mirror of
https://github.com/huggingface/diffusers.git
synced 2026-02-07 11:25:12 +08:00
Compare commits
11 Commits
ltx2-impro
...
wan-output
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
996cffde56 | ||
|
|
5ffc621868 | ||
|
|
10dc589a94 | ||
|
|
44b8201d98 | ||
|
|
7f97055d5f | ||
|
|
85d8d244a1 | ||
|
|
7d272bed80 | ||
|
|
e95c5a2609 | ||
|
|
80275cf18b | ||
|
|
2b74061a11 | ||
|
|
23fb285912 |
@@ -12,179 +12,85 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# ComponentsManager
|
||||
|
||||
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), prevents duplicate model instances, and supports offloading.
|
||||
The [`ComponentsManager`] is a model registry and management system for Modular Diffusers. It adds and tracks models, stores useful metadata (model size, device placement, adapters), and supports offloading.
|
||||
|
||||
This guide will show you how to use [`ComponentsManager`] to manage components and device memory.
|
||||
|
||||
## Add a component
|
||||
## Connect to a pipeline
|
||||
|
||||
The [`ComponentsManager`] should be created alongside a [`ModularPipeline`] in either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
|
||||
Create a [`ComponentsManager`] and pass it to a [`ModularPipeline`] with either [`~ModularPipeline.from_pretrained`] or [`~ModularPipelineBlocks.init_pipeline`].
|
||||
|
||||
> [!TIP]
|
||||
> The `collection` parameter is optional but makes it easier to organize and manage components.
|
||||
|
||||
<hfoptions id="create">
|
||||
<hfoption id="from_pretrained">
|
||||
|
||||
```py
|
||||
from diffusers import ModularPipeline, ComponentsManager
|
||||
import torch
|
||||
|
||||
comp = ComponentsManager()
|
||||
pipe = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test1")
|
||||
manager = ComponentsManager()
|
||||
pipe = ModularPipeline.from_pretrained("Tongyi-MAI/Z-Image-Turbo", components_manager=manager)
|
||||
pipe.load_components(torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="init_pipeline">
|
||||
|
||||
```py
|
||||
from diffusers import ComponentsManager
|
||||
from diffusers.modular_pipelines import SequentialPipelineBlocks
|
||||
from diffusers.modular_pipelines.stable_diffusion_xl import TEXT2IMAGE_BLOCKS
|
||||
|
||||
t2i_blocks = SequentialPipelineBlocks.from_blocks_dict(TEXT2IMAGE_BLOCKS)
|
||||
|
||||
modular_repo_id = "YiYiXu/modular-loader-t2i-0704"
|
||||
components = ComponentsManager()
|
||||
t2i_pipeline = t2i_blocks.init_pipeline(modular_repo_id, components_manager=components)
|
||||
from diffusers import ModularPipelineBlocks, ComponentsManager
|
||||
import torch
|
||||
manager = ComponentsManager()
|
||||
blocks = ModularPipelineBlocks.from_pretrained("diffusers/Florence2-image-Annotator", trust_remote_code=True)
|
||||
pipe= blocks.init_pipeline(components_manager=manager)
|
||||
pipe.load_components(torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Components are only loaded and registered when using [`~ModularPipeline.load_components`] or [`~ModularPipeline.load_components`]. The example below uses [`~ModularPipeline.load_components`] to create a second pipeline that reuses all the components from the first one, and assigns it to a different collection
|
||||
Components loaded by the pipeline are automatically registered in the manager. You can inspect them right away.
|
||||
|
||||
## Inspect components
|
||||
|
||||
Print the [`ComponentsManager`] to see all registered components, including their class, device placement, dtype, memory size, and load ID.
|
||||
|
||||
The output below corresponds to the `from_pretrained` example above.
|
||||
|
||||
```py
|
||||
pipe.load_components()
|
||||
pipe2 = ModularPipeline.from_pretrained("YiYiXu/modular-demo-auto", components_manager=comp, collection="test2")
|
||||
Components:
|
||||
=============================================================================================================================
|
||||
Models:
|
||||
-----------------------------------------------------------------------------------------------------------------------------
|
||||
Name_ID | Class | Device: act(exec) | Dtype | Size (GB) | Load ID
|
||||
-----------------------------------------------------------------------------------------------------------------------------
|
||||
text_encoder_140458257514752 | Qwen3Model | cpu | torch.bfloat16 | 7.49 | Tongyi-MAI/Z-Image-Turbo|text_encoder|null|null
|
||||
vae_140458257515376 | AutoencoderKL | cpu | torch.bfloat16 | 0.16 | Tongyi-MAI/Z-Image-Turbo|vae|null|null
|
||||
transformer_140458257515616 | ZImageTransformer2DModel | cpu | torch.bfloat16 | 11.46 | Tongyi-MAI/Z-Image-Turbo|transformer|null|null
|
||||
-----------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
Other Components:
|
||||
-----------------------------------------------------------------------------------------------------------------------------
|
||||
ID | Class | Collection
|
||||
-----------------------------------------------------------------------------------------------------------------------------
|
||||
scheduler_140461023555264 | FlowMatchEulerDiscreteScheduler | N/A
|
||||
tokenizer_140458256346432 | Qwen2Tokenizer | N/A
|
||||
-----------------------------------------------------------------------------------------------------------------------------
|
||||
```
|
||||
|
||||
Use the [`~ModularPipeline.null_component_names`] property to identify any components that need to be loaded, retrieve them with [`~ComponentsManager.get_components_by_names`], and then call [`~ModularPipeline.update_components`] to add the missing components.
|
||||
|
||||
```py
|
||||
pipe2.null_component_names
|
||||
['text_encoder', 'text_encoder_2', 'tokenizer', 'tokenizer_2', 'image_encoder', 'unet', 'vae', 'scheduler', 'controlnet']
|
||||
|
||||
comp_dict = comp.get_components_by_names(names=pipe2.null_component_names)
|
||||
pipe2.update_components(**comp_dict)
|
||||
```
|
||||
|
||||
To add individual components, use the [`~ComponentsManager.add`] method. This registers a component with a unique id.
|
||||
|
||||
```py
|
||||
from diffusers import AutoModel
|
||||
|
||||
text_encoder = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
|
||||
component_id = comp.add("text_encoder", text_encoder)
|
||||
comp
|
||||
```
|
||||
|
||||
Use [`~ComponentsManager.remove`] to remove a component using their id.
|
||||
|
||||
```py
|
||||
comp.remove("text_encoder_139917733042864")
|
||||
```
|
||||
|
||||
## Retrieve a component
|
||||
|
||||
The [`ComponentsManager`] provides several methods to retrieve registered components.
|
||||
|
||||
### get_one
|
||||
|
||||
The [`~ComponentsManager.get_one`] method returns a single component and supports pattern matching for the `name` parameter. If multiple components match, [`~ComponentsManager.get_one`] returns an error.
|
||||
|
||||
| Pattern | Example | Description |
|
||||
|-------------|----------------------------------|-------------------------------------------|
|
||||
| exact | `comp.get_one(name="unet")` | exact name match |
|
||||
| wildcard | `comp.get_one(name="unet*")` | names starting with "unet" |
|
||||
| exclusion | `comp.get_one(name="!unet")` | exclude components named "unet" |
|
||||
| or | `comp.get_one(name="unet|vae")` | name is "unet" or "vae" |
|
||||
|
||||
[`~ComponentsManager.get_one`] also filters components by the `collection` argument or `load_id` argument.
|
||||
|
||||
```py
|
||||
comp.get_one(name="unet", collection="sdxl")
|
||||
```
|
||||
|
||||
### get_components_by_names
|
||||
|
||||
The [`~ComponentsManager.get_components_by_names`] method accepts a list of names and returns a dictionary mapping names to components. This is especially useful with [`ModularPipeline`] since they provide lists of required component names and the returned dictionary can be passed directly to [`~ModularPipeline.update_components`].
|
||||
|
||||
```py
|
||||
component_dict = comp.get_components_by_names(names=["text_encoder", "unet", "vae"])
|
||||
{"text_encoder": component1, "unet": component2, "vae": component3}
|
||||
```
|
||||
|
||||
## Duplicate detection
|
||||
|
||||
It is recommended to load model components with [`ComponentSpec`] to assign components with a unique id that encodes their loading parameters. This allows [`ComponentsManager`] to automatically detect and prevent duplicate model instances even when different objects represent the same underlying checkpoint.
|
||||
|
||||
```py
|
||||
from diffusers import ComponentSpec, ComponentsManager
|
||||
from transformers import CLIPTextModel
|
||||
|
||||
comp = ComponentsManager()
|
||||
|
||||
# Create ComponentSpec for the first text encoder
|
||||
spec = ComponentSpec(name="text_encoder", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=AutoModel)
|
||||
# Create ComponentSpec for a duplicate text encoder (it is same checkpoint, from the same repo/subfolder)
|
||||
spec_duplicated = ComponentSpec(name="text_encoder_duplicated", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder", type_hint=CLIPTextModel)
|
||||
|
||||
# Load and add both components - the manager will detect they're the same model
|
||||
comp.add("text_encoder", spec.load())
|
||||
comp.add("text_encoder_duplicated", spec_duplicated.load())
|
||||
```
|
||||
|
||||
This returns a warning with instructions for removing the duplicate.
|
||||
|
||||
```py
|
||||
ComponentsManager: adding component 'text_encoder_duplicated_139917580682672', but it has duplicate load_id 'stabilityai/stable-diffusion-xl-base-1.0|text_encoder|null|null' with existing components: text_encoder_139918506246832. To remove a duplicate, call `components_manager.remove('<component_id>')`.
|
||||
'text_encoder_duplicated_139917580682672'
|
||||
```
|
||||
|
||||
You could also add a component without using [`ComponentSpec`] and duplicate detection still works in most cases even if you're adding the same component under a different name.
|
||||
|
||||
However, [`ComponentManager`] can't detect duplicates when you load the same component into different objects. In this case, you should load a model with [`ComponentSpec`].
|
||||
|
||||
```py
|
||||
text_encoder_2 = AutoModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="text_encoder")
|
||||
comp.add("text_encoder", text_encoder_2)
|
||||
'text_encoder_139917732983664'
|
||||
```
|
||||
|
||||
## Collections
|
||||
|
||||
Collections are labels assigned to components for better organization and management. Add a component to a collection with the `collection` argument in [`~ComponentsManager.add`].
|
||||
|
||||
Only one component per name is allowed in each collection. Adding a second component with the same name automatically removes the first component.
|
||||
|
||||
```py
|
||||
from diffusers import ComponentSpec, ComponentsManager
|
||||
|
||||
comp = ComponentsManager()
|
||||
# Create ComponentSpec for the first UNet
|
||||
spec = ComponentSpec(name="unet", repo="stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet", type_hint=AutoModel)
|
||||
# Create ComponentSpec for a different UNet
|
||||
spec2 = ComponentSpec(name="unet", repo="RunDiffusion/Juggernaut-XL-v9", subfolder="unet", type_hint=AutoModel, variant="fp16")
|
||||
|
||||
# Add both UNets to the same collection - the second one will replace the first
|
||||
comp.add("unet", spec.load(), collection="sdxl")
|
||||
comp.add("unet", spec2.load(), collection="sdxl")
|
||||
```
|
||||
|
||||
This makes it convenient to work with node-based systems because you can:
|
||||
|
||||
- Mark all models as loaded from one node with the `collection` label.
|
||||
- Automatically replace models when new checkpoints are loaded under the same name.
|
||||
- Batch delete all models in a collection when a node is removed.
|
||||
The table shows models (with device, dtype, and memory info) separately from other components like schedulers and tokenizers. If any models have LoRA adapters, IP-Adapters, or quantization applied, that information is displayed in an additional section at the bottom.
|
||||
|
||||
## Offloading
|
||||
|
||||
The [`~ComponentsManager.enable_auto_cpu_offload`] method is a global offloading strategy that works across all models regardless of which pipeline is using them. Once enabled, you don't need to worry about device placement if you add or remove components.
|
||||
|
||||
```py
|
||||
comp.enable_auto_cpu_offload(device="cuda")
|
||||
manager.enable_auto_cpu_offload(device="cuda")
|
||||
```
|
||||
|
||||
All models begin on the CPU and [`ComponentsManager`] moves them to the appropriate device right before they're needed, and moves other models back to the CPU when GPU memory is low.
|
||||
|
||||
You can set your own rules for which models to offload first.
|
||||
Call [`~ComponentsManager.disable_auto_cpu_offload`] to disable offloading.
|
||||
|
||||
```py
|
||||
manager.disable_auto_cpu_offload()
|
||||
```
|
||||
|
||||
@@ -417,6 +417,7 @@ else:
|
||||
"Flux2AutoBlocks",
|
||||
"Flux2KleinAutoBlocks",
|
||||
"Flux2KleinBaseAutoBlocks",
|
||||
"Flux2KleinBaseModularPipeline",
|
||||
"Flux2KleinModularPipeline",
|
||||
"Flux2ModularPipeline",
|
||||
"FluxAutoBlocks",
|
||||
@@ -433,8 +434,13 @@ else:
|
||||
"QwenImageModularPipeline",
|
||||
"StableDiffusionXLAutoBlocks",
|
||||
"StableDiffusionXLModularPipeline",
|
||||
"Wan22AutoBlocks",
|
||||
"WanAutoBlocks",
|
||||
"Wan22Blocks",
|
||||
"Wan22Image2VideoBlocks",
|
||||
"Wan22Image2VideoModularPipeline",
|
||||
"Wan22ModularPipeline",
|
||||
"WanBlocks",
|
||||
"WanImage2VideoAutoBlocks",
|
||||
"WanImage2VideoModularPipeline",
|
||||
"WanModularPipeline",
|
||||
"ZImageAutoBlocks",
|
||||
"ZImageModularPipeline",
|
||||
@@ -1156,6 +1162,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
Flux2AutoBlocks,
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinBaseModularPipeline,
|
||||
Flux2KleinModularPipeline,
|
||||
Flux2ModularPipeline,
|
||||
FluxAutoBlocks,
|
||||
@@ -1172,8 +1179,13 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
QwenImageModularPipeline,
|
||||
StableDiffusionXLAutoBlocks,
|
||||
StableDiffusionXLModularPipeline,
|
||||
Wan22AutoBlocks,
|
||||
WanAutoBlocks,
|
||||
Wan22Blocks,
|
||||
Wan22Image2VideoBlocks,
|
||||
Wan22Image2VideoModularPipeline,
|
||||
Wan22ModularPipeline,
|
||||
WanBlocks,
|
||||
WanImage2VideoAutoBlocks,
|
||||
WanImage2VideoModularPipeline,
|
||||
WanModularPipeline,
|
||||
ZImageAutoBlocks,
|
||||
ZImageModularPipeline,
|
||||
|
||||
@@ -45,7 +45,16 @@ else:
|
||||
"InsertableDict",
|
||||
]
|
||||
_import_structure["stable_diffusion_xl"] = ["StableDiffusionXLAutoBlocks", "StableDiffusionXLModularPipeline"]
|
||||
_import_structure["wan"] = ["WanAutoBlocks", "Wan22AutoBlocks", "WanModularPipeline"]
|
||||
_import_structure["wan"] = [
|
||||
"WanBlocks",
|
||||
"Wan22Blocks",
|
||||
"WanImage2VideoAutoBlocks",
|
||||
"Wan22Image2VideoBlocks",
|
||||
"WanModularPipeline",
|
||||
"Wan22ModularPipeline",
|
||||
"WanImage2VideoModularPipeline",
|
||||
"Wan22Image2VideoModularPipeline",
|
||||
]
|
||||
_import_structure["flux"] = [
|
||||
"FluxAutoBlocks",
|
||||
"FluxModularPipeline",
|
||||
@@ -58,6 +67,7 @@ else:
|
||||
"Flux2KleinBaseAutoBlocks",
|
||||
"Flux2ModularPipeline",
|
||||
"Flux2KleinModularPipeline",
|
||||
"Flux2KleinBaseModularPipeline",
|
||||
]
|
||||
_import_structure["qwenimage"] = [
|
||||
"QwenImageAutoBlocks",
|
||||
@@ -88,6 +98,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
Flux2AutoBlocks,
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
Flux2KleinBaseModularPipeline,
|
||||
Flux2KleinModularPipeline,
|
||||
Flux2ModularPipeline,
|
||||
)
|
||||
@@ -112,7 +123,16 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
QwenImageModularPipeline,
|
||||
)
|
||||
from .stable_diffusion_xl import StableDiffusionXLAutoBlocks, StableDiffusionXLModularPipeline
|
||||
from .wan import Wan22AutoBlocks, WanAutoBlocks, WanModularPipeline
|
||||
from .wan import (
|
||||
Wan22Blocks,
|
||||
Wan22Image2VideoBlocks,
|
||||
Wan22Image2VideoModularPipeline,
|
||||
Wan22ModularPipeline,
|
||||
WanBlocks,
|
||||
WanImage2VideoAutoBlocks,
|
||||
WanImage2VideoModularPipeline,
|
||||
WanModularPipeline,
|
||||
)
|
||||
from .z_image import ZImageAutoBlocks, ZImageModularPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
@@ -55,7 +55,11 @@ else:
|
||||
"Flux2VaeEncoderSequentialStep",
|
||||
]
|
||||
_import_structure["modular_blocks_flux2_klein"] = ["Flux2KleinAutoBlocks", "Flux2KleinBaseAutoBlocks"]
|
||||
_import_structure["modular_pipeline"] = ["Flux2ModularPipeline", "Flux2KleinModularPipeline"]
|
||||
_import_structure["modular_pipeline"] = [
|
||||
"Flux2ModularPipeline",
|
||||
"Flux2KleinModularPipeline",
|
||||
"Flux2KleinBaseModularPipeline",
|
||||
]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -101,7 +105,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
Flux2KleinAutoBlocks,
|
||||
Flux2KleinBaseAutoBlocks,
|
||||
)
|
||||
from .modular_pipeline import Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
from .modular_pipeline import Flux2KleinBaseModularPipeline, Flux2KleinModularPipeline, Flux2ModularPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -13,8 +13,6 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from ...loaders import Flux2LoraLoaderMixin
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import ModularPipeline
|
||||
@@ -59,46 +57,35 @@ class Flux2ModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
|
||||
return num_channels_latents
|
||||
|
||||
|
||||
class Flux2KleinModularPipeline(ModularPipeline, Flux2LoraLoaderMixin):
|
||||
class Flux2KleinModularPipeline(Flux2ModularPipeline):
|
||||
"""
|
||||
A ModularPipeline for Flux2-Klein.
|
||||
A ModularPipeline for Flux2-Klein (distilled model).
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
if config_dict is not None and "is_distilled" in config_dict and config_dict["is_distilled"]:
|
||||
return "Flux2KleinAutoBlocks"
|
||||
else:
|
||||
return "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
@property
|
||||
def default_height(self):
|
||||
return self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
@property
|
||||
def default_width(self):
|
||||
return self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
@property
|
||||
def default_sample_size(self):
|
||||
return 128
|
||||
|
||||
@property
|
||||
def vae_scale_factor(self):
|
||||
vae_scale_factor = 8
|
||||
if getattr(self, "vae", None) is not None:
|
||||
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
return vae_scale_factor
|
||||
|
||||
@property
|
||||
def num_channels_latents(self):
|
||||
num_channels_latents = 32
|
||||
if getattr(self, "transformer", None):
|
||||
num_channels_latents = self.transformer.config.in_channels // 4
|
||||
return num_channels_latents
|
||||
default_blocks_name = "Flux2KleinAutoBlocks"
|
||||
|
||||
@property
|
||||
def requires_unconditional_embeds(self):
|
||||
if hasattr(self.config, "is_distilled") and self.config.is_distilled:
|
||||
return False
|
||||
|
||||
requires_unconditional_embeds = False
|
||||
if hasattr(self, "guider") and self.guider is not None:
|
||||
requires_unconditional_embeds = self.guider._enabled and self.guider.num_conditions > 1
|
||||
|
||||
return requires_unconditional_embeds
|
||||
|
||||
|
||||
class Flux2KleinBaseModularPipeline(Flux2ModularPipeline):
|
||||
"""
|
||||
A ModularPipeline for Flux2-Klein (base model).
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "Flux2KleinBaseAutoBlocks"
|
||||
|
||||
@property
|
||||
def requires_unconditional_embeds(self):
|
||||
|
||||
@@ -156,6 +156,12 @@ MELLON_PARAM_TEMPLATES = {
|
||||
"display": "slider",
|
||||
"required_block_params": ["layers"],
|
||||
},
|
||||
"output_type": {
|
||||
"label": "Output Type",
|
||||
"type": "dropdown",
|
||||
"default": "np",
|
||||
"options": ["np", "pil", "pt"],
|
||||
},
|
||||
# ControlNet
|
||||
"controlnet_conditioning_scale": {
|
||||
"label": "Controlnet Conditioning Scale",
|
||||
|
||||
@@ -54,19 +54,61 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# map regular pipeline to modular pipeline class name
|
||||
|
||||
|
||||
def _create_default_map_fn(pipeline_class_name: str):
|
||||
"""Create a mapping function that always returns the same pipeline class."""
|
||||
|
||||
def _map_fn(config_dict=None):
|
||||
return pipeline_class_name
|
||||
|
||||
return _map_fn
|
||||
|
||||
|
||||
def _flux2_klein_map_fn(config_dict=None):
|
||||
if config_dict is None:
|
||||
return "Flux2KleinModularPipeline"
|
||||
|
||||
if "is_distilled" in config_dict and config_dict["is_distilled"]:
|
||||
return "Flux2KleinModularPipeline"
|
||||
else:
|
||||
return "Flux2KleinBaseModularPipeline"
|
||||
|
||||
|
||||
def _wan_map_fn(config_dict=None):
|
||||
if config_dict is None:
|
||||
return "WanModularPipeline"
|
||||
|
||||
if "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
|
||||
return "Wan22ModularPipeline"
|
||||
else:
|
||||
return "WanModularPipeline"
|
||||
|
||||
|
||||
def _wan_i2v_map_fn(config_dict=None):
|
||||
if config_dict is None:
|
||||
return "WanImage2VideoModularPipeline"
|
||||
|
||||
if "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
|
||||
return "Wan22Image2VideoModularPipeline"
|
||||
else:
|
||||
return "WanImage2VideoModularPipeline"
|
||||
|
||||
|
||||
MODULAR_PIPELINE_MAPPING = OrderedDict(
|
||||
[
|
||||
("stable-diffusion-xl", "StableDiffusionXLModularPipeline"),
|
||||
("wan", "WanModularPipeline"),
|
||||
("flux", "FluxModularPipeline"),
|
||||
("flux-kontext", "FluxKontextModularPipeline"),
|
||||
("flux2", "Flux2ModularPipeline"),
|
||||
("flux2-klein", "Flux2KleinModularPipeline"),
|
||||
("qwenimage", "QwenImageModularPipeline"),
|
||||
("qwenimage-edit", "QwenImageEditModularPipeline"),
|
||||
("qwenimage-edit-plus", "QwenImageEditPlusModularPipeline"),
|
||||
("qwenimage-layered", "QwenImageLayeredModularPipeline"),
|
||||
("z-image", "ZImageModularPipeline"),
|
||||
("stable-diffusion-xl", _create_default_map_fn("StableDiffusionXLModularPipeline")),
|
||||
("wan", _wan_map_fn),
|
||||
("wan-i2v", _wan_i2v_map_fn),
|
||||
("flux", _create_default_map_fn("FluxModularPipeline")),
|
||||
("flux-kontext", _create_default_map_fn("FluxKontextModularPipeline")),
|
||||
("flux2", _create_default_map_fn("Flux2ModularPipeline")),
|
||||
("flux2-klein", _flux2_klein_map_fn),
|
||||
("qwenimage", _create_default_map_fn("QwenImageModularPipeline")),
|
||||
("qwenimage-edit", _create_default_map_fn("QwenImageEditModularPipeline")),
|
||||
("qwenimage-edit-plus", _create_default_map_fn("QwenImageEditPlusModularPipeline")),
|
||||
("qwenimage-layered", _create_default_map_fn("QwenImageLayeredModularPipeline")),
|
||||
("z-image", _create_default_map_fn("ZImageModularPipeline")),
|
||||
]
|
||||
)
|
||||
|
||||
@@ -368,7 +410,8 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
"""
|
||||
create a ModularPipeline, optionally accept pretrained_model_name_or_path to load from hub.
|
||||
"""
|
||||
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(self.model_name, ModularPipeline.__name__)
|
||||
map_fn = MODULAR_PIPELINE_MAPPING.get(self.model_name, _create_default_map_fn("ModularPipeline"))
|
||||
pipeline_class_name = map_fn()
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
pipeline_class = getattr(diffusers_module, pipeline_class_name)
|
||||
|
||||
@@ -1547,7 +1590,7 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
if modular_config_dict is not None:
|
||||
blocks_class_name = modular_config_dict.get("_blocks_class_name")
|
||||
else:
|
||||
blocks_class_name = self.get_default_blocks_name(config_dict)
|
||||
blocks_class_name = self.default_blocks_name
|
||||
if blocks_class_name is not None:
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
blocks_class = getattr(diffusers_module, blocks_class_name)
|
||||
@@ -1619,9 +1662,6 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
params[input_param.name] = input_param.default
|
||||
return params
|
||||
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
return self.default_blocks_name
|
||||
|
||||
@classmethod
|
||||
def _load_pipeline_config(
|
||||
cls,
|
||||
@@ -1717,7 +1757,8 @@ class ModularPipeline(ConfigMixin, PushToHubMixin):
|
||||
logger.debug(" try to determine the modular pipeline class from model_index.json")
|
||||
standard_pipeline_class = _get_pipeline_class(cls, config=config_dict)
|
||||
model_name = _get_model(standard_pipeline_class.__name__)
|
||||
pipeline_class_name = MODULAR_PIPELINE_MAPPING.get(model_name, ModularPipeline.__name__)
|
||||
map_fn = MODULAR_PIPELINE_MAPPING.get(model_name, _create_default_map_fn("ModularPipeline"))
|
||||
pipeline_class_name = map_fn(config_dict)
|
||||
diffusers_module = importlib.import_module("diffusers")
|
||||
pipeline_class = getattr(diffusers_module, pipeline_class_name)
|
||||
else:
|
||||
|
||||
@@ -21,16 +21,16 @@ except OptionalDependencyNotAvailable:
|
||||
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["decoders"] = ["WanImageVaeDecoderStep"]
|
||||
_import_structure["encoders"] = ["WanTextEncoderStep"]
|
||||
_import_structure["modular_blocks"] = [
|
||||
"ALL_BLOCKS",
|
||||
"Wan22AutoBlocks",
|
||||
"WanAutoBlocks",
|
||||
"WanAutoImageEncoderStep",
|
||||
"WanAutoVaeImageEncoderStep",
|
||||
_import_structure["modular_blocks_wan"] = ["WanBlocks"]
|
||||
_import_structure["modular_blocks_wan22"] = ["Wan22Blocks"]
|
||||
_import_structure["modular_blocks_wan22_i2v"] = ["Wan22Image2VideoBlocks"]
|
||||
_import_structure["modular_blocks_wan_i2v"] = ["WanImage2VideoAutoBlocks"]
|
||||
_import_structure["modular_pipeline"] = [
|
||||
"Wan22Image2VideoModularPipeline",
|
||||
"Wan22ModularPipeline",
|
||||
"WanImage2VideoModularPipeline",
|
||||
"WanModularPipeline",
|
||||
]
|
||||
_import_structure["modular_pipeline"] = ["WanModularPipeline"]
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -39,16 +39,16 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
except OptionalDependencyNotAvailable:
|
||||
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
|
||||
else:
|
||||
from .decoders import WanImageVaeDecoderStep
|
||||
from .encoders import WanTextEncoderStep
|
||||
from .modular_blocks import (
|
||||
ALL_BLOCKS,
|
||||
Wan22AutoBlocks,
|
||||
WanAutoBlocks,
|
||||
WanAutoImageEncoderStep,
|
||||
WanAutoVaeImageEncoderStep,
|
||||
from .modular_blocks_wan import WanBlocks
|
||||
from .modular_blocks_wan22 import Wan22Blocks
|
||||
from .modular_blocks_wan22_i2v import Wan22Image2VideoBlocks
|
||||
from .modular_blocks_wan_i2v import WanImage2VideoAutoBlocks
|
||||
from .modular_pipeline import (
|
||||
Wan22Image2VideoModularPipeline,
|
||||
Wan22ModularPipeline,
|
||||
WanImage2VideoModularPipeline,
|
||||
WanModularPipeline,
|
||||
)
|
||||
from .modular_pipeline import WanModularPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
@@ -280,7 +280,7 @@ class WanAdditionalInputsStep(ModularPipelineBlocks):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_latent_inputs: List[str] = ["first_frame_latents"],
|
||||
image_latent_inputs: List[str] = ["image_condition_latents"],
|
||||
additional_batch_inputs: List[str] = [],
|
||||
):
|
||||
"""Initialize a configurable step that standardizes the inputs for the denoising step. It:\n"
|
||||
@@ -294,20 +294,16 @@ class WanAdditionalInputsStep(ModularPipelineBlocks):
|
||||
Args:
|
||||
image_latent_inputs (List[str], optional): Names of image latent tensors to process.
|
||||
In additional to adjust batch size of these inputs, they will be used to determine height/width. Can be
|
||||
a single string or list of strings. Defaults to ["first_frame_latents"].
|
||||
a single string or list of strings. Defaults to ["image_condition_latents"].
|
||||
additional_batch_inputs (List[str], optional):
|
||||
Names of additional conditional input tensors to expand batch size. These tensors will only have their
|
||||
batch dimensions adjusted to match the final batch size. Can be a single string or list of strings.
|
||||
Defaults to [].
|
||||
|
||||
Examples:
|
||||
# Configure to process first_frame_latents (default behavior) WanAdditionalInputsStep()
|
||||
|
||||
# Configure to process multiple image latent inputs
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents", "last_frame_latents"])
|
||||
|
||||
# Configure to process image latents and additional batch inputs WanAdditionalInputsStep(
|
||||
image_latent_inputs=["first_frame_latents"], additional_batch_inputs=["image_embeds"]
|
||||
# Configure to process image_condition_latents (default behavior) WanAdditionalInputsStep() # Configure to
|
||||
process image latents and additional batch inputs WanAdditionalInputsStep(
|
||||
image_latent_inputs=["image_condition_latents"], additional_batch_inputs=["image_embeds"]
|
||||
)
|
||||
"""
|
||||
if not isinstance(image_latent_inputs, list):
|
||||
@@ -557,81 +553,3 @@ class WanPrepareLatentsStep(ModularPipelineBlocks):
|
||||
self.set_block_state(state, block_state)
|
||||
|
||||
return components, state
|
||||
|
||||
|
||||
class WanPrepareFirstFrameLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "step that prepares the masked first frame latents and add it to the latent condition"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("first_frame_latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_frames", type_hint=int),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
batch_size, _, _, latent_height, latent_width = block_state.first_frame_latents.shape
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, block_state.num_frames))] = 0
|
||||
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(
|
||||
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
||||
)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(
|
||||
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
||||
)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(block_state.first_frame_latents.device)
|
||||
block_state.first_frame_latents = torch.concat([mask_lat_size, block_state.first_frame_latents], dim=1)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanPrepareFirstLastFrameLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "step that prepares the masked latents with first and last frames and add it to the latent condition"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("first_last_frame_latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_frames", type_hint=int),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
batch_size, _, _, latent_height, latent_width = block_state.first_last_frame_latents.shape
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, block_state.num_frames - 1))] = 0
|
||||
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(
|
||||
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
||||
)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(
|
||||
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
||||
)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(block_state.first_last_frame_latents.device)
|
||||
block_state.first_last_frame_latents = torch.concat(
|
||||
[mask_lat_size, block_state.first_last_frame_latents], dim=1
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -29,7 +29,7 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
class WanImageVaeDecoderStep(ModularPipelineBlocks):
|
||||
class WanVaeDecoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
@@ -56,7 +56,10 @@ class WanImageVaeDecoderStep(ModularPipelineBlocks):
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoised latents from the denoising step",
|
||||
)
|
||||
),
|
||||
InputParam(
|
||||
"output_type", default="np", type_hint=str, description="The output type of the decoded videos"
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -87,7 +90,8 @@ class WanImageVaeDecoderStep(ModularPipelineBlocks):
|
||||
latents = latents.to(vae_dtype)
|
||||
block_state.videos = components.vae.decode(latents, return_dict=False)[0]
|
||||
|
||||
block_state.videos = components.video_processor.postprocess_video(block_state.videos, output_type="np")
|
||||
output_type = getattr(block_state, "output_type", "np")
|
||||
block_state.videos = components.video_processor.postprocess_video(block_state.videos, output_type=output_type)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
|
||||
|
||||
@@ -89,52 +89,10 @@ class WanImage2VideoLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"first_frame_latents",
|
||||
"image_condition_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The first frame latents to use for the denoising process. Can be generated in prepare_first_frame_latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"dtype",
|
||||
required=True,
|
||||
type_hint=torch.dtype,
|
||||
description="The dtype of the model inputs. Can be generated in input step.",
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
||||
block_state.latent_model_input = torch.cat([block_state.latents, block_state.first_frame_latents], dim=1).to(
|
||||
block_state.dtype
|
||||
)
|
||||
return components, block_state
|
||||
|
||||
|
||||
class WanFLF2VLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"step within the denoising loop that prepares the latent input for the denoiser. "
|
||||
"This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
|
||||
"object (e.g. `WanDenoiseLoopWrapper`)"
|
||||
)
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"first_last_frame_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The first and last frame latents to use for the denoising process. Can be generated in prepare_first_last_frame_latents step.",
|
||||
description="The image condition latents to use for the denoising process. Can be generated in prepare_first_frame_latents/prepare_first_last_frame_latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"dtype",
|
||||
@@ -147,7 +105,7 @@ class WanFLF2VLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: WanModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
|
||||
block_state.latent_model_input = torch.cat(
|
||||
[block_state.latents, block_state.first_last_frame_latents], dim=1
|
||||
[block_state.latents, block_state.image_condition_latents], dim=1
|
||||
).to(block_state.dtype)
|
||||
return components, block_state
|
||||
|
||||
@@ -584,29 +542,3 @@ class Wan22Image2VideoDenoiseStep(WanDenoiseLoopWrapper):
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports image-to-video tasks for Wan2.2."
|
||||
)
|
||||
|
||||
|
||||
class WanFLF2VDenoiseStep(WanDenoiseLoopWrapper):
|
||||
block_classes = [
|
||||
WanFLF2VLoopBeforeDenoiser,
|
||||
WanLoopDenoiser(
|
||||
guider_input_fields={
|
||||
"encoder_hidden_states": ("prompt_embeds", "negative_prompt_embeds"),
|
||||
"encoder_hidden_states_image": "image_embeds",
|
||||
}
|
||||
),
|
||||
WanLoopAfterDenoiser,
|
||||
]
|
||||
block_names = ["before_denoiser", "denoiser", "after_denoiser"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `WanDenoiseLoopWrapper.__call__` method \n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
|
||||
" - `WanFLF2VLoopBeforeDenoiser`\n"
|
||||
" - `WanLoopDenoiser`\n"
|
||||
" - `WanLoopAfterDenoiser`\n"
|
||||
"This block supports FLF2V tasks for wan2.1."
|
||||
)
|
||||
|
||||
@@ -468,7 +468,7 @@ class WanFirstLastFrameImageEncoderStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class WanVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
class WanVaeEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
@@ -493,7 +493,7 @@ class WanVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
InputParam("resized_image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("height"),
|
||||
InputParam("width"),
|
||||
InputParam("num_frames"),
|
||||
InputParam("num_frames", type_hint=int, default=81),
|
||||
InputParam("generator"),
|
||||
]
|
||||
|
||||
@@ -564,7 +564,51 @@ class WanVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
class WanFirstLastFrameVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
class WanPrepareFirstFrameLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "step that prepares the masked first frame latents and add it to the latent condition"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("first_frame_latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_frames", required=True),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("image_condition_latents", type_hint=Optional[torch.Tensor]),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
batch_size, _, _, latent_height, latent_width = block_state.first_frame_latents.shape
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, block_state.num_frames))] = 0
|
||||
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(
|
||||
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
||||
)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(
|
||||
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
||||
)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(block_state.first_frame_latents.device)
|
||||
block_state.image_condition_latents = torch.concat([mask_lat_size, block_state.first_frame_latents], dim=1)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanFirstLastFrameVaeEncoderStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
@@ -590,7 +634,7 @@ class WanFirstLastFrameVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
InputParam("resized_last_image", type_hint=PIL.Image.Image, required=True),
|
||||
InputParam("height"),
|
||||
InputParam("width"),
|
||||
InputParam("num_frames"),
|
||||
InputParam("num_frames", type_hint=int, default=81),
|
||||
InputParam("generator"),
|
||||
]
|
||||
|
||||
@@ -667,3 +711,49 @@ class WanFirstLastFrameVaeImageEncoderStep(ModularPipelineBlocks):
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
|
||||
class WanPrepareFirstLastFrameLatentsStep(ModularPipelineBlocks):
|
||||
model_name = "wan"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "step that prepares the masked latents with first and last frames and add it to the latent condition"
|
||||
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("first_last_frame_latents", type_hint=Optional[torch.Tensor]),
|
||||
InputParam("num_frames", type_hint=int, required=True),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("image_condition_latents", type_hint=Optional[torch.Tensor]),
|
||||
]
|
||||
|
||||
def __call__(self, components: WanModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
batch_size, _, _, latent_height, latent_width = block_state.first_last_frame_latents.shape
|
||||
|
||||
mask_lat_size = torch.ones(batch_size, 1, block_state.num_frames, latent_height, latent_width)
|
||||
mask_lat_size[:, :, list(range(1, block_state.num_frames - 1))] = 0
|
||||
|
||||
first_frame_mask = mask_lat_size[:, :, 0:1]
|
||||
first_frame_mask = torch.repeat_interleave(
|
||||
first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal
|
||||
)
|
||||
mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
|
||||
mask_lat_size = mask_lat_size.view(
|
||||
batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width
|
||||
)
|
||||
mask_lat_size = mask_lat_size.transpose(1, 2)
|
||||
mask_lat_size = mask_lat_size.to(block_state.first_last_frame_latents.device)
|
||||
block_state.image_condition_latents = torch.concat(
|
||||
[mask_lat_size, block_state.first_last_frame_latents], dim=1
|
||||
)
|
||||
|
||||
self.set_block_state(state, block_state)
|
||||
return components, state
|
||||
|
||||
@@ -1,474 +0,0 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict
|
||||
from .before_denoise import (
|
||||
WanAdditionalInputsStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
WanPrepareFirstLastFrameLatentsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanSetTimestepsStep,
|
||||
WanTextInputStep,
|
||||
)
|
||||
from .decoders import WanImageVaeDecoderStep
|
||||
from .denoise import (
|
||||
Wan22DenoiseStep,
|
||||
Wan22Image2VideoDenoiseStep,
|
||||
WanDenoiseStep,
|
||||
WanFLF2VDenoiseStep,
|
||||
WanImage2VideoDenoiseStep,
|
||||
)
|
||||
from .encoders import (
|
||||
WanFirstLastFrameImageEncoderStep,
|
||||
WanFirstLastFrameVaeImageEncoderStep,
|
||||
WanImageCropResizeStep,
|
||||
WanImageEncoderStep,
|
||||
WanImageResizeStep,
|
||||
WanTextEncoderStep,
|
||||
WanVaeImageEncoderStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# wan2.1
|
||||
# wan2.1: text2vid
|
||||
class WanCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanDenoiseStep,
|
||||
]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.1: image2video
|
||||
## image encoder
|
||||
class WanImage2VideoImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanImageEncoderStep]
|
||||
block_names = ["image_resize", "image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Image Encoder step that resize the image and encode the image to generate the image embeddings"
|
||||
|
||||
|
||||
## vae encoder
|
||||
class WanImage2VideoVaeImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanVaeImageEncoderStep]
|
||||
block_names = ["image_resize", "vae_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
|
||||
|
||||
|
||||
## denoise
|
||||
class WanImage2VideoCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
WanImage2VideoDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"prepare_first_frame_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanPrepareFirstFrameLatentsStep` is used to prepare the first frame latent conditions\n"
|
||||
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.1: FLF2v
|
||||
|
||||
|
||||
## image encoder
|
||||
class WanFLF2VImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameImageEncoderStep]
|
||||
block_names = ["image_resize", "last_image_resize", "image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "FLF2V Image Encoder step that resize and encode and encode the first and last frame images to generate the image embeddings"
|
||||
|
||||
|
||||
## vae encoder
|
||||
class WanFLF2VVaeImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameVaeImageEncoderStep]
|
||||
block_names = ["image_resize", "last_image_resize", "vae_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "FLF2V Vae Image Encoder step that resize and encode and encode the first and last frame images to generate the latent conditions"
|
||||
|
||||
|
||||
## denoise
|
||||
class WanFLF2VCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanPrepareFirstLastFrameLatentsStep,
|
||||
WanFLF2VDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"prepare_first_last_frame_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanPrepareFirstLastFrameLatentsStep` is used to prepare the latent conditions\n"
|
||||
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.1: auto blocks
|
||||
## image encoder
|
||||
class WanAutoImageEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [WanFLF2VImageEncoderStep, WanImage2VideoImageEncoderStep]
|
||||
block_names = ["flf2v_image_encoder", "image2video_image_encoder"]
|
||||
block_trigger_inputs = ["last_image", "image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Image Encoder step that encode the image to generate the image embeddings"
|
||||
+ "This is an auto pipeline block that works for image2video tasks."
|
||||
+ " - `WanFLF2VImageEncoderStep` (flf2v) is used when `last_image` is provided."
|
||||
+ " - `WanImage2VideoImageEncoderStep` (image2video) is used when `image` is provided."
|
||||
+ " - if `last_image` or `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
## vae encoder
|
||||
class WanAutoVaeImageEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [WanFLF2VVaeImageEncoderStep, WanImage2VideoVaeImageEncoderStep]
|
||||
block_names = ["flf2v_vae_encoder", "image2video_vae_encoder"]
|
||||
block_trigger_inputs = ["last_image", "image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Vae Image Encoder step that encode the image to generate the image latents"
|
||||
+ "This is an auto pipeline block that works for image2video tasks."
|
||||
+ " - `WanFLF2VVaeImageEncoderStep` (flf2v) is used when `last_image` is provided."
|
||||
+ " - `WanImage2VideoVaeImageEncoderStep` (image2video) is used when `image` is provided."
|
||||
+ " - if `last_image` or `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
## denoise
|
||||
class WanAutoDenoiseStep(AutoPipelineBlocks):
|
||||
block_classes = [
|
||||
WanFLF2VCoreDenoiseStep,
|
||||
WanImage2VideoCoreDenoiseStep,
|
||||
WanCoreDenoiseStep,
|
||||
]
|
||||
block_names = ["flf2v", "image2video", "text2video"]
|
||||
block_trigger_inputs = ["first_last_frame_latents", "first_frame_latents", None]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. "
|
||||
"This is a auto pipeline block that works for text2video and image2video tasks."
|
||||
" - `WanCoreDenoiseStep` (text2video) for text2vid tasks."
|
||||
" - `WanCoreImage2VideoCoreDenoiseStep` (image2video) for image2video tasks."
|
||||
+ " - if `first_frame_latents` is provided, `WanCoreImage2VideoDenoiseStep` will be used.\n"
|
||||
+ " - if `first_frame_latents` is not provided, `WanCoreDenoiseStep` will be used.\n"
|
||||
)
|
||||
|
||||
|
||||
# auto pipeline blocks
|
||||
class WanAutoBlocks(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanAutoImageEncoderStep,
|
||||
WanAutoVaeImageEncoderStep,
|
||||
WanAutoDenoiseStep,
|
||||
WanImageVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"image_encoder",
|
||||
"vae_encoder",
|
||||
"denoise",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto Modular pipeline for text-to-video using Wan.\n"
|
||||
+ "- for text-to-video generation, all you need to provide is `prompt`"
|
||||
)
|
||||
|
||||
|
||||
# wan22
|
||||
# wan2.2: text2vid
|
||||
|
||||
|
||||
## denoise
|
||||
class Wan22CoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
Wan22DenoiseStep,
|
||||
]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `Wan22DenoiseStep` is used to denoise the latents in wan2.2\n"
|
||||
)
|
||||
|
||||
|
||||
# wan2.2: image2video
|
||||
## denoise
|
||||
class Wan22Image2VideoCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
Wan22Image2VideoDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"prepare_first_frame_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanPrepareFirstFrameLatentsStep` is used to prepare the first frame latent conditions\n"
|
||||
+ " - `Wan22Image2VideoDenoiseStep` is used to denoise the latents in wan2.2\n"
|
||||
)
|
||||
|
||||
|
||||
class Wan22AutoDenoiseStep(AutoPipelineBlocks):
|
||||
block_classes = [
|
||||
Wan22Image2VideoCoreDenoiseStep,
|
||||
Wan22CoreDenoiseStep,
|
||||
]
|
||||
block_names = ["image2video", "text2video"]
|
||||
block_trigger_inputs = ["first_frame_latents", None]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. "
|
||||
"This is a auto pipeline block that works for text2video and image2video tasks."
|
||||
" - `Wan22Image2VideoCoreDenoiseStep` (image2video) for image2video tasks."
|
||||
" - `Wan22CoreDenoiseStep` (text2video) for text2vid tasks."
|
||||
+ " - if `first_frame_latents` is provided, `Wan22Image2VideoCoreDenoiseStep` will be used.\n"
|
||||
+ " - if `first_frame_latents` is not provided, `Wan22CoreDenoiseStep` will be used.\n"
|
||||
)
|
||||
|
||||
|
||||
class Wan22AutoBlocks(SequentialPipelineBlocks):
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanAutoVaeImageEncoderStep,
|
||||
Wan22AutoDenoiseStep,
|
||||
WanImageVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"vae_encoder",
|
||||
"denoise",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto Modular pipeline for text-to-video using Wan2.2.\n"
|
||||
+ "- for text-to-video generation, all you need to provide is `prompt`"
|
||||
)
|
||||
|
||||
|
||||
# presets for wan2.1 and wan2.2
|
||||
# YiYi Notes: should we move these to doc?
|
||||
# wan2.1
|
||||
TEXT2VIDEO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("denoise", WanDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
IMAGE2VIDEO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("image_resize", WanImageResizeStep),
|
||||
("image_encoder", WanImage2VideoImageEncoderStep),
|
||||
("vae_encoder", WanImage2VideoVaeImageEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_frame_latents"])),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("prepare_first_frame_latents", WanPrepareFirstFrameLatentsStep),
|
||||
("denoise", WanImage2VideoDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
FLF2V_BLOCKS = InsertableDict(
|
||||
[
|
||||
("image_resize", WanImageResizeStep),
|
||||
("last_image_resize", WanImageCropResizeStep),
|
||||
("image_encoder", WanFLF2VImageEncoderStep),
|
||||
("vae_encoder", WanFLF2VVaeImageEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("additional_inputs", WanAdditionalInputsStep(image_latent_inputs=["first_last_frame_latents"])),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("prepare_first_last_frame_latents", WanPrepareFirstLastFrameLatentsStep),
|
||||
("denoise", WanFLF2VDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("image_encoder", WanAutoImageEncoderStep),
|
||||
("vae_encoder", WanAutoVaeImageEncoderStep),
|
||||
("denoise", WanAutoDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
# wan2.2 presets
|
||||
|
||||
TEXT2VIDEO_BLOCKS_WAN22 = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("denoise", Wan22DenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
IMAGE2VIDEO_BLOCKS_WAN22 = InsertableDict(
|
||||
[
|
||||
("image_resize", WanImageResizeStep),
|
||||
("vae_encoder", WanImage2VideoVaeImageEncoderStep),
|
||||
("input", WanTextInputStep),
|
||||
("set_timesteps", WanSetTimestepsStep),
|
||||
("prepare_latents", WanPrepareLatentsStep),
|
||||
("denoise", Wan22DenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
AUTO_BLOCKS_WAN22 = InsertableDict(
|
||||
[
|
||||
("text_encoder", WanTextEncoderStep),
|
||||
("vae_encoder", WanAutoVaeImageEncoderStep),
|
||||
("denoise", Wan22AutoDenoiseStep),
|
||||
("decode", WanImageVaeDecoderStep),
|
||||
]
|
||||
)
|
||||
|
||||
# presets all blocks (wan and wan22)
|
||||
|
||||
|
||||
ALL_BLOCKS = {
|
||||
"wan2.1": {
|
||||
"text2video": TEXT2VIDEO_BLOCKS,
|
||||
"image2video": IMAGE2VIDEO_BLOCKS,
|
||||
"flf2v": FLF2V_BLOCKS,
|
||||
"auto": AUTO_BLOCKS,
|
||||
},
|
||||
"wan2.2": {
|
||||
"text2video": TEXT2VIDEO_BLOCKS_WAN22,
|
||||
"image2video": IMAGE2VIDEO_BLOCKS_WAN22,
|
||||
"auto": AUTO_BLOCKS_WAN22,
|
||||
},
|
||||
}
|
||||
83
src/diffusers/modular_pipelines/wan/modular_blocks_wan.py
Normal file
83
src/diffusers/modular_pipelines/wan/modular_blocks_wan.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import SequentialPipelineBlocks
|
||||
from .before_denoise import (
|
||||
WanPrepareLatentsStep,
|
||||
WanSetTimestepsStep,
|
||||
WanTextInputStep,
|
||||
)
|
||||
from .decoders import WanVaeDecoderStep
|
||||
from .denoise import (
|
||||
WanDenoiseStep,
|
||||
)
|
||||
from .encoders import (
|
||||
WanTextEncoderStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# ====================
|
||||
# 1. DENOISE
|
||||
# ====================
|
||||
|
||||
|
||||
# inputs(text) -> set_timesteps -> prepare_latents -> denoise
|
||||
class WanCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanDenoiseStep,
|
||||
]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# ====================
|
||||
# 2. BLOCKS (Wan2.1 text2video)
|
||||
# ====================
|
||||
|
||||
|
||||
class WanBlocks(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanCoreDenoiseStep,
|
||||
WanVaeDecoderStep,
|
||||
]
|
||||
block_names = ["text_encoder", "denoise", "decode"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Modular pipeline blocks for Wan2.1.\n"
|
||||
+ "- `WanTextEncoderStep` is used to encode the text\n"
|
||||
+ "- `WanCoreDenoiseStep` is used to denoise the latents\n"
|
||||
+ "- `WanVaeDecoderStep` is used to decode the latents to images"
|
||||
)
|
||||
88
src/diffusers/modular_pipelines/wan/modular_blocks_wan22.py
Normal file
88
src/diffusers/modular_pipelines/wan/modular_blocks_wan22.py
Normal file
@@ -0,0 +1,88 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import SequentialPipelineBlocks
|
||||
from .before_denoise import (
|
||||
WanPrepareLatentsStep,
|
||||
WanSetTimestepsStep,
|
||||
WanTextInputStep,
|
||||
)
|
||||
from .decoders import WanVaeDecoderStep
|
||||
from .denoise import (
|
||||
Wan22DenoiseStep,
|
||||
)
|
||||
from .encoders import (
|
||||
WanTextEncoderStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# ====================
|
||||
# 1. DENOISE
|
||||
# ====================
|
||||
|
||||
# inputs(text) -> set_timesteps -> prepare_latents -> denoise
|
||||
|
||||
|
||||
class Wan22CoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
Wan22DenoiseStep,
|
||||
]
|
||||
block_names = ["input", "set_timesteps", "prepare_latents", "denoise"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `Wan22DenoiseStep` is used to denoise the latents in wan2.2\n"
|
||||
)
|
||||
|
||||
|
||||
# ====================
|
||||
# 2. BLOCKS (Wan2.2 text2video)
|
||||
# ====================
|
||||
|
||||
|
||||
class Wan22Blocks(SequentialPipelineBlocks):
|
||||
model_name = "wan"
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
Wan22CoreDenoiseStep,
|
||||
WanVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"denoise",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Modular pipeline for text-to-video using Wan2.2.\n"
|
||||
+ " - `WanTextEncoderStep` encodes the text\n"
|
||||
+ " - `Wan22CoreDenoiseStep` denoes the latents\n"
|
||||
+ " - `WanVaeDecoderStep` decodes the latents to video frames\n"
|
||||
)
|
||||
117
src/diffusers/modular_pipelines/wan/modular_blocks_wan22_i2v.py
Normal file
117
src/diffusers/modular_pipelines/wan/modular_blocks_wan22_i2v.py
Normal file
@@ -0,0 +1,117 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import SequentialPipelineBlocks
|
||||
from .before_denoise import (
|
||||
WanAdditionalInputsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanSetTimestepsStep,
|
||||
WanTextInputStep,
|
||||
)
|
||||
from .decoders import WanVaeDecoderStep
|
||||
from .denoise import (
|
||||
Wan22Image2VideoDenoiseStep,
|
||||
)
|
||||
from .encoders import (
|
||||
WanImageResizeStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
WanTextEncoderStep,
|
||||
WanVaeEncoderStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
# ====================
|
||||
# 1. VAE ENCODER
|
||||
# ====================
|
||||
|
||||
|
||||
class WanImage2VideoVaeEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [WanImageResizeStep, WanVaeEncoderStep, WanPrepareFirstFrameLatentsStep]
|
||||
block_names = ["image_resize", "vae_encoder", "prepare_first_frame_latents"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
|
||||
|
||||
|
||||
# ====================
|
||||
# 2. DENOISE
|
||||
# ====================
|
||||
|
||||
|
||||
# inputs (text + image_condition_latents) -> set_timesteps -> prepare_latents -> denoise (latents)
|
||||
class Wan22Image2VideoCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["image_condition_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
Wan22Image2VideoDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `Wan22Image2VideoDenoiseStep` is used to denoise the latents in wan2.2\n"
|
||||
)
|
||||
|
||||
|
||||
# ====================
|
||||
# 3. BLOCKS (Wan2.2 Image2Video)
|
||||
# ====================
|
||||
|
||||
|
||||
class Wan22Image2VideoBlocks(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanImage2VideoVaeEncoderStep,
|
||||
Wan22Image2VideoCoreDenoiseStep,
|
||||
WanVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"vae_encoder",
|
||||
"denoise",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Modular pipeline for image-to-video using Wan2.2.\n"
|
||||
+ " - `WanTextEncoderStep` encodes the text\n"
|
||||
+ " - `WanImage2VideoVaeEncoderStep` encodes the image\n"
|
||||
+ " - `Wan22Image2VideoCoreDenoiseStep` denoes the latents\n"
|
||||
+ " - `WanVaeDecoderStep` decodes the latents to video frames\n"
|
||||
)
|
||||
203
src/diffusers/modular_pipelines/wan/modular_blocks_wan_i2v.py
Normal file
203
src/diffusers/modular_pipelines/wan/modular_blocks_wan_i2v.py
Normal file
@@ -0,0 +1,203 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
|
||||
from .before_denoise import (
|
||||
WanAdditionalInputsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanSetTimestepsStep,
|
||||
WanTextInputStep,
|
||||
)
|
||||
from .decoders import WanVaeDecoderStep
|
||||
from .denoise import (
|
||||
WanImage2VideoDenoiseStep,
|
||||
)
|
||||
from .encoders import (
|
||||
WanFirstLastFrameImageEncoderStep,
|
||||
WanFirstLastFrameVaeEncoderStep,
|
||||
WanImageCropResizeStep,
|
||||
WanImageEncoderStep,
|
||||
WanImageResizeStep,
|
||||
WanPrepareFirstFrameLatentsStep,
|
||||
WanPrepareFirstLastFrameLatentsStep,
|
||||
WanTextEncoderStep,
|
||||
WanVaeEncoderStep,
|
||||
)
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
# ====================
|
||||
# 1. IMAGE ENCODER
|
||||
# ====================
|
||||
|
||||
|
||||
# wan2.1 I2V (first frame only)
|
||||
class WanImage2VideoImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [WanImageResizeStep, WanImageEncoderStep]
|
||||
block_names = ["image_resize", "image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Image Encoder step that resize the image and encode the image to generate the image embeddings"
|
||||
|
||||
|
||||
# wan2.1 FLF2V (first and last frame)
|
||||
class WanFLF2VImageEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [WanImageResizeStep, WanImageCropResizeStep, WanFirstLastFrameImageEncoderStep]
|
||||
block_names = ["image_resize", "last_image_resize", "image_encoder"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "FLF2V Image Encoder step that resize and encode and encode the first and last frame images to generate the image embeddings"
|
||||
|
||||
|
||||
# wan2.1 Auto Image Encoder
|
||||
class WanAutoImageEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [WanFLF2VImageEncoderStep, WanImage2VideoImageEncoderStep]
|
||||
block_names = ["flf2v_image_encoder", "image2video_image_encoder"]
|
||||
block_trigger_inputs = ["last_image", "image"]
|
||||
model_name = "wan-i2v"
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Image Encoder step that encode the image to generate the image embeddings"
|
||||
+ "This is an auto pipeline block that works for image2video tasks."
|
||||
+ " - `WanFLF2VImageEncoderStep` (flf2v) is used when `last_image` is provided."
|
||||
+ " - `WanImage2VideoImageEncoderStep` (image2video) is used when `image` is provided."
|
||||
+ " - if `last_image` or `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
# ====================
|
||||
# 2. VAE ENCODER
|
||||
# ====================
|
||||
|
||||
|
||||
# wan2.1 I2V (first frame only)
|
||||
class WanImage2VideoVaeEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [WanImageResizeStep, WanVaeEncoderStep, WanPrepareFirstFrameLatentsStep]
|
||||
block_names = ["image_resize", "vae_encoder", "prepare_first_frame_latents"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "Image2Video Vae Image Encoder step that resize the image and encode the first frame image to its latent representation"
|
||||
|
||||
|
||||
# wan2.1 FLF2V (first and last frame)
|
||||
class WanFLF2VVaeEncoderStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [
|
||||
WanImageResizeStep,
|
||||
WanImageCropResizeStep,
|
||||
WanFirstLastFrameVaeEncoderStep,
|
||||
WanPrepareFirstLastFrameLatentsStep,
|
||||
]
|
||||
block_names = ["image_resize", "last_image_resize", "vae_encoder", "prepare_first_last_frame_latents"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return "FLF2V Vae Image Encoder step that resize and encode and encode the first and last frame images to generate the latent conditions"
|
||||
|
||||
|
||||
# wan2.1 Auto Vae Encoder
|
||||
class WanAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [WanFLF2VVaeEncoderStep, WanImage2VideoVaeEncoderStep]
|
||||
block_names = ["flf2v_vae_encoder", "image2video_vae_encoder"]
|
||||
block_trigger_inputs = ["last_image", "image"]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Vae Image Encoder step that encode the image to generate the image latents"
|
||||
+ "This is an auto pipeline block that works for image2video tasks."
|
||||
+ " - `WanFLF2VVaeEncoderStep` (flf2v) is used when `last_image` is provided."
|
||||
+ " - `WanImage2VideoVaeEncoderStep` (image2video) is used when `image` is provided."
|
||||
+ " - if `last_image` or `image` is not provided, step will be skipped."
|
||||
)
|
||||
|
||||
|
||||
# ====================
|
||||
# 3. DENOISE (inputs -> set_timesteps -> prepare_latents -> denoise)
|
||||
# ====================
|
||||
|
||||
|
||||
# wan2.1 I2V core denoise (support both I2V and FLF2V)
|
||||
# inputs (text + image_condition_latents) -> set_timesteps -> prepare_latents -> denoise (latents)
|
||||
class WanImage2VideoCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [
|
||||
WanTextInputStep,
|
||||
WanAdditionalInputsStep(image_latent_inputs=["image_condition_latents"]),
|
||||
WanSetTimestepsStep,
|
||||
WanPrepareLatentsStep,
|
||||
WanImage2VideoDenoiseStep,
|
||||
]
|
||||
block_names = [
|
||||
"input",
|
||||
"additional_inputs",
|
||||
"set_timesteps",
|
||||
"prepare_latents",
|
||||
"denoise",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"denoise block that takes encoded text and image latent conditions and runs the denoising process.\n"
|
||||
+ "This is a sequential pipeline blocks:\n"
|
||||
+ " - `WanTextInputStep` is used to adjust the batch size of the model inputs\n"
|
||||
+ " - `WanAdditionalInputsStep` is used to adjust the batch size of the latent conditions\n"
|
||||
+ " - `WanSetTimestepsStep` is used to set the timesteps\n"
|
||||
+ " - `WanPrepareLatentsStep` is used to prepare the latents\n"
|
||||
+ " - `WanImage2VideoDenoiseStep` is used to denoise the latents\n"
|
||||
)
|
||||
|
||||
|
||||
# ====================
|
||||
# 4. BLOCKS (Wan2.1 Image2Video)
|
||||
# ====================
|
||||
|
||||
|
||||
# wan2.1 Image2Video Auto Blocks
|
||||
class WanImage2VideoAutoBlocks(SequentialPipelineBlocks):
|
||||
model_name = "wan-i2v"
|
||||
block_classes = [
|
||||
WanTextEncoderStep,
|
||||
WanAutoImageEncoderStep,
|
||||
WanAutoVaeEncoderStep,
|
||||
WanImage2VideoCoreDenoiseStep,
|
||||
WanVaeDecoderStep,
|
||||
]
|
||||
block_names = [
|
||||
"text_encoder",
|
||||
"image_encoder",
|
||||
"vae_encoder",
|
||||
"denoise",
|
||||
"decode",
|
||||
]
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto Modular pipeline for image-to-video using Wan.\n"
|
||||
+ "- for I2V workflow, all you need to provide is `image`"
|
||||
+ "- for FLF2V workflow, all you need to provide is `last_image` and `image`"
|
||||
)
|
||||
@@ -13,8 +13,6 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from ...loaders import WanLoraLoaderMixin
|
||||
from ...pipelines.pipeline_utils import StableDiffusionMixin
|
||||
from ...utils import logging
|
||||
@@ -30,19 +28,12 @@ class WanModularPipeline(
|
||||
WanLoraLoaderMixin,
|
||||
):
|
||||
"""
|
||||
A ModularPipeline for Wan.
|
||||
A ModularPipeline for Wan2.1 text2video.
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "WanAutoBlocks"
|
||||
|
||||
# override the default_blocks_name in base class, which is just return self.default_blocks_name
|
||||
def get_default_blocks_name(self, config_dict: Optional[Dict[str, Any]]) -> Optional[str]:
|
||||
if config_dict is not None and "boundary_ratio" in config_dict and config_dict["boundary_ratio"] is not None:
|
||||
return "Wan22AutoBlocks"
|
||||
else:
|
||||
return "WanAutoBlocks"
|
||||
default_blocks_name = "WanBlocks"
|
||||
|
||||
@property
|
||||
def default_height(self):
|
||||
@@ -118,3 +109,33 @@ class WanModularPipeline(
|
||||
if hasattr(self, "scheduler") and self.scheduler is not None:
|
||||
num_train_timesteps = self.scheduler.config.num_train_timesteps
|
||||
return num_train_timesteps
|
||||
|
||||
|
||||
class WanImage2VideoModularPipeline(WanModularPipeline):
|
||||
"""
|
||||
A ModularPipeline for Wan2.1 image2video (both I2V and FLF2V).
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "WanImage2VideoAutoBlocks"
|
||||
|
||||
|
||||
class Wan22ModularPipeline(WanModularPipeline):
|
||||
"""
|
||||
A ModularPipeline for Wan2.2 text2video.
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "Wan22Blocks"
|
||||
|
||||
|
||||
class Wan22Image2VideoModularPipeline(Wan22ModularPipeline):
|
||||
"""
|
||||
A ModularPipeline for Wan2.2 image2video.
|
||||
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
"""
|
||||
|
||||
default_blocks_name = "Wan22Image2VideoBlocks"
|
||||
|
||||
@@ -248,7 +248,7 @@ AUTO_TEXT2VIDEO_PIPELINES_MAPPING = OrderedDict(
|
||||
|
||||
AUTO_IMAGE2VIDEO_PIPELINES_MAPPING = OrderedDict(
|
||||
[
|
||||
("wan", WanImageToVideoPipeline),
|
||||
("wan-i2v", WanImageToVideoPipeline),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Literal, Optional, Tuple, Union
|
||||
from typing import Callable, List, Literal, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -51,7 +51,14 @@ class DPMSolverSDESchedulerOutput(BaseOutput):
|
||||
class BatchedBrownianTree:
|
||||
"""A wrapper around torchsde.BrownianTree that enables batches of entropy."""
|
||||
|
||||
def __init__(self, x, t0, t1, seed=None, **kwargs):
|
||||
def __init__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
t0: float,
|
||||
t1: float,
|
||||
seed: Optional[Union[int, List[int]]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
t0, t1, self.sign = self.sort(t0, t1)
|
||||
w0 = kwargs.get("w0", torch.zeros_like(x))
|
||||
if seed is None:
|
||||
@@ -79,10 +86,23 @@ class BatchedBrownianTree:
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def sort(a, b):
|
||||
return (a, b, 1) if a < b else (b, a, -1)
|
||||
def sort(a: float, b: float) -> Tuple[float, float, float]:
|
||||
"""
|
||||
Sorts two float values and returns them along with a sign indicating if they were swapped.
|
||||
|
||||
def __call__(self, t0, t1):
|
||||
Args:
|
||||
a (`float`):
|
||||
The first value.
|
||||
b (`float`):
|
||||
The second value.
|
||||
|
||||
Returns:
|
||||
`Tuple[float, float, float]`:
|
||||
A tuple containing the sorted values (min, max) and a sign (1.0 if a < b, -1.0 otherwise).
|
||||
"""
|
||||
return (a, b, 1.0) if a < b else (b, a, -1.0)
|
||||
|
||||
def __call__(self, t0: float, t1: float) -> torch.Tensor:
|
||||
t0, t1, sign = self.sort(t0, t1)
|
||||
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
|
||||
return w if self.batched else w[0]
|
||||
@@ -92,23 +112,29 @@ class BrownianTreeNoiseSampler:
|
||||
"""A noise sampler backed by a torchsde.BrownianTree.
|
||||
|
||||
Args:
|
||||
x (Tensor): The tensor whose shape, device and dtype to use to generate
|
||||
random samples.
|
||||
sigma_min (float): The low end of the valid interval.
|
||||
sigma_max (float): The high end of the valid interval.
|
||||
seed (int or List[int]): The random seed. If a list of seeds is
|
||||
x (`torch.Tensor`): The tensor whose shape, device and dtype is used to generate random samples.
|
||||
sigma_min (`float`): The low end of the valid interval.
|
||||
sigma_max (`float`): The high end of the valid interval.
|
||||
seed (`int` or `List[int]`): The random seed. If a list of seeds is
|
||||
supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each
|
||||
with its own seed.
|
||||
transform (callable): A function that maps sigma to the sampler's
|
||||
transform (`callable`): A function that maps sigma to the sampler's
|
||||
internal timestep.
|
||||
"""
|
||||
|
||||
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
|
||||
def __init__(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
sigma_min: float,
|
||||
sigma_max: float,
|
||||
seed: Optional[Union[int, List[int]]] = None,
|
||||
transform: Callable[[float], float] = lambda x: x,
|
||||
):
|
||||
self.transform = transform
|
||||
t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
|
||||
self.tree = BatchedBrownianTree(x, t0, t1, seed)
|
||||
|
||||
def __call__(self, sigma, sigma_next):
|
||||
def __call__(self, sigma: float, sigma_next: float) -> torch.Tensor:
|
||||
t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
|
||||
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
|
||||
|
||||
@@ -216,19 +242,28 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.00085, # sensible defaults
|
||||
beta_end: float = 0.012,
|
||||
beta_schedule: str = "linear",
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
prediction_type: str = "epsilon",
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
use_beta_sigmas: Optional[bool] = False,
|
||||
noise_sampler_seed: Optional[int] = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "linspace",
|
||||
steps_offset: int = 0,
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
if (
|
||||
sum(
|
||||
[
|
||||
self.config.use_beta_sigmas,
|
||||
self.config.use_exponential_sigmas,
|
||||
self.config.use_karras_sigmas,
|
||||
]
|
||||
)
|
||||
> 1
|
||||
):
|
||||
raise ValueError(
|
||||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||||
)
|
||||
@@ -238,7 +273,15 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -305,7 +348,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._step_index = self._begin_index
|
||||
|
||||
@property
|
||||
def init_noise_sigma(self):
|
||||
def init_noise_sigma(self) -> torch.Tensor:
|
||||
# standard deviation of the initial noise distribution
|
||||
if self.config.timestep_spacing in ["linspace", "trailing"]:
|
||||
return self.sigmas.max()
|
||||
@@ -313,21 +356,21 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
return (self.sigmas.max() ** 2 + 1) ** 0.5
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
def step_index(self) -> Union[int, None]:
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
def begin_index(self) -> Union[int, None]:
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
def set_begin_index(self, begin_index: int = 0) -> None:
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
@@ -369,7 +412,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_inference_steps: int,
|
||||
device: Union[str, torch.device] = None,
|
||||
num_train_timesteps: Optional[int] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -378,6 +421,8 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
num_train_timesteps (`int`, *optional*):
|
||||
The number of train timesteps. If `None`, uses `self.config.num_train_timesteps`.
|
||||
"""
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
@@ -443,7 +488,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
self.noise_sampler = None
|
||||
|
||||
def _second_order_timesteps(self, sigmas, log_sigmas):
|
||||
def _second_order_timesteps(self, sigmas: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
|
||||
def sigma_fn(_t):
|
||||
return np.exp(-_t)
|
||||
|
||||
@@ -459,7 +504,7 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
return timesteps
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma, log_sigmas):
|
||||
def _sigma_to_t(self, sigma: np.ndarray, log_sigmas: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Convert sigma values to corresponding timestep values through interpolation.
|
||||
|
||||
@@ -604,14 +649,14 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
return sigmas
|
||||
|
||||
@property
|
||||
def state_in_first_order(self):
|
||||
def state_in_first_order(self) -> bool:
|
||||
return self.sample is None
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: Union[torch.Tensor, np.ndarray],
|
||||
model_output: torch.Tensor,
|
||||
timestep: Union[float, torch.Tensor],
|
||||
sample: Union[torch.Tensor, np.ndarray],
|
||||
sample: torch.Tensor,
|
||||
return_dict: bool = True,
|
||||
s_noise: float = 1.0,
|
||||
) -> Union[DPMSolverSDESchedulerOutput, Tuple]:
|
||||
@@ -620,11 +665,11 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor` or `np.ndarray`):
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float` or `torch.Tensor`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor` or `np.ndarray`):
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
return_dict (`bool`):
|
||||
Whether or not to return a [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] or
|
||||
@@ -643,7 +688,9 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Create a noise sampler if it hasn't been created yet
|
||||
if self.noise_sampler is None:
|
||||
min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max()
|
||||
self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed)
|
||||
self.noise_sampler = BrownianTreeNoiseSampler(
|
||||
sample, min_sigma.item(), max_sigma.item(), self.noise_sampler_seed
|
||||
)
|
||||
|
||||
# Define functions to compute sigma and t from each other
|
||||
def sigma_fn(_t: torch.Tensor) -> torch.Tensor:
|
||||
@@ -694,7 +741,10 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
sigma_from = sigma_fn(t)
|
||||
sigma_to = sigma_fn(t_next)
|
||||
sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
|
||||
sigma_up = min(
|
||||
sigma_to,
|
||||
(sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
|
||||
)
|
||||
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
||||
ancestral_t = t_fn(sigma_down)
|
||||
prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - (
|
||||
@@ -771,5 +821,5 @@ class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
|
||||
noisy_samples = original_samples + noise * sigma
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
@@ -47,6 +47,21 @@ class Flux2KleinBaseAutoBlocks(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinBaseModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Flux2KleinModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
@@ -287,7 +302,7 @@ class StableDiffusionXLModularPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Wan22AutoBlocks(metaclass=DummyObject):
|
||||
class Wan22Blocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
@@ -302,7 +317,82 @@ class Wan22AutoBlocks(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class WanAutoBlocks(metaclass=DummyObject):
|
||||
class Wan22Image2VideoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Wan22Image2VideoModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class Wan22ModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class WanBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class WanImage2VideoAutoBlocks(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class WanImage2VideoModularPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
||||
Reference in New Issue
Block a user