mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-07 04:54:47 +08:00
Compare commits
4 Commits
model-test
...
float16-te
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
abf4a9271e | ||
|
|
0e1fb0d916 | ||
|
|
f77b7a0f27 | ||
|
|
eae1371983 |
@@ -299,3 +299,6 @@ class ControlNetPipelineSDXLFastTests(
|
||||
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
|
||||
def test_save_load_optional_components(self):
|
||||
pass
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
@@ -133,6 +133,9 @@ class KandinskyPipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase)
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
|
||||
|
||||
@@ -236,6 +239,9 @@ class KandinskyPipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.Te
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
|
||||
|
||||
@@ -339,5 +345,8 @@ class KandinskyPipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.Te
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
|
||||
|
||||
@@ -290,6 +290,9 @@ class KandinskyInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
||||
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
|
||||
@nightly
|
||||
@require_torch_gpu
|
||||
|
||||
@@ -215,6 +215,9 @@ class KandinskyV22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||||
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
|
||||
@@ -137,6 +137,9 @@ class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCa
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
|
||||
|
||||
@@ -243,6 +246,9 @@ class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
|
||||
|
||||
@@ -349,6 +355,9 @@ class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
def test_dict_tuple_outputs_equivalent(self):
|
||||
super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)
|
||||
|
||||
|
||||
@@ -218,6 +218,9 @@ class KandinskyV22ControlnetPipelineFastTests(PipelineTesterMixin, unittest.Test
|
||||
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||||
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1e-1)
|
||||
|
||||
|
||||
@nightly
|
||||
@require_torch_gpu
|
||||
|
||||
@@ -228,6 +228,9 @@ class KandinskyV22ControlnetImg2ImgPipelineFastTests(PipelineTesterMixin, unitte
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=1.75e-3)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=2e-1)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
|
||||
@@ -232,6 +232,9 @@ class KandinskyV22Img2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
||||
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=2e-1)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
|
||||
@@ -240,6 +240,9 @@ class KandinskyV22InpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCas
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
def test_model_cpu_offload_forward_pass(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=5e-4)
|
||||
|
||||
|
||||
@@ -254,6 +254,9 @@ class StableDiffusionImg2ImgPipelineFastTests(
|
||||
def test_inference_batch_single_identical(self):
|
||||
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
|
||||
@slow
|
||||
@require_torch_gpu
|
||||
|
||||
@@ -235,6 +235,9 @@ class StableDiffusionLatentUpscalePipelineFastTests(
|
||||
|
||||
assert check_same_shape(outputs)
|
||||
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=5e-1)
|
||||
|
||||
|
||||
@require_torch_gpu
|
||||
@slow
|
||||
|
||||
@@ -544,7 +544,7 @@ class PipelineTesterMixin:
|
||||
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
|
||||
|
||||
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
|
||||
def test_float16_inference(self, expected_max_diff=1e-2):
|
||||
def test_float16_inference(self, expected_max_diff=5e-2):
|
||||
components = self.get_dummy_components()
|
||||
pipe = self.pipeline_class(**components)
|
||||
for component in pipe.components.values():
|
||||
@@ -563,8 +563,19 @@ class PipelineTesterMixin:
|
||||
pipe_fp16.to(torch_device, torch.float16)
|
||||
pipe_fp16.set_progress_bar_config(disable=None)
|
||||
|
||||
output = pipe(**self.get_dummy_inputs(torch_device))[0]
|
||||
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
# Reset generator in case it is used inside dummy inputs
|
||||
if "generator" in inputs:
|
||||
inputs["generator"] = self.get_generator(0)
|
||||
|
||||
output = pipe(**inputs)[0]
|
||||
|
||||
fp16_inputs = self.get_dummy_inputs(torch_device)
|
||||
# Reset generator in case it is used inside dummy inputs
|
||||
if "generator" in fp16_inputs:
|
||||
fp16_inputs["generator"] = self.get_generator(0)
|
||||
|
||||
output_fp16 = pipe_fp16(**fp16_inputs)[0]
|
||||
|
||||
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
|
||||
self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
|
||||
|
||||
@@ -418,6 +418,10 @@ class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
def test_save_load_optional_components(self):
|
||||
return super().test_save_load_optional_components()
|
||||
|
||||
@unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.")
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1.0)
|
||||
|
||||
|
||||
@nightly
|
||||
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
|
||||
|
||||
@@ -491,6 +491,10 @@ class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCa
|
||||
def test_save_load_optional_components(self):
|
||||
return super().test_save_load_optional_components()
|
||||
|
||||
@unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.")
|
||||
def test_float16_inference(self):
|
||||
super().test_float16_inference(expected_max_diff=1.0)
|
||||
|
||||
|
||||
@nightly
|
||||
@require_torch_gpu
|
||||
|
||||
Reference in New Issue
Block a user