mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-27 06:50:52 +08:00
Compare commits
7 Commits
memory-opt
...
cogview3pl
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
759cab86fc | ||
|
|
9fbd0283be | ||
|
|
eeba2997a1 | ||
|
|
a8f8d7ba96 | ||
|
|
cefca0f677 | ||
|
|
21439e248f | ||
|
|
b3cadb8c34 |
183
scripts/convert_cogview3_to_diffusers.py
Normal file
183
scripts/convert_cogview3_to_diffusers.py
Normal file
@@ -0,0 +1,183 @@
|
||||
"""
|
||||
Convert a CogView3 checkpoint to the Diffusers format.
|
||||
|
||||
This script converts a CogView3 checkpoint to the Diffusers format, which can then be used
|
||||
with the Diffusers library.
|
||||
|
||||
Example usage:
|
||||
python scripts/convert_cogview3_to_diffusers.py \
|
||||
--original_state_dict_repo_id "THUDM/cogview3" \
|
||||
--filename "cogview3.pt" \
|
||||
--transformer \
|
||||
--output_path "./cogview3_diffusers" \
|
||||
--dtype "bf16"
|
||||
|
||||
Alternatively, if you have a local checkpoint:
|
||||
python scripts/convert_cogview3_to_diffusers.py \
|
||||
--checkpoint_path '/raid/.cache/huggingface/models--ZP2HF--CogView3-SAT/snapshots/ca86ce9ba94f9a7f2dd109e7a59e4c8ad04121be/cogview3plus_3b/1/mp_rank_00_model_states.pt' \
|
||||
--transformer \
|
||||
--output_path "/raid/yiyi/cogview3_diffusers" \
|
||||
--dtype "bf16"
|
||||
|
||||
Arguments:
|
||||
--original_state_dict_repo_id: The Hugging Face repo ID containing the original checkpoint.
|
||||
--filename: The filename of the checkpoint in the repo (default: "flux.safetensors").
|
||||
--checkpoint_path: Path to a local checkpoint file (alternative to repo_id and filename).
|
||||
--transformer: Flag to convert the transformer model.
|
||||
--output_path: The path to save the converted model.
|
||||
--dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32").
|
||||
|
||||
Note: You must provide either --original_state_dict_repo_id or --checkpoint_path.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from accelerate import init_empty_weights
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from diffusers import CogView3PlusTransformer2DModel
|
||||
from diffusers.utils.import_utils import is_accelerate_available
|
||||
|
||||
|
||||
CTX = init_empty_weights if is_accelerate_available else nullcontext
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--original_state_dict_repo_id", default=None, type=str)
|
||||
parser.add_argument("--filename", default="flux.safetensors", type=str)
|
||||
parser.add_argument("--checkpoint_path", default=None, type=str)
|
||||
parser.add_argument("--transformer", action="store_true")
|
||||
parser.add_argument("--output_path", type=str)
|
||||
parser.add_argument("--dtype", type=str, default="bf16")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def load_original_checkpoint(args):
|
||||
if args.original_state_dict_repo_id is not None:
|
||||
ckpt_path = hf_hub_download(repo_id=args.original_state_dict_repo_id, filename=args.filename)
|
||||
elif args.checkpoint_path is not None:
|
||||
ckpt_path = args.checkpoint_path
|
||||
else:
|
||||
raise ValueError("Please provide either `original_state_dict_repo_id` or a local `checkpoint_path`")
|
||||
|
||||
original_state_dict = torch.load(ckpt_path, map_location="cpu")
|
||||
return original_state_dict
|
||||
|
||||
|
||||
# this is specific to `AdaLayerNormContinuous`:
|
||||
# diffusers imnplementation split the linear projection into the scale, shift while CogView3 split it tino shift, scale
|
||||
def swap_scale_shift(weight, dim):
|
||||
shift, scale = weight.chunk(2, dim=0)
|
||||
new_weight = torch.cat([scale, shift], dim=0)
|
||||
return new_weight
|
||||
|
||||
|
||||
def convert_cogview3_transformer_checkpoint_to_diffusers(original_state_dict):
|
||||
new_state_dict = {}
|
||||
|
||||
# Convert pos_embed
|
||||
new_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("mixins.patch_embed.proj.weight")
|
||||
new_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("mixins.patch_embed.proj.bias")
|
||||
new_state_dict["pos_embed.text_proj.weight"] = original_state_dict.pop("mixins.patch_embed.text_proj.weight")
|
||||
new_state_dict["pos_embed.text_proj.bias"] = original_state_dict.pop("mixins.patch_embed.text_proj.bias")
|
||||
|
||||
# Convert time_text_embed
|
||||
new_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
|
||||
"time_embed.0.weight"
|
||||
)
|
||||
new_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("time_embed.0.bias")
|
||||
new_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
|
||||
"time_embed.2.weight"
|
||||
)
|
||||
new_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("time_embed.2.bias")
|
||||
new_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop("label_emb.0.0.weight")
|
||||
new_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop("label_emb.0.0.bias")
|
||||
new_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop("label_emb.0.2.weight")
|
||||
new_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop("label_emb.0.2.bias")
|
||||
|
||||
# Convert transformer blocks
|
||||
for i in range(30):
|
||||
block_prefix = f"transformer_blocks.{i}."
|
||||
old_prefix = f"transformer.layers.{i}."
|
||||
adaln_prefix = f"mixins.adaln.adaln_modules.{i}."
|
||||
|
||||
new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(adaln_prefix + "1.weight")
|
||||
new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(adaln_prefix + "1.bias")
|
||||
|
||||
qkv_weight = original_state_dict.pop(old_prefix + "attention.query_key_value.weight")
|
||||
qkv_bias = original_state_dict.pop(old_prefix + "attention.query_key_value.bias")
|
||||
q, k, v = qkv_weight.chunk(3, dim=0)
|
||||
q_bias, k_bias, v_bias = qkv_bias.chunk(3, dim=0)
|
||||
|
||||
new_state_dict[block_prefix + "attn.to_q.weight"] = q
|
||||
new_state_dict[block_prefix + "attn.to_q.bias"] = q_bias
|
||||
new_state_dict[block_prefix + "attn.to_k.weight"] = k
|
||||
new_state_dict[block_prefix + "attn.to_k.bias"] = k_bias
|
||||
new_state_dict[block_prefix + "attn.to_v.weight"] = v
|
||||
new_state_dict[block_prefix + "attn.to_v.bias"] = v_bias
|
||||
|
||||
new_state_dict[block_prefix + "attn.to_out.0.weight"] = original_state_dict.pop(
|
||||
old_prefix + "attention.dense.weight"
|
||||
)
|
||||
new_state_dict[block_prefix + "attn.to_out.0.bias"] = original_state_dict.pop(
|
||||
old_prefix + "attention.dense.bias"
|
||||
)
|
||||
|
||||
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = original_state_dict.pop(
|
||||
old_prefix + "mlp.dense_h_to_4h.weight"
|
||||
)
|
||||
new_state_dict[block_prefix + "ff.net.0.proj.bias"] = original_state_dict.pop(
|
||||
old_prefix + "mlp.dense_h_to_4h.bias"
|
||||
)
|
||||
new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(
|
||||
old_prefix + "mlp.dense_4h_to_h.weight"
|
||||
)
|
||||
new_state_dict[block_prefix + "ff.net.2.bias"] = original_state_dict.pop(old_prefix + "mlp.dense_4h_to_h.bias")
|
||||
|
||||
# Convert final norm and projection
|
||||
new_state_dict["norm_out.linear.weight"] = swap_scale_shift(
|
||||
original_state_dict.pop("mixins.final_layer.adaln.1.weight"), dim=0
|
||||
)
|
||||
new_state_dict["norm_out.linear.bias"] = swap_scale_shift(
|
||||
original_state_dict.pop("mixins.final_layer.adaln.1.bias"), dim=0
|
||||
)
|
||||
new_state_dict["proj_out.weight"] = original_state_dict.pop("mixins.final_layer.linear.weight")
|
||||
new_state_dict["proj_out.bias"] = original_state_dict.pop("mixins.final_layer.linear.bias")
|
||||
|
||||
return new_state_dict
|
||||
|
||||
|
||||
def main(args):
|
||||
original_ckpt = load_original_checkpoint(args)
|
||||
original_ckpt = original_ckpt["module"]
|
||||
original_ckpt = {k.replace("model.diffusion_model.", ""): v for k, v in original_ckpt.items()}
|
||||
|
||||
original_dtype = next(iter(original_ckpt.values())).dtype
|
||||
dtype = None
|
||||
if args.dtype is None:
|
||||
dtype = original_dtype
|
||||
elif args.dtype == "fp16":
|
||||
dtype = torch.float16
|
||||
elif args.dtype == "bf16":
|
||||
dtype = torch.bfloat16
|
||||
elif args.dtype == "fp32":
|
||||
dtype = torch.float32
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {args.dtype}")
|
||||
|
||||
if args.transformer:
|
||||
converted_transformer_state_dict = convert_cogview3_transformer_checkpoint_to_diffusers(original_ckpt)
|
||||
transformer = CogView3PlusTransformer2DModel()
|
||||
transformer.load_state_dict(converted_transformer_state_dict, strict=True)
|
||||
|
||||
print(f"Saving CogView3 Transformer in Diffusers format in {args.output_path}/transformer")
|
||||
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")
|
||||
|
||||
if len(original_ckpt) > 0:
|
||||
print(f"Warning: {len(original_ckpt)} keys were not converted and will be saved as is: {original_ckpt.keys()}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(args)
|
||||
@@ -84,6 +84,7 @@ else:
|
||||
"AutoencoderOobleck",
|
||||
"AutoencoderTiny",
|
||||
"CogVideoXTransformer3DModel",
|
||||
"CogView3PlusTransformer2DModel",
|
||||
"ConsistencyDecoderVAE",
|
||||
"ControlNetModel",
|
||||
"ControlNetXSAdapter",
|
||||
@@ -258,6 +259,7 @@ else:
|
||||
"CogVideoXImageToVideoPipeline",
|
||||
"CogVideoXPipeline",
|
||||
"CogVideoXVideoToVideoPipeline",
|
||||
"CogView3PlusPipeline",
|
||||
"CycleDiffusionPipeline",
|
||||
"FluxControlNetImg2ImgPipeline",
|
||||
"FluxControlNetInpaintPipeline",
|
||||
@@ -558,6 +560,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AutoencoderOobleck,
|
||||
AutoencoderTiny,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
ConsistencyDecoderVAE,
|
||||
ControlNetModel,
|
||||
ControlNetXSAdapter,
|
||||
@@ -710,6 +713,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
CogVideoXImageToVideoPipeline,
|
||||
CogVideoXPipeline,
|
||||
CogVideoXVideoToVideoPipeline,
|
||||
CogView3PlusPipeline,
|
||||
CycleDiffusionPipeline,
|
||||
FluxControlNetImg2ImgPipeline,
|
||||
FluxControlNetInpaintPipeline,
|
||||
|
||||
@@ -54,6 +54,7 @@ if is_torch_available():
|
||||
_import_structure["transformers.stable_audio_transformer"] = ["StableAudioDiTModel"]
|
||||
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
||||
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"]
|
||||
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
|
||||
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
|
||||
@@ -98,6 +99,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .transformers import (
|
||||
AuraFlowTransformer2DModel,
|
||||
CogVideoXTransformer3DModel,
|
||||
CogView3PlusTransformer2DModel,
|
||||
DiTTransformer2DModel,
|
||||
DualTransformer2DModel,
|
||||
FluxTransformer2DModel,
|
||||
|
||||
@@ -122,6 +122,7 @@ class Attention(nn.Module):
|
||||
out_dim: int = None,
|
||||
context_pre_only=None,
|
||||
pre_only=False,
|
||||
layrnorm_elementwise_affine: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -179,8 +180,8 @@ class Attention(nn.Module):
|
||||
self.norm_q = None
|
||||
self.norm_k = None
|
||||
elif qk_norm == "layer_norm":
|
||||
self.norm_q = nn.LayerNorm(dim_head, eps=eps)
|
||||
self.norm_k = nn.LayerNorm(dim_head, eps=eps)
|
||||
self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=layrnorm_elementwise_affine)
|
||||
self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=layrnorm_elementwise_affine)
|
||||
elif qk_norm == "fp32_layer_norm":
|
||||
self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
|
||||
|
||||
@@ -714,6 +714,58 @@ class FluxPosEmbed(nn.Module):
|
||||
return freqs_cos, freqs_sin
|
||||
|
||||
|
||||
class CogView3PlusPatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 16,
|
||||
hidden_size: int = 2560,
|
||||
patch_size: int = 2,
|
||||
text_hidden_size: int = 4096,
|
||||
pos_embed_max_size: int = 128,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_size = hidden_size
|
||||
self.patch_size = patch_size
|
||||
self.text_hidden_size = text_hidden_size
|
||||
self.pos_embed_max_size = pos_embed_max_size
|
||||
# Linear projection for image patches
|
||||
self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
|
||||
|
||||
# Linear projection for text embeddings
|
||||
self.text_proj = nn.Linear(text_hidden_size, hidden_size)
|
||||
|
||||
pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, base_size=pos_embed_max_size)
|
||||
pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
|
||||
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float(), persistent=False)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None) -> torch.Tensor:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
if height % self.patch_size != 0 or width % self.patch_size != 0:
|
||||
raise ValueError("Height and width must be divisible by patch size")
|
||||
height = height // self.patch_size
|
||||
width = width // self.patch_size
|
||||
hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
|
||||
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
|
||||
hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)
|
||||
|
||||
# Project the patches
|
||||
hidden_states = self.proj(hidden_states)
|
||||
encoder_hidden_states = self.text_proj(encoder_hidden_states)
|
||||
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
||||
|
||||
# Calculate text_length
|
||||
text_length = encoder_hidden_states.shape[1]
|
||||
|
||||
image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
|
||||
text_pos_embed = torch.zeros(
|
||||
(text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
|
||||
)
|
||||
pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]
|
||||
|
||||
return (hidden_states + pos_embed).to(hidden_states.dtype)
|
||||
|
||||
|
||||
class TimestepEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -1018,6 +1070,27 @@ class IPAdapterFaceIDImageProjection(nn.Module):
|
||||
return self.norm(x)
|
||||
|
||||
|
||||
class CogView3CombineTimestepLabelEmbedding(nn.Module):
|
||||
def __init__(self, time_embed_dim, label_embed_dim, in_channels=2560):
|
||||
super().__init__()
|
||||
|
||||
self.time_proj = Timesteps(num_channels=in_channels, flip_sin_to_cos=True, downscale_freq_shift=1)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=in_channels, time_embed_dim=time_embed_dim)
|
||||
self.label_embedder = nn.Sequential(
|
||||
nn.Linear(label_embed_dim, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
nn.Linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
def forward(self, timestep, class_labels, hidden_dtype=None):
|
||||
t_proj = self.time_proj(timestep)
|
||||
t_emb = self.timestep_embedder(t_proj.to(dtype=hidden_dtype))
|
||||
label_emb = self.label_embedder(class_labels)
|
||||
emb = t_emb + label_emb
|
||||
|
||||
return emb
|
||||
|
||||
|
||||
class CombinedTimestepLabelEmbeddings(nn.Module):
|
||||
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
|
||||
super().__init__()
|
||||
@@ -1038,11 +1111,11 @@ class CombinedTimestepLabelEmbeddings(nn.Module):
|
||||
|
||||
|
||||
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim):
|
||||
def __init__(self, embedding_dim, pooled_projection_dim, timesteps_dim=256):
|
||||
super().__init__()
|
||||
|
||||
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
||||
self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
|
||||
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
||||
|
||||
def forward(self, timestep, pooled_projection):
|
||||
|
||||
@@ -355,6 +355,51 @@ class LuminaLayerNormContinuous(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class CogView3PlusAdaLayerNormZeroTextImage(nn.Module):
|
||||
r"""
|
||||
Norm layer adaptive layer norm zero (adaLN-Zero).
|
||||
|
||||
Parameters:
|
||||
embedding_dim (`int`): The size of each embedding vector.
|
||||
num_embeddings (`int`): The size of the embeddings dictionary.
|
||||
"""
|
||||
|
||||
def __init__(self, embedding_dim: int, dim: int):
|
||||
super().__init__()
|
||||
|
||||
self.silu = nn.SiLU()
|
||||
self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True)
|
||||
self.norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
||||
self.norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
context: torch.Tensor,
|
||||
emb: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
emb = self.linear(self.silu(emb))
|
||||
(
|
||||
shift_msa,
|
||||
scale_msa,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
c_shift_msa,
|
||||
c_scale_msa,
|
||||
c_gate_msa,
|
||||
c_shift_mlp,
|
||||
c_scale_mlp,
|
||||
c_gate_mlp,
|
||||
) = emb.chunk(12, dim=1)
|
||||
normed_x = self.norm_x(x)
|
||||
normed_context = self.norm_c(context)
|
||||
x = normed_x * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
||||
context = normed_context * (1 + c_scale_msa[:, None]) + c_shift_msa[:, None]
|
||||
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp, context, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp
|
||||
|
||||
|
||||
class CogVideoXLayerNormZero(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
@@ -14,6 +14,7 @@ if is_torch_available():
|
||||
from .stable_audio_transformer import StableAudioDiTModel
|
||||
from .t5_film_transformer import T5FilmDecoder
|
||||
from .transformer_2d import Transformer2DModel
|
||||
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
|
||||
from .transformer_flux import FluxTransformer2DModel
|
||||
from .transformer_sd3 import SD3Transformer2DModel
|
||||
from .transformer_temporal import TransformerTemporalModel
|
||||
|
||||
364
src/diffusers/models/transformers/transformer_cogview3plus.py
Normal file
364
src/diffusers/models/transformers/transformer_cogview3plus.py
Normal file
@@ -0,0 +1,364 @@
|
||||
# Copyright 2024 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from ...configuration_utils import ConfigMixin, register_to_config
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...models.attention import FeedForward
|
||||
from ...models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
||||
from ...models.modeling_utils import ModelMixin
|
||||
from ...models.normalization import AdaLayerNormContinuous
|
||||
from ...utils import is_torch_version, logging
|
||||
from ..embeddings import CogView3PlusPatchEmbed, CombinedTimestepTextProjEmbeddings
|
||||
from ..modeling_outputs import Transformer2DModelOutput
|
||||
from ..normalization import CogView3PlusAdaLayerNormZeroTextImage
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class CogView3PlusTransformerBlock(nn.Module):
|
||||
"""
|
||||
Updated CogView3 Transformer Block to align with AdalnAttentionMixin style, simplified with qk_ln always True.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int = 2560,
|
||||
num_attention_heads: int = 64,
|
||||
attention_head_dim: int = 40,
|
||||
time_embed_dim: int = 512,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim)
|
||||
|
||||
self.attn = Attention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
out_dim=dim,
|
||||
bias=True,
|
||||
qk_norm="layer_norm",
|
||||
layrnorm_elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
)
|
||||
|
||||
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
||||
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
||||
|
||||
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
emb: torch.Tensor,
|
||||
text_length: int,
|
||||
) -> torch.Tensor:
|
||||
encoder_hidden_states, hidden_states = hidden_states[:, :text_length], hidden_states[:, text_length:]
|
||||
|
||||
# norm1
|
||||
(
|
||||
norm_hidden_states,
|
||||
gate_msa,
|
||||
shift_mlp,
|
||||
scale_mlp,
|
||||
gate_mlp,
|
||||
norm_encoder_hidden_states,
|
||||
c_gate_msa,
|
||||
c_shift_mlp,
|
||||
c_scale_mlp,
|
||||
c_gate_mlp,
|
||||
) = self.norm1(hidden_states, encoder_hidden_states, emb)
|
||||
|
||||
# Attention
|
||||
attn_input = torch.cat((norm_encoder_hidden_states, norm_hidden_states), dim=1)
|
||||
attn_output = self.attn(hidden_states=attn_input)
|
||||
context_attn_output, attn_output = attn_output[:, :text_length], attn_output[:, text_length:]
|
||||
|
||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
norm_hidden_states = self.norm2(hidden_states)
|
||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
||||
|
||||
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
||||
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
||||
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
||||
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
||||
|
||||
norm_hidden_states = torch.cat((norm_encoder_hidden_states, norm_hidden_states), dim=1)
|
||||
|
||||
ff_output = self.ff(norm_hidden_states)
|
||||
|
||||
context_ff_output, ff_output = ff_output[:, :text_length], ff_output[:, text_length:]
|
||||
|
||||
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
||||
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
|
||||
hidden_states = torch.cat((encoder_hidden_states, hidden_states), dim=1)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
||||
"""
|
||||
The Transformer model introduced in CogView3.
|
||||
|
||||
Reference: https://arxiv.org/abs/2403.05121
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
sample_size: int = 128,
|
||||
patch_size: int = 2,
|
||||
in_channels: int = 16,
|
||||
num_layers: int = 30,
|
||||
attention_head_dim: int = 40,
|
||||
num_attention_heads: int = 64,
|
||||
out_channels: int = 16,
|
||||
encoder_hidden_states_dim: int = 4096,
|
||||
pooled_projection_dim: int = 1536,
|
||||
pos_embed_max_size: int = 128,
|
||||
time_embed_dim: int = 512,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
||||
|
||||
self.pos_embed = CogView3PlusPatchEmbed(
|
||||
in_channels=self.config.in_channels,
|
||||
hidden_size=self.inner_dim,
|
||||
patch_size=self.config.patch_size,
|
||||
text_hidden_size=self.config.encoder_hidden_states_dim,
|
||||
pos_embed_max_size=self.config.pos_embed_max_size,
|
||||
)
|
||||
|
||||
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
||||
embedding_dim=self.config.time_embed_dim,
|
||||
pooled_projection_dim=self.config.pooled_projection_dim,
|
||||
timesteps_dim=self.inner_dim,
|
||||
)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
CogView3PlusTransformerBlock(
|
||||
dim=self.inner_dim,
|
||||
num_attention_heads=self.config.num_attention_heads,
|
||||
attention_head_dim=self.config.attention_head_dim,
|
||||
time_embed_dim=self.config.time_embed_dim,
|
||||
)
|
||||
for _ in range(self.config.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.norm_out = AdaLayerNormContinuous(
|
||||
embedding_dim=self.inner_dim,
|
||||
conditioning_embedding_dim=self.config.time_embed_dim,
|
||||
elementwise_affine=False,
|
||||
eps=1e-6,
|
||||
)
|
||||
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
@property
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||||
r"""
|
||||
Returns:
|
||||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||||
indexed by its weight name.
|
||||
"""
|
||||
# set recursively
|
||||
processors = {}
|
||||
|
||||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||||
if hasattr(module, "get_processor"):
|
||||
processors[f"{name}.processor"] = module.get_processor()
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||||
|
||||
return processors
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_add_processors(name, module, processors)
|
||||
|
||||
return processors
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||||
r"""
|
||||
Sets the attention processor to use to compute attention.
|
||||
|
||||
Parameters:
|
||||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||||
for **all** `Attention` layers.
|
||||
|
||||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||||
processor. This is strongly recommended when setting trainable attention processors.
|
||||
|
||||
"""
|
||||
count = len(self.attn_processors.keys())
|
||||
|
||||
if isinstance(processor, dict) and len(processor) != count:
|
||||
raise ValueError(
|
||||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||||
)
|
||||
|
||||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||||
if hasattr(module, "set_processor"):
|
||||
if not isinstance(processor, dict):
|
||||
module.set_processor(processor)
|
||||
else:
|
||||
module.set_processor(processor.pop(f"{name}.processor"))
|
||||
|
||||
for sub_name, child in module.named_children():
|
||||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||||
|
||||
for name, module in self.named_children():
|
||||
fn_recursive_attn_processor(name, module, processor)
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
|
||||
def fuse_qkv_projections(self):
|
||||
"""
|
||||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
self.original_attn_processors = None
|
||||
|
||||
for _, attn_processor in self.attn_processors.items():
|
||||
if "Added" in str(attn_processor.__class__.__name__):
|
||||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||||
|
||||
self.original_attn_processors = self.attn_processors
|
||||
|
||||
for module in self.modules():
|
||||
if isinstance(module, Attention):
|
||||
module.fuse_projections(fuse=True)
|
||||
|
||||
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
||||
|
||||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
||||
def unfuse_qkv_projections(self):
|
||||
"""Disables the fused QKV projection if enabled.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is 🧪 experimental.
|
||||
|
||||
</Tip>
|
||||
|
||||
"""
|
||||
if self.original_attn_processors is not None:
|
||||
self.set_attn_processor(self.original_attn_processors)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if hasattr(module, "gradient_checkpointing"):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
encoder_hidden_states: torch.FloatTensor = None,
|
||||
pooled_projections: torch.FloatTensor = None,
|
||||
timestep: torch.LongTensor = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
||||
"""
|
||||
The [`CogView3PlusTransformer2DModel`] forward method.
|
||||
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): Input `hidden_states`.
|
||||
timestep (`torch.LongTensor`): Indicates denoising step.
|
||||
y (`torch.LongTensor`, *optional*): 标签输入,用于获取标签嵌入。
|
||||
block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors for residuals.
|
||||
joint_attention_kwargs (`dict`, *optional*): Additional kwargs for the attention processor.
|
||||
return_dict (`bool`, *optional*, defaults to `True`): Whether to return a `Transformer2DModelOutput`.
|
||||
|
||||
Returns:
|
||||
Output tensor or `Transformer2DModelOutput`.
|
||||
"""
|
||||
|
||||
height, width = hidden_states.shape[-2:]
|
||||
text_length = encoder_hidden_states.shape[1]
|
||||
|
||||
hidden_states = self.pos_embed(
|
||||
hidden_states, encoder_hidden_states
|
||||
) # takes care of adding positional embeddings too.
|
||||
emb = self.time_text_embed(timestep, pooled_projections)
|
||||
|
||||
for index_block, block in enumerate(self.transformer_blocks):
|
||||
if self.training and self.gradient_checkpointing:
|
||||
|
||||
def create_custom_forward(module, return_dict=None):
|
||||
def custom_forward(*inputs):
|
||||
if return_dict is not None:
|
||||
return module(*inputs, return_dict=return_dict)
|
||||
else:
|
||||
return module(*inputs)
|
||||
|
||||
return custom_forward
|
||||
|
||||
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
||||
hidden_states = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
emb,
|
||||
text_length,
|
||||
**ckpt_kwargs,
|
||||
)
|
||||
else:
|
||||
hidden_states = block(
|
||||
hidden_states=hidden_states,
|
||||
emb=emb,
|
||||
text_length=text_length,
|
||||
)
|
||||
|
||||
hidden_states = hidden_states[:, text_length:]
|
||||
hidden_states = self.norm_out(hidden_states, emb)
|
||||
hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels)
|
||||
# unpatchify
|
||||
patch_size = self.config.patch_size
|
||||
height = height // patch_size
|
||||
width = width // patch_size
|
||||
|
||||
hidden_states = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size)
|
||||
)
|
||||
hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states)
|
||||
output = hidden_states.reshape(
|
||||
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
@@ -145,6 +145,9 @@ else:
|
||||
"CogVideoXImageToVideoPipeline",
|
||||
"CogVideoXVideoToVideoPipeline",
|
||||
]
|
||||
_import_structure["cogview3"] = [
|
||||
"CogView3PlusPipeline",
|
||||
]
|
||||
_import_structure["controlnet"].extend(
|
||||
[
|
||||
"BlipDiffusionControlNetPipeline",
|
||||
@@ -469,6 +472,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .blip_diffusion import BlipDiffusionPipeline
|
||||
from .cogvideo import CogVideoXImageToVideoPipeline, CogVideoXPipeline, CogVideoXVideoToVideoPipeline
|
||||
from .cogview3 import CogView3PlusPipeline
|
||||
from .controlnet import (
|
||||
BlipDiffusionControlNetPipeline,
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
|
||||
@@ -20,6 +20,7 @@ from huggingface_hub.utils import validate_hf_hub_args
|
||||
from ..configuration_utils import ConfigMixin
|
||||
from ..utils import is_sentencepiece_available
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .cogview3 import CogView3PlusPipeline
|
||||
from .controlnet import (
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
StableDiffusionControlNetInpaintPipeline,
|
||||
@@ -118,6 +119,7 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("flux", FluxPipeline),
|
||||
("flux-controlnet", FluxControlNetPipeline),
|
||||
("lumina", LuminaText2ImgPipeline),
|
||||
("cogview3", CogView3PlusPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
47
src/diffusers/pipelines/cogview3/__init__.py
Normal file
47
src/diffusers/pipelines/cogview3/__init__.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import (
|
||||
DIFFUSERS_SLOW_IMPORT,
|
||||
OptionalDependencyNotAvailable,
|
||||
_LazyModule,
|
||||
get_objects_from_module,
|
||||
is_torch_available,
|
||||
is_transformers_available,
|
||||
)
|
||||
|
||||
|
||||
_dummy_objects = {}
|
||||
_additional_imports = {}
|
||||
_import_structure = {"pipeline_output": ["CogView3PlusPipelineOutput"]}
|
||||
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_cogview3plus"] = ["CogView3PlusPipeline"]
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
if not (is_transformers_available() and is_torch_available()):
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .pipeline_cogview3plus import CogView3PlusPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(
|
||||
__name__,
|
||||
globals()["__file__"],
|
||||
_import_structure,
|
||||
module_spec=__spec__,
|
||||
)
|
||||
|
||||
for name, value in _dummy_objects.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
for name, value in _additional_imports.items():
|
||||
setattr(sys.modules[__name__], name, value)
|
||||
707
src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py
Normal file
707
src/diffusers/pipelines/cogview3/pipeline_cogview3plus.py
Normal file
@@ -0,0 +1,707 @@
|
||||
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import T5EncoderModel, T5TokenizerFast
|
||||
|
||||
from ...image_processor import VaeImageProcessor
|
||||
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers.transformer_cogview3plus import CogView3PlusTransformer2DModel
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
replace_example_docstring,
|
||||
scale_lora_layers,
|
||||
unscale_lora_layers,
|
||||
)
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..pipeline_utils import DiffusionPipeline
|
||||
from .pipeline_output import CogView3PipelineOutput
|
||||
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import CogView3PlusPipeline
|
||||
|
||||
>>> pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
>>> prompt = "A cat holding a sign that says hello world"
|
||||
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
||||
>>> # Refer to the pipeline documentation for more details.
|
||||
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
|
||||
>>> image.save("cat.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.16,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class CogView3PlusPipeline(DiffusionPipeline, PeftAdapterMixin, FromOriginalModelMixin):
|
||||
r"""
|
||||
The CogView3 pipeline for text-to-image generation.
|
||||
|
||||
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
||||
|
||||
Args:
|
||||
transformer ([`CogView3PlusTransformerBlock`]):
|
||||
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
||||
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
||||
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
||||
vae ([`AutoencoderKL`]):
|
||||
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||||
text_encoder ([`T5EncoderModel`]):
|
||||
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
||||
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
||||
tokenizer (`T5TokenizerFast`):
|
||||
Second Tokenizer of class
|
||||
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
||||
"""
|
||||
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_optional_components = []
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: T5EncoderModel,
|
||||
tokenizer: T5TokenizerFast,
|
||||
transformer: CogView3PlusTransformer2DModel,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
transformer=transformer,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
||||
)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
self.tokenizer_max_length = (
|
||||
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
||||
)
|
||||
self.default_sample_size = 64
|
||||
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
max_sequence_length: int = 256,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_length=False,
|
||||
return_overflowing_tokens=False,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because `max_sequence_length` is set to "
|
||||
f" {max_sequence_length} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)[0].to(
|
||||
dtype=dtype, device=device
|
||||
)
|
||||
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
r"""
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
prompt to be encoded
|
||||
device: (`torch.device`):
|
||||
torch device
|
||||
num_images_per_prompt (`int`):
|
||||
number of images that should be generated per prompt
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
lora_scale (`float`, *optional*):
|
||||
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||||
"""
|
||||
device = device or self._execution_device
|
||||
|
||||
# set lora scale so that monkey patched LoRA
|
||||
# function of text encoder can correctly access it
|
||||
if lora_scale is not None and isinstance(self, PeftAdapterMixin):
|
||||
self._lora_scale = lora_scale
|
||||
|
||||
# dynamically adjust the LoRA scale
|
||||
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder, lora_scale)
|
||||
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
||||
scale_lora_layers(self.text_encoder_2, lora_scale)
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt=prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
if self.text_encoder is not None:
|
||||
if isinstance(self, PeftAdapterMixin) and USE_PEFT_BACKEND:
|
||||
# Retrieve the original scale by scaling back the LoRA layers
|
||||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||||
|
||||
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
||||
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
||||
|
||||
return prompt_embeds, pooled_prompt_embeds, text_ids
|
||||
|
||||
def check_inputs(
|
||||
self,
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds=None,
|
||||
pooled_prompt_embeds=None,
|
||||
callback_on_step_end_tensor_inputs=None,
|
||||
max_sequence_length=None,
|
||||
):
|
||||
if height % 8 != 0 or width % 8 != 0:
|
||||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||||
|
||||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||||
):
|
||||
raise ValueError(
|
||||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||||
)
|
||||
|
||||
if prompt is not None and prompt_embeds is not None:
|
||||
raise ValueError(
|
||||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||||
" only forward one of the two."
|
||||
)
|
||||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||||
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
||||
)
|
||||
|
||||
if max_sequence_length is not None and max_sequence_length > 512:
|
||||
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
||||
|
||||
@staticmethod
|
||||
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
||||
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
||||
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
||||
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
||||
|
||||
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
||||
|
||||
latent_image_ids = latent_image_ids.reshape(
|
||||
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
||||
)
|
||||
|
||||
return latent_image_ids.to(device=device, dtype=dtype)
|
||||
|
||||
@staticmethod
|
||||
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
||||
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
||||
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
||||
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
||||
|
||||
return latents
|
||||
|
||||
@staticmethod
|
||||
def _unpack_latents(latents, height, width, vae_scale_factor):
|
||||
batch_size, num_patches, channels = latents.shape
|
||||
|
||||
height = height // vae_scale_factor
|
||||
width = width // vae_scale_factor
|
||||
|
||||
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
||||
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
||||
|
||||
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
||||
|
||||
return latents
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_vae_tiling(self):
|
||||
r"""
|
||||
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||
processing larger images.
|
||||
"""
|
||||
self.vae.enable_tiling()
|
||||
|
||||
def disable_vae_tiling(self):
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
height = 2 * (int(height) // self.vae_scale_factor)
|
||||
width = 2 * (int(width) // self.vae_scale_factor)
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is not None:
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
return latents.to(device=device, dtype=dtype), latent_image_ids
|
||||
|
||||
if isinstance(generator, list) and len(generator) != batch_size:
|
||||
raise ValueError(
|
||||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||||
)
|
||||
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
||||
|
||||
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
||||
|
||||
return latents, latent_image_ids
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 28,
|
||||
timesteps: List[int] = None,
|
||||
guidance_scale: float = 3.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
prompt_2 (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
||||
will be used instead
|
||||
prompt_3 (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
||||
will be used instead
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||||
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||||
passed will be used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 7.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
||||
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
||||
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
||||
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
||||
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
||||
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
||||
input argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
||||
of a plain tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.cogview3.CogView3PlusPipelineOutput`] or `tuple`:
|
||||
[`~pipelines.cogview3.CogView3PlusPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
||||
returning a tuple, the first element is a list with the generated images.
|
||||
"""
|
||||
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds=prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
lora_scale = (
|
||||
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
||||
)
|
||||
(
|
||||
prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
text_ids,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
latents, latent_image_ids = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
||||
image_seq_len = latents.shape[1]
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.base_image_seq_len,
|
||||
self.scheduler.config.max_image_seq_len,
|
||||
self.scheduler.config.base_shift,
|
||||
self.scheduler.config.max_shift,
|
||||
)
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
timesteps,
|
||||
sigmas,
|
||||
mu=mu,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# handle guidance
|
||||
if self.transformer.config.guidance_embeds:
|
||||
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(latents.shape[0])
|
||||
else:
|
||||
guidance = None
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latents,
|
||||
timestep=timestep / 1000,
|
||||
guidance=guidance,
|
||||
pooled_projections=pooled_prompt_embeds,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
txt_ids=text_ids,
|
||||
img_ids=latent_image_ids,
|
||||
joint_attention_kwargs=self.joint_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents_dtype = latents.dtype
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return CogView3PipelineOutput(images=image)
|
||||
21
src/diffusers/pipelines/cogview3/pipeline_output.py
Normal file
21
src/diffusers/pipelines/cogview3/pipeline_output.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
|
||||
from ...utils import BaseOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class CogView3PipelineOutput(BaseOutput):
|
||||
"""
|
||||
Output class for CogView3 pipelines.
|
||||
|
||||
Args:
|
||||
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
||||
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
||||
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
images: Union[List[PIL.Image.Image], np.ndarray]
|
||||
@@ -422,6 +422,21 @@ class FluxPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class CogView3PlusPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class HunyuanDiTControlNetPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user