mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-08 13:34:27 +08:00
Compare commits
117 Commits
modular-cu
...
chroma-fin
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d267bb6955 | ||
|
|
e10f701537 | ||
|
|
0497faa3db | ||
|
|
4f00bae5de | ||
|
|
a967e66d03 | ||
|
|
2b559e9b79 | ||
|
|
589e939e33 | ||
|
|
c711e8f10b | ||
|
|
0978b609c8 | ||
|
|
4e24f26d6f | ||
|
|
8694f2ce53 | ||
|
|
fd3e94450a | ||
|
|
41751a3ec0 | ||
|
|
3fe4ad67d5 | ||
|
|
49a4c8bc22 | ||
|
|
06fb9957a7 | ||
|
|
16b6e33916 | ||
|
|
178c4ec928 | ||
|
|
292469d755 | ||
|
|
bf56c953b8 | ||
|
|
b85229e262 | ||
|
|
f1be3ebc98 | ||
|
|
6735507705 | ||
|
|
de9a07fc20 | ||
|
|
2b6722ecea | ||
|
|
00ebba9725 | ||
|
|
bea8b0d86e | ||
|
|
28dea06b3d | ||
|
|
60e41b7835 | ||
|
|
876649336e | ||
|
|
272685c0e5 | ||
|
|
829c6f199e | ||
|
|
89faa71f04 | ||
|
|
926dcc6319 | ||
|
|
74fe45e823 | ||
|
|
35dc65b7da | ||
|
|
f35ec17a83 | ||
|
|
381e64b966 | ||
|
|
c330f08fa2 | ||
|
|
523150fb2c | ||
|
|
2bc51c8387 | ||
|
|
fd36924620 | ||
|
|
e97a4dd0c7 | ||
|
|
ad01d636be | ||
|
|
68b9cce897 | ||
|
|
f49b149c1c | ||
|
|
19733af2fc | ||
|
|
c85e46bd42 | ||
|
|
d31cf81566 | ||
|
|
2347d53f90 | ||
|
|
cfd5b34051 | ||
|
|
c8d6aef936 | ||
|
|
f8d4a1a774 | ||
|
|
15ca813e3e | ||
|
|
7235805e75 | ||
|
|
abf8a33a96 | ||
|
|
6a0db55af8 | ||
|
|
fe5af79a19 | ||
|
|
bedb32087a | ||
|
|
03fbd520f4 | ||
|
|
1442c9789a | ||
|
|
a1fac68a2d | ||
|
|
3e36a21c8e | ||
|
|
a93e64d6fb | ||
|
|
3f39b1a730 | ||
|
|
18327cb57c | ||
|
|
da846d1fff | ||
|
|
42c0e8ecbe | ||
|
|
0c5eb44701 | ||
|
|
b0cf6803a7 | ||
|
|
f821f2ad5e | ||
|
|
619921ca22 | ||
|
|
1efa772f69 | ||
|
|
3e2452ded0 | ||
|
|
2d57f3dbac | ||
|
|
1bd8fdfcb6 | ||
|
|
406ab3b1e9 | ||
|
|
e31c94866d | ||
|
|
01bc0dcc56 | ||
|
|
e69d73099d | ||
|
|
442f77a2d7 | ||
|
|
ab7942174a | ||
|
|
f6de1afc3f | ||
|
|
f783f38883 | ||
|
|
a3b6697bc3 | ||
|
|
68f771bf43 | ||
|
|
df7fde7a6d | ||
|
|
77b429eda4 | ||
|
|
3309ffef1c | ||
|
|
146255aba1 | ||
|
|
c9b46af65f | ||
|
|
7c75d8e98d | ||
|
|
38429ffcac | ||
|
|
f190c02af7 | ||
|
|
6c0aed14db | ||
|
|
0b027a2453 | ||
|
|
2fcc75a6d8 | ||
|
|
af918c89dd | ||
|
|
7445cf422a | ||
|
|
a6f231c7ce | ||
|
|
6441e70def | ||
|
|
f0c75b6b6f | ||
|
|
5eb4b822ae | ||
|
|
4e698b1088 | ||
|
|
c22930d7cc | ||
|
|
7400278857 | ||
|
|
32659236b2 | ||
|
|
c8cbb31614 | ||
|
|
b0df9691d2 | ||
|
|
22ecd19f91 | ||
|
|
33ea0b65a4 | ||
|
|
bc36a0d883 | ||
|
|
32e6a006cf | ||
|
|
15f2bd5c39 | ||
|
|
e271af9495 | ||
|
|
3c2865c534 | ||
|
|
ff0b9a3c4c |
@@ -283,6 +283,8 @@
|
||||
title: AllegroTransformer3DModel
|
||||
- local: api/models/aura_flow_transformer2d
|
||||
title: AuraFlowTransformer2DModel
|
||||
- local: api/models/chroma_transformer
|
||||
title: ChromaTransformer2DModel
|
||||
- local: api/models/cogvideox_transformer3d
|
||||
title: CogVideoXTransformer3DModel
|
||||
- local: api/models/cogview3plus_transformer2d
|
||||
@@ -405,6 +407,8 @@
|
||||
title: AutoPipeline
|
||||
- local: api/pipelines/blip_diffusion
|
||||
title: BLIP-Diffusion
|
||||
- local: api/pipelines/chroma
|
||||
title: Chroma
|
||||
- local: api/pipelines/cogvideox
|
||||
title: CogVideoX
|
||||
- local: api/pipelines/cogview3
|
||||
|
||||
19
docs/source/en/api/models/chroma_transformer.md
Normal file
19
docs/source/en/api/models/chroma_transformer.md
Normal file
@@ -0,0 +1,19 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ChromaTransformer2DModel
|
||||
|
||||
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma)
|
||||
|
||||
## ChromaTransformer2DModel
|
||||
|
||||
[[autodoc]] ChromaTransformer2DModel
|
||||
71
docs/source/en/api/pipelines/chroma.md
Normal file
71
docs/source/en/api/pipelines/chroma.md
Normal file
@@ -0,0 +1,71 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Chroma
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
|
||||
<img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
|
||||
</div>
|
||||
|
||||
Chroma is a text to image generation model based on Flux.
|
||||
|
||||
Original model checkpoints for Chroma can be found [here](https://huggingface.co/lodestones/Chroma).
|
||||
|
||||
<Tip>
|
||||
|
||||
Chroma can use all the same optimizations as Flux.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Inference (Single File)
|
||||
|
||||
The `ChromaTransformer2DModel` supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
|
||||
|
||||
The following example demonstrates how to run Chroma from a single file.
|
||||
|
||||
Then run the following example
|
||||
|
||||
```python
|
||||
import torch
|
||||
from diffusers import ChromaTransformer2DModel, ChromaPipeline
|
||||
from transformers import T5EncoderModel
|
||||
|
||||
bfl_repo = "black-forest-labs/FLUX.1-dev"
|
||||
dtype = torch.bfloat16
|
||||
|
||||
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype)
|
||||
|
||||
text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
|
||||
tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
||||
|
||||
pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype)
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
prompt = "A cat holding a sign that says hello world"
|
||||
image = pipe(
|
||||
prompt,
|
||||
guidance_scale=4.0,
|
||||
output_type="pil",
|
||||
num_inference_steps=26,
|
||||
generator=torch.Generator("cpu").manual_seed(0)
|
||||
).images[0]
|
||||
|
||||
image.save("image.png")
|
||||
```
|
||||
|
||||
## ChromaPipeline
|
||||
|
||||
[[autodoc]] ChromaPipeline
|
||||
- all
|
||||
- __call__
|
||||
@@ -159,6 +159,7 @@ else:
|
||||
"AutoencoderTiny",
|
||||
"AutoModel",
|
||||
"CacheMixin",
|
||||
"ChromaTransformer2DModel",
|
||||
"CogVideoXTransformer3DModel",
|
||||
"CogView3PlusTransformer2DModel",
|
||||
"CogView4Transformer2DModel",
|
||||
@@ -352,6 +353,7 @@ else:
|
||||
"AuraFlowPipeline",
|
||||
"BlipDiffusionControlNetPipeline",
|
||||
"BlipDiffusionPipeline",
|
||||
"ChromaPipeline",
|
||||
"CLIPImageProjection",
|
||||
"CogVideoXFunControlPipeline",
|
||||
"CogVideoXImageToVideoPipeline",
|
||||
@@ -768,6 +770,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AutoencoderTiny,
|
||||
AutoModel,
|
||||
CacheMixin,
|
||||
ChromaTransformer2DModel,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
CogView4Transformer2DModel,
|
||||
@@ -940,6 +943,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AudioLDM2UNet2DConditionModel,
|
||||
AudioLDMPipeline,
|
||||
AuraFlowPipeline,
|
||||
ChromaPipeline,
|
||||
CLIPImageProjection,
|
||||
CogVideoXFunControlPipeline,
|
||||
CogVideoXImageToVideoPipeline,
|
||||
|
||||
@@ -60,6 +60,7 @@ _SET_ADAPTER_SCALE_FN_MAPPING = {
|
||||
"HiDreamImageTransformer2DModel": lambda model_cls, weights: weights,
|
||||
"HunyuanVideoFramepackTransformer3DModel": lambda model_cls, weights: weights,
|
||||
"WanVACETransformer3DModel": lambda model_cls, weights: weights,
|
||||
"ChromaTransformer2DModel": lambda model_cls, weights: weights,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -29,6 +29,7 @@ from .single_file_utils import (
|
||||
convert_animatediff_checkpoint_to_diffusers,
|
||||
convert_auraflow_transformer_checkpoint_to_diffusers,
|
||||
convert_autoencoder_dc_checkpoint_to_diffusers,
|
||||
convert_chroma_transformer_checkpoint_to_diffusers,
|
||||
convert_controlnet_checkpoint,
|
||||
convert_flux_transformer_checkpoint_to_diffusers,
|
||||
convert_hidream_transformer_to_diffusers,
|
||||
@@ -97,6 +98,10 @@ SINGLE_FILE_LOADABLE_CLASSES = {
|
||||
"checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers,
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
"ChromaTransformer2DModel": {
|
||||
"checkpoint_mapping_fn": convert_chroma_transformer_checkpoint_to_diffusers,
|
||||
"default_subfolder": "transformer",
|
||||
},
|
||||
"LTXVideoTransformer3DModel": {
|
||||
"checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers,
|
||||
"default_subfolder": "transformer",
|
||||
|
||||
@@ -3310,3 +3310,172 @@ def convert_hidream_transformer_to_diffusers(checkpoint, **kwargs):
|
||||
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
|
||||
|
||||
return checkpoint
|
||||
|
||||
|
||||
def convert_chroma_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
|
||||
converted_state_dict = {}
|
||||
keys = list(checkpoint.keys())
|
||||
|
||||
for k in keys:
|
||||
if "model.diffusion_model." in k:
|
||||
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
|
||||
|
||||
num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1 # noqa: C401
|
||||
num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1 # noqa: C401
|
||||
num_guidance_layers = (
|
||||
list(set(int(k.split(".", 3)[2]) for k in checkpoint if "distilled_guidance_layer.layers." in k))[-1] + 1 # noqa: C401
|
||||
)
|
||||
mlp_ratio = 4.0
|
||||
inner_dim = 3072
|
||||
|
||||
# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
|
||||
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
|
||||
def swap_scale_shift(weight):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
return new_weight
|
||||
|
||||
# guidance
|
||||
converted_state_dict["distilled_guidance_layer.in_proj.bias"] = checkpoint.pop(
|
||||
"distilled_guidance_layer.in_proj.bias"
|
||||
)
|
||||
converted_state_dict["distilled_guidance_layer.in_proj.weight"] = checkpoint.pop(
|
||||
"distilled_guidance_layer.in_proj.weight"
|
||||
)
|
||||
converted_state_dict["distilled_guidance_layer.out_proj.bias"] = checkpoint.pop(
|
||||
"distilled_guidance_layer.out_proj.bias"
|
||||
)
|
||||
converted_state_dict["distilled_guidance_layer.out_proj.weight"] = checkpoint.pop(
|
||||
"distilled_guidance_layer.out_proj.weight"
|
||||
)
|
||||
for i in range(num_guidance_layers):
|
||||
block_prefix = f"distilled_guidance_layer.layers.{i}."
|
||||
converted_state_dict[f"{block_prefix}linear_1.bias"] = checkpoint.pop(
|
||||
f"distilled_guidance_layer.layers.{i}.in_layer.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}linear_1.weight"] = checkpoint.pop(
|
||||
f"distilled_guidance_layer.layers.{i}.in_layer.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}linear_2.bias"] = checkpoint.pop(
|
||||
f"distilled_guidance_layer.layers.{i}.out_layer.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}linear_2.weight"] = checkpoint.pop(
|
||||
f"distilled_guidance_layer.layers.{i}.out_layer.weight"
|
||||
)
|
||||
converted_state_dict[f"distilled_guidance_layer.norms.{i}.weight"] = checkpoint.pop(
|
||||
f"distilled_guidance_layer.norms.{i}.scale"
|
||||
)
|
||||
|
||||
# context_embedder
|
||||
converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
|
||||
converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")
|
||||
|
||||
# x_embedder
|
||||
converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
|
||||
converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")
|
||||
|
||||
# double transformer blocks
|
||||
for i in range(num_layers):
|
||||
block_prefix = f"transformer_blocks.{i}."
|
||||
# Q, K, V
|
||||
sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
|
||||
context_q, context_k, context_v = torch.chunk(
|
||||
checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
|
||||
)
|
||||
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
|
||||
checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
|
||||
)
|
||||
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
|
||||
checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
|
||||
converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
|
||||
converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
|
||||
converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
|
||||
# qk_norm
|
||||
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
|
||||
)
|
||||
# ff img_mlp
|
||||
converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_mlp.0.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
|
||||
converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
|
||||
converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.0.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.0.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.2.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_mlp.2.bias"
|
||||
)
|
||||
# output projections.
|
||||
converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.img_attn.proj.bias"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.proj.weight"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
|
||||
f"double_blocks.{i}.txt_attn.proj.bias"
|
||||
)
|
||||
|
||||
# single transformer blocks
|
||||
for i in range(num_single_layers):
|
||||
block_prefix = f"single_transformer_blocks.{i}."
|
||||
# Q, K, V, mlp
|
||||
mlp_hidden_dim = int(inner_dim * mlp_ratio)
|
||||
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
|
||||
q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
|
||||
q_bias, k_bias, v_bias, mlp_bias = torch.split(
|
||||
checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
|
||||
converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
|
||||
converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
|
||||
converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
|
||||
converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
|
||||
converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
|
||||
# qk norm
|
||||
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
|
||||
f"single_blocks.{i}.norm.query_norm.scale"
|
||||
)
|
||||
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
|
||||
f"single_blocks.{i}.norm.key_norm.scale"
|
||||
)
|
||||
# output projections.
|
||||
converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
|
||||
converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")
|
||||
|
||||
converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
|
||||
converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
|
||||
|
||||
return converted_state_dict
|
||||
|
||||
@@ -74,6 +74,7 @@ if is_torch_available():
|
||||
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_allegro"] = ["AllegroTransformer3DModel"]
|
||||
_import_structure["transformers.transformer_chroma"] = ["ChromaTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_cogview4"] = ["CogView4Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_cosmos"] = ["CosmosTransformer3DModel"]
|
||||
@@ -151,6 +152,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .transformers import (
|
||||
AllegroTransformer3DModel,
|
||||
AuraFlowTransformer2DModel,
|
||||
ChromaTransformer2DModel,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
CogView4Transformer2DModel,
|
||||
|
||||
@@ -31,7 +31,7 @@ def get_timestep_embedding(
|
||||
downscale_freq_shift: float = 1,
|
||||
scale: float = 1,
|
||||
max_period: int = 10000,
|
||||
):
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
||||
|
||||
@@ -1325,7 +1325,7 @@ class Timesteps(nn.Module):
|
||||
self.downscale_freq_shift = downscale_freq_shift
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, timesteps):
|
||||
def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
|
||||
t_emb = get_timestep_embedding(
|
||||
timesteps,
|
||||
self.num_channels,
|
||||
|
||||
@@ -17,6 +17,7 @@ if is_torch_available():
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
from .transformer_2d import Transformer2DModel
|
||||
from .transformer_allegro import AllegroTransformer3DModel
|
||||
from .transformer_chroma import ChromaTransformer2DModel
|
||||
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
|
||||
from .transformer_cogview4 import CogView4Transformer2DModel
|
||||
from .transformer_cosmos import CosmosTransformer3DModel
|
||||
|
||||
732
src/diffusers/models/transformers/transformer_chroma.py
Normal file
732
src/diffusers/models/transformers/transformer_chroma.py
Normal file
@@ -0,0 +1,732 @@
|
||||
# Copyright 2025 Black Forest Labs, The HuggingFace Team and loadstone-rock . All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
||||
from ...utils.import_utils import is_torch_npu_available
|
||||
from ...utils.torch_utils import maybe_allow_in_graph
|
||||
from ..attention import FeedForward
|
||||
from ..attention_processor import (
|
||||
Attention,
|
||||
AttentionProcessor,
|
||||
FluxAttnProcessor2_0,
|
||||
FluxAttnProcessor2_0_NPU,
|
||||
FusedFluxAttnProcessor2_0,
|
||||
)
|
||||
from ..cache_utils import CacheMixin
|
||||
from ..embeddings import FluxPosEmbed, PixArtAlphaTextProjection, Timesteps, get_timestep_embedding
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..modeling_utils import ModelMixin
|
||||
from ..normalization import CombinedTimestepLabelEmbeddings, FP32LayerNorm, RMSNorm
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class ChromaAdaLayerNormZeroPruned(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
if num_embeddings is not None:
|
||||
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
||||
else:
|
||||
self.emb = None
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
elif norm_type == "fp32_layer_norm":
|
||||
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
timestep: Optional[torch.Tensor] = None,
|
||||
class_labels: Optional[torch.LongTensor] = None,
|
||||
hidden_dtype: Optional[torch.dtype] = None,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
if self.emb is not None:
|
||||
emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
|
||||
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.flatten(1, 2).chunk(6, dim=1)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
||||
|
||||
|
||||
class ChromaAdaLayerNormZeroSinglePruned(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
||||
super().__init__()
|
||||
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
shift_msa, scale_msa, gate_msa = emb.flatten(1, 2).chunk(3, dim=1)
|
||||
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
return x, gate_msa
|
||||
|
||||
|
||||
class ChromaAdaLayerNormContinuousPruned(nn.Module):
|
||||
r"""
|
||||
Adaptive normalization layer with a norm layer (layer_norm or rms_norm).
|
||||
|
||||
Args:
|
||||
embedding_dim (`int`): Embedding dimension to use during projection.
|
||||
conditioning_embedding_dim (`int`): Dimension of the input condition.
|
||||
elementwise_affine (`bool`, defaults to `True`):
|
||||
Boolean flag to denote if affine transformation should be applied.
|
||||
eps (`float`, defaults to 1e-5): Epsilon factor.
|
||||
bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use.
|
||||
norm_type (`str`, defaults to `"layer_norm"`):
|
||||
Normalization layer to use. Values supported: "layer_norm", "rms_norm".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
conditioning_embedding_dim: int,
|
||||
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
|
||||
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
|
||||
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
|
||||
# However, this is how it was implemented in the original code, and it's rather likely you should
|
||||
# set `elementwise_affine` to False.
|
||||
elementwise_affine=True,
|
||||
eps=1e-5,
|
||||
bias=True,
|
||||
norm_type="layer_norm",
|
||||
):
|
||||
super().__init__()
|
||||
if norm_type == "layer_norm":
|
||||
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
||||
elif norm_type == "rms_norm":
|
||||
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
|
||||
else:
|
||||
raise ValueError(f"unknown norm_type {norm_type}")
|
||||
|
||||
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
||||
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
||||
shift, scale = torch.chunk(emb.flatten(1, 2).to(x.dtype), 2, dim=1)
|
||||
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
||||
return x
|
||||
|
||||
|
||||
class ChromaCombinedTimestepTextProjEmbeddings(nn.Module):
|
||||
def __init__(self, num_channels: int, out_dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.time_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.guidance_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
|
||||
self.register_buffer(
|
||||
"mod_proj",
|
||||
get_timestep_embedding(
|
||||
torch.arange(out_dim) * 1000, 2 * num_channels, flip_sin_to_cos=True, downscale_freq_shift=0
|
||||
),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def forward(self, timestep: torch.Tensor) -> torch.Tensor:
|
||||
mod_index_length = self.mod_proj.shape[0]
|
||||
batch_size = timestep.shape[0]
|
||||
|
||||
timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
|
||||
guidance_proj = self.guidance_proj(torch.tensor([0] * batch_size)).to(
|
||||
dtype=timestep.dtype, device=timestep.device
|
||||
)
|
||||
|
||||
mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device).repeat(batch_size, 1, 1)
|
||||
timestep_guidance = (
|
||||
torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
|
||||
)
|
||||
input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
|
||||
return input_vec.to(timestep.dtype)
|
||||
|
||||
|
||||
class ChromaApproximator(nn.Module):
|
||||
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers: int = 5):
|
||||
super().__init__()
|
||||
self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
|
||||
self.layers = nn.ModuleList(
|
||||
[PixArtAlphaTextProjection(hidden_dim, hidden_dim, act_fn="silu") for _ in range(n_layers)]
|
||||
)
|
||||
self.norms = nn.ModuleList([nn.RMSNorm(hidden_dim) for _ in range(n_layers)])
|
||||
self.out_proj = nn.Linear(hidden_dim, out_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.in_proj(x)
|
||||
|
||||
for layer, norms in zip(self.layers, self.norms):
|
||||
x = x + layer(norms(x))
|
||||
|
||||
return self.out_proj(x)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class ChromaSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.norm = ChromaAdaLayerNormZeroSinglePruned(dim)
|
||||
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
||||
self.act_mlp = nn.GELU(approximate="tanh")
|
||||
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
||||
|
||||
if is_torch_npu_available():
|
||||
deprecation_message = (
|
||||
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
|
||||
"should be set explicitly using the `set_attn_processor` method."
|
||||
)
|
||||
deprecate("npu_processor", "0.34.0", deprecation_message)
|
||||
processor = FluxAttnProcessor2_0_NPU()
|
||||
else:
|
||||
processor = FluxAttnProcessor2_0()
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
processor=processor,
|
||||
qk_norm="rms_norm",
|
||||
eps=1e-6,
|
||||
pre_only=True,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> torch.Tensor:
|
||||
residual = hidden_states
|
||||
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
||||
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
attn_output = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
**joint_attention_kwargs,
|
||||
)
|
||||
|
||||
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
||||
gate = gate.unsqueeze(1)
|
||||
hidden_states = gate * self.proj_out(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
if hidden_states.dtype == torch.float16:
|
||||
hidden_states = hidden_states.clip(-65504, 65504)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class ChromaTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
qk_norm: str = "rms_norm",
|
||||
eps: float = 1e-6,
|
||||
):
|
||||
super().__init__()
|
||||
self.norm1 = ChromaAdaLayerNormZeroPruned(dim)
|
||||
self.norm1_context = ChromaAdaLayerNormZeroPruned(dim)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
cross_attention_dim=None,
|
||||
added_kv_proj_dim=dim,
|
||||
dim_head=attention_head_dim,
|
||||
heads=num_attention_heads,
|
||||
out_dim=dim,
|
||||
context_pre_only=False,
|
||||
bias=True,
|
||||
processor=FluxAttnProcessor2_0(),
|
||||
qk_norm=qk_norm,
|
||||
eps=eps,
|
||||
)
|
||||
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
||||
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
temb_img, temb_txt = temb[:, :6], temb[:, 6:]
|
||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img)
|
||||
|
||||
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
||||
encoder_hidden_states, emb=temb_txt
|
||||
)
|
||||
joint_attention_kwargs = joint_attention_kwargs or {}
|
||||
# Attention.
|
||||
attention_outputs = self.attn(
|
||||
hidden_states=norm_hidden_states,
|
||||
encoder_hidden_states=norm_encoder_hidden_states,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
**joint_attention_kwargs,
|
||||
)
|
||||
|
||||
if len(attention_outputs) == 2:
|
||||
attn_output, context_attn_output = attention_outputs
|
||||
elif len(attention_outputs) == 3:
|
||||
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
||||
|
||||
# Process attention outputs for the `hidden_states`.
|
||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
||||
|
||||
hidden_states = hidden_states + ff_output
|
||||
if len(attention_outputs) == 3:
|
||||
hidden_states = hidden_states + ip_attn_output
|
||||
|
||||
# Process attention outputs for the `encoder_hidden_states`.
|
||||
|
||||
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
||||
|
||||
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
||||
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
|
||||
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
||||
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
||||
if encoder_hidden_states.dtype == torch.float16:
|
||||
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
||||
|
||||
return encoder_hidden_states, hidden_states
|
||||
|
||||
|
||||
class ChromaTransformer2DModel(
|
||||
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin, CacheMixin
|
||||
):
|
||||
"""
|
||||
The Transformer model introduced in Flux, modified for Chroma.
|
||||
|
||||
Reference: https://huggingface.co/lodestones/Chroma
|
||||
|
||||
Args:
|
||||
patch_size (`int`, defaults to `1`):
|
||||
Patch size to turn the input data into small patches.
|
||||
in_channels (`int`, defaults to `64`):
|
||||
The number of channels in the input.
|
||||
out_channels (`int`, *optional*, defaults to `None`):
|
||||
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
||||
num_layers (`int`, defaults to `19`):
|
||||
The number of layers of dual stream DiT blocks to use.
|
||||
num_single_layers (`int`, defaults to `38`):
|
||||
The number of layers of single stream DiT blocks to use.
|
||||
attention_head_dim (`int`, defaults to `128`):
|
||||
The number of dimensions to use for each attention head.
|
||||
num_attention_heads (`int`, defaults to `24`):
|
||||
The number of attention heads to use.
|
||||
joint_attention_dim (`int`, defaults to `4096`):
|
||||
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
||||
`encoder_hidden_states`).
|
||||
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
||||
The dimensions to use for the rotary positional embeddings.
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
|
||||
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: int = 1,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 19,
|
||||
num_single_layers: int = 38,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 24,
|
||||
joint_attention_dim: int = 4096,
|
||||
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
|
||||
approximator_num_channels: int = 64,
|
||||
approximator_hidden_dim: int = 5120,
|
||||
approximator_layers: int = 5,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = num_attention_heads * attention_head_dim
|
||||
|
||||
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
||||
|
||||
self.time_text_embed = ChromaCombinedTimestepTextProjEmbeddings(
|
||||
num_channels=approximator_num_channels // 4,
|
||||
out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
|
||||
)
|
||||
self.distilled_guidance_layer = ChromaApproximator(
|
||||
in_dim=approximator_num_channels,
|
||||
out_dim=self.inner_dim,
|
||||
hidden_dim=approximator_hidden_dim,
|
||||
n_layers=approximator_layers,
|
||||
)
|
||||
|
||||
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
||||
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
ChromaTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
ChromaSingleTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
)
|
||||
for _ in range(num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = ChromaAdaLayerNormContinuousPruned(
|
||||
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
||||
)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
img_ids: torch.Tensor = None,
|
||||
txt_ids: torch.Tensor = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
controlnet_block_samples=None,
|
||||
controlnet_single_block_samples=None,
|
||||
return_dict: bool = True,
|
||||
controlnet_blocks_repeat: bool = False,
|
||||
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`FluxTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
||||
Input `hidden_states`.
|
||||
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
||||
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
||||
timestep ( `torch.LongTensor`):
|
||||
Used to indicate denoising step.
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
||||
A list of tensors that if specified are added to the residuals of transformer blocks.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
||||
`tuple` where the first element is the sample tensor.
|
||||
"""
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
timestep = timestep.to(hidden_states.dtype) * 1000
|
||||
|
||||
input_vec = self.time_text_embed(timestep)
|
||||
pooled_temb = self.distilled_guidance_layer(input_vec)
|
||||
|
||||
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
||||
|
||||
if txt_ids.ndim == 3:
|
||||
logger.warning(
|
||||
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
||||
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
||||
)
|
||||
txt_ids = txt_ids[0]
|
||||
if img_ids.ndim == 3:
|
||||
logger.warning(
|
||||
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
||||
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
||||
)
|
||||
img_ids = img_ids[0]
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=0)
|
||||
image_rotary_emb = self.pos_embed(ids)
|
||||
|
||||
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
||||
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
||||
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
||||
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
||||
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
img_offset = 3 * len(self.single_transformer_blocks)
|
||||
txt_offset = img_offset + 6 * len(self.transformer_blocks)
|
||||
img_modulation = img_offset + 6 * index_block
|
||||
text_modulation = txt_offset + 6 * index_block
|
||||
temb = torch.cat(
|
||||
(
|
||||
pooled_temb[:, img_modulation : img_modulation + 6],
|
||||
pooled_temb[:, text_modulation : text_modulation + 6],
|
||||
),
|
||||
dim=1,
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
encoder_hidden_states, hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_block_samples is not None:
|
||||
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
# For Xlabs ControlNet.
|
||||
if controlnet_blocks_repeat:
|
||||
hidden_states = (
|
||||
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
||||
)
|
||||
else:
|
||||
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
for index_block, block in enumerate(self.single_transformer_blocks):
|
||||
start_idx = 3 * index_block
|
||||
temb = pooled_temb[:, start_idx : start_idx + 3]
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
temb,
|
||||
image_rotary_emb,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
joint_attention_kwargs=joint_attention_kwargs,
|
||||
)
|
||||
|
||||
# controlnet residual
|
||||
if controlnet_single_block_samples is not None:
|
||||
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
||||
interval_control = int(np.ceil(interval_control))
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
||||
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
+ controlnet_single_block_samples[index_block // interval_control]
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
||||
|
||||
temb = pooled_temb[:, -2:]
|
||||
hidden_states = self.norm_out(hidden_states, temb)
|
||||
output = self.proj_out(hidden_states)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -148,6 +148,7 @@ else:
|
||||
"AudioLDM2UNet2DConditionModel",
|
||||
]
|
||||
_import_structure["blip_diffusion"] = ["BlipDiffusionPipeline"]
|
||||
_import_structure["chroma"] = ["ChromaPipeline"]
|
||||
_import_structure["cogvideo"] = [
|
||||
"CogVideoXPipeline",
|
||||
"CogVideoXImageToVideoPipeline",
|
||||
@@ -531,6 +532,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
)
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .blip_diffusion import BlipDiffusionPipeline
|
||||
from .chroma import ChromaPipeline
|
||||
from .cogvideo import (
|
||||
CogVideoXFunControlPipeline,
|
||||
CogVideoXImageToVideoPipeline,
|
||||
|
||||
@@ -21,6 +21,7 @@ from ..configuration_utils import ConfigMixin
|
||||
from ..models.controlnets import ControlNetUnionModel
|
||||
from ..utils import is_sentencepiece_available
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .chroma import ChromaPipeline
|
||||
from .cogview3 import CogView3PlusPipeline
|
||||
from .cogview4 import CogView4ControlPipeline, CogView4Pipeline
|
||||
from .controlnet import (
|
||||
@@ -143,6 +144,7 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("flux-controlnet", FluxControlNetPipeline),
|
||||
("lumina", LuminaPipeline),
|
||||
("lumina2", Lumina2Pipeline),
|
||||
("chroma", ChromaPipeline),
|
||||
("cogview3", CogView3PlusPipeline),
|
||||
("cogview4", CogView4Pipeline),
|
||||
("cogview4-control", CogView4ControlPipeline),
|
||||
|
||||
47
src/diffusers/pipelines/chroma/__init__.py
Normal file
47
src/diffusers/pipelines/chroma/__init__.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_additional_imports = {}
|
||||
_import_structure = {"pipeline_output": ["ChromaPipelineOutput"]}
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_chroma"] = ["ChromaPipeline"]
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .pipeline_chroma import ChromaPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
for name, value in _additional_imports.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
863
src/diffusers/pipelines/chroma/pipeline_chroma.py
Normal file
863
src/diffusers/pipelines/chroma/pipeline_chroma.py
Normal file
@@ -0,0 +1,863 @@
|
||||
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
||||
from ...loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
|
||||
from ...models import AutoencoderKL, ChromaTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .pipeline_output import ChromaPipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import ChromaPipeline
|
||||
|
||||
>>> pipe = ChromaPipeline.from_single_file(
|
||||
... "chroma-unlocked-v35-detail-calibrated.safetensors", torch_dtype=torch.bfloat16
|
||||
... )
|
||||
>>> pipe.to("cuda")
|
||||
>>> prompt = "A cat holding a sign that says hello world"
|
||||
>>> image = pipe(prompt, num_inference_steps=28, guidance_scale=4.0).images[0]
|
||||
>>> image.save("chroma.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class ChromaPipeline(
|
||||
DiffusionPipeline,
|
||||
FluxLoraLoaderMixin,
|
||||
FromSingleFileMixin,
|
||||
TextualInversionLoaderMixin,
|
||||
FluxIPAdapterMixin,
|
||||
):
|
||||
r"""
|
||||
The Chroma pipeline for text-to-image generation.
|
||||
|
||||
Reference: https://huggingface.co/lodestones/Chroma/
|
||||
|
||||
Args:
|
||||
transformer ([`ChromaTransformer2DModel`]):
|
||||
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representation
|
||||
text_encoder ([`T5EncoderModel`]):
|
||||
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
||||
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
||||
tokenizer (`T5TokenizerFast`):
|
||||
Second Tokenizer of class
|
||||
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->vae"
|
||||
_optional_components = ["image_encoder", "feature_extractor"]
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: T5EncoderModel,
|
||||
tokenizer: T5TokenizerFast,
|
||||
transformer: ChromaTransformer2DModel,
|
||||
image_encoder: CLIPVisionModelWithProjection = None,
|
||||
feature_extractor: CLIPImageProcessor = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
image_encoder=image_encoder,
|
||||
feature_extractor=feature_extractor,
|
||||
)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
||||
# Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
||||
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
self.default_sample_size = 128
|
||||
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
max_sequence_length: int = 512,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
if isinstance(self, TextualInversionLoaderMixin):
|
||||
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_length=False,
|
||||
return_overflowing_tokens=False,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask.clone()
|
||||
|
||||
# Chroma requires the attention mask to include one padding token
|
||||
seq_lengths = attention_mask.sum(dim=1)
|
||||
mask_indices = torch.arange(attention_mask.size(1)).unsqueeze(0).expand(batch_size, -1)
|
||||
attention_mask = (mask_indices <= seq_lengths.unsqueeze(1)).long()
|
||||
|
||||
prompt_embeds = self.text_encoder(
|
||||
text_input_ids.to(device), output_hidden_states=False, attention_mask=attention_mask.to(device)
|
||||
)[0]
|
||||
|
||||
dtype = self.text_encoder.dtype
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
max_sequence_length: int = 512,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
||||
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
lora_scale (`float`, *optional*):
|
||||
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
||||
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
||||
negative_text_ids = None
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt = (
|
||||
batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
)
|
||||
|
||||
if prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=negative_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
negative_text_ids = torch.zeros(negative_prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
return prompt_embeds, text_ids, negative_prompt_embeds, negative_text_ids
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
|
||||
def encode_image(self, image, device, num_images_per_prompt):
|
||||
dtype = next(self.image_encoder.parameters()).dtype
|
||||
|
||||
if not isinstance(image, torch.Tensor):
|
||||
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
||||
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
image_embeds = self.image_encoder(image).image_embeds
|
||||
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
||||
return image_embeds
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds
|
||||
def prepare_ip_adapter_image_embeds(
|
||||
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
|
||||
):
|
||||
image_embeds = []
|
||||
if ip_adapter_image_embeds is None:
|
||||
if not isinstance(ip_adapter_image, list):
|
||||
ip_adapter_image = [ip_adapter_image]
|
||||
|
||||
if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
||||
raise ValueError(
|
||||
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
||||
)
|
||||
|
||||
for single_ip_adapter_image in ip_adapter_image:
|
||||
single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
|
||||
image_embeds.append(single_image_embeds[None, :])
|
||||
else:
|
||||
if not isinstance(ip_adapter_image_embeds, list):
|
||||
ip_adapter_image_embeds = [ip_adapter_image_embeds]
|
||||
|
||||
if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
|
||||
raise ValueError(
|
||||
f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
|
||||
)
|
||||
|
||||
for single_image_embeds in ip_adapter_image_embeds:
|
||||
image_embeds.append(single_image_embeds)
|
||||
|
||||
ip_adapter_image_embeds = []
|
||||
for single_image_embeds in image_embeds:
|
||||
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
||||
single_image_embeds = single_image_embeds.to(device=device)
|
||||
ip_adapter_image_embeds.append(single_image_embeds)
|
||||
|
||||
return ip_adapter_image_embeds
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt=None,
|
||||
prompt_embeds=None,
|
||||
negative_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
max_sequence_length=None,
|
||||
):
|
||||
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
||||
logger.warning(
|
||||
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
||||
)
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is None and prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
|
||||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||||
)
|
||||
|
||||
if max_sequence_length is not None and max_sequence_length > 512:
|
||||
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
||||
|
||||
@staticmethod
|
||||
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
||||
latent_image_ids = torch.zeros(height, width, 3)
|
||||
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
|
||||
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
|
||||
|
||||
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
||||
|
||||
latent_image_ids = latent_image_ids.reshape(
|
||||
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
||||
)
|
||||
|
||||
return latent_image_ids.to(device=device, dtype=dtype)
|
||||
|
||||
@staticmethod
|
||||
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
||||
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
||||
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
||||
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
||||
|
||||
return latents
|
||||
|
||||
@staticmethod
|
||||
def _unpack_latents(latents, height, width, vae_scale_factor):
|
||||
batch_size, num_patches, channels = latents.shape
|
||||
|
||||
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||
# latent height and width to be divisible by 2.
|
||||
height = 2 * (int(height) // (vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (vae_scale_factor * 2))
|
||||
|
||||
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
||||
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
||||
|
||||
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
|
||||
|
||||
return latents
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_vae_tiling(self):
|
||||
r"""
|
||||
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||
processing larger images.
|
||||
"""
|
||||
self.vae.enable_tiling()
|
||||
|
||||
def disable_vae_tiling(self):
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||
# latent height and width to be divisible by 2.
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
||||
return latents.to(device=device, dtype=dtype), latent_image_ids
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
||||
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
|
||||
|
||||
return latents, latent_image_ids
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def current_timestep(self):
|
||||
return self._current_timestep
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 28,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 3.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
ip_adapter_image: Optional[PipelineImageInput] = None,
|
||||
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
||||
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
|
||||
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
not greater than `1`).
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 3.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
||||
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
||||
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
||||
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
||||
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
||||
negative_ip_adapter_image:
|
||||
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
||||
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
||||
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
||||
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
||||
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.flux.ChromaPipelineOutput`] instead of a plain tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.chroma.ChromaPipelineOutput`] or `tuple`: [`~pipelines.chroma.ChromaPipelineOutput`] if
|
||||
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
|
||||
generated images.
|
||||
"""
|
||||
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
lora_scale = (
|
||||
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
||||
)
|
||||
(
|
||||
prompt_embeds,
|
||||
text_ids,
|
||||
negative_prompt_embeds,
|
||||
negative_text_ids,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
latents, latent_image_ids = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
# 5. Prepare timesteps
|
||||
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
||||
image_seq_len = latents.shape[1]
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||
self.scheduler.config.get("base_shift", 0.5),
|
||||
self.scheduler.config.get("max_shift", 1.15),
|
||||
)
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
mu=mu,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
|
||||
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
|
||||
):
|
||||
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
||||
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
||||
|
||||
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
|
||||
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
|
||||
):
|
||||
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
||||
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
|
||||
|
||||
if self.joint_attention_kwargs is None:
|
||||
self._joint_attention_kwargs = {}
|
||||
|
||||
image_embeds = None
|
||||
negative_image_embeds = None
|
||||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
ip_adapter_image,
|
||||
ip_adapter_image_embeds,
|
||||
device,
|
||||
batch_size * num_images_per_prompt,
|
||||
)
|
||||
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
|
||||
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
|
||||
negative_ip_adapter_image,
|
||||
negative_ip_adapter_image_embeds,
|
||||
device,
|
||||
batch_size * num_images_per_prompt,
|
||||
)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
if image_embeds is not None:
|
||||
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
txt_ids=text_ids,
|
||||
img_ids=latent_image_ids,
|
||||
joint_attention_kwargs=self.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
if negative_image_embeds is not None:
|
||||
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
|
||||
neg_noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
txt_ids=negative_text_ids,
|
||||
img_ids=latent_image_ids,
|
||||
joint_attention_kwargs=self.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
noise_pred = neg_noise_pred + guidance_scale * (noise_pred - neg_noise_pred)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents_dtype = latents.dtype
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
self._current_timestep = None
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
else:
|
||||
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ChromaPipelineOutput(images=image)
|
||||
21
src/diffusers/pipelines/chroma/pipeline_output.py
Normal file
21
src/diffusers/pipelines/chroma/pipeline_output.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
|
||||
from ...utils import BaseOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class ChromaPipelineOutput(BaseOutput):
|
||||
"""
|
||||
Output class for Stable Diffusion pipelines.
|
||||
|
||||
Args:
|
||||
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
||||
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
||||
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
images: Union[List[PIL.Image.Image], np.ndarray]
|
||||
@@ -325,6 +325,21 @@ class CacheMixin(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class ChromaTransformer2DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch"])
|
||||
|
||||
|
||||
class CogVideoXTransformer3DModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
|
||||
@@ -272,6 +272,21 @@ class AuraFlowPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ChromaPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CLIPImageProjection(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
183
tests/models/transformers/test_models_transformer_chroma.py
Normal file
183
tests/models/transformers/test_models_transformer_chroma.py
Normal file
@@ -0,0 +1,183 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers import ChromaTransformer2DModel
|
||||
from diffusers.models.attention_processor import FluxIPAdapterJointAttnProcessor2_0
|
||||
from diffusers.models.embeddings import ImageProjection
|
||||
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
|
||||
|
||||
from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
def create_chroma_ip_adapter_state_dict(model):
|
||||
# "ip_adapter" (cross-attention weights)
|
||||
ip_cross_attn_state_dict = {}
|
||||
key_id = 0
|
||||
|
||||
for name in model.attn_processors.keys():
|
||||
if name.startswith("single_transformer_blocks"):
|
||||
continue
|
||||
|
||||
joint_attention_dim = model.config["joint_attention_dim"]
|
||||
hidden_size = model.config["num_attention_heads"] * model.config["attention_head_dim"]
|
||||
sd = FluxIPAdapterJointAttnProcessor2_0(
|
||||
hidden_size=hidden_size, cross_attention_dim=joint_attention_dim, scale=1.0
|
||||
).state_dict()
|
||||
ip_cross_attn_state_dict.update(
|
||||
{
|
||||
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
|
||||
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
|
||||
f"{key_id}.to_k_ip.bias": sd["to_k_ip.0.bias"],
|
||||
f"{key_id}.to_v_ip.bias": sd["to_v_ip.0.bias"],
|
||||
}
|
||||
)
|
||||
|
||||
key_id += 1
|
||||
|
||||
# "image_proj" (ImageProjection layer weights)
|
||||
|
||||
image_projection = ImageProjection(
|
||||
cross_attention_dim=model.config["joint_attention_dim"],
|
||||
image_embed_dim=model.config["pooled_projection_dim"],
|
||||
num_image_text_embeds=4,
|
||||
)
|
||||
|
||||
ip_image_projection_state_dict = {}
|
||||
sd = image_projection.state_dict()
|
||||
ip_image_projection_state_dict.update(
|
||||
{
|
||||
"proj.weight": sd["image_embeds.weight"],
|
||||
"proj.bias": sd["image_embeds.bias"],
|
||||
"norm.weight": sd["norm.weight"],
|
||||
"norm.bias": sd["norm.bias"],
|
||||
}
|
||||
)
|
||||
|
||||
del sd
|
||||
ip_state_dict = {}
|
||||
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
|
||||
return ip_state_dict
|
||||
|
||||
|
||||
class ChromaTransformerTests(ModelTesterMixin, unittest.TestCase):
|
||||
model_class = ChromaTransformer2DModel
|
||||
main_input_name = "hidden_states"
|
||||
# We override the items here because the transformer under consideration is small.
|
||||
model_split_percents = [0.8, 0.7, 0.7]
|
||||
|
||||
# Skip setting testing with default: AttnProcessor
|
||||
uses_custom_attn_processor = True
|
||||
|
||||
@property
|
||||
def dummy_input(self):
|
||||
batch_size = 1
|
||||
num_latent_channels = 4
|
||||
num_image_channels = 3
|
||||
height = width = 4
|
||||
sequence_length = 48
|
||||
embedding_dim = 32
|
||||
|
||||
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
|
||||
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
||||
text_ids = torch.randn((sequence_length, num_image_channels)).to(torch_device)
|
||||
image_ids = torch.randn((height * width, num_image_channels)).to(torch_device)
|
||||
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
||||
|
||||
return {
|
||||
"hidden_states": hidden_states,
|
||||
"encoder_hidden_states": encoder_hidden_states,
|
||||
"img_ids": image_ids,
|
||||
"txt_ids": text_ids,
|
||||
"timestep": timestep,
|
||||
}
|
||||
|
||||
@property
|
||||
def input_shape(self):
|
||||
return (16, 4)
|
||||
|
||||
@property
|
||||
def output_shape(self):
|
||||
return (16, 4)
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
init_dict = {
|
||||
"patch_size": 1,
|
||||
"in_channels": 4,
|
||||
"num_layers": 1,
|
||||
"num_single_layers": 1,
|
||||
"attention_head_dim": 16,
|
||||
"num_attention_heads": 2,
|
||||
"joint_attention_dim": 32,
|
||||
"axes_dims_rope": [4, 4, 8],
|
||||
"approximator_num_channels": 8,
|
||||
"approximator_hidden_dim": 16,
|
||||
"approximator_layers": 1,
|
||||
}
|
||||
|
||||
inputs_dict = self.dummy_input
|
||||
return init_dict, inputs_dict
|
||||
|
||||
def test_deprecated_inputs_img_txt_ids_3d(self):
|
||||
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
||||
model = self.model_class(**init_dict)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
output_1 = model(**inputs_dict).to_tuple()[0]
|
||||
|
||||
# update inputs_dict with txt_ids and img_ids as 3d tensors (deprecated)
|
||||
text_ids_3d = inputs_dict["txt_ids"].unsqueeze(0)
|
||||
image_ids_3d = inputs_dict["img_ids"].unsqueeze(0)
|
||||
|
||||
assert text_ids_3d.ndim == 3, "text_ids_3d should be a 3d tensor"
|
||||
assert image_ids_3d.ndim == 3, "img_ids_3d should be a 3d tensor"
|
||||
|
||||
inputs_dict["txt_ids"] = text_ids_3d
|
||||
inputs_dict["img_ids"] = image_ids_3d
|
||||
|
||||
with torch.no_grad():
|
||||
output_2 = model(**inputs_dict).to_tuple()[0]
|
||||
|
||||
self.assertEqual(output_1.shape, output_2.shape)
|
||||
self.assertTrue(
|
||||
torch.allclose(output_1, output_2, atol=1e-5),
|
||||
msg="output with deprecated inputs (img_ids and txt_ids as 3d torch tensors) are not equal as them as 2d inputs",
|
||||
)
|
||||
|
||||
def test_gradient_checkpointing_is_applied(self):
|
||||
expected_set = {"ChromaTransformer2DModel"}
|
||||
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
||||
|
||||
|
||||
class ChromaTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
|
||||
model_class = ChromaTransformer2DModel
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
return ChromaTransformerTests().prepare_init_args_and_inputs_for_common()
|
||||
|
||||
|
||||
class ChromaTransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
|
||||
model_class = ChromaTransformer2DModel
|
||||
|
||||
def prepare_init_args_and_inputs_for_common(self):
|
||||
return ChromaTransformerTests().prepare_init_args_and_inputs_for_common()
|
||||
@@ -57,7 +57,9 @@ def create_flux_ip_adapter_state_dict(model):
|
||||
|
||||
image_projection = ImageProjection(
|
||||
cross_attention_dim=model.config["joint_attention_dim"],
|
||||
image_embed_dim=model.config["pooled_projection_dim"],
|
||||
image_embed_dim=(
|
||||
model.config["pooled_projection_dim"] if "pooled_projection_dim" in model.config.keys() else 768
|
||||
),
|
||||
num_image_text_embeds=4,
|
||||
)
|
||||
|
||||
|
||||
1
tests/pipelines/chroma/__init__.py
Normal file
1
tests/pipelines/chroma/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
167
tests/pipelines/chroma/test_pipeline_chroma.py
Normal file
167
tests/pipelines/chroma/test_pipeline_chroma.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer, T5EncoderModel
|
||||
|
||||
from diffusers import AutoencoderKL, ChromaPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
|
||||
from diffusers.utils.testing_utils import torch_device
|
||||
|
||||
from ..test_pipelines_common import (
|
||||
FluxIPAdapterTesterMixin,
|
||||
PipelineTesterMixin,
|
||||
check_qkv_fusion_matches_attn_procs_length,
|
||||
check_qkv_fusion_processors_exist,
|
||||
)
|
||||
|
||||
|
||||
class ChromaPipelineFastTests(
|
||||
unittest.TestCase,
|
||||
PipelineTesterMixin,
|
||||
FluxIPAdapterTesterMixin,
|
||||
):
|
||||
pipeline_class = ChromaPipeline
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
|
||||
# there is no xformers processor for Flux
|
||||
test_xformers_attention = False
|
||||
test_layerwise_casting = True
|
||||
test_group_offloading = True
|
||||
|
||||
def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
|
||||
torch.manual_seed(0)
|
||||
transformer = ChromaTransformer2DModel(
|
||||
patch_size=1,
|
||||
in_channels=4,
|
||||
num_layers=num_layers,
|
||||
num_single_layers=num_single_layers,
|
||||
attention_head_dim=16,
|
||||
num_attention_heads=2,
|
||||
joint_attention_dim=32,
|
||||
axes_dims_rope=[4, 4, 8],
|
||||
approximator_hidden_dim=32,
|
||||
approximator_layers=1,
|
||||
approximator_num_channels=16,
|
||||
)
|
||||
|
||||
torch.manual_seed(0)
|
||||
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
torch.manual_seed(0)
|
||||
vae = AutoencoderKL(
|
||||
sample_size=32,
|
||||
in_channels=3,
|
||||
out_channels=3,
|
||||
block_out_channels=(4,),
|
||||
layers_per_block=1,
|
||||
latent_channels=1,
|
||||
norm_num_groups=1,
|
||||
use_quant_conv=False,
|
||||
use_post_quant_conv=False,
|
||||
shift_factor=0.0609,
|
||||
scaling_factor=1.5035,
|
||||
)
|
||||
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
|
||||
return {
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
"image_encoder": None,
|
||||
"feature_extractor": None,
|
||||
}
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
|
||||
inputs = {
|
||||
"prompt": "A painting of a squirrel eating a burger",
|
||||
"negative_prompt": "bad, ugly",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"height": 8,
|
||||
"width": 8,
|
||||
"max_sequence_length": 48,
|
||||
"output_type": "np",
|
||||
}
|
||||
return inputs
|
||||
|
||||
def test_chroma_different_prompts(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
output_same_prompt = pipe(**inputs).images[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt"] = "a different prompt"
|
||||
output_different_prompts = pipe(**inputs).images[0]
|
||||
|
||||
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
|
||||
|
||||
# Outputs should be different here
|
||||
# For some reasons, they don't show large differences
|
||||
assert max_diff > 1e-6
|
||||
|
||||
def test_fused_qkv_projections(self):
|
||||
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
pipe = pipe.to(device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
original_image_slice = image[0, -3:, -3:, -1]
|
||||
|
||||
# TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
|
||||
# to the pipeline level.
|
||||
pipe.transformer.fuse_qkv_projections()
|
||||
assert check_qkv_fusion_processors_exist(pipe.transformer), (
|
||||
"Something wrong with the fused attention processors. Expected all the attention processors to be fused."
|
||||
)
|
||||
assert check_qkv_fusion_matches_attn_procs_length(
|
||||
pipe.transformer, pipe.transformer.original_attn_processors
|
||||
), "Something wrong with the attention processors concerning the fused QKV projections."
|
||||
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
image_slice_fused = image[0, -3:, -3:, -1]
|
||||
|
||||
pipe.transformer.unfuse_qkv_projections()
|
||||
inputs = self.get_dummy_inputs(device)
|
||||
image = pipe(**inputs).images
|
||||
image_slice_disabled = image[0, -3:, -3:, -1]
|
||||
|
||||
assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), (
|
||||
"Fusion of QKV projections shouldn't affect the outputs."
|
||||
)
|
||||
assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), (
|
||||
"Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
|
||||
)
|
||||
assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
|
||||
"Original outputs should match when fused QKV projections are disabled."
|
||||
)
|
||||
|
||||
def test_chroma_image_output_shape(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
height_width_pairs = [(32, 32), (72, 57)]
|
||||
for height, width in height_width_pairs:
|
||||
expected_height = height - height % (pipe.vae_scale_factor * 2)
|
||||
expected_width = width - width % (pipe.vae_scale_factor * 2)
|
||||
|
||||
inputs.update({"height": height, "width": width})
|
||||
image = pipe(**inputs).images[0]
|
||||
output_height, output_width, _ = image.shape
|
||||
assert (output_height, output_width) == (expected_height, expected_width)
|
||||
@@ -521,7 +521,8 @@ class FluxIPAdapterTesterMixin:
|
||||
|
||||
def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
|
||||
inputs["negative_prompt"] = ""
|
||||
inputs["true_cfg_scale"] = 4.0
|
||||
if "true_cfg_scale" in inspect.signature(self.pipeline_class.__call__).parameters:
|
||||
inputs["true_cfg_scale"] = 4.0
|
||||
inputs["output_type"] = "np"
|
||||
inputs["return_dict"] = False
|
||||
return inputs
|
||||
@@ -542,7 +543,11 @@ class FluxIPAdapterTesterMixin:
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components).to(torch_device)
|
||||
pipe.set_progress_bar_config(disable=None)
|
||||
image_embed_dim = pipe.transformer.config.pooled_projection_dim
|
||||
image_embed_dim = (
|
||||
pipe.transformer.config.pooled_projection_dim
|
||||
if hasattr(pipe.transformer.config, "pooled_projection_dim")
|
||||
else 768
|
||||
)
|
||||
|
||||
# forward pass without ip adapter
|
||||
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
|
||||
|
||||
Reference in New Issue
Block a user