Compare commits

..

2 Commits

Author SHA1 Message Date
Celina Hanouti
91569f55f9 fix 2025-01-28 12:34:11 +01:00
Celina Hanouti
0ce1d89f5c [don't merge] Test hfh -v0.28.0.rc0 2025-01-28 12:31:55 +01:00
1548 changed files with 20349 additions and 126447 deletions

View File

@@ -1,38 +0,0 @@
name: "\U0001F31F Remote VAE"
description: Feedback for remote VAE pilot
labels: [ "Remote VAE" ]
body:
- type: textarea
id: positive
validations:
required: true
attributes:
label: Did you like the remote VAE solution?
description: |
If you liked it, we would appreciate it if you could elaborate what you liked.
- type: textarea
id: feedback
validations:
required: true
attributes:
label: What can be improved about the current solution?
description: |
Let us know the things you would like to see improved. Note that we will work optimizing the solution once the pilot is over and we have usage.
- type: textarea
id: others
validations:
required: true
attributes:
label: What other VAEs you would like to see if the pilot goes well?
description: |
Provide a list of the VAEs you would like to see in the future if the pilot goes well.
- type: textarea
id: additional-info
attributes:
label: Notify the members of the team
description: |
Tag the following folks when submitting this feedback: @hlky @sayakpaul

View File

@@ -23,7 +23,7 @@ jobs:
runs-on:
group: aws-g6-4xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
image: diffusers/diffusers-pytorch-compile-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
@@ -36,9 +36,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install pandas peft
python -m uv pip uninstall transformers && python -m uv pip install transformers==4.48.0
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow pandas peft
- name: Environment
run: |
python utils/print_env.py

View File

@@ -38,16 +38,9 @@ jobs:
token: ${{ secrets.GITHUB_TOKEN }}
- name: Build Changed Docker Images
env:
CHANGED_FILES: ${{ steps.file_changes.outputs.all }}
run: |
echo "$CHANGED_FILES"
for FILE in $CHANGED_FILES; do
# skip anything that isn't still on disk
if [[ ! -f "$FILE" ]]; then
echo "Skipping removed file $FILE"
continue
fi
CHANGED_FILES="${{ steps.file_changes.outputs.all }}"
for FILE in $CHANGED_FILES; do
if [[ "$FILE" == docker/*Dockerfile ]]; then
DOCKER_PATH="${FILE%/Dockerfile}"
DOCKER_TAG=$(basename "$DOCKER_PATH")
@@ -72,7 +65,7 @@ jobs:
image-name:
- diffusers-pytorch-cpu
- diffusers-pytorch-cuda
- diffusers-pytorch-cuda
- diffusers-pytorch-compile-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-flax-cpu

View File

@@ -13,9 +13,8 @@ env:
PYTEST_TIMEOUT: 600
RUN_SLOW: yes
RUN_NIGHTLY: yes
PIPELINE_USAGE_CUTOFF: 0
PIPELINE_USAGE_CUTOFF: 5000
SLACK_API_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
CONSOLIDATED_REPORT_PATH: consolidated_test_report.md
jobs:
setup_torch_cuda_pipeline_matrix:
@@ -72,9 +71,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
@@ -100,6 +99,11 @@ jobs:
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_tests_for_other_torch_modules:
name: Nightly Torch CUDA Tests
@@ -125,10 +129,10 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: python utils/print_env.py
@@ -170,48 +174,11 @@ jobs:
name: torch_${{ matrix.module }}_cuda_test_reports
path: reports
run_torch_compile_tests:
name: PyTorch Compile CUDA tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
- name: Generate Report and Notify Channel
if: always()
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run torch compile tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_compile_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_compile_test_reports
path: reports
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_big_gpu_torch_tests:
name: Torch tests on big GPU
@@ -233,10 +200,10 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
@@ -263,7 +230,12 @@ jobs:
with:
name: torch_cuda_big_gpu_test_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
@@ -283,9 +255,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -320,171 +292,7 @@ jobs:
with:
name: torch_minimum_version_cuda_test_reports
path: reports
run_nightly_onnx_tests:
name: Nightly ONNXRuntime CUDA tests on Ubuntu
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-onnxruntime-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run Nightly ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
--report-log=tests_onnx_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_onnx_cuda_reports
path: reports
run_nightly_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
matrix:
config:
- backend: "bitsandbytes"
test_location: "bnb"
additional_deps: ["peft"]
- backend: "gguf"
test_location: "gguf"
additional_deps: ["peft"]
- backend: "torchao"
test_location: "torchao"
additional_deps: []
- backend: "optimum_quanto"
test_location: "quanto"
additional_deps: []
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U ${{ matrix.config.backend }}
if [ "${{ join(matrix.config.additional_deps, ' ') }}" != "" ]; then
python -m uv pip install ${{ join(matrix.config.additional_deps, ' ') }}
fi
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: ${{ matrix.config.backend }} quantization tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
tests/quantization/${{ matrix.config.test_location }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_stats.txt
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_${{ matrix.config.backend }}_reports
path: reports
run_nightly_pipeline_level_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install -U bitsandbytes optimum_quanto
python -m uv pip install pytest-reportlog
- name: Environment
run: |
python utils/print_env.py
- name: Pipeline-level quantization tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_pipeline_level_quant_torch_cuda \
--report-log=tests_pipeline_level_quant_torch_cuda.log \
tests/quantization/test_pipeline_level_quantization.py
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_level_quant_torch_cuda_stats.txt
cat reports/tests_pipeline_level_quant_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_pipeline_level_quant_reports
path: reports
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on:
@@ -506,9 +314,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install pytest-reportlog
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: python utils/print_env.py
@@ -536,64 +344,128 @@ jobs:
name: flax_tpu_test_reports
path: reports
generate_consolidated_report:
name: Generate Consolidated Test Report
needs: [
run_nightly_tests_for_torch_pipelines,
run_nightly_tests_for_other_torch_modules,
run_torch_compile_tests,
run_big_gpu_torch_tests,
run_nightly_quantization_tests,
run_nightly_pipeline_level_quantization_tests,
run_nightly_onnx_tests,
torch_minimum_version_cuda_tests,
run_flax_tpu_tests
]
if: always()
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_onnx_tests:
name: Nightly ONNXRuntime CUDA tests on Ubuntu
runs-on:
group: aws-general-8-plus
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cpu
image: diffusers/diffusers-onnxruntime-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: python utils/print_env.py
- name: Run Nightly ONNXRuntime CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "Onnx" \
--make-reports=tests_onnx_cuda \
--report-log=tests_onnx_cuda.log \
tests/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_onnx_cuda_stats.txt
cat reports/tests_onnx_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: tests_onnx_cuda_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_nightly_quantization_tests:
name: Torch quantization nightly tests
strategy:
fail-fast: false
max-parallel: 2
matrix:
config:
- backend: "bitsandbytes"
test_location: "bnb"
- backend: "gguf"
test_location: "gguf"
- backend: "torchao"
test_location: "torchao"
runs-on:
group: aws-g6e-xlarge-plus
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "20gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Create reports directory
run: mkdir -p combined_reports
- name: Download all test reports
uses: actions/download-artifact@v4
with:
path: artifacts
- name: Prepare reports
run: |
# Move all report files to a single directory for processing
find artifacts -name "*.txt" -exec cp {} combined_reports/ \;
- name: NVIDIA-SMI
run: nvidia-smi
- name: Install dependencies
run: |
pip install -e .[test]
pip install slack_sdk tabulate
- name: Generate consolidated report
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow -U ${{ matrix.config.backend }}
python -m uv pip install --prerelease=allow pytest-reportlog
- name: Environment
run: |
python utils/consolidated_test_report.py \
--reports_dir combined_reports \
--output_file $CONSOLIDATED_REPORT_PATH \
--slack_channel_name diffusers-ci-nightly
- name: Show consolidated report
python utils/print_env.py
- name: ${{ matrix.config.backend }} quantization tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
BIG_GPU_MEMORY: 40
run: |
cat $CONSOLIDATED_REPORT_PATH >> $GITHUB_STEP_SUMMARY
- name: Upload consolidated report
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
tests/quantization/${{ matrix.config.test_location }}
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_stats.txt
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: consolidated_test_report
path: ${{ env.CONSOLIDATED_REPORT_PATH }}
name: torch_cuda_${{ matrix.config.backend }}_reports
path: reports
- name: Generate Report and Notify Channel
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
# M1 runner currently not well supported
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
@@ -621,10 +493,10 @@ jobs:
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# ${CONDA_RUN} python -m uv pip install --prerelease=allow -e [quality,test]
# ${CONDA_RUN} python -m uv pip install --prerelease=allow torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install --prerelease=allow accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install --prerelease=allow pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |
@@ -677,10 +549,10 @@ jobs:
# shell: arch -arch arm64 bash {0}
# run: |
# ${CONDA_RUN} python -m pip install --upgrade pip uv
# ${CONDA_RUN} python -m uv pip install -e [quality,test]
# ${CONDA_RUN} python -m uv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install pytest-reportlog
# ${CONDA_RUN} python -m uv pip install --prerelease=allow -e [quality,test]
# ${CONDA_RUN} python -m uv pip install --prerelease=allow torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu
# ${CONDA_RUN} python -m uv pip install --prerelease=allow accelerate@git+https://github.com/huggingface/accelerate
# ${CONDA_RUN} python -m uv pip install --prerelease=allow pytest-reportlog
# - name: Environment
# shell: arch -arch arm64 bash {0}
# run: |

View File

@@ -27,8 +27,8 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install pytest
python -m uv pip install --prerelease=allow -e .
python -m uv pip install --prerelease=allow pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"

View File

@@ -27,11 +27,11 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install "jax[cpu]>=0.2.16,!=0.3.2"
python -m uv pip install "flax>=0.4.1"
python -m uv pip install "jaxlib>=0.1.65"
python -m uv pip install pytest
python -m uv pip install --prerelease=allow -e .
python -m uv pip install --prerelease=allow "jax[cpu]>=0.2.16,!=0.3.2"
python -m uv pip install --prerelease=allow "flax>=0.4.1"
python -m uv pip install --prerelease=allow "jaxlib>=0.1.65"
python -m uv pip install --prerelease=allow pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"

View File

@@ -1,17 +0,0 @@
name: PR Style Bot
on:
issue_comment:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
with:
python_quality_dependencies: "[quality]"
secrets:
bot_token: ${{ secrets.HF_STYLE_BOT_ACTION }}

View File

@@ -34,7 +34,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install --prerelease=allow -e [quality,test]
- name: Environment
run: |
python utils/print_env.py

View File

@@ -2,7 +2,8 @@ name: Fast tests for PRs
on:
pull_request:
branches: [main]
branches:
- main
paths:
- "src/diffusers/**.py"
- "benchmarks/**.py"
@@ -11,7 +12,6 @@ on:
- "tests/**.py"
- ".github/**.yml"
- "utils/**.py"
- "setup.py"
push:
branches:
- ci-*
@@ -64,7 +64,6 @@ jobs:
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
@@ -120,9 +119,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow accelerate
- name: Environment
run: |
@@ -160,7 +158,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install peft timm
python -m uv pip install --prerelease=allow peft timm
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples
@@ -210,7 +208,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install --prerelease=allow -e [quality,test]
- name: Environment
run: |
@@ -264,12 +262,12 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install --prerelease=allow -e [quality,test]
# TODO (sayakpaul, DN6): revisit `--no-deps`
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install -U tokenizers
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
python -m uv pip install --prerelease=allow -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install --prerelease=allow -U tokenizers
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment
run: |
@@ -291,8 +289,8 @@ jobs:
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_peft_main_failures_short.txt
cat reports/tests_models_lora_peft_main_failures_short.txt
cat reports/tests_lora_failures_short.txt
cat reports/tests_models_lora_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}

View File

@@ -1,296 +0,0 @@
name: Fast GPU Tests on PR
on:
pull_request:
branches: main
paths:
- "src/diffusers/models/modeling_utils.py"
- "src/diffusers/models/model_loading_utils.py"
- "src/diffusers/pipelines/pipeline_utils.py"
- "src/diffusers/pipeline_loading_utils.py"
- "src/diffusers/loaders/lora_base.py"
- "src/diffusers/loaders/lora_pipeline.py"
- "src/diffusers/loaders/peft.py"
- "tests/pipelines/test_pipelines_common.py"
- "tests/models/test_modeling_common.py"
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
env:
DIFFUSERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
HF_HUB_ENABLE_HF_TRANSFER: 1
PYTEST_TIMEOUT: 600
PIPELINE_USAGE_CUTOFF: 1000000000 # set high cutoff so that only always-test pipelines run
jobs:
check_code_quality:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check quality
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make style && make quality'" >> $GITHUB_STEP_SUMMARY
check_repository_consistency:
needs: check_code_quality
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install .[quality]
- name: Check repo consistency
run: |
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_support_list.py
make deps_table_check_updated
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
setup_torch_cuda_pipeline_matrix:
needs: [check_code_quality, check_repository_consistency]
name: Setup Torch Pipelines CUDA Slow Tests Matrix
runs-on:
group: aws-general-8-plus
container:
image: diffusers/diffusers-pytorch-cpu
outputs:
pipeline_test_matrix: ${{ steps.fetch_pipeline_matrix.outputs.pipeline_test_matrix }}
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
- name: Fetch Pipeline Matrix
id: fetch_pipeline_matrix
run: |
matrix=$(python utils/fetch_torch_cuda_pipeline_test_matrix.py)
echo $matrix
echo "pipeline_test_matrix=$matrix" >> $GITHUB_OUTPUT
- name: Pipeline Tests Artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test-pipelines.json
path: reports
torch_pipelines_cuda_tests:
name: Torch Pipelines CUDA Tests
needs: setup_torch_cuda_pipeline_matrix
strategy:
fail-fast: false
max-parallel: 8
matrix:
module: ${{ fromJson(needs.setup_torch_cuda_pipeline_matrix.outputs.pipeline_test_matrix) }}
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
- name: Environment
run: |
python utils/print_env.py
- name: Extract tests
id: extract_tests
run: |
pattern=$(python utils/extract_tests_from_mixin.py --type pipeline)
echo "$pattern" > /tmp/test_pattern.txt
echo "pattern_file=/tmp/test_pattern.txt" >> $GITHUB_OUTPUT
- name: PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
if [ "${{ matrix.module }}" = "ip_adapters" ]; then
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
else
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx and $pattern" \
--make-reports=tests_pipeline_${{ matrix.module }}_cuda \
tests/pipelines/${{ matrix.module }}
fi
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_pipeline_${{ matrix.module }}_cuda_stats.txt
cat reports/tests_pipeline_${{ matrix.module }}_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: pipeline_${{ matrix.module }}_test_reports
path: reports
torch_cuda_tests:
name: Torch CUDA Tests
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
strategy:
fail-fast: false
max-parallel: 2
matrix:
module: [models, schedulers, lora, others]
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
- name: Environment
run: |
python utils/print_env.py
- name: Extract tests
id: extract_tests
run: |
pattern=$(python utils/extract_tests_from_mixin.py --type ${{ matrix.module }})
echo "$pattern" > /tmp/test_pattern.txt
echo "pattern_file=/tmp/test_pattern.txt" >> $GITHUB_OUTPUT
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
pattern=$(cat ${{ steps.extract_tests.outputs.pattern_file }})
if [ -z "$pattern" ]; then
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
else
python -m pytest -n 1 -sv --max-worker-restart=0 --dist=loadfile -k "not Flax and not Onnx and $pattern" tests/${{ matrix.module }} \
--make-reports=tests_torch_cuda_${{ matrix.module }}
fi
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_cuda_${{ matrix.module }}_stats.txt
cat reports/tests_torch_cuda_${{ matrix.module }}_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_cuda_test_reports_${{ matrix.module }}
path: reports
run_examples_tests:
name: Examples PyTorch CUDA tests on Ubuntu
needs: [check_code_quality, check_repository_consistency]
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
pip uninstall transformers -y && python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install -e [quality,test,training]
- name: Environment
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python utils/print_env.py
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/examples_torch_cuda_stats.txt
cat reports/examples_torch_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: examples_test_reports
path: reports

View File

@@ -27,9 +27,9 @@ jobs:
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m pip install --upgrade pip uv
python -m uv pip install -e .
python -m uv pip install torch torchvision torchaudio
python -m uv pip install pytest
python -m uv pip install --prerelease=allow -e .
python -m uv pip install --prerelease=allow torch torchvision torchaudio
python -m uv pip install --prerelease=allow pytest
- name: Check for soft dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"

View File

@@ -35,7 +35,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install --prerelease=allow -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
@@ -76,8 +76,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
@@ -127,9 +127,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -178,8 +178,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -226,8 +226,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -262,7 +262,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
@@ -277,7 +277,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
python -m uv pip install --prerelease=allow -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
@@ -320,7 +320,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
python -m uv pip install --prerelease=allow -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
@@ -349,6 +349,7 @@ jobs:
container:
image: diffusers/diffusers-pytorch-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
@@ -358,10 +359,11 @@ jobs:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
python -m uv pip install --prerelease=allow -e [quality,test,training]
- name: Environment
run: |
@@ -373,7 +375,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m uv pip install --prerelease=allow timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports

View File

@@ -71,7 +71,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install --prerelease=allow -e [quality,test]
- name: Environment
run: |
@@ -109,7 +109,7 @@ jobs:
if: ${{ matrix.config.framework == 'pytorch_examples' }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install peft timm
python -m uv pip install --prerelease=allow peft timm
python -m pytest -n 4 --max-worker-restart=0 --dist=loadfile \
--make-reports=tests_${{ matrix.config.report }} \
examples

View File

@@ -46,10 +46,10 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade
${CONDA_RUN} python -m uv pip install --prerelease=allow -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install --prerelease=allow torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install --prerelease=allow accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install --prerelease=allow transformers --upgrade
- name: Environment
shell: arch -arch arm64 bash {0}

View File

@@ -33,7 +33,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install --prerelease=allow -e [quality,test]
- name: Environment
run: |
python utils/print_env.py
@@ -74,8 +74,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
@@ -125,9 +125,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -176,9 +176,9 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -232,8 +232,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -280,8 +280,8 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
python -m uv pip install --prerelease=allow -e [quality,test]
pip uninstall accelerate -y && python -m uv pip install --prerelease=allow -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
@@ -316,7 +316,7 @@ jobs:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-cuda
image: diffusers/diffusers-pytorch-compile-cuda
options: --gpus 0 --shm-size "16gb" --ipc host
steps:
@@ -331,11 +331,11 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
python -m uv pip install --prerelease=allow -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
- name: Run torch compile tests on GPU
- name: Run example tests on GPU
env:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
RUN_COMPILE: yes
@@ -374,7 +374,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
python -m uv pip install --prerelease=allow -e [quality,test,training]
- name: Environment
run: |
python utils/print_env.py
@@ -417,7 +417,7 @@ jobs:
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test,training]
python -m uv pip install --prerelease=allow -e [quality,test,training]
- name: Environment
run: |
@@ -429,7 +429,7 @@ jobs:
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install timm
python -m uv pip install --prerelease=allow timm
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=examples_torch_cuda examples/
- name: Failure short reports

View File

@@ -7,8 +7,8 @@ on:
default: 'diffusers/diffusers-pytorch-cuda'
description: 'Name of the Docker image'
required: true
pr_number:
description: 'PR number to test on'
branch:
description: 'PR Branch to test on'
required: true
test:
description: 'Tests to run (e.g.: `tests/models`).'
@@ -43,8 +43,8 @@ jobs:
exit 1
fi
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines|lora) ]]; then
echo "Error: The input string must contain either 'models', 'pipelines', or 'lora' after 'tests/'."
if [[ ! "$PY_TEST" =~ ^tests/(models|pipelines) ]]; then
echo "Error: The input string must contain either 'models' or 'pipelines' after 'tests/'."
exit 1
fi
@@ -53,19 +53,19 @@ jobs:
exit 1
fi
echo "$PY_TEST"
shell: bash -e {0}
- name: Checkout PR branch
uses: actions/checkout@v4
with:
ref: refs/pull/${{ inputs.pr_number }}/head
ref: ${{ github.event.inputs.branch }}
repository: ${{ github.event.pull_request.head.repo.full_name }}
- name: Install pytest
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft
python -m uv pip install --prerelease=allow -e [quality,test]
python -m uv pip install --prerelease=allow peft
- name: Run tests
env:

View File

@@ -13,6 +13,3 @@ jobs:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main
with:
extra_args: --results=verified,unknown

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -28,9 +28,9 @@ ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio\
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
onnxruntime \
--extra-index-url https://download.pytorch.org/whl/cpu && \
python3 -m uv pip install --no-cache-dir \

View File

@@ -0,0 +1,50 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -17,6 +17,12 @@
title: AutoPipeline
- local: tutorials/basic_training
title: Train a diffusion model
- local: tutorials/using_peft_for_inference
title: Load LoRAs for inference
- local: tutorials/fast_diffusion
title: Accelerate inference of text-to-image diffusion models
- local: tutorials/inference_with_big_models
title: Working with big models
title: Tutorials
- sections:
- local: using-diffusers/loading
@@ -27,24 +33,11 @@
title: Load schedulers and models
- local: using-diffusers/other-formats
title: Model files and layouts
- local: using-diffusers/loading_adapters
title: Load adapters
- local: using-diffusers/push_to_hub
title: Push files to the Hub
title: Load pipelines and adapters
- sections:
- local: tutorials/using_peft_for_inference
title: LoRA
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/t2i_adapter
title: T2I-Adapter
- local: using-diffusers/dreambooth
title: DreamBooth
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
title: Adapters
isExpanded: false
- sections:
- local: using-diffusers/unconditional_image_generation
title: Unconditional image generation
@@ -66,6 +59,8 @@
title: Create a server
- local: training/distributed_inference
title: Distributed inference
- local: using-diffusers/merge_loras
title: Merge LoRAs
- local: using-diffusers/scheduler_features
title: Scheduler features
- local: using-diffusers/callback
@@ -82,16 +77,8 @@
title: Outpainting
title: Advanced inference
- sections:
- local: hybrid_inference/overview
title: Overview
- local: hybrid_inference/vae_decode
title: VAE Decode
- local: hybrid_inference/vae_encode
title: VAE Encode
- local: hybrid_inference/api_reference
title: API Reference
title: Hybrid Inference
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/consisid
title: ConsisID
- local: using-diffusers/sdxl
@@ -100,12 +87,18 @@
title: SDXL Turbo
- local: using-diffusers/kandinsky
title: Kandinsky
- local: using-diffusers/omnigen
title: OmniGen
- local: using-diffusers/ip_adapter
title: IP-Adapter
- local: using-diffusers/pag
title: PAG
- local: using-diffusers/controlnet
title: ControlNet
- local: using-diffusers/t2i_adapter
title: T2I-Adapter
- local: using-diffusers/inference_with_lcm
title: Latent Consistency Model
- local: using-diffusers/textual_inversion_inference
title: Textual inversion
- local: using-diffusers/shap-e
title: Shap-E
- local: using-diffusers/diffedit
@@ -170,20 +163,14 @@
title: gguf
- local: quantization/torchao
title: torchao
- local: quantization/quanto
title: quanto
title: Quantization Methods
- sections:
- local: optimization/fp16
title: Accelerate inference
- local: optimization/cache
title: Caching
title: Speed up inference
- local: optimization/memory
title: Reduce memory usage
- local: optimization/speed-memory-optims
title: Compile and offloading quantized models
- local: optimization/pruna
title: Pruna
- local: optimization/torch2.0
title: PyTorch 2.0
- local: optimization/xformers
title: xFormers
- local: optimization/tome
@@ -210,7 +197,7 @@
- local: optimization/mps
title: Metal Performance Shaders (MPS)
- local: optimization/habana
title: Intel Gaudi
title: Habana Gaudi
- local: optimization/neuron
title: AWS Neuron
title: Optimized hardware
@@ -264,91 +251,71 @@
sections:
- local: api/models/overview
title: Overview
- local: api/models/auto_model
title: AutoModel
- sections:
- local: api/models/controlnet
title: ControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
- local: api/models/controlnet_flux
title: FluxControlNetModel
- local: api/models/controlnet_hunyuandit
title: HunyuanDiT2DControlNetModel
- local: api/models/controlnet_sana
title: SanaControlNetModel
- local: api/models/controlnet_sd3
title: SD3ControlNetModel
- local: api/models/controlnet_sparsectrl
title: SparseControlNetModel
- local: api/models/controlnet_union
title: ControlNetUnionModel
title: ControlNets
- sections:
- local: api/models/allegro_transformer3d
title: AllegroTransformer3DModel
- local: api/models/aura_flow_transformer2d
title: AuraFlowTransformer2DModel
- local: api/models/chroma_transformer
title: ChromaTransformer2DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/cogview3plus_transformer2d
title: CogView3PlusTransformer2DModel
- local: api/models/cogview4_transformer2d
title: CogView4Transformer2DModel
- local: api/models/consisid_transformer3d
title: ConsisIDTransformer3DModel
- local: api/models/cosmos_transformer3d
title: CosmosTransformer3DModel
- local: api/models/cogview3plus_transformer2d
title: CogView3PlusTransformer2DModel
- local: api/models/dit_transformer2d
title: DiTTransformer2DModel
- local: api/models/easyanimate_transformer3d
title: EasyAnimateTransformer3DModel
- local: api/models/flux_transformer
title: FluxTransformer2DModel
- local: api/models/hidream_image_transformer
title: HiDreamImageTransformer2DModel
- local: api/models/hunyuan_transformer2d
title: HunyuanDiT2DModel
- local: api/models/hunyuan_video_transformer_3d
title: HunyuanVideoTransformer3DModel
- local: api/models/latte_transformer3d
title: LatteTransformer3DModel
- local: api/models/ltx_video_transformer3d
title: LTXVideoTransformer3DModel
- local: api/models/lumina2_transformer2d
title: Lumina2Transformer2DModel
- local: api/models/lumina_nextdit2d
title: LuminaNextDiT2DModel
- local: api/models/ltx_video_transformer3d
title: LTXVideoTransformer3DModel
- local: api/models/mochi_transformer3d
title: MochiTransformer3DModel
- local: api/models/omnigen_transformer
title: OmniGenTransformer2DModel
- local: api/models/pixart_transformer2d
title: PixArtTransformer2DModel
- local: api/models/prior_transformer
title: PriorTransformer
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/sd3_transformer2d
title: SD3Transformer2DModel
- local: api/models/sana_transformer2d
title: SanaTransformer2DModel
- local: api/models/stable_audio_transformer
title: StableAudioDiTModel
- local: api/models/transformer2d
title: Transformer2DModel
- local: api/models/transformer_temporal
title: TransformerTemporalModel
- local: api/models/wan_transformer_3d
title: WanTransformer3DModel
title: Transformers
- sections:
- local: api/models/stable_cascade_unet
title: StableCascadeUNet
- local: api/models/unet
title: UNet1DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet2d
title: UNet2DModel
- local: api/models/unet2d-cond
title: UNet2DConditionModel
- local: api/models/unet3d-cond
title: UNet3DConditionModel
- local: api/models/unet-motion
@@ -357,28 +324,22 @@
title: UViT2DModel
title: UNets
- sections:
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
title: AutoencoderDC
- local: api/models/autoencoderkl
title: AutoencoderKL
- local: api/models/autoencoderkl_allegro
title: AutoencoderKLAllegro
- local: api/models/autoencoderkl_cogvideox
title: AutoencoderKLCogVideoX
- local: api/models/autoencoderkl_cosmos
title: AutoencoderKLCosmos
- local: api/models/autoencoder_kl_hunyuan_video
title: AutoencoderKLHunyuanVideo
- local: api/models/autoencoderkl_ltx_video
title: AutoencoderKLLTXVideo
- local: api/models/autoencoderkl_magvit
title: AutoencoderKLMagvit
- local: api/models/autoencoderkl_mochi
title: AutoencoderKLMochi
- local: api/models/autoencoder_kl_wan
title: AutoencoderKLWan
- local: api/models/asymmetricautoencoderkl
title: AsymmetricAutoencoderKL
- local: api/models/autoencoder_dc
title: AutoencoderDC
- local: api/models/consistency_decoder_vae
title: ConsistencyDecoderVAE
- local: api/models/autoencoder_oobleck
@@ -411,14 +372,10 @@
title: AutoPipeline
- local: api/pipelines/blip_diffusion
title: BLIP-Diffusion
- local: api/pipelines/chroma
title: Chroma
- local: api/pipelines/cogvideox
title: CogVideoX
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/cogview4
title: CogView4
- local: api/pipelines/consisid
title: ConsisID
- local: api/pipelines/consistency_models
@@ -433,16 +390,12 @@
title: ControlNet with Stable Diffusion 3
- local: api/pipelines/controlnet_sdxl
title: ControlNet with Stable Diffusion XL
- local: api/pipelines/controlnet_sana
title: ControlNet-Sana
- local: api/pipelines/controlnetxs
title: ControlNet-XS
- local: api/pipelines/controlnetxs_sdxl
title: ControlNet-XS with Stable Diffusion XL
- local: api/pipelines/controlnet_union
title: ControlNetUnion
- local: api/pipelines/cosmos
title: Cosmos
- local: api/pipelines/dance_diffusion
title: Dance Diffusion
- local: api/pipelines/ddim
@@ -455,16 +408,10 @@
title: DiffEdit
- local: api/pipelines/dit
title: DiT
- local: api/pipelines/easyanimate
title: EasyAnimate
- local: api/pipelines/flux
title: Flux
- local: api/pipelines/control_flux_inpaint
title: FluxControlInpaint
- local: api/pipelines/framepack
title: Framepack
- local: api/pipelines/hidream
title: HiDream-I1
- local: api/pipelines/hunyuandit
title: Hunyuan-DiT
- local: api/pipelines/hunyuan_video
@@ -491,8 +438,6 @@
title: LEDITS++
- local: api/pipelines/ltx_video
title: LTXVideo
- local: api/pipelines/lumina2
title: Lumina 2.0
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold
@@ -503,8 +448,6 @@
title: MultiDiffusion
- local: api/pipelines/musicldm
title: MusicLDM
- local: api/pipelines/omnigen
title: OmniGen
- local: api/pipelines/pag
title: PAG
- local: api/pipelines/paint_by_example
@@ -517,8 +460,6 @@
title: PixArt-Σ
- local: api/pipelines/sana
title: Sana
- local: api/pipelines/sana_sprint
title: Sana Sprint
- local: api/pipelines/self_attention_guidance
title: Self-Attention Guidance
- local: api/pipelines/semantic_stable_diffusion
@@ -532,40 +473,40 @@
- sections:
- local: api/pipelines/stable_diffusion/overview
title: Overview
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-image
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
- local: api/pipelines/stable_diffusion/image_variation
title: Image variation
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-image
- local: api/pipelines/stable_diffusion/img2img
title: Image-to-image
- local: api/pipelines/stable_diffusion/svd
title: Image-to-video
- local: api/pipelines/stable_diffusion/inpaint
title: Inpainting
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/latent_upscale
title: Latent upscaler
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/depth2img
title: Depth-to-image
- local: api/pipelines/stable_diffusion/image_variation
title: Image variation
- local: api/pipelines/stable_diffusion/stable_diffusion_safe
title: Safe Stable Diffusion
- local: api/pipelines/stable_diffusion/sdxl_turbo
title: SDXL Turbo
- local: api/pipelines/stable_diffusion/stable_diffusion_2
title: Stable Diffusion 2
- local: api/pipelines/stable_diffusion/stable_diffusion_3
title: Stable Diffusion 3
- local: api/pipelines/stable_diffusion/stable_diffusion_xl
title: Stable Diffusion XL
- local: api/pipelines/stable_diffusion/sdxl_turbo
title: SDXL Turbo
- local: api/pipelines/stable_diffusion/latent_upscale
title: Latent upscaler
- local: api/pipelines/stable_diffusion/upscale
title: Super-resolution
- local: api/pipelines/stable_diffusion/k_diffusion
title: K-Diffusion
- local: api/pipelines/stable_diffusion/ldm3d_diffusion
title: LDM3D Text-to-(RGB, Depth), Text-to-(RGB-pano, Depth-pano), LDM3D Upscaler
- local: api/pipelines/stable_diffusion/adapter
title: T2I-Adapter
- local: api/pipelines/stable_diffusion/text2img
title: Text-to-image
- local: api/pipelines/stable_diffusion/gligen
title: GLIGEN (Grounded Language-to-Image Generation)
title: Stable Diffusion
- local: api/pipelines/stable_unclip
title: Stable unCLIP
@@ -579,10 +520,6 @@
title: UniDiffuser
- local: api/pipelines/value_guided_sampling
title: Value-guided sampling
- local: api/pipelines/visualcloze
title: VisualCloze
- local: api/pipelines/wan
title: Wan
- local: api/pipelines/wuerstchen
title: Wuerstchen
title: Pipelines
@@ -592,10 +529,6 @@
title: Overview
- local: api/schedulers/cm_stochastic_iterative
title: CMStochasticIterativeScheduler
- local: api/schedulers/ddim_cogvideox
title: CogVideoXDDIMScheduler
- local: api/schedulers/multistep_dpm_solver_cogvideox
title: CogVideoXDPMScheduler
- local: api/schedulers/consistency_decoder
title: ConsistencyDecoderScheduler
- local: api/schedulers/cosine_dpm

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -25,16 +25,3 @@ Customized activation functions for supporting various models in 🤗 Diffusers.
## ApproximateGELU
[[autodoc]] models.activations.ApproximateGELU
## SwiGLU
[[autodoc]] models.activations.SwiGLU
## FP32SiLU
[[autodoc]] models.activations.FP32SiLU
## LinearActivation
[[autodoc]] models.activations.LinearActivation

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -147,20 +147,3 @@ An attention processor is a class for applying different types of attention mech
## XLAFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFlashAttnProcessor2_0
## XFormersJointAttnProcessor
[[autodoc]] models.attention_processor.XFormersJointAttnProcessor
## IPAdapterXFormersAttnProcessor
[[autodoc]] models.attention_processor.IPAdapterXFormersAttnProcessor
## FluxIPAdapterJointAttnProcessor2_0
[[autodoc]] models.attention_processor.FluxIPAdapterJointAttnProcessor2_0
## XLAFluxFlashAttnProcessor2_0
[[autodoc]] models.attention_processor.XLAFluxFlashAttnProcessor2_0

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -11,20 +11,39 @@ specific language governing permissions and limitations under the License. -->
# Caching methods
Cache methods speedup diffusion transformers by storing and reusing intermediate outputs of specific layers, such as attention and feedforward layers, instead of recalculating them at each inference step.
## Pyramid Attention Broadcast
## CacheMixin
[Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) from Xuanlei Zhao, Xiaolong Jin, Kai Wang, Yang You.
Pyramid Attention Broadcast (PAB) is a method that speeds up inference in diffusion models by systematically skipping attention computations between successive inference steps and reusing cached attention states. The attention states are not very different between successive inference steps. The most prominent difference is in the spatial attention blocks, not as much in the temporal attention blocks, and finally the least in the cross attention blocks. Therefore, many cross attention computation blocks can be skipped, followed by the temporal and spatial attention blocks. By combining other techniques like sequence parallelism and classifier-free guidance parallelism, PAB achieves near real-time video generation.
Enable PAB with [`~PyramidAttentionBroadcastConfig`] on any pipeline. For some benchmarks, refer to [this](https://github.com/huggingface/diffusers/pull/9562) pull request.
```python
import torch
from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
pipe.to("cuda")
# Increasing the value of `spatial_attention_timestep_skip_range[0]` or decreasing the value of
# `spatial_attention_timestep_skip_range[1]` will decrease the interval in which pyramid attention
# broadcast is active, leader to slower inference speeds. However, large intervals can lead to
# poorer quality of generated videos.
config = PyramidAttentionBroadcastConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(100, 800),
current_timestep_callback=lambda: pipe.current_timestep,
)
pipe.transformer.enable_cache(config)
```
### CacheMixin
[[autodoc]] CacheMixin
## PyramidAttentionBroadcastConfig
### PyramidAttentionBroadcastConfig
[[autodoc]] PyramidAttentionBroadcastConfig
[[autodoc]] apply_pyramid_attention_broadcast
## FasterCacheConfig
[[autodoc]] FasterCacheConfig
[[autodoc]] apply_faster_cache

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -20,15 +20,7 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`FluxLoraLoaderMixin`] provides similar functions for [Flux](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux).
- [`CogVideoXLoraLoaderMixin`] provides similar functions for [CogVideoX](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox).
- [`Mochi1LoraLoaderMixin`] provides similar functions for [Mochi](https://huggingface.co/docs/diffusers/main/en/api/pipelines/mochi).
- [`AuraFlowLoraLoaderMixin`] provides similar functions for [AuraFlow](https://huggingface.co/fal/AuraFlow).
- [`LTXVideoLoraLoaderMixin`] provides similar functions for [LTX-Video](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
- [`SanaLoraLoaderMixin`] provides similar functions for [Sana](https://huggingface.co/docs/diffusers/main/en/api/pipelines/sana).
- [`HunyuanVideoLoraLoaderMixin`] provides similar functions for [HunyuanVideo](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hunyuan_video).
- [`Lumina2LoraLoaderMixin`] provides similar functions for [Lumina2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/lumina2).
- [`WanLoraLoaderMixin`] provides similar functions for [Wan](https://huggingface.co/docs/diffusers/main/en/api/pipelines/wan).
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.
<Tip>
@@ -37,10 +29,6 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
</Tip>
## LoraBaseMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin
## StableDiffusionLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.StableDiffusionLoraLoaderMixin
@@ -64,42 +52,11 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse
## Mochi1LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Mochi1LoraLoaderMixin
## AuraFlowLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AuraFlowLoraLoaderMixin
## LTXVideoLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.LTXVideoLoraLoaderMixin
## SanaLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.SanaLoraLoaderMixin
## HunyuanVideoLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.HunyuanVideoLoraLoaderMixin
## Lumina2LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.Lumina2LoraLoaderMixin
## CogView4LoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.CogView4LoraLoaderMixin
## WanLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
## AmusedLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.AmusedLoraLoaderMixin
## HiDreamImageLoraLoaderMixin
## LoraBaseMixin
[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin
## WanLoraLoaderMixin
[[autodoc]] loaders.lora_pipeline.WanLoraLoaderMixin
[[autodoc]] loaders.lora_base.LoraBaseMixin

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AsymmetricAutoencoderKL
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://huggingface.co/papers/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
Improved larger variational autoencoder (VAE) model with KL loss for inpainting task: [Designing a Better Asymmetric VQGAN for StableDiffusion](https://arxiv.org/abs/2306.04632) by Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, Gang Hua.
The abstract from the paper is:

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,29 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# AutoModel
The `AutoModel` is designed to make it easy to load a checkpoint without needing to know the specific model class. `AutoModel` automatically retrieves the correct model class from the checkpoint `config.json` file.
```python
from diffusers import AutoModel, AutoPipelineForText2Image
unet = AutoModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
pipe = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", unet=unet)
```
## AutoModel
[[autodoc]] AutoModel
- all
- from_pretrained

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,32 +0,0 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLWan
The 3D variational autoencoder (VAE) model with KL loss used in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLWan
vae = AutoencoderKLWan.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
```
## AutoencoderKLWan
[[autodoc]] AutoencoderKLWan
- decode
- all
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AutoencoderKL
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://huggingface.co/papers/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
The abstract from the paper is:

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLAllegro
vae = AutoencoderKLAllegro.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32).to("cuda")
vae = AutoencoderKLCogVideoX.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLAllegro

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,40 +0,0 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLCosmos
[Cosmos Tokenizers](https://github.com/NVIDIA/Cosmos-Tokenizer).
Supported models:
- [nvidia/Cosmos-1.0-Tokenizer-CV8x8x8](https://huggingface.co/nvidia/Cosmos-1.0-Tokenizer-CV8x8x8)
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLCosmos
vae = AutoencoderKLCosmos.from_pretrained("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8", subfolder="vae")
```
## AutoencoderKLCosmos
[[autodoc]] AutoencoderKLCosmos
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,37 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# AutoencoderKLMagvit
The 3D variational autoencoder (VAE) model with KL loss used in [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLMagvit
vae = AutoencoderKLMagvit.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="vae", torch_dtype=torch.float16).to("cuda")
```
## AutoencoderKLMagvit
[[autodoc]] AutoencoderKLMagvit
- decode
- encode
- all
## AutoencoderKLOutput
[[autodoc]] models.autoencoders.autoencoder_kl.AutoencoderKLOutput
## DecoderOutput
[[autodoc]] models.autoencoders.vae.DecoderOutput

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,19 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ChromaTransformer2DModel
A modified flux Transformer model from [Chroma](https://huggingface.co/lodestones/Chroma)
## ChromaTransformer2DModel
[[autodoc]] ChromaTransformer2DModel

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,30 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CogView4Transformer2DModel
A Diffusion Transformer model for 2D data from [CogView4]()
The model can be loaded with the following code snippet.
```python
from diffusers import CogView4Transformer2DModel
transformer = CogView4Transformer2DModel.from_pretrained("THUDM/CogView4-6B", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView4Transformer2DModel
[[autodoc]] CogView4Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -11,7 +11,7 @@ specific language governing permissions and limitations under the License. -->
# ConsisIDTransformer3DModel
A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://huggingface.co/papers/2411.17440) by Peking University & University of Rochester & etc.
A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/pdf/2411.17440) by Peking University & University of Rochester & etc.
The model can be loaded with the following code snippet.

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team and Tencent Hunyuan Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# HunyuanDiT2DControlNetModel
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://huggingface.co/papers/2405.08748).
HunyuanDiT2DControlNetModel is an implementation of ControlNet for [Hunyuan-DiT](https://arxiv.org/abs/2405.08748).
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.

View File

@@ -1,29 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SanaControlNetModel
The ControlNet model was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.
The abstract from the paper is:
*We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.*
This model was contributed by [ishan24](https://huggingface.co/ishan24). ❤️
The original codebase can be found at [NVlabs/Sana](https://github.com/NVlabs/Sana), and you can find official ControlNet checkpoints on [Efficient-Large-Model's](https://huggingface.co/Efficient-Large-Model) Hub profile.
## SanaControlNetModel
[[autodoc]] SanaControlNetModel
## SanaControlNetOutput
[[autodoc]] models.controlnets.controlnet_sana.SanaControlNetOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -11,11 +11,11 @@ specific language governing permissions and limitations under the License. -->
# SparseControlNetModel
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://huggingface.co/papers/2307.04725).
SparseControlNetModel is an implementation of ControlNet for [AnimateDiff](https://arxiv.org/abs/2307.04725).
ControlNet was introduced in [Adding Conditional Control to Text-to-Image Diffusion Models](https://huggingface.co/papers/2302.05543) by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://huggingface.co/papers/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The SparseCtrl version of ControlNet was introduced in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models](https://arxiv.org/abs/2311.16933) for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team and The InstantX Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team and The InstantX Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# CosmosTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Cosmos World Foundation Model Platform for Physical AI](https://huggingface.co/papers/2501.03575) by NVIDIA.
The model can be loaded with the following code snippet.
```python
from diffusers import CosmosTransformer3DModel
transformer = CosmosTransformer3DModel.from_pretrained("nvidia/Cosmos-1.0-Diffusion-7B-Text2World", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## CosmosTransformer3DModel
[[autodoc]] CosmosTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,30 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# EasyAnimateTransformer3DModel
A Diffusion Transformer model for 3D data from [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
```python
from diffusers import EasyAnimateTransformer3DModel
transformer = EasyAnimateTransformer3DModel.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## EasyAnimateTransformer3DModel
[[autodoc]] EasyAnimateTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,46 +0,0 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# HiDreamImageTransformer2DModel
A Transformer model for image-like data from [HiDream-I1](https://huggingface.co/HiDream-ai).
The model can be loaded with the following code snippet.
```python
from diffusers import HiDreamImageTransformer2DModel
transformer = HiDreamImageTransformer2DModel.from_pretrained("HiDream-ai/HiDream-I1-Full", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## Loading GGUF quantized checkpoints for HiDream-I1
GGUF checkpoints for the `HiDreamImageTransformer2DModel` can be loaded using `~FromOriginalModelMixin.from_single_file`
```python
import torch
from diffusers import GGUFQuantizationConfig, HiDreamImageTransformer2DModel
ckpt_path = "https://huggingface.co/city96/HiDream-I1-Dev-gguf/blob/main/hidream-i1-dev-Q2_K.gguf"
transformer = HiDreamImageTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16
)
```
## HiDreamImageTransformer2DModel
[[autodoc]] HiDreamImageTransformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# Lumina2Transformer2DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Lumina Image 2.0](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) by Alpha-VLLM.
The model can be loaded with the following code snippet.
```python
from diffusers import Lumina2Transformer2DModel
transformer = Lumina2Transformer2DModel.from_pretrained("Alpha-VLLM/Lumina-Image-2.0", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## Lumina2Transformer2DModel
[[autodoc]] Lumina2Transformer2DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,30 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# OmniGenTransformer2DModel
A Transformer model that accepts multimodal instructions to generate images for [OmniGen](https://github.com/VectorSpaceLab/OmniGen/).
The abstract from the paper is:
*The emergence of Large Language Models (LLMs) has unified language generation tasks and revolutionized human-machine interaction. However, in the realm of image generation, a unified model capable of handling various tasks within a single framework remains largely unexplored. In this work, we introduce OmniGen, a new diffusion model for unified image generation. OmniGen is characterized by the following features: 1) Unification: OmniGen not only demonstrates text-to-image generation capabilities but also inherently supports various downstream tasks, such as image editing, subject-driven generation, and visual conditional generation. 2) Simplicity: The architecture of OmniGen is highly simplified, eliminating the need for additional plugins. Moreover, compared to existing diffusion models, it is more user-friendly and can complete complex tasks end-to-end through instructions without the need for extra intermediate steps, greatly simplifying the image generation workflow. 3) Knowledge Transfer: Benefit from learning in a unified format, OmniGen effectively transfers knowledge across different tasks, manages unseen tasks and domains, and exhibits novel capabilities. We also explore the models reasoning capabilities and potential applications of the chain-of-thought mechanism. This work represents the first attempt at a general-purpose image generation model, and we will release our resources at https://github.com/VectorSpaceLab/OmniGen to foster future advancements.*
```python
import torch
from diffusers import OmniGenTransformer2DModel
transformer = OmniGenTransformer2DModel.from_pretrained("Shitao/OmniGen-v1-diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## OmniGenTransformer2DModel
[[autodoc]] OmniGenTransformer2DModel

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,30 +0,0 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# WanTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in [Wan 2.1](https://github.com/Wan-Video/Wan2.1) by the Alibaba Wan Team.
The model can be loaded with the following code snippet.
```python
from diffusers import WanTransformer3DModel
transformer = WanTransformer3DModel.from_pretrained("Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## WanTransformer3DModel
[[autodoc]] WanTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -29,43 +29,3 @@ Customized normalization layers for supporting various models in 🤗 Diffusers.
## AdaGroupNorm
[[autodoc]] models.normalization.AdaGroupNorm
## AdaLayerNormContinuous
[[autodoc]] models.normalization.AdaLayerNormContinuous
## RMSNorm
[[autodoc]] models.normalization.RMSNorm
## GlobalResponseNorm
[[autodoc]] models.normalization.GlobalResponseNorm
## LuminaLayerNormContinuous
[[autodoc]] models.normalization.LuminaLayerNormContinuous
## SD35AdaLayerNormZeroX
[[autodoc]] models.normalization.SD35AdaLayerNormZeroX
## AdaLayerNormZeroSingle
[[autodoc]] models.normalization.AdaLayerNormZeroSingle
## LuminaRMSNormZero
[[autodoc]] models.normalization.LuminaRMSNormZero
## LpNorm
[[autodoc]] models.normalization.LpNorm
## CogView3PlusAdaLayerNormZeroTextImage
[[autodoc]] models.normalization.CogView3PlusAdaLayerNormZeroTextImage
## CogVideoXLayerNormZero
[[autodoc]] models.normalization.CogVideoXLayerNormZero
## MochiRMSNormZero
[[autodoc]] models.transformers.transformer_mochi.MochiRMSNormZero
## MochiRMSNorm
[[autodoc]] models.normalization.MochiRMSNorm

View File

@@ -1,4 +1,4 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

View File

@@ -1,4 +1,4 @@
<!-- Copyright 2025 The HuggingFace Team. All rights reserved.
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

Some files were not shown because too many files have changed in this diff Show More