Compare commits

...

83 Commits

Author SHA1 Message Date
Dhruv Nair
a2ad1241a2 update 2025-01-08 05:54:59 +01:00
Junsong Chen
80fd9260bb [Sana][bug fix]change clean_caption from True to False. (#10481)
change clean_caption from True to False.
2025-01-07 15:31:23 -10:00
Aryan
71ad16b463 Add _no_split_modules to some models (#10308)
* set supports gradient checkpointing to true where necessary; add missing no split modules

* fix cogvideox tests

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-01-08 06:34:19 +05:30
hlky
ee7e141d80 Use pipelines without vae (#10441)
* Use pipelines without vae

* getattr

* vqvae

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 13:26:51 -10:00
hlky
01bd79649e Fix HunyuanVideo produces NaN on PyTorch<2.5 (#10482)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 13:13:55 -10:00
Teriks
03bcf5aefe RFInversionFluxPipeline, small fix for enable_model_cpu_offload & enable_sequential_cpu_offload compatibility (#10480)
RFInversionFluxPipeline.encode_image, device fix

Use self._execution_device instead of self.device when selecting
a device for the input image tensor.

This allows for compatibility with enable_model_cpu_offload &
enable_sequential_cpu_offload

Co-authored-by: Teriks <Teriks@users.noreply.github.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-01-07 15:47:28 +01:00
dependabot[bot]
e0b96ba7b0 Bump jinja2 from 3.1.4 to 3.1.5 in /examples/research_projects/realfill (#10377)
Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.4 to 3.1.5.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.4...3.1.5)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-07 19:59:41 +05:30
Dhruv Nair
854a04659c [CI] Add minimal testing for legacy Torch versions (#10479)
* update

* update
2025-01-07 18:51:41 +05:30
hlky
628f2c544a Use Pipelines without scheduler (#10439)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 12:07:08 +00:00
Aryan
811560b1d7 [LoRA] Support original format loras for HunyuanVideo (#10376)
* update

* fix make copies

* update

* add relevant markers to the integration test suite.

* add copied.

* fox-copies

* temporarily add print.

* directly place on CUDA as CPU isn't that big on the CIO.

* fixes to fuse_lora, aryan was right.

* fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 13:18:57 +05:30
Rahul Raman
f1e0c7ce4a Refactor instructpix2pix lora to support peft (#10205)
* make base code changes referred from train_instructpix2pix script in examples

* change code to use PEFT as discussed in issue 10062

* update README training command

* update README training command

* refactor variable name and freezing unet

* Update examples/research_projects/instructpix2pix_lora/train_instruct_pix2pix_lora.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update README installation instructions.

* cleanup code using make style and quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 12:00:45 +05:30
Sayak Paul
b94cfd7937 [Training] QoL improvements in the Flux Control training scripts (#10461)
* qol improvements to the Flux script.

* propagate the dataloader changes.
2025-01-07 11:56:17 +05:30
Aryan
661bde0ff2 Fix style (#10478)
fix
2025-01-07 11:06:36 +05:30
Ameer Azam
4f5e3e35d2 Regarding the RunwayML path for V1.5 did change to stable-diffusion-v1-5/[stable-diffusion-v1-5/ stable-diffusion-inpainting] (#10476)
* Update pipeline_controlnet.py

* Update pipeline_controlnet_img2img.py

runwayml Take-down so change all from to this
stable-diffusion-v1-5/stable-diffusion-v1-5

* Update pipeline_controlnet_inpaint.py

* runwayml take-down make change to sd-legacy

* runwayml take-down make change to sd-legacy

* runwayml take-down make change to sd-legacy

* runwayml take-down make change to sd-legacy

* Update convert_blipdiffusion_to_diffusers.py

style change
2025-01-06 15:01:52 -08:00
hlky
8f2253c58c Add torch_xla and from_single_file to instruct-pix2pix (#10444)
* Add torch_xla and from_single_file to instruct-pix2pix

* StableDiffusionInstructPix2PixPipelineSingleFileSlowTests

* StableDiffusionInstructPix2PixPipelineSingleFileSlowTests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-06 10:11:16 -10:00
Aryan
7747b588e2 Fix hunyuan video attention mask dim (#10454)
* fix

* add coauthor

Co-Authored-By: Nerogar <nerogar@arcor.de>

---------

Co-authored-by: Nerogar <nerogar@arcor.de>
2025-01-06 10:07:54 -10:00
Sayak Paul
d9d94e12f3 [LoRA] fix: lora unloading when using expanded Flux LoRAs. (#10397)
* fix: lora unloading when using expanded Flux LoRAs.

* fix argument name.

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>

* docs.

---------

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>
2025-01-06 08:35:05 -10:00
hlky
2f25156c14 LEditsPP - examples, check height/width, add tiling/slicing (#10471)
* LEditsPP - examples, check height/width, add tiling/slicing

* make style
2025-01-06 08:19:53 -10:00
SahilCarterr
6da6406529 [Fix] broken links in docs (#10434)
* Fix broken links in docs

* fix parenthesis
2025-01-06 10:07:38 -08:00
Aryan
04e783cd9e Update variable names correctly in docs (#10435)
fix
2025-01-06 08:56:43 -08:00
hlky
1896b1f7c1 lora_bias PEFT version check in unet.load_attn_procs (#10474)
`lora_bias` PEFT version check in `unet.load_attn_procs` path
2025-01-06 21:27:56 +05:30
Sayak Paul
b5726358cf [Tests] add slow and nightly markers to sd3 lora integation. (#10458)
add slow and nightly markers to sd3 lora integation.
2025-01-06 07:29:04 +05:30
hlky
fdcbbdf0bb Add torch_xla and from_single_file support to TextToVideoZeroPipeline (#10445)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-05 05:24:28 +00:00
chaowenguo
4e44534845 Update rerender_a_video.py fix dtype error (#10451)
Update rerender_a_video.py
2025-01-04 14:52:50 +00:00
chaowenguo
a17832b2d9 add pythor_xla support for render a video (#10443)
* Update rerender_a_video.py

* Update rerender_a_video.py

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-03 16:00:02 +00:00
hlky
c28db0aa5b Fix AutoPipeline from_pipe where source pipeline is missing target pipeline's optional components (#10400)
* Optional components in AutoPipeline

* missing_modules

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-02 11:06:51 -10:00
Doug J
f7822ae4bf Update train_text_to_image_sdxl.py (#8830)
Enable VAE hash to be able to change with args change. If not, train_dataset_with_embeddiings may have row number inconsistency with train_dataset_with_vae.

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-01-02 10:41:18 -10:00
Steven Liu
d81cc6f1da [docs] Fix internal links (#10418)
fix links

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-02 10:11:16 -10:00
Aryan
476795c5c3 Update Flux docstrings (#10423)
update
2025-01-02 10:06:18 -10:00
Sayak Paul
3cb66865f7 [LTX-Video] fix attribute adjustment for ltx. (#10426)
fix attribute adjustment for ltx.
2025-01-02 10:05:41 -10:00
Daniel Regado
68bd6934b1 IP-Adapter support for StableDiffusion3ControlNetPipeline (#10363)
* IP-Adapter support for `StableDiffusion3ControlNetPipeline`

* Update src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py

Co-authored-by: hlky <hlky@hlky.ac>

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-02 10:02:32 -10:00
G.O.D
f4fdb3a0ab fix bug for ascend npu (#10429) 2025-01-02 09:52:53 -10:00
Junsong Chen
7ab7c12173 [Sana] 1k PE bug fixed (#10431)
fix pe bug for Sana

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-02 09:50:51 -10:00
maxs-kan
44640c8358 Fix Flux multiple Lora loading bug (#10388)
* check for base_layer key in transformer state dict

* test_lora_expansion_works_for_absent_keys

* check

* Update tests/lora/test_lora_layers_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* check

* test_lora_expansion_works_for_absent_keys/test_lora_expansion_works_for_extra_keys

* absent->extra

---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-02 08:34:48 -10:00
Dev Rajput
4b9f1c7d8c Add correct number of channels when resuming from checkpoint for Flux Control LoRa training (#10422)
* Add correct number of channels when resuming from checkpoint

* Fix Formatting
2025-01-02 15:51:44 +05:30
Steven Liu
91008aabc4 [docs] Video generation update (#10272)
* update

* update

* feedback

* fix videos

* use previous checkpoint

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-31 12:44:57 -08:00
Steven Liu
0744378dc0 [docs] Quantization tip (#10249)
* quantization

* add other vid models

* typo

* more pipelines

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-31 08:52:11 -08:00
Luchao Qi
3f591ef975 [Typo] Update md files (#10404)
* Update pix2pix.md

fix hyperlink error

* fix md link typos

* fix md typo - remove ".md" at the end of links

* [Fix] Broken links in hunyuan docs (#10402)

* fix-hunyuan-broken-links

* [Fix] docs broken links hunyuan

* [training] add ds support to lora sd3. (#10378)

* add ds support to lora sd3.

Co-authored-by: leisuzz <jiangshuonb@gmail.com>

* style.

---------

Co-authored-by: leisuzz <jiangshuonb@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>

* fix md typo - remove ".md" at the end of links

* fix md link typos

* fix md typo - remove ".md" at the end of links

---------

Co-authored-by: SahilCarterr <110806554+SahilCarterr@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: leisuzz <jiangshuonb@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-12-31 08:37:00 -08:00
Sayak Paul
5f72473543 [training] add ds support to lora sd3. (#10378)
* add ds support to lora sd3.

Co-authored-by: leisuzz <jiangshuonb@gmail.com>

* style.

---------

Co-authored-by: leisuzz <jiangshuonb@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-12-30 19:31:05 +05:30
SahilCarterr
01780c3c9c [Fix] Broken links in hunyuan docs (#10402)
* fix-hunyuan-broken-links

* [Fix] docs broken links hunyuan
2024-12-28 10:01:26 -10:00
hlky
55ac1dbdf2 Default values in SD3 pipelines when submodules are not loaded (#10393)
SD3 pipelines hasattr
2024-12-27 07:58:49 -10:00
SahilCarterr
83da817f73 [Add] torch_xla support to pipeline_sana.py (#10364)
[Add] torch_xla support in pipeline_sana.py
2024-12-27 08:33:11 +00:00
Alan Ponnachan
f430a0cf32 Add torch_xla support to pipeline_aura_flow.py (#10365)
* Add torch_xla support to pipeline_aura_flow.py

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-27 07:53:04 +00:00
Sayak Paul
1b202c5730 [LoRA] feat: support unload_lora_weights() for Flux Control. (#10206)
* feat: support unload_lora_weights() for Flux Control.

* tighten test

* minor

* updates

* meta device fixes.
2024-12-25 17:27:16 +05:30
Aryan
cd991d1e1a Fix TorchAO related bugs; revert device_map changes (#10371)
* Revert "Add support for sharded models when TorchAO quantization is enabled (#10256)"

This reverts commit 41ba8c0bf6.

* update tests

* udpate

* update

* update

* update device map tests

* apply review suggestions

* update

* make style

* fix

* update docs

* update tests

* update workflow

* update

* improve tests

* allclose tolerance

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update tests/quantization/torchao/test_torchao.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* improve tests

* fix

* update correct slices

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-25 15:37:49 +05:30
Sayak Paul
825979ddc3 [training] fix: registration of out_channels in the control flux scripts. (#10367)
* fix: registration of out_channels in the control flux scripts.

* free memory.
2024-12-24 21:44:44 +05:30
Fanli Lin
023b0e0d55 [tests] fix AssertionError: Torch not compiled with CUDA enabled (#10356)
fix bug on xpu
2024-12-24 15:28:50 +00:00
Eliseu Silva
c0c11683f3 Make passing the IP Adapter mask to the attention mechanism optional (#10346)
Make passing the IP Adapter mask to the attention mechanism optional if there is no need to apply it to a given IP Adapter.
2024-12-24 15:28:42 +00:00
YiYi Xu
6dfaec3487 make style for https://github.com/huggingface/diffusers/pull/10368 (#10370)
* fix bug for torch.uint1-7 not support in torch<2.6

* up

---------

Co-authored-by: baymax591 <cbai@mail.nwpu.edu.cn>
2024-12-23 19:52:21 -10:00
suzukimain
c1e7fd5b34 [Docs] Added model search to community_projects.md (#10358)
Update community_projects.md
2024-12-23 17:14:26 -10:00
Sayak Paul
9d2c8d8859 fix test pypi installation in the release workflow (#10360)
fix
2024-12-24 07:48:18 +05:30
Sayak Paul
92933ec36a [chore] post release 0.32.0 (#10361)
* post release 0.32.0

* stylew
2024-12-23 10:03:34 -10:00
Aryan
4b557132ce [core] LTX Video 0.9.1 (#10330)
* update

* make style

* update

* update

* update

* make style

* single file related changes

* update

* fix

* update single file urls and docs

* update

* fix
2024-12-23 19:51:33 +05:30
Sayak Paul
851dfa30ae [Tests] Fix more tests sayak (#10359)
* fixes to tests

* fixture

* fixes
2024-12-23 19:11:21 +05:30
Sayak Paul
ea1ba0ba53 [LoRA] test fix (#10351)
updates
2024-12-23 15:45:45 +05:30
Aryan
9d27df8071 Rename LTX blocks and docs title (#10213)
* rename blocks and docs

* fix docs

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-23 15:29:10 +05:30
Aryan
055d95543a Fix failing CogVideoX LoRA fuse test (#10352)
fix
2024-12-23 14:22:09 +05:30
hlky
71cc2013fe Fix FluxIPAdapterTesterMixin (#10354) 2024-12-23 14:20:06 +05:30
Sayak Paul
c34fc34563 [Tests] QoL improvements to the LoRA test suite (#10304)
* misc lora test improvements.

* updates

* fixes to tests
2024-12-23 13:59:55 +05:30
Dhruv Nair
5fcee4a447 [Single File] Fix loading (#10349)
update
2024-12-23 13:12:23 +05:30
Sayak Paul
76e2727b5c [SANA LoRA] sana lora training tests and misc. (#10296)
* sana lora training tests and misc.

* remove push to hub

* Update examples/dreambooth/train_dreambooth_lora_sana.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-23 12:35:13 +05:30
Aryan
02c777c065 [tests] Refactor TorchAO serialization fast tests (#10271)
refactor
2024-12-23 11:04:57 +05:30
Sayak Paul
6a970a45c5 [docs] fix: torchao example. (#10278)
fix: torchao example.
2024-12-23 11:03:50 +05:30
Aryan
ffc0eaab6d Bump minimum TorchAO version to 0.7.0 (#10293)
* bump min torchao version to 0.7.0

* update
2024-12-23 11:03:04 +05:30
Thien Tran
3c2e2aa8a9 .from_single_file() - Add missing .shape (#10332)
Add missing `.shape`
2024-12-23 08:57:25 +05:30
Junsong Chen
b58868e6f4 [Sana bug] bug fix for 2K model config (#10340)
* fix the Positinoal Embedding bug in 2K model;

* Change the default model to the BF16 one for more stable training and output

* make style

* substract buffer size

* add compute_module_persistent_sizes

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-12-23 08:56:25 +05:30
Dhruv Nair
da21d590b5 [Single File] Add Single File support for HunYuan video (#10320)
* update

* Update src/diffusers/loaders/single_file_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-23 08:44:58 +05:30
YiYi Xu
7c2f0afb1c update get_parameter_dtype (#10342)
add:
q
2024-12-23 08:14:13 +05:30
hlky
f615f00f58 Fix enable_sequential_cpu_offload in test_kandinsky_combined (#10324)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-22 15:28:28 -10:00
Aryan
6aaa0518e3 Community hosted weights for diffusers format HunyuanVideo weights (#10344)
update docs and example to use community weights
2024-12-22 15:26:28 -10:00
Mehmet Yiğit Özgenç
233dffdc3f flux controlnet inpaint config bug (#10291)
* flux controlnet inpaint config bug

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py

---------

Co-authored-by: yigitozgenc <yigit@quantuslabs.ai>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-21 18:44:43 +00:00
hlky
be2070991f Support Flux IP Adapter (#10261)
* Flux IP-Adapter

* test cfg

* make style

* temp remove copied from

* fix test

* fix test

* v2

* fix

* make style

* temp remove copied from

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Move encoder_hid_proj to inside FluxTransformer2DModel

* merge

* separate encode_prompt, add copied from, image_encoder offload

* make

* fix test

* fix

* Update src/diffusers/pipelines/flux/pipeline_flux.py

* test_flux_prompt_embeds change not needed

* true_cfg -> true_cfg_scale

* fix merge conflict

* test_flux_ip_adapter_inference

* add fast test

* FluxIPAdapterMixin not test mixin

* Update pipeline_flux.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-21 17:49:58 +00:00
hlky
bf9a641f1a Fix EMAModel test_from_pretrained (#10325) 2024-12-21 14:10:44 +00:00
hlky
a756694bf0 Fix push_tests_mps.yml (#10326) 2024-12-21 14:10:32 +00:00
Sayak Paul
d41388145e [Docs] Update gguf.md to remove generator from the pipeline from_pretrained (#10299)
Update gguf.md to remove generator from the pipeline from_pretrained
2024-12-21 07:15:03 +05:30
Junsong Chen
a6288a5571 [Sana]add 2K related model for Sana (#10322)
add 2K related model for Sana
2024-12-20 07:21:34 -10:00
Steven Liu
7d4db57037 [docs] Fix quantization links (#10323)
Update overview.md
2024-12-20 08:30:21 -08:00
Aditya Raj
902008608a [BUG FIX] [Stable Audio Pipeline] Resolve torch.Tensor.new_zeros() TypeError in function prepare_latents caused by audio_vae_length (#10306)
[BUG FIX] [Stable Audio Pipeline] TypeError: new_zeros(): argument 'size' failed to unpack the object at pos 3 with error "type must be tuple of ints,but got float"

torch.Tensor.new_zeros() takes a single argument size (int...) – a list, tuple, or torch.Size of integers defining the shape of the output tensor.

in function prepare_latents:
audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length
audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
...
audio = initial_audio_waveforms.new_zeros(audio_shape)

audio_vae_length evaluates to float because self.transformer.config.sample_size returns a float

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-20 15:29:58 +00:00
Leojc
c8ee4af228 docs: fix a mistake in docstring (#10319)
Update pipeline_hunyuan_video.py

docs: fix a mistake
2024-12-20 15:22:32 +00:00
Sayak Paul
b64ca6c11c [Docs] Update ltx_video.md to remove generator from from_pretrained() (#10316)
Update ltx_video.md to remove generator from `from_pretrained()`
2024-12-20 18:32:22 +05:30
Dhruv Nair
e12d610faa Mochi docs (#9934)
* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-20 16:27:38 +05:30
Sayak Paul
bf6eaa8aec [Tests] add integration tests for lora expansion stuff in Flux. (#10318)
add integration tests for lora expansion stuff in Flux.
2024-12-20 16:14:58 +05:30
Sayak Paul
17128c42a4 [LoRA] feat: support loading regular Flux LoRAs into Flux Control, and Fill (#10259)
* lora expansion with dummy zeros.

* updates

* fix working 🥳

* working.

* use torch.device meta for state dict expansion.

* tests

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>

* fixes

* fixes

* switch to debug

* fix

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

* fix stuff

* docs

---------

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-20 14:30:32 +05:30
382 changed files with 6254 additions and 1698 deletions

View File

@@ -34,7 +34,7 @@ jobs:
id: file_changes
uses: jitterbit/get-changed-files@v1
with:
format: 'space-delimited'
format: "space-delimited"
token: ${{ secrets.GITHUB_TOKEN }}
- name: Build Changed Docker Images
@@ -67,6 +67,7 @@ jobs:
- diffusers-pytorch-cuda
- diffusers-pytorch-compile-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-flax-cpu
- diffusers-flax-tpu
- diffusers-onnxruntime-cpu

View File

@@ -235,7 +235,64 @@ jobs:
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_version_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
tests/pipelines/test_pipeline_utils.py \
tests/pipelines/test_pipelines.py \
tests/pipelines/test_pipelines_auto.py \
tests/schedulers/test_schedulers.py \
tests/others
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_minimum_version_cuda_stats.txt
cat reports/tests_torch_minimum_version_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_minimum_version_cuda_test_reports
path: reports
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on:
@@ -359,6 +416,8 @@ jobs:
test_location: "bnb"
- backend: "gguf"
test_location: "gguf"
- backend: "torchao"
test_location: "torchao"
runs-on:
group: aws-g6e-xlarge-plus
container:

View File

@@ -46,7 +46,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade

View File

@@ -68,7 +68,7 @@ jobs:
- name: Test installing diffusers and importing
run: |
pip install diffusers && pip uninstall diffusers -y
pip install -i https://testpypi.python.org/pypi diffusers
pip install -i https://test.pypi.org/simple/ diffusers
python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"

View File

@@ -157,6 +157,63 @@ jobs:
name: torch_cuda_${{ matrix.module }}_test_reports
path: reports
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
tests/pipelines/test_pipeline_utils.py \
tests/pipelines/test_pipelines.py \
tests/pipelines/test_pipelines_auto.py \
tests/schedulers/test_schedulers.py \
tests/others
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_minimum_version_cuda_stats.txt
cat reports/tests_torch_minimum_version_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_minimum_version_cuda_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu

View File

@@ -0,0 +1,53 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
ENV MINIMUM_SUPPORTED_TORCH_VERSION="2.1.0"
ENV MINIMUM_SUPPORTED_TORCHVISION_VERSION="0.16.0"
ENV MINIMUM_SUPPORTED_TORCHAUDIO_VERSION="2.1.0"
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch==$MINIMUM_SUPPORTED_TORCH_VERSION \
torchvision==$MINIMUM_SUPPORTED_TORCHVISION_VERSION \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -48,7 +48,7 @@
- local: using-diffusers/inpaint
title: Inpainting
- local: using-diffusers/text-img2vid
title: Text or image-to-video
title: Video generation
- local: using-diffusers/depth2img
title: Depth-to-image
title: Generative tasks
@@ -429,7 +429,7 @@
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/ltx_video
title: LTX
title: LTXVideo
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AllegroTransformer3DModel
vae = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
transformer = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## AllegroTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanVideo
vae = AutoencoderKLHunyuanVideo.from_pretrained("tencent/HunyuanVideo", torch_dtype=torch.float16)
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16)
```
## AutoencoderKLHunyuanVideo

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLLTXVideo
vae = AutoencoderKLLTXVideo.from_pretrained("TODO/TODO", subfolder="vae", torch_dtype=torch.float32).to("cuda")
vae = AutoencoderKLLTXVideo.from_pretrained("Lightricks/LTX-Video", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLLTXVideo

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import CogVideoXTransformer3DModel
vae = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## CogVideoXTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import CogView3PlusTransformer2DModel
vae = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
transformer = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView3PlusTransformer2DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanVideoTransformer3DModel
transformer = HunyuanVideoTransformer3DModel.from_pretrained("tencent/HunyuanVideo", torch_dtype=torch.bfloat16)
transformer = HunyuanVideoTransformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanVideoTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import LTXVideoTransformer3DModel
transformer = LTXVideoTransformer3DModel.from_pretrained("TODO/TODO", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
transformer = LTXVideoTransformer3DModel.from_pretrained("Lightricks/LTX-Video", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## LTXVideoTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import MochiTransformer3DModel
vae = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
transformer = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## MochiTransformer3DModel

View File

@@ -22,7 +22,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import SanaTransformer2DModel
transformer = SanaTransformer2DModel.from_pretrained("Efficient-Large-Model/Sana_1600M_1024px_diffusers", subfolder="transformer", torch_dtype=torch.float16)
transformer = SanaTransformer2DModel.from_pretrained("Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## SanaTransformer2DModel

View File

@@ -19,10 +19,55 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`AllegroPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, AllegroTransformer3DModel, AllegroPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"rhymes-ai/Allegro",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = AllegroTransformer3DModel.from_pretrained(
"rhymes-ai/Allegro",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = AllegroPipeline.from_pretrained(
"rhymes-ai/Allegro",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = (
"A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, "
"the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this "
"location might be a popular spot for docking fishing boats."
)
video = pipeline(prompt, guidance_scale=7.5, max_sequence_length=512).frames[0]
export_to_video(video, "harbor.mp4", fps=15)
```
## AllegroPipeline
[[autodoc]] AllegroPipeline

View File

@@ -803,7 +803,7 @@ FreeInit is not really free - the improved quality comes at the cost of extra co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ You can find additional information about Attend-and-Excite on the [project page
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -37,7 +37,7 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -60,7 +60,7 @@ The following example demonstrates how to construct good music and speech genera
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AuraFlow
AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stable_diffusion_3.md) and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the [GenEval](https://github.com/djghosh13/geneval) benchmark.
AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stable_diffusion_3) and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the [GenEval](https://github.com/djghosh13/geneval) benchmark.
It was developed by the Fal team and more details about it can be found in [this blog post](https://blog.fal.ai/auraflow/).
@@ -22,6 +22,46 @@ AuraFlow can be quite expensive to run on consumer hardware devices. However, yo
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`AuraFlowPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, AuraFlowTransformer2DModel, AuraFlowPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"fal/AuraFlow",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = AuraFlowTransformer2DModel.from_pretrained(
"fal/AuraFlow",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("auraflow.png")
```
## AuraFlowPipeline
[[autodoc]] AuraFlowPipeline

View File

@@ -25,7 +25,7 @@ The original codebase can be found at [salesforce/LAVIS](https://github.com/sale
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -23,7 +23,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -112,13 +112,46 @@ CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds o
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
### Quantized inference
## Quantization
[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs!
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below.
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`CogVideoXPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=8)
```
## CogVideoXPipeline

View File

@@ -23,7 +23,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ The original codebase can be found at [lllyasviel/ControlNet](https://github.com
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -42,7 +42,7 @@ XLabs ControlNets are also supported, which was contributed by the [XLabs team](
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ This code is implemented by Tencent Hunyuan Team. You can find pre-trained check
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -36,7 +36,7 @@ This controlnet code is mainly implemented by [The InstantX Team](https://huggin
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -32,7 +32,7 @@ If you don't see a checkpoint you're interested in, you can train your own SDXL
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -32,7 +32,7 @@ This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,7 +19,7 @@ Dance Diffusion is the first in a suite of generative audio tools for producers
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [hohonathanho/diffusion](https://github.co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [facebookresearch/dit](https://github.com/
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -268,6 +268,47 @@ images = pipe(
images[0].save("flux-redux.png")
```
## Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux
We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps' inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).
```py
from diffusers import FluxControlPipeline
from image_gen_aux import DepthPreprocessor
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
import torch
control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora", adapter_name="depth")
control_pipe.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
)
control_pipe.set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
control_pipe.enable_model_cpu_offload()
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = control_pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=8,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```
## Note about `unload_lora_weights()` when using Flux LoRAs
When unloading the Control LoRA weights, call `pipe.unload_lora_weights(reset_to_overwritten_params=True)` to reset the `pipe.transformer` completely back to its original form. The resultant pipeline can then be used with methods like [`DiffusionPipeline.from_pipe`]. More details about this argument are available in [this PR](https://github.com/huggingface/diffusers/pull/10397).
## Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
@@ -297,6 +338,46 @@ out = pipe(
out.save("image.png")
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`FluxPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt, guidance_scale=3.5, height=768, width=1360, num_inference_steps=50).images[0]
image.save("flux.png")
```
## Single File Loading for the `FluxTransformer2DModel`
The `FluxTransformer2DModel` supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.

View File

@@ -20,7 +20,7 @@
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -29,9 +29,40 @@ Recommendations for inference:
- Transformer should be in `torch.bfloat16`.
- VAE should be in `torch.float16`.
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `129`.
- For smaller resolution images, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For more information about supported resolutions and other details, please refer to the original repository [here](https://github.com/Tencent/HunyuanVideo/).
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`HunyuanVideoPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline
from diffusers.utils import export_to_video
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = HunyuanVideoTransformer3DModel.from_pretrained(
"tencent/HunyuanVideo",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = HunyuanVideoPipeline.from_pretrained(
"tencent/HunyuanVideo",
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A cat walks on the grass, realistic style."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "cat.mp4", fps=15)
```
## HunyuanVideoPipeline
[[autodoc]] HunyuanVideoPipeline

View File

@@ -30,7 +30,7 @@ HunyuanDiT has the following components:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found [here](https://github.com/ali-vilab/i2vgen-xl
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
</Tip>

View File

@@ -25,7 +25,7 @@ Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community)
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -32,7 +32,7 @@ Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community)
<Tip>
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -25,7 +25,7 @@ Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community)
<Tip>
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [CompVis/latent-diffusion](https://github.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -28,7 +28,7 @@ This pipeline was contributed by [maxin-cn](https://github.com/maxin-cn). The or
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -70,6 +70,47 @@ Without torch.compile(): Average inference time: 16.246 seconds.
With torch.compile(): Average inference time: 14.573 seconds.
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LattePipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, LatteTransformer3DModel, LattePipeline
from diffusers.utils import export_to_gif
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"maxin-cn/Latte-1",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = LatteTransformer3DModel.from_pretrained(
"maxin-cn/Latte-1",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LattePipeline.from_pretrained(
"maxin-cn/Latte-1",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A small cactus with a happy face in the Sahara desert."
video = pipeline(prompt).frames[0]
export_to_gif(video, "latte.gif")
```
## LattePipeline
[[autodoc]] LattePipeline

View File

@@ -12,24 +12,34 @@
# See the License for the specific language governing permissions and
# limitations under the License. -->
# LTX
# LTX Video
[LTX Video](https://huggingface.co/Lightricks/LTX-Video) is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
Available models:
| Model name | Recommended dtype |
|:-------------:|:-----------------:|
| [`LTX Video 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors) | `torch.bfloat16` |
| [`LTX Video 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
## Loading Single Files
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`].
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`]. We recommend using `from_single_file` for the Lightricks series of models, as they plan to release multiple models in the future in the single file format.
```python
import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
# `single_file_url` could also be https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(
single_file_url, torch_dtype=torch.bfloat16
@@ -79,7 +89,6 @@ transformer = LTXVideoTransformer3DModel.from_single_file(
pipe = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
generator=torch.manual_seed(0),
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
@@ -100,8 +109,77 @@ export_to_video(video, "output_gguf_ltx.mp4", fps=24)
Make sure to read the [documentation on GGUF](../../quantization/gguf) to learn more about our GGUF support.
<!-- TODO(aryan): Update this when official weights are supported -->
Loading and running inference with [LTX Video 0.9.1](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) weights.
```python
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LTXPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, LTXVideoTransformer3DModel, LTXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = LTXVideoTransformer3DModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, num_frames=161, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=24)
```
## LTXPipeline
[[autodoc]] LTXPipeline

View File

@@ -47,7 +47,7 @@ This pipeline was contributed by [PommesPeter](https://github.com/PommesPeter).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -82,6 +82,46 @@ pipeline.vae.decode = torch.compile(pipeline.vae.decode, mode="max-autotune", fu
image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0]
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LuminaText2ImgPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, Transformer2DModel, LuminaText2ImgPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = Transformer2DModel.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LuminaText2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("lumina.png")
```
## LuminaText2ImgPipeline
[[autodoc]] LuminaText2ImgPipeline

View File

@@ -43,7 +43,7 @@ The original checkpoints can be found under the [PRS-ETH](https://huggingface.co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
</Tip>

View File

@@ -13,18 +13,257 @@
# limitations under the License.
-->
# Mochi
# Mochi 1 Preview
[Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) from Genmo.
> [!TIP]
> Only a research preview of the model weights is available at the moment.
[Mochi 1](https://huggingface.co/genmo/mochi-1-preview) is a video generation model by Genmo with a strong focus on prompt adherence and motion quality. The model features a 10B parameter Asmmetric Diffusion Transformer (AsymmDiT) architecture, and uses non-square QKV and output projection layers to reduce inference memory requirements. A single T5-XXL model is used to encode prompts.
*Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation. This model dramatically closes the gap between closed and open video generation systems. The model is released under a permissive Apache 2.0 license.*
> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`MochiPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, MochiTransformer3DModel, MochiPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"genmo/mochi-1-preview",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = MochiTransformer3DModel.from_pretrained(
"genmo/mochi-1-preview",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = MochiPipeline.from_pretrained(
"genmo/mochi-1-preview",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
video = pipeline(
"Close-up of a cats eye, with the galaxy reflected in the cats eye. Ultra high resolution 4k.",
num_inference_steps=28,
guidance_scale=3.5
).frames[0]
export_to_video(video, "cat.mp4")
```
## Generating videos with Mochi-1 Preview
The following example will download the full precision `mochi-1-preview` weights and produce the highest quality results but will require at least 42GB VRAM to run.
```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")
# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
with torch.autocast("cuda", torch.bfloat16, cache_enabled=False):
frames = pipe(prompt, num_frames=85).frames[0]
export_to_video(frames, "mochi.mp4", fps=30)
```
## Using a lower precision variant to save memory
The following example will use the `bfloat16` variant of the model and requires 22GB VRAM to run. There is a slight drop in the quality of the generated video as a result.
```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
frames = pipe(prompt, num_frames=85).frames[0]
export_to_video(frames, "mochi.mp4", fps=30)
```
## Reproducing the results from the Genmo Mochi repo
The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the the original implementation, please refer to the following example.
<Tip>
The original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
When enabling `force_zeros_for_empty_prompt`, it is recommended to run the text encoding step outside the autocast context in full precision.
</Tip>
<Tip>
Decoding the latents in full precision is very memory intensive. You will need at least 70GB VRAM to generate the 163 frames in this example. To reduce memory, either reduce the number of frames or run the decoding step in `torch.bfloat16`.
</Tip>
```python
import torch
from torch.nn.attention import SDPBackend, sdpa_kernel
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
from diffusers.video_processor import VideoProcessor
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", force_zeros_for_empty_prompt=True)
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()
prompt = "An aerial shot of a parade of elephants walking across the African savannah. The camera showcases the herd and the surrounding landscape."
with torch.no_grad():
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = (
pipe.encode_prompt(prompt=prompt)
)
with torch.autocast("cuda", torch.bfloat16):
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
frames = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_attention_mask=negative_prompt_attention_mask,
guidance_scale=4.5,
num_inference_steps=64,
height=480,
width=848,
num_frames=163,
generator=torch.Generator("cuda").manual_seed(0),
output_type="latent",
return_dict=False,
)[0]
video_processor = VideoProcessor(vae_scale_factor=8)
has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None
has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
)
latents_std = (
torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
)
frames = frames * latents_std / pipe.vae.config.scaling_factor + latents_mean
else:
frames = frames / pipe.vae.config.scaling_factor
with torch.no_grad():
video = pipe.vae.decode(frames.to(pipe.vae.dtype), return_dict=False)[0]
video = video_processor.postprocess_video(video)[0]
export_to_video(video, "mochi.mp4", fps=30)
```
## Running inference with multiple GPUs
It is possible to split the large Mochi transformer across multiple GPUs using the `device_map` and `max_memory` options in `from_pretrained`. In the following example we split the model across two GPUs, each with 24GB of VRAM.
```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video
model_id = "genmo/mochi-1-preview"
transformer = MochiTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
device_map="auto",
max_memory={0: "24GB", 1: "24GB"}
)
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
frames = pipe(
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
negative_prompt="",
height=480,
width=848,
num_frames=85,
num_inference_steps=50,
guidance_scale=4.5,
num_videos_per_prompt=1,
generator=torch.Generator(device="cuda").manual_seed(0),
max_sequence_length=256,
output_type="pil",
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
## Using single file loading with the Mochi Transformer
You can use `from_single_file` to load the Mochi transformer in its original format.
<Tip>
Diffusers currently doesn't support using the FP8 scaled versions of the Mochi single file checkpoints.
</Tip>
```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video
model_id = "genmo/mochi-1-preview"
ckpt_path = "https://huggingface.co/Comfy-Org/mochi_preview_repackaged/blob/main/split_files/diffusion_models/mochi_preview_bf16.safetensors"
transformer = MochiTransformer3DModel.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16)
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
frames = pipe(
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
negative_prompt="",
height=480,
width=848,
num_frames=85,
num_inference_steps=50,
guidance_scale=4.5,
num_videos_per_prompt=1,
generator=torch.Generator(device="cuda").manual_seed(0),
max_sequence_length=256,
output_type="pil",
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
## MochiPipeline
[[autodoc]] MochiPipeline

View File

@@ -42,7 +42,7 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ Paint by Example is supported by the official [Fantasy-Studio/Paint-by-Example](
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -37,7 +37,7 @@ But with circular padding, the right and the left parts are matching (`circular_
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ You can find additional information about InstructPix2Pix on the [project page](
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -31,7 +31,7 @@ Some notes about this pipeline:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,9 +32,9 @@ Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_1600M_512px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_512px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_600M_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px_diffusers) | `torch.float16` |
@@ -50,6 +50,46 @@ Make sure to pass the `variant` argument for downloaded checkpoints to use lower
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaTransformer2DModel, SanaPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModelForCausalLM
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = AutoModelForCausalLM.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SanaTransformer2DModel.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = SanaPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("sana.png")
```
## SanaPipeline
[[autodoc]] SanaPipeline

View File

@@ -22,7 +22,7 @@ You can find additional information about Self-Attention Guidance on the [projec
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -21,7 +21,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,7 +19,7 @@ The original codebase can be found at [openai/shap-e](https://github.com/openai/
<Tip>
See the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
See the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -35,6 +35,57 @@ During inference:
* The _quality_ of the generated audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1 to enable. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`StableAudioPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, StableAudioDiTModel, StableAudioPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"stabilityai/stable-audio-open-1.0",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = StableAudioDiTModel.from_pretrained(
"stabilityai/stable-audio-open-1.0",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = StableAudioPipeline.from_pretrained(
"stabilityai/stable-audio-open-1.0",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "The sound of a hammer hitting a wooden surface."
negative_prompt = "Low quality."
audio = pipeline(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=200,
audio_end_in_s=10.0,
num_waveforms_per_prompt=3,
generator=generator,
).audios
output = audio[0].T.float().cpu().numpy()
sf.write("hammer.wav", output, pipeline.vae.sampling_rate)
```
## StableAudioPipeline
[[autodoc]] StableAudioPipeline

View File

@@ -268,6 +268,46 @@ image.save("sd3_hello_world.png")
Check out the full script [here](https://gist.github.com/sayakpaul/508d89d7aad4f454900813da5d42ca97).
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`StableDiffusion3Pipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SD3Transformer2DModel, StableDiffusion3Pipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
subfolder="text_encoder_3",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt, num_inference_steps=28, guidance_scale=7.0).images[0]
image.save("sd3.png")
```
## Using Long Prompts with the T5 Text Encoder
By default, the T5 Text Encoder prompt uses a maximum sequence length of `256`. This can be adjusted by setting the `max_sequence_length` to accept fewer or more tokens. Keep in mind that longer sequences require additional resources and result in longer generation times, such as during batch inference.

View File

@@ -97,7 +97,7 @@ image
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -175,7 +175,7 @@ Check out the [Text or image-to-video](text-img2vid) guide for more details abou
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -284,7 +284,7 @@ You can filter out some available DreamBooth-trained models with [this link](htt
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,7 +19,7 @@ You can find lucidrains' DALL-E 2 recreation at [lucidrains/DALLE2-pytorch](http
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -192,7 +192,7 @@ print(final_prompt)
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -30,7 +30,7 @@ The script to run the model is available [here](https://github.com/huggingface/d
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -79,4 +79,8 @@ Happy exploring, and thank you for being part of the Diffusers community!
<td><a href="https://github.com/Netwrck/stable-diffusion-server"> Stable Diffusion Server </a></td>
<td>A server configured for Inpainting/Generation/img2img with one stable diffusion model</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/suzukimain/auto_diffusers"> Model Search </a></td>
<td>Search models on Civitai and Hugging Face</td>
</tr>
</table>

View File

@@ -45,12 +45,11 @@ transformer = FluxTransformer2DModel.from_single_file(
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
generator=torch.manual_seed(0),
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt).images[0]
image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")
```

View File

@@ -33,8 +33,8 @@ If you are new to the quantization field, we recommend you to check out these be
## When to use what?
Diffusers currently supports the following quantization methods.
- [BitsandBytes](./bitsandbytes.md)
- [TorchAO](./torchao.md)
- [GGUF](./gguf.md)
- [BitsandBytes](./bitsandbytes)
- [TorchAO](./torchao)
- [GGUF](./gguf)
[This resource](https://huggingface.co/docs/transformers/main/en/quantization/overview#when-to-use-what) provides a good overview of the pros and cons of different quantization techniques.

View File

@@ -25,9 +25,10 @@ Quantize a model by passing [`TorchAoConfig`] to [`~ModelMixin.from_pretrained`]
The example below only quantizes the weights to int8.
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig
model_id = "black-forest-labs/Flux.1-Dev"
model_id = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
quantization_config = TorchAoConfig("int8wo")
@@ -44,8 +45,14 @@ pipe = FluxPipeline.from_pretrained(
)
pipe.to("cuda")
# Without quantization: ~31.447 GB
# With quantization: ~20.40 GB
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB")
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, num_inference_steps=28, guidance_scale=0.0).images[0]
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
```
@@ -86,6 +93,63 @@ Some quantization methods are aliases (for example, `int8wo` is the commonly use
Refer to the official torchao documentation for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
## Serializing and Deserializing quantized models
To serialize a quantized model in a given dtype, first load the model with the desired quantization dtype and then save it using the [`~ModelMixin.save_pretrained`] method.
```python
import torch
from diffusers import FluxTransformer2DModel, TorchAoConfig
quantization_config = TorchAoConfig("int8wo")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/Flux.1-Dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
transformer.save_pretrained("/path/to/flux_int8wo", safe_serialization=False)
```
To load a serialized quantized model, use the [`~ModelMixin.from_pretrained`] method.
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel
transformer = FluxTransformer2DModel.from_pretrained("/path/to/flux_int8wo", torch_dtype=torch.bfloat16, use_safetensors=False)
pipe = FluxPipeline.from_pretrained("black-forest-labs/Flux.1-Dev", transformer=transformer, torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.0).images[0]
image.save("output.png")
```
Some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
```python
import torch
from accelerate import init_empty_weights
from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig
# Serialize the model
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/Flux.1-Dev",
subfolder="transformer",
quantization_config=TorchAoConfig("uint4wo"),
torch_dtype=torch.bfloat16,
)
transformer.save_pretrained("/path/to/flux_uint4wo", safe_serialization=False, max_shard_size="50GB")
# ...
# Load the model
state_dict = torch.load("/path/to/flux_uint4wo/diffusion_pytorch_model.bin", weights_only=False, map_location="cpu")
with init_empty_weights():
transformer = FluxTransformer2DModel.from_config("/path/to/flux_uint4wo/config.json")
transformer.load_state_dict(state_dict, strict=True, assign=True)
```
## Resources
- [TorchAO Quantization API](https://github.com/pytorch/ao/blob/main/torchao/quantization/README.md)

View File

@@ -56,7 +56,7 @@ image
With the `adapter_name` parameter, it is really easy to use another adapter for inference! Load the [nerijs/pixel-art-xl](https://huggingface.co/nerijs/pixel-art-xl) adapter that has been fine-tuned to generate pixel art images and call it `"pixel"`.
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~PeftAdapterMixin.set_adapters`] method:
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~loaders.peft.PeftAdapterMixin.set_adapters`] method:
```python
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
@@ -85,7 +85,7 @@ By default, if the most up-to-date versions of PEFT and Transformers are detecte
You can also merge different adapter checkpoints for inference to blend their styles together.
Once again, use the [`~PeftAdapterMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
Once again, use the [`~loaders.peft.PeftAdapterMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
```python
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
@@ -114,7 +114,7 @@ Impressive! As you can see, the model generated an image that mixed the characte
> [!TIP]
> Through its PEFT integration, Diffusers also offers more efficient merging methods which you can learn about in the [Merge LoRAs](../using-diffusers/merge_loras) guide!
To return to only using one adapter, use the [`~PeftAdapterMixin.set_adapters`] method to activate the `"toy"` adapter:
To return to only using one adapter, use the [`~loaders.peft.PeftAdapterMixin.set_adapters`] method to activate the `"toy"` adapter:
```python
pipe.set_adapters("toy")
@@ -127,7 +127,7 @@ image = pipe(
image
```
Or to disable all adapters entirely, use the [`~PeftAdapterMixin.disable_lora`] method to return the base model.
Or to disable all adapters entirely, use the [`~loaders.peft.PeftAdapterMixin.disable_lora`] method to return the base model.
```python
pipe.disable_lora()
@@ -141,7 +141,7 @@ image
### Customize adapters strength
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~PeftAdapterMixin.set_adapters`].
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~loaders.peft.PeftAdapterMixin.set_adapters`].
For example, here's how you can turn on the adapter for the `down` parts, but turn it off for the `mid` and `up` parts:
```python
@@ -214,7 +214,7 @@ list_adapters_component_wise
{"text_encoder": ["toy", "pixel"], "unet": ["toy", "pixel"], "text_encoder_2": ["toy", "pixel"]}
```
The [`~PeftAdapterMixin.delete_adapters`] function completely removes an adapter and their LoRA layers from a model.
The [`~loaders.peft.PeftAdapterMixin.delete_adapters`] function completely removes an adapter and their LoRA layers from a model.
```py
pipe.delete_adapters("toy")

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -10,31 +10,20 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Text or image-to-video
# Video generation
Driven by the success of text-to-image diffusion models, generative video models are able to generate short clips of video from a text prompt or an initial image. These models extend a pretrained diffusion model to generate videos by adding some type of temporal and/or spatial convolution layer to the architecture. A mixed dataset of images and videos are used to train the model which learns to output a series of video frames based on the text or image conditioning.
Video generation models include a temporal dimension to bring images, or frames, together to create a video. These models are trained on large-scale datasets of high-quality text-video pairs to learn how to combine the modalities to ensure the generated video is coherent and realistic.
This guide will show you how to generate videos, how to configure video model parameters, and how to control video generation.
[Explore](https://huggingface.co/models?other=video-generation) some of the more popular open-source video generation models available from Diffusers below.
## Popular models
<hfoptions id="popular-models">
<hfoption id="CogVideoX">
> [!TIP]
> Discover other cool and trending video generation models on the Hub [here](https://huggingface.co/models?pipeline_tag=text-to-video&sort=trending)!
[CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) uses a 3D causal Variational Autoencoder (VAE) to compress videos along the spatial and temporal dimensions, and it includes a stack of expert transformer blocks with a 3D full attention mechanism to better capture visual, semantic, and motion information in the data.
[Stable Video Diffusions (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid), [I2VGen-XL](https://huggingface.co/ali-vilab/i2vgen-xl/), [AnimateDiff](https://huggingface.co/guoyww/animatediff), and [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b) are popular models used for video diffusion. Each model is distinct. For example, AnimateDiff inserts a motion modeling module into a frozen text-to-image model to generate personalized animated images, whereas SVD is entirely pretrained from scratch with a three-stage training process to generate short high-quality videos.
The CogVideoX family also includes models capable of generating videos from images and videos in addition to text. The image-to-video models are indicated by **I2V** in the checkpoint name, and they should be used with the [`CogVideoXImageToVideoPipeline`]. The regular checkpoints support video-to-video through the [`CogVideoXVideoToVideoPipeline`].
[CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) is another popular video generation model. The model is a multidimensional transformer that integrates text, time, and space. It employs full attention in the attention module and includes an expert block at the layer level to spatially align text and video.
### CogVideoX
[CogVideoX](../api/pipelines/cogvideox) uses a 3D Variational Autoencoder (VAE) to compress videos along the spatial and temporal dimensions.
Begin by loading the [`CogVideoXPipeline`] and passing an initial text or image to generate a video.
<Tip>
CogVideoX is available for image-to-video and text-to-video. [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V) uses the [`CogVideoXImageToVideoPipeline`] for image-to-video. [THUDM/CogVideoX-5b](https://huggingface.co/THUDM/CogVideoX-5b) and [THUDM/CogVideoX-2b](https://huggingface.co/THUDM/CogVideoX-2b) are available for text-to-video with the [`CogVideoXPipeline`].
</Tip>
The example below demonstrates how to generate a video from an image and text prompt with [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V).
```py
import torch
@@ -42,12 +31,13 @@ from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
image = load_image(image="cogvideox_rocket.png")
image = load_image(image="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
# reduce memory requirements
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
@@ -60,7 +50,6 @@ video = pipe(
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
@@ -75,12 +64,103 @@ export_to_video(video, "output.mp4", fps=8)
</div>
</div>
### Stable Video Diffusion
</hfoption>
<hfoption id="HunyuanVideo">
[SVD](../api/pipelines/svd) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image. You can learn more details about model, like micro-conditioning, in the [Stable Video Diffusion](../using-diffusers/svd) guide.
> [!TIP]
> HunyuanVideo is a 13B parameter model and requires a lot of memory. Refer to the HunyuanVideo [Quantization](../api/pipelines/hunyuan_video#quantization) guide to learn how to quantize the model. CogVideoX and LTX-Video are more lightweight options that can still generate high-quality videos.
Begin by loading the [`StableVideoDiffusionPipeline`] and passing an initial image to generate a video from.
[HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo) features a dual-stream to single-stream diffusion transformer (DiT) for learning video and text tokens separately, and then subsequently concatenating the video and text tokens to combine their information. A single multimodal large language model (MLLM) serves as the text encoder, and videos are also spatio-temporally compressed with a 3D causal VAE.
```py
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
"tencent/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(
"tencent/HunyuanVideo", transformer=transformer, torch_dtype=torch.float16
)
# reduce memory requirements
pipe.vae.enable_tiling()
pipe.to("cuda")
video = pipe(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hunyuan-video-output.gif"/>
</div>
</hfoption>
<hfoption id="LTX-Video">
[LTX-Video (LTXV)](https://huggingface.co/Lightricks/LTX-Video) is a diffusion transformer (DiT) with a focus on speed. It generates 768x512 resolution videos at 24 frames per second (fps), enabling near real-time generation of high-quality videos. LTXV is relatively lightweight compared to other modern video generation models, making it possible to run on consumer GPUs.
```py
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A man walks towards a window, looks out, and then turns around. He has short, dark hair, dark skin, and is wearing a brown coat over a red and gray scarf. He walks from left to right towards a window, his gaze fixed on something outside. The camera follows him from behind at a medium distance. The room is brightly lit, with white walls and a large window covered by a white curtain. As he approaches the window, he turns his head slightly to the left, then back to the right. He then turns his entire body to the right, facing the window. The camera remains stationary as he stands in front of the window. The scene is captured in real-life footage."
video = pipe(
prompt=prompt,
width=704,
height=480,
num_frames=161,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
<div class="flex justify-center">
<img src="https://huggingface.co/Lightricks/LTX-Video/resolve/main/media/ltx-video_example_00014.gif"/>
</div>
</hfoption>
<hfoption id="Mochi-1">
> [!TIP]
> Mochi-1 is a 10B parameter model and requires a lot of memory. Refer to the Mochi [Quantization](../api/pipelines/mochi#quantization) guide to learn how to quantize the model. CogVideoX and LTX-Video are more lightweight options that can still generate high-quality videos.
[Mochi-1](https://huggingface.co/genmo/mochi-1-preview) introduces the Asymmetric Diffusion Transformer (AsymmDiT) and Asymmetric Variational Autoencoder (AsymmVAE) to reduces memory requirements. AsymmVAE causally compresses videos 128x to improve memory efficiency, and AsymmDiT jointly attends to the compressed video tokens and user text tokens. This model is noted for generating videos with high-quality motion dynamics and strong prompt adherence.
```py
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
# reduce memory requirements
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
video = pipe(prompt, num_frames=84).frames[0]
export_to_video(video, "output.mp4", fps=30)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/mochi-video-output.gif"/>
</div>
</hfoption>
<hfoption id="StableVideoDiffusion">
[StableVideoDiffusion (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image.
```py
import torch
@@ -90,6 +170,8 @@ from diffusers.utils import load_image, export_to_video
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
# reduce memory requirements
pipeline.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
@@ -111,54 +193,12 @@ export_to_video(frames, "generated.mp4", fps=7)
</div>
</div>
### I2VGen-XL
</hfoption>
<hfoption id="AnimateDiff">
[I2VGen-XL](../api/pipelines/i2vgenxl) is a diffusion model that can generate higher resolution videos than SVD and it is also capable of accepting text prompts in addition to images. The model is trained with two hierarchical encoders (detail and global encoder) to better capture low and high-level details in images. These learned details are used to train a video diffusion model which refines the video resolution and details in the generated video.
[AnimateDiff](https://huggingface.co/guoyww/animatediff) is an adapter model that inserts a motion module into a pretrained diffusion model to animate an image. The adapter is trained on video clips to learn motion which is used to condition the generation process to create a video. It is faster and easier to only train the adapter and it can be loaded into most diffusion models, effectively turning them into “video models”.
You can use I2VGen-XL by loading the [`I2VGenXLPipeline`], and passing a text and image prompt to generate a video.
```py
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
image = load_image(image_url).convert("RGB")
prompt = "Papers were floating in the air on a table in the library"
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
generator = torch.manual_seed(8888)
frames = pipeline(
prompt=prompt,
image=image,
num_inference_steps=50,
negative_prompt=negative_prompt,
guidance_scale=9.0,
generator=generator
).frames[0]
export_to_gif(frames, "i2v.gif")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
### AnimateDiff
[AnimateDiff](../api/pipelines/animatediff) is an adapter model that inserts a motion module into a pretrained diffusion model to animate an image. The adapter is trained on video clips to learn motion which is used to condition the generation process to create a video. It is faster and easier to only train the adapter and it can be loaded into most diffusion models, effectively turning them into "video models".
Start by loading a [`MotionAdapter`].
Load a `MotionAdapter` and pass it to the [`AnimateDiffPipeline`].
```py
import torch
@@ -166,11 +206,6 @@ from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
```
Then load a finetuned Stable Diffusion model with the [`AnimateDiffPipeline`].
```py
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
@@ -181,13 +216,11 @@ scheduler = DDIMScheduler.from_pretrained(
steps_offset=1,
)
pipeline.scheduler = scheduler
# reduce memory requirements
pipeline.enable_vae_slicing()
pipeline.enable_model_cpu_offload()
```
Create a prompt and generate the video.
```py
output = pipeline(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
@@ -201,38 +234,11 @@ export_to_gif(frames, "animation.gif")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff.gif"/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff.gif"/>
</div>
### ModelscopeT2V
[ModelscopeT2V](../api/pipelines/text_to_video) adds spatial and temporal convolutions and attention to a UNet, and it is trained on image-text and video-text datasets to enhance what it learns during training. The model takes a prompt, encodes it and creates text embeddings which are denoised by the UNet, and then decoded by a VQGAN into a video.
<Tip>
ModelScopeT2V generates watermarked videos due to the datasets it was trained on. To use a watermark-free model, try the [cerspense/zeroscope_v2_76w](https://huggingface.co/cerspense/zeroscope_v2_576w) model with the [`TextToVideoSDPipeline`] first, and then upscale it's output with the [cerspense/zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) checkpoint using the [`VideoToVideoSDPipeline`].
</Tip>
Load a ModelScopeT2V checkpoint into the [`DiffusionPipeline`] along with a prompt to generate a video.
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipeline = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
prompt = "Confident teddy bear surfer rides the wave in the tropics"
video_frames = pipeline(prompt).frames[0]
export_to_video(video_frames, "modelscopet2v.mp4", fps=10)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/modelscopet2v.gif" />
</div>
</hfoption>
</hfoptions>
## Configure model parameters
@@ -548,3 +554,9 @@ If memory is not an issue and you want to optimize for speed, try wrapping the U
+ pipeline.to("cuda")
+ pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) to learn more about supported quantization backends (bitsandbytes, torchao, gguf) and selecting a quantization backend that supports your use case.

View File

@@ -74,7 +74,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -73,7 +73,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)
@@ -160,7 +160,7 @@ to trigger concept `{key}` → use `{tokens}` in your prompt \n
from diffusers import AutoPipelineForText2Image
import torch
{diffusers_imports_pivotal}
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline = AutoPipelineForText2Image.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors')
{diffusers_example_pivotal}
image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0]

View File

@@ -79,7 +79,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -61,7 +61,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -52,7 +52,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -372,7 +372,7 @@ class AdaptiveMaskInpaintPipeline(
self.register_adaptive_mask_model()
self.register_adaptive_mask_settings()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -386,7 +386,7 @@ class AdaptiveMaskInpaintPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
if scheduler is not None and getattr(scheduler.config, "skip_prk_steps", True) is False:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
@@ -450,7 +450,7 @@ class AdaptiveMaskInpaintPipeline(
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -89,7 +89,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -103,7 +103,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -162,7 +162,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.register_to_config(requires_safety_checker=requires_safety_checker)
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):

View File

@@ -35,7 +35,7 @@ class EDICTPipeline(DiffusionPipeline):
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_prompt(

View File

@@ -1342,7 +1342,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False

View File

@@ -221,7 +221,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
language_adapter=language_adapter,
tensor_norm=tensor_norm,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -95,7 +95,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "

View File

@@ -109,7 +109,7 @@ class InstaFlowPipeline(
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -123,7 +123,7 @@ class InstaFlowPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -182,7 +182,7 @@ class InstaFlowPipeline(
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -86,7 +86,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "

View File

@@ -191,7 +191,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -205,7 +205,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -265,7 +265,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -463,6 +463,6 @@ class StableDiffusionHighResFixPipeline(StableDiffusionPipeline):
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -69,7 +69,7 @@ class LatentConsistencyModelImg2ImgPipeline(DiffusionPipeline):
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_prompt(

View File

@@ -273,7 +273,7 @@ class LatentConsistencyModelWalkPipeline(
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -67,7 +67,7 @@ class LatentConsistencyModelPipeline(DiffusionPipeline):
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_prompt(

View File

@@ -336,7 +336,7 @@ class LLMGroundedDiffusionPipeline(
# This is copied from StableDiffusionPipeline, with hook initizations for LMD+.
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -350,7 +350,7 @@ class LLMGroundedDiffusionPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -410,7 +410,7 @@ class LLMGroundedDiffusionPipeline(
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -496,7 +496,7 @@ class StableDiffusionLongPromptWeightingPipeline(
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -510,7 +510,7 @@ class StableDiffusionLongPromptWeightingPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -568,7 +568,7 @@ class StableDiffusionLongPromptWeightingPipeline(
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(

View File

@@ -673,7 +673,7 @@ class SDXLLongPromptWeightingPipeline(
image_encoder=image_encoder,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True

View File

@@ -43,7 +43,7 @@ from diffusers.utils import BaseOutput, check_min_version
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
class MarigoldDepthOutput(BaseOutput):

View File

@@ -3766,7 +3766,7 @@ class MatryoshkaPipeline(
else:
raise ValueError("Currently, nesting levels 0, 1, and 2 are supported.")
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -3780,7 +3780,7 @@ class MatryoshkaPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
# if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
# if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
# deprecation_message = (
# f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
# " `clip_sample` should be set to False in the configuration file. Please make sure to update the"

View File

@@ -98,7 +98,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "

View File

@@ -188,7 +188,7 @@ class AnimateDiffControlNetPipeline(
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False

View File

@@ -308,7 +308,7 @@ class AnimateDiffImgToVideoPipeline(
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt

View File

@@ -162,7 +162,7 @@ class AnimateDiffPipelineIpex(
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt

View File

@@ -166,7 +166,7 @@ class DemoFusionSDXLPipeline(
scheduler=scheduler,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size

View File

@@ -179,7 +179,7 @@ class FabricPipeline(DiffusionPipeline):
tokenizer=tokenizer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt

Some files were not shown because too many files have changed in this diff Show More