mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-01 00:15:00 +08:00
Compare commits
22 Commits
main
...
more-mello
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
741685def1 | ||
|
|
3cd9ff4296 | ||
|
|
9d7f6db9ec | ||
|
|
bf6a07e665 | ||
|
|
e3a4cc5730 | ||
|
|
391c410368 | ||
|
|
3985c43031 | ||
|
|
8c5b119e52 | ||
|
|
46a713a6fa | ||
|
|
d4f2a8979f | ||
|
|
5c7273ff99 | ||
|
|
3fe2711691 | ||
|
|
48160f6f5e | ||
|
|
3393ef0177 | ||
|
|
a71d86b9ae | ||
|
|
26f59f1aa9 | ||
|
|
29c5741c2a | ||
|
|
5ad83903f9 | ||
|
|
ffc5708b78 | ||
|
|
c5c732b87b | ||
|
|
d2bee6a57e | ||
|
|
2890dd8480 |
@@ -114,6 +114,8 @@
|
||||
title: Guiders
|
||||
- local: modular_diffusers/custom_blocks
|
||||
title: Building Custom Blocks
|
||||
- local: modular_diffusers/mellon
|
||||
title: Mellon Guide
|
||||
title: Modular Diffusers
|
||||
- isExpanded: false
|
||||
sections:
|
||||
|
||||
@@ -16,7 +16,7 @@ specific language governing permissions and limitations under the License.
|
||||
[ModularPipelineBlocks](./pipeline_block) are the fundamental building blocks of a [`ModularPipeline`]. You can create custom blocks by defining their inputs, outputs, and computation logic. This guide demonstrates how to create and use a custom block.
|
||||
|
||||
> [!TIP]
|
||||
> Explore the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for official custom modular blocks like Nano Banana.
|
||||
> Explore the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for official custom blocks.
|
||||
|
||||
## Project Structure
|
||||
|
||||
@@ -31,18 +31,58 @@ Your custom block project should use the following structure:
|
||||
- `block.py` contains the custom block implementation
|
||||
- `modular_config.json` contains the metadata needed to load the block
|
||||
|
||||
## Example: Florence 2 Inpainting Block
|
||||
## Quick Start with Template
|
||||
|
||||
In this example we will create a custom block that uses the [Florence 2](https://huggingface.co/docs/transformers/model_doc/florence2) model to process an input image and generate a mask for inpainting.
|
||||
The fastest way to create a custom block is to start from our template:
|
||||
|
||||
The first step is to define the components that the block will use. In this case, we will need to use the `Florence2ForConditionalGeneration` model and its corresponding processor `AutoProcessor`. When defining components, we must specify the name of the component within our pipeline, model class via `type_hint`, and provide a `pretrained_model_name_or_path` for the component if we intend to load the model weights from a specific repository on the Hub.
|
||||
### 1. Download the template
|
||||
|
||||
```py
|
||||
```python
|
||||
from diffusers import ModularPipelineBlocks
|
||||
|
||||
model_id = "diffusers/custom-block-template"
|
||||
local_dir = model_id.split("/")[-1]
|
||||
|
||||
blocks = ModularPipelineBlocks.from_pretrained(
|
||||
model_id,
|
||||
trust_remote_code=True,
|
||||
local_dir=local_dir
|
||||
)
|
||||
```
|
||||
|
||||
This saves the template files to `custom-block-template/` locally. Feel free to use a custom `local_dir`.
|
||||
|
||||
### 2. Edit locally
|
||||
|
||||
Open `block.py` and implement your custom block. The template includes commented examples showing how to define each property. See the [Florence-2 example](#example-florence-2-image-annotator) below for a complete implementation.
|
||||
|
||||
### 3. Test your block
|
||||
|
||||
```python
|
||||
from diffusers import ModularPipelineBlocks
|
||||
|
||||
blocks = ModularPipelineBlocks.from_pretrained(local_dir, trust_remote_code=True)
|
||||
pipeline = blocks.init_pipeline()
|
||||
output = pipeline(...) # your inputs here
|
||||
```
|
||||
|
||||
### 4. Upload to the Hub
|
||||
|
||||
```python
|
||||
pipeline.save_pretrained(local_dir, repo_id="your-username/your-block-name", push_to_hub=True)
|
||||
```
|
||||
|
||||
## Example: Florence-2 Image Annotator
|
||||
|
||||
This example creates a custom block that uses [Florence-2](https://huggingface.co/docs/transformers/model_doc/florence2) to process an input image and generate a mask for inpainting.
|
||||
|
||||
### Define components
|
||||
|
||||
First, define the components the block needs. Here we use `Florence2ForConditionalGeneration` and its processor. When defining components, specify the `name` (how you'll access it in code), `type_hint` (the model class), and `pretrained_model_name_or_path` (where to load weights from).
|
||||
|
||||
```python
|
||||
# Inside block.py
|
||||
from diffusers.modular_pipelines import (
|
||||
ModularPipelineBlocks,
|
||||
ComponentSpec,
|
||||
)
|
||||
from diffusers.modular_pipelines import ModularPipelineBlocks, ComponentSpec
|
||||
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
||||
|
||||
|
||||
@@ -64,40 +104,19 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
||||
]
|
||||
```
|
||||
|
||||
Next, we define the inputs and outputs of the block. The inputs include the image to be annotated, the annotation task, and the annotation prompt. The outputs include the generated mask image and annotations.
|
||||
### Define inputs and outputs
|
||||
|
||||
```py
|
||||
Next, define the block's interface. Inputs include the image, annotation task, and prompt. Outputs include the generated mask and annotations.
|
||||
|
||||
```python
|
||||
from typing import List, Union
|
||||
from PIL import Image, ImageDraw
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from diffusers.modular_pipelines import (
|
||||
PipelineState,
|
||||
ModularPipelineBlocks,
|
||||
InputParam,
|
||||
ComponentSpec,
|
||||
OutputParam,
|
||||
)
|
||||
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
||||
from PIL import Image
|
||||
from diffusers.modular_pipelines import InputParam, OutputParam
|
||||
|
||||
|
||||
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def expected_components(self):
|
||||
return [
|
||||
ComponentSpec(
|
||||
name="image_annotator",
|
||||
type_hint=Florence2ForConditionalGeneration,
|
||||
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
|
||||
),
|
||||
ComponentSpec(
|
||||
name="image_annotator_processor",
|
||||
type_hint=AutoProcessor,
|
||||
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
|
||||
),
|
||||
]
|
||||
# ... expected_components from above ...
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
@@ -110,51 +129,21 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
||||
),
|
||||
InputParam(
|
||||
"annotation_task",
|
||||
type_hint=Union[str, List[str]],
|
||||
required=True,
|
||||
type_hint=str,
|
||||
default="<REFERRING_EXPRESSION_SEGMENTATION>",
|
||||
description="""Annotation Task to perform on the image.
|
||||
Supported Tasks:
|
||||
|
||||
<OD>
|
||||
<REFERRING_EXPRESSION_SEGMENTATION>
|
||||
<CAPTION>
|
||||
<DETAILED_CAPTION>
|
||||
<MORE_DETAILED_CAPTION>
|
||||
<DENSE_REGION_CAPTION>
|
||||
<CAPTION_TO_PHRASE_GROUNDING>
|
||||
<OPEN_VOCABULARY_DETECTION>
|
||||
|
||||
""",
|
||||
description="Annotation task to perform (e.g., <OD>, <CAPTION>, <REFERRING_EXPRESSION_SEGMENTATION>)",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_prompt",
|
||||
type_hint=Union[str, List[str]],
|
||||
type_hint=str,
|
||||
required=True,
|
||||
description="""Annotation Prompt to provide more context to the task.
|
||||
Can be used to detect or segment out specific elements in the image
|
||||
""",
|
||||
description="Prompt to provide context for the annotation task",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_output_type",
|
||||
type_hint=str,
|
||||
required=True,
|
||||
default="mask_image",
|
||||
description="""Output type from annotation predictions. Available options are
|
||||
mask_image:
|
||||
-black and white mask image for the given image based on the task type
|
||||
mask_overlay:
|
||||
- mask overlayed on the original image
|
||||
bounding_box:
|
||||
- bounding boxes drawn on the original image
|
||||
""",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_overlay",
|
||||
type_hint=bool,
|
||||
required=True,
|
||||
default=False,
|
||||
description="",
|
||||
description="Output type: 'mask_image', 'mask_overlay', or 'bounding_box'",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -163,225 +152,45 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
||||
return [
|
||||
OutputParam(
|
||||
"mask_image",
|
||||
type_hint=Image,
|
||||
description="Inpainting Mask for input Image(s)",
|
||||
type_hint=Image.Image,
|
||||
description="Inpainting mask for the input image",
|
||||
),
|
||||
OutputParam(
|
||||
"annotations",
|
||||
type_hint=dict,
|
||||
description="Annotations Predictions for input Image(s)",
|
||||
description="Raw annotation predictions",
|
||||
),
|
||||
OutputParam(
|
||||
"image",
|
||||
type_hint=Image,
|
||||
description="Annotated input Image(s)",
|
||||
type_hint=Image.Image,
|
||||
description="Annotated image",
|
||||
),
|
||||
]
|
||||
|
||||
```
|
||||
|
||||
Now we implement the `__call__` method, which contains the logic for processing the input image and generating the mask.
|
||||
### Implement the `__call__` method
|
||||
|
||||
```py
|
||||
from typing import List, Union
|
||||
from PIL import Image, ImageDraw
|
||||
The `__call__` method contains the block's logic. Access inputs via `block_state`, run your computation, and set outputs back to `block_state`.
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from diffusers.modular_pipelines import (
|
||||
PipelineState,
|
||||
ModularPipelineBlocks,
|
||||
InputParam,
|
||||
ComponentSpec,
|
||||
OutputParam,
|
||||
)
|
||||
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
||||
from diffusers.modular_pipelines import PipelineState
|
||||
|
||||
|
||||
class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def expected_components(self):
|
||||
return [
|
||||
ComponentSpec(
|
||||
name="image_annotator",
|
||||
type_hint=Florence2ForConditionalGeneration,
|
||||
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
|
||||
),
|
||||
ComponentSpec(
|
||||
name="image_annotator_processor",
|
||||
type_hint=AutoProcessor,
|
||||
pretrained_model_name_or_path="florence-community/Florence-2-base-ft",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"image",
|
||||
type_hint=Union[Image.Image, List[Image.Image]],
|
||||
required=True,
|
||||
description="Image(s) to annotate",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_task",
|
||||
type_hint=Union[str, List[str]],
|
||||
required=True,
|
||||
default="<REFERRING_EXPRESSION_SEGMENTATION>",
|
||||
description="""Annotation Task to perform on the image.
|
||||
Supported Tasks:
|
||||
|
||||
<OD>
|
||||
<REFERRING_EXPRESSION_SEGMENTATION>
|
||||
<CAPTION>
|
||||
<DETAILED_CAPTION>
|
||||
<MORE_DETAILED_CAPTION>
|
||||
<DENSE_REGION_CAPTION>
|
||||
<CAPTION_TO_PHRASE_GROUNDING>
|
||||
<OPEN_VOCABULARY_DETECTION>
|
||||
|
||||
""",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_prompt",
|
||||
type_hint=Union[str, List[str]],
|
||||
required=True,
|
||||
description="""Annotation Prompt to provide more context to the task.
|
||||
Can be used to detect or segment out specific elements in the image
|
||||
""",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_output_type",
|
||||
type_hint=str,
|
||||
required=True,
|
||||
default="mask_image",
|
||||
description="""Output type from annotation predictions. Available options are
|
||||
mask_image:
|
||||
-black and white mask image for the given image based on the task type
|
||||
mask_overlay:
|
||||
- mask overlayed on the original image
|
||||
bounding_box:
|
||||
- bounding boxes drawn on the original image
|
||||
""",
|
||||
),
|
||||
InputParam(
|
||||
"annotation_overlay",
|
||||
type_hint=bool,
|
||||
required=True,
|
||||
default=False,
|
||||
description="",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"mask_image",
|
||||
type_hint=Image,
|
||||
description="Inpainting Mask for input Image(s)",
|
||||
),
|
||||
OutputParam(
|
||||
"annotations",
|
||||
type_hint=dict,
|
||||
description="Annotations Predictions for input Image(s)",
|
||||
),
|
||||
OutputParam(
|
||||
"image",
|
||||
type_hint=Image,
|
||||
description="Annotated input Image(s)",
|
||||
),
|
||||
]
|
||||
|
||||
def get_annotations(self, components, images, prompts, task):
|
||||
task_prompts = [task + prompt for prompt in prompts]
|
||||
|
||||
inputs = components.image_annotator_processor(
|
||||
text=task_prompts, images=images, return_tensors="pt"
|
||||
).to(components.image_annotator.device, components.image_annotator.dtype)
|
||||
|
||||
generated_ids = components.image_annotator.generate(
|
||||
input_ids=inputs["input_ids"],
|
||||
pixel_values=inputs["pixel_values"],
|
||||
max_new_tokens=1024,
|
||||
early_stopping=False,
|
||||
do_sample=False,
|
||||
num_beams=3,
|
||||
)
|
||||
annotations = components.image_annotator_processor.batch_decode(
|
||||
generated_ids, skip_special_tokens=False
|
||||
)
|
||||
outputs = []
|
||||
for image, annotation in zip(images, annotations):
|
||||
outputs.append(
|
||||
components.image_annotator_processor.post_process_generation(
|
||||
annotation, task=task, image_size=(image.width, image.height)
|
||||
)
|
||||
)
|
||||
return outputs
|
||||
|
||||
def prepare_mask(self, images, annotations, overlay=False, fill="white"):
|
||||
masks = []
|
||||
for image, annotation in zip(images, annotations):
|
||||
mask_image = image.copy() if overlay else Image.new("L", image.size, 0)
|
||||
draw = ImageDraw.Draw(mask_image)
|
||||
|
||||
for _, _annotation in annotation.items():
|
||||
if "polygons" in _annotation:
|
||||
for polygon in _annotation["polygons"]:
|
||||
polygon = np.array(polygon).reshape(-1, 2)
|
||||
if len(polygon) < 3:
|
||||
continue
|
||||
polygon = polygon.reshape(-1).tolist()
|
||||
draw.polygon(polygon, fill=fill)
|
||||
|
||||
elif "bbox" in _annotation:
|
||||
bbox = _annotation["bbox"]
|
||||
draw.rectangle(bbox, fill="white")
|
||||
|
||||
masks.append(mask_image)
|
||||
|
||||
return masks
|
||||
|
||||
def prepare_bounding_boxes(self, images, annotations):
|
||||
outputs = []
|
||||
for image, annotation in zip(images, annotations):
|
||||
image_copy = image.copy()
|
||||
draw = ImageDraw.Draw(image_copy)
|
||||
for _, _annotation in annotation.items():
|
||||
bbox = _annotation["bbox"]
|
||||
label = _annotation["label"]
|
||||
|
||||
draw.rectangle(bbox, outline="red", width=3)
|
||||
draw.text((bbox[0], bbox[1] - 20), label, fill="red")
|
||||
|
||||
outputs.append(image_copy)
|
||||
|
||||
return outputs
|
||||
|
||||
def prepare_inputs(self, images, prompts):
|
||||
prompts = prompts or ""
|
||||
|
||||
if isinstance(images, Image.Image):
|
||||
images = [images]
|
||||
if isinstance(prompts, str):
|
||||
prompts = [prompts]
|
||||
|
||||
if len(images) != len(prompts):
|
||||
raise ValueError("Number of images and annotation prompts must match.")
|
||||
|
||||
return images, prompts
|
||||
# ... expected_components, inputs, intermediate_outputs from above ...
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
images, annotation_task_prompt = self.prepare_inputs(
|
||||
block_state.image, block_state.annotation_prompt
|
||||
)
|
||||
task = block_state.annotation_task
|
||||
fill = block_state.fill
|
||||
|
||||
|
||||
annotations = self.get_annotations(
|
||||
components, images, annotation_task_prompt, task
|
||||
)
|
||||
@@ -400,67 +209,69 @@ class Florence2ImageAnnotatorBlock(ModularPipelineBlocks):
|
||||
self.set_block_state(state, block_state)
|
||||
|
||||
return components, state
|
||||
|
||||
|
||||
# Helper methods for mask/bounding box generation...
|
||||
```
|
||||
|
||||
Once we have defined our custom block, we can save it to the Hub, using either the CLI or the [`push_to_hub`] method. This will make it easy to share and reuse our custom block with other pipelines.
|
||||
|
||||
<hfoptions id="share">
|
||||
<hfoption id="hf CLI">
|
||||
|
||||
```shell
|
||||
# In the folder with the `block.py` file, run:
|
||||
diffusers-cli custom_block
|
||||
```
|
||||
|
||||
Then upload the block to the Hub:
|
||||
|
||||
```shell
|
||||
hf upload <your repo id> . .
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="push_to_hub">
|
||||
|
||||
```py
|
||||
from block import Florence2ImageAnnotatorBlock
|
||||
block = Florence2ImageAnnotatorBlock()
|
||||
block.push_to_hub("<your repo id>")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
> [!TIP]
|
||||
> See the complete implementation at [diffusers/Florence2-image-Annotator](https://huggingface.co/diffusers/Florence2-image-Annotator).
|
||||
|
||||
## Using Custom Blocks
|
||||
|
||||
Load the custom block with [`~ModularPipelineBlocks.from_pretrained`] and set `trust_remote_code=True`.
|
||||
Load a custom block with [`~ModularPipeline.from_pretrained`] and set `trust_remote_code=True`.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
|
||||
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
|
||||
from diffusers import ModularPipeline
|
||||
from diffusers.utils import load_image
|
||||
|
||||
# Fetch the Florence2 image annotator block that will create our mask
|
||||
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True)
|
||||
# Load the Florence-2 annotator pipeline
|
||||
image_annotator = ModularPipeline.from_pretrained(
|
||||
"diffusers/Florence2-image-Annotator",
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
my_blocks = INPAINT_BLOCKS.copy()
|
||||
# insert the annotation block before the image encoding step
|
||||
my_blocks.insert("image_annotator", image_annotator_block, 1)
|
||||
# Check the docstring to see inputs/outputs
|
||||
print(image_annotator.blocks.doc)
|
||||
```
|
||||
|
||||
# Create our initial set of inpainting blocks
|
||||
blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks)
|
||||
Use the block to generate a mask:
|
||||
|
||||
repo_id = "diffusers/modular-stable-diffusion-xl-base-1.0"
|
||||
pipe = blocks.init_pipeline(repo_id)
|
||||
pipe.load_components(torch_dtype=torch.float16, device_map="cuda", trust_remote_code=True)
|
||||
```python
|
||||
image_annotator.load_components(torch_dtype=torch.bfloat16)
|
||||
image_annotator.to("cuda")
|
||||
|
||||
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true")
|
||||
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg")
|
||||
image = image.resize((1024, 1024))
|
||||
|
||||
prompt = ["A red car"]
|
||||
annotation_task = "<REFERRING_EXPRESSION_SEGMENTATION>"
|
||||
annotation_prompt = ["the car"]
|
||||
|
||||
mask_image = image_annotator_node(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
annotation_task=annotation_task,
|
||||
annotation_prompt=annotation_prompt,
|
||||
annotation_output_type="mask_image",
|
||||
).images
|
||||
mask_image[0].save("car-mask.png")
|
||||
```
|
||||
|
||||
You can also compose it with other blocks to create a new pipeline:
|
||||
|
||||
```python
|
||||
# Get the annotator block
|
||||
annotator_block = image_annotator.blocks
|
||||
|
||||
# Get an inpainting workflow and insert the annotator at the beginning
|
||||
inpaint_blocks = ModularPipeline.from_pretrained("Qwen/Qwen-Image").blocks.get_workflow("inpainting")
|
||||
inpaint_blocks.sub_blocks.insert("image_annotator", annotator_block, 0)
|
||||
|
||||
# Initialize the combined pipeline
|
||||
pipe = inpaint_blocks.init_pipeline()
|
||||
pipe.load_components(torch_dtype=torch.float16, device="cuda")
|
||||
|
||||
# Now the pipeline automatically generates masks from prompts
|
||||
output = pipe(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
@@ -477,16 +288,39 @@ output[0].save("florence-inpainting.png")
|
||||
|
||||
## Editing Custom Blocks
|
||||
|
||||
By default, custom blocks are saved in your cache directory. Use the `local_dir` argument to download and edit a custom block in a specific folder.
|
||||
You can edit any existing custom block by downloading it locally. This follows the same workflow as the [Quick Start with Template](#quick-start-with-template), but starting from an existing block instead of the template.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
|
||||
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
|
||||
from diffusers.utils import load_image
|
||||
Use the `local_dir` argument to download a custom block to a specific folder:
|
||||
|
||||
# Fetch the Florence2 image annotator block that will create our mask
|
||||
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True, local_dir="/my-local-folder")
|
||||
```python
|
||||
from diffusers import ModularPipelineBlocks
|
||||
|
||||
# Download to a local folder for editing
|
||||
annotator_block = ModularPipelineBlocks.from_pretrained(
|
||||
"diffusers/Florence2-image-Annotator",
|
||||
trust_remote_code=True,
|
||||
local_dir="./my-florence-block"
|
||||
)
|
||||
```
|
||||
|
||||
Any changes made to the block files in this folder will be reflected when you load the block again.
|
||||
Any changes made to the block files in this folder will be reflected when you load the block again. When you're ready to share your changes, upload to a new repository:
|
||||
|
||||
```python
|
||||
pipeline = annotator_block.init_pipeline()
|
||||
pipeline.save_pretrained("./my-florence-block", repo_id="your-username/my-custom-florence", push_to_hub=True)
|
||||
```
|
||||
|
||||
## Next Steps
|
||||
|
||||
<hfoptions id="next">
|
||||
<hfoption id="Use in Mellon">
|
||||
|
||||
Make your custom block work with Mellon's visual interface - no UI code required. See the [Mellon Custom Blocks](./mellon_custom_blocks) guide.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Explore existing blocks">
|
||||
|
||||
Browse the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for inspiration and ready-to-use blocks.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
236
docs/source/en/modular_diffusers/mellon.md
Normal file
236
docs/source/en/modular_diffusers/mellon.md
Normal file
@@ -0,0 +1,236 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
|
||||
## Using Custom Blocks with Mellon
|
||||
|
||||
[Mellon](https://github.com/cubiq/Mellon) is a visual workflow interface that integrates with Modular Diffusers and is designed for node-based workflows.
|
||||
|
||||
> [!WARNING]
|
||||
> Mellon is in early development and not yet ready for production use. Consider this a sneak peek of how the integration works! Custom blocks built with Modular Diffusers work with Mellon out of the box - no UI code required - and we'll ensure compatibility as Mellon evolves.
|
||||
|
||||
## Overview
|
||||
|
||||
To use a custom block in Mellon, you need a `mellon_pipeline_config.json` file that defines how your block's parameters map to Mellon UI components. Here's how to create one:
|
||||
|
||||
1. **Add a "Mellon type" to your block's parameters** - Each `InputParam`/`OutputParam` needs a type that tells Mellon what UI component to render (e.g., `"textbox"`, `"dropdown"`, `"image"`). You can specify types via metadata in your block definitions, or pass them when generating the config.
|
||||
2. **Generate `mellon_pipeline_config.json`** - Use our utility to generate a default template and push it to your Hub repository
|
||||
3. **(Optional) Manually adjust the template** - Fine-tune the generated config for your specific needs
|
||||
|
||||
## Step 1: Specify Mellon Types for Parameters
|
||||
|
||||
Mellon types determine how each parameter renders in the UI. If you don't specify a type for a parameter, it will default to `"custom"`, which renders as a simple connection dot. You can always adjust this later in the generated config.
|
||||
|
||||
### Supported Mellon Types
|
||||
|
||||
| Type | Input/Output | Description |
|
||||
|------|--------------|-------------|
|
||||
| `image` | Both | Image (PIL Image) |
|
||||
| `video` | Both | Video |
|
||||
| `text` | Both | Text display |
|
||||
| `textbox` | Input | Text input |
|
||||
| `dropdown` | Input | Dropdown selection menu |
|
||||
| `slider` | Input | Slider for numeric values |
|
||||
| `number` | Input | Numeric input |
|
||||
| `checkbox` | Input | Boolean toggle |
|
||||
|
||||
### Method 1: Using `metadata` in Block Definitions
|
||||
|
||||
If you're defining a custom block from scratch, you can add `metadata={"mellon": "<type>"}` directly to your `InputParam` and `OutputParam` definitions:
|
||||
```python
|
||||
class GeminiPromptExpander(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"prompt",
|
||||
type_hint=str,
|
||||
required=True,
|
||||
description="Prompt to use",
|
||||
metadata={"mellon": "textbox"}, # Text input
|
||||
)
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"prompt",
|
||||
type_hint=str,
|
||||
description="Expanded prompt by the LLM",
|
||||
metadata={"mellon": "text"}, # Text output
|
||||
),
|
||||
OutputParam(
|
||||
"old_prompt",
|
||||
type_hint=str,
|
||||
description="Old prompt provided by the user",
|
||||
# No metadata - we don't want to render this in UI
|
||||
)
|
||||
]
|
||||
```
|
||||
|
||||
### Method 2: Using `input_types` and `output_types` When Generating Config
|
||||
|
||||
If you're working with an existing pipeline or prefer to keep your block definitions clean, you can specify types when generating the config using the `input_types/output_types` argument:
|
||||
```python
|
||||
from diffusers.modular_pipelines.mellon_node_utils import MellonPipelineConfig
|
||||
|
||||
mellon_config = MellonPipelineConfig.from_custom_block(
|
||||
blocks,
|
||||
input_types={"prompt": "textbox"},
|
||||
output_types={"prompt": "text"}
|
||||
)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you specify both `metadata` and `input_types`/`output_types`, the arguments take precedence, allowing you to override metadata when needed.
|
||||
|
||||
## Step 2: Generate and Push the Mellon Config
|
||||
|
||||
After adding metadata to your block, generate the default Mellon configuration template and push it to the Hub:
|
||||
|
||||
```python
|
||||
from diffusers import ModularPipelineBlocks
|
||||
from diffusers.modular_pipelines.mellon_node_utils import MellonPipelineConfig
|
||||
|
||||
# load your custom blocks from your local dir
|
||||
blocks = ModularPipelineBlocks.from_pretrained("/path/local/folder", trust_remote_code=True)
|
||||
|
||||
# Generate the default config template
|
||||
mellon_config = MellonPipelineConfig.from_custom_block(blocks)
|
||||
# push the default template to `repo_id`, you will need to pass the same local folder path so that it will save the config locally first
|
||||
mellon_config.save(
|
||||
local_dir="/path/local/folder",
|
||||
repo_id= repo_id,
|
||||
push_to_hub=True
|
||||
)
|
||||
```
|
||||
|
||||
This creates a `mellon_pipeline_config.json` file in your repository.
|
||||
|
||||
## Step 3: Review and Adjust the Config (Optional)
|
||||
|
||||
The generated template is a starting point - you may want to adjust it for your needs. Let's walk through the generated config for the Gemini Prompt Expander:
|
||||
|
||||
```json
|
||||
{
|
||||
"label": "Gemini Prompt Expander",
|
||||
"default_repo": "",
|
||||
"default_dtype": "",
|
||||
"node_params": {
|
||||
"custom": {
|
||||
"params": {
|
||||
"prompt": {
|
||||
"label": "Prompt",
|
||||
"type": "string",
|
||||
"display": "textarea",
|
||||
"default": ""
|
||||
},
|
||||
"out_prompt": {
|
||||
"label": "Prompt",
|
||||
"type": "string",
|
||||
"display": "output"
|
||||
},
|
||||
"old_prompt": {
|
||||
"label": "Old Prompt",
|
||||
"type": "custom",
|
||||
"display": "output"
|
||||
},
|
||||
"doc": {
|
||||
"label": "Doc",
|
||||
"type": "string",
|
||||
"display": "output"
|
||||
}
|
||||
},
|
||||
"input_names": ["prompt"],
|
||||
"model_input_names": [],
|
||||
"output_names": ["out_prompt", "old_prompt", "doc"],
|
||||
"block_name": "custom",
|
||||
"node_type": "custom"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Understanding the Structure
|
||||
|
||||
The `params` dict defines how each UI element renders. The `input_names`, `model_input_names`, and `output_names` lists map these UI elements to the underlying [`ModularPipelineBlocks`]'s I/O interface:
|
||||
|
||||
| Mellon Config | ModularPipelineBlocks |
|
||||
|---------------|----------------------|
|
||||
| `input_names` | `inputs` property |
|
||||
| `model_input_names` | `expected_components` property |
|
||||
| `output_names` | `intermediate_outputs` property |
|
||||
|
||||
In this example: `prompt` is the only input, there are no model components, and outputs include `out_prompt`, `old_prompt`, and `doc`.
|
||||
|
||||
Now let's look at the `params` dict:
|
||||
|
||||
**`prompt`** is an input parameter. It has `display: "textarea"` which renders as a text input box, `label: "Prompt"` shown in the UI, and `default: ""` so it starts empty. The `type: "string"` field is important in Mellon because it determines which nodes can connect together - only matching types can be linked with "noodles".
|
||||
|
||||
**`out_prompt`** is the expanded prompt output. The `out_` prefix was automatically added because the input and output share the same name (`prompt`), avoiding naming conflicts in the config. It has `display: "output"` which renders as an output socket.
|
||||
|
||||
**`old_prompt`** has `type: "custom"` because we didn't specify metadata. This renders as a simple dot in the UI. Since we don't actually want to expose this in the UI, we can remove it.
|
||||
|
||||
**`doc`** is the documentation output, automatically added to all custom blocks.
|
||||
|
||||
### Making Adjustments
|
||||
|
||||
For the Gemini Prompt Expander, we don't need `old_prompt` in the UI. Remove it from both `params` and `output_names`:
|
||||
|
||||
```json
|
||||
{
|
||||
"label": "Gemini Prompt Expander",
|
||||
"default_repo": "",
|
||||
"default_dtype": "",
|
||||
"node_params": {
|
||||
"custom": {
|
||||
"params": {
|
||||
"prompt": {
|
||||
"label": "Prompt",
|
||||
"type": "string",
|
||||
"display": "textarea",
|
||||
"default": ""
|
||||
},
|
||||
"out_prompt": {
|
||||
"label": "Prompt",
|
||||
"type": "string",
|
||||
"display": "output"
|
||||
},
|
||||
"doc": {
|
||||
"label": "Doc",
|
||||
"type": "string",
|
||||
"display": "output"
|
||||
}
|
||||
},
|
||||
"input_names": ["prompt"],
|
||||
"model_input_names": [],
|
||||
"output_names": ["out_prompt", "doc"],
|
||||
"block_name": "custom",
|
||||
"node_type": "custom"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
See the final config at [YiYiXu/gemini-prompt-expander](https://huggingface.co/YiYiXu/gemini-prompt-expander).
|
||||
|
||||
## Use in Mellon
|
||||
|
||||
1. Start Mellon (see [Mellon installation guide](https://github.com/cubiq/Mellon))
|
||||
|
||||
2. In Mellon:
|
||||
- Drag a **Dynamic Block Node** from the ModularDiffusers section
|
||||
- Enter your `repo_id` (e.g., `YiYiXu/gemini-prompt-expander`)
|
||||
- Click **Load Custom Block**
|
||||
- The node will transform to show your block's inputs and outputs
|
||||
@@ -33,9 +33,14 @@ The Modular Diffusers docs are organized as shown below.
|
||||
- [SequentialPipelineBlocks](./sequential_pipeline_blocks) is a type of block that chains multiple blocks so they run one after another, passing data along the chain. This guide shows you how to create [`~modular_pipelines.SequentialPipelineBlocks`] and how they connect and work together.
|
||||
- [LoopSequentialPipelineBlocks](./loop_sequential_pipeline_blocks) is a type of block that runs a series of blocks in a loop. This guide shows you how to create [`~modular_pipelines.LoopSequentialPipelineBlocks`].
|
||||
- [AutoPipelineBlocks](./auto_pipeline_blocks) is a type of block that automatically chooses which blocks to run based on the input. This guide shows you how to create [`~modular_pipelines.AutoPipelineBlocks`].
|
||||
- [Building Custom Blocks](./custom_blocks) shows you how to create your own custom blocks and share them on the Hub.
|
||||
|
||||
## ModularPipeline
|
||||
|
||||
- [ModularPipeline](./modular_pipeline) shows you how to create and convert pipeline blocks into an executable [`ModularPipeline`].
|
||||
- [ComponentsManager](./components_manager) shows you how to manage and reuse components across multiple pipelines.
|
||||
- [Guiders](./guiders) shows you how to use different guidance methods in the pipeline.
|
||||
- [Guiders](./guiders) shows you how to use different guidance methods in the pipeline.
|
||||
|
||||
## Mellon Integration
|
||||
|
||||
- [Using Custom Blocks with Mellon](./mellon) shows you how to make your custom blocks work with [Mellon](https://github.com/cubiq/Mellon), a visual node-based interface for building workflows.
|
||||
@@ -324,6 +324,7 @@ class ComponentsManager:
|
||||
"has_hook",
|
||||
"execution_device",
|
||||
"ip_adapter",
|
||||
"quantization",
|
||||
]
|
||||
|
||||
def __init__(self):
|
||||
@@ -356,7 +357,9 @@ class ComponentsManager:
|
||||
ids_by_name.add(component_id)
|
||||
else:
|
||||
ids_by_name = set(components.keys())
|
||||
if collection:
|
||||
if collection and collection not in self.collections:
|
||||
return set()
|
||||
elif collection and collection in self.collections:
|
||||
ids_by_collection = set()
|
||||
for component_id, component in components.items():
|
||||
if component_id in self.collections[collection]:
|
||||
@@ -423,7 +426,8 @@ class ComponentsManager:
|
||||
|
||||
# add component to components manager
|
||||
self.components[component_id] = component
|
||||
self.added_time[component_id] = time.time()
|
||||
if is_new_component:
|
||||
self.added_time[component_id] = time.time()
|
||||
|
||||
if collection:
|
||||
if collection not in self.collections:
|
||||
@@ -760,7 +764,6 @@ class ComponentsManager:
|
||||
self.model_hooks = None
|
||||
self._auto_offload_enabled = False
|
||||
|
||||
# YiYi TODO: (1) add quantization info
|
||||
def get_model_info(
|
||||
self,
|
||||
component_id: str,
|
||||
@@ -836,6 +839,17 @@ class ComponentsManager:
|
||||
if scales:
|
||||
info["ip_adapter"] = summarize_dict_by_value_and_parts(scales)
|
||||
|
||||
# Check for quantization
|
||||
hf_quantizer = getattr(component, "hf_quantizer", None)
|
||||
if hf_quantizer is not None:
|
||||
quant_config = hf_quantizer.quantization_config
|
||||
if hasattr(quant_config, "to_diff_dict"):
|
||||
info["quantization"] = quant_config.to_diff_dict()
|
||||
else:
|
||||
info["quantization"] = quant_config.to_dict()
|
||||
else:
|
||||
info["quantization"] = None
|
||||
|
||||
# If fields specified, filter info
|
||||
if fields is not None:
|
||||
return {k: v for k, v in info.items() if k in fields}
|
||||
@@ -966,12 +980,16 @@ class ComponentsManager:
|
||||
output += "\nAdditional Component Info:\n" + "=" * 50 + "\n"
|
||||
for name in self.components:
|
||||
info = self.get_model_info(name)
|
||||
if info is not None and (info.get("adapters") is not None or info.get("ip_adapter")):
|
||||
if info is not None and (
|
||||
info.get("adapters") is not None or info.get("ip_adapter") or info.get("quantization")
|
||||
):
|
||||
output += f"\n{name}:\n"
|
||||
if info.get("adapters") is not None:
|
||||
output += f" Adapters: {info['adapters']}\n"
|
||||
if info.get("ip_adapter"):
|
||||
output += " IP-Adapter: Enabled\n"
|
||||
if info.get("quantization"):
|
||||
output += f" Quantization: {info['quantization']}\n"
|
||||
|
||||
return output
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -520,6 +520,7 @@ class InputParam:
|
||||
required: bool = False
|
||||
description: str = ""
|
||||
kwargs_type: str = None
|
||||
metadata: Dict[str, Any] = None
|
||||
|
||||
def __repr__(self):
|
||||
return f"<{self.name}: {'required' if self.required else 'optional'}, default={self.default}>"
|
||||
@@ -553,6 +554,7 @@ class OutputParam:
|
||||
type_hint: Any = None
|
||||
description: str = ""
|
||||
kwargs_type: str = None
|
||||
metadata: Dict[str, Any] = None
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
|
||||
Reference in New Issue
Block a user