe(**inputs, output=self.output_name)
assert torch.isnan(output).sum() == 0, "CPU Inference returns NaN"
@require_accelerator
def test_inference_is_not_nan(self):
pipe = self.get_pipeline().to(torch_device)
output = pipe(**self.get_dummy_inputs(), output="images")
inputs = self.get_dummy_inputs()
output = pipe(**inputs, output=self.output_name)
assert torch.isnan(output).sum() == 0, "Accelerator Inference returns NaN"
def test_num_images_per_prompt(self):
@@ -278,7 +300,7 @@ class ModularPipelineTesterMixin:
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt, output="images")
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt, output=self.output_name)
assert images.shape[0] == batch_size * num_images_per_prompt
@@ -293,8 +315,7 @@ class ModularPipelineTesterMixin:
image_slices = []
for pipe in [base_pipe, offload_pipe]:
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output="images")
image = pipe(**inputs, output=self.output_name)
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
@@ -315,8 +336,7 @@ class ModularPipelineTesterMixin:
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs()
image = pipe(**inputs, output="images")
image = pipe(**inputs, output=self.output_name)
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert torch.abs(image_slices[0] - image_slices[1]).max() < 1e-3
@@ -331,13 +351,13 @@ class ModularGuiderTesterMixin:
pipe.update_components(guider=guider)
inputs = self.get_dummy_inputs()
out_no_cfg = pipe(**inputs, output="images")
out_no_cfg = pipe(**inputs, output=self.output_name)
# forward pass with CFG applied
guider = ClassifierFreeGuidance(guidance_scale=7.5)
pipe.update_components(guider=guider)
inputs = self.get_dummy_inputs()
out_cfg = pipe(**inputs, output="images")
out_cfg = pipe(**inputs, output=self.output_name)
assert out_cfg.shape == out_no_cfg.shape
max_diff = torch.abs(out_cfg - out_no_cfg).max()

View File

View File

@@ -0,0 +1,49 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from diffusers.modular_pipelines import WanBlocks, WanModularPipeline
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestWanModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = WanModularPipeline
pipeline_blocks_class = WanBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-wan-modular-pipe"
params = frozenset(["prompt", "height", "width", "num_frames"])
batch_params = frozenset(["prompt"])
optional_params = frozenset(["num_inference_steps", "num_videos_per_prompt", "latents"])
output_name = "videos"
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"height": 16,
"width": 16,
"num_frames": 9,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
@pytest.mark.skip(reason="num_videos_per_prompt")
def test_num_images_per_prompt(self):
pass

View File

@@ -0,0 +1,44 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from diffusers.modular_pipelines import ZImageAutoBlocks, ZImageModularPipeline
from ..test_modular_pipelines_common import ModularPipelineTesterMixin
class TestZImageModularPipelineFast(ModularPipelineTesterMixin):
pipeline_class = ZImageModularPipeline
pipeline_blocks_class = ZImageAutoBlocks
pretrained_model_name_or_path = "hf-internal-testing/tiny-zimage-modular-pipe"
params = frozenset(["prompt", "height", "width"])
batch_params = frozenset(["prompt"])
def get_dummy_inputs(self, seed=0):
generator = self.get_generator(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "pt",
}
return inputs
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=5e-3)

View File

@@ -168,7 +168,7 @@ def assert_tensors_close(
max_diff = abs_diff.max().item()
flat_idx = abs_diff.argmax().item()
max_idx = tuple(torch.unravel_index(torch.tensor(flat_idx), actual.shape).tolist())
max_idx = tuple(idx.item() for idx in torch.unravel_index(torch.tensor(flat_idx), actual.shape))
threshold = atol + rtol * expected.abs()
mismatched = (abs_diff > threshold).sum().item()