Compare commits

...

178 Commits

Author SHA1 Message Date
Aryan
278b3b8825 fix geglu and swiglu gate computation 2025-01-25 06:43:40 +01:00
Aryan
d7f369cbab memory-optimized ff 2025-01-21 23:18:50 +01:00
Lucain
a647682224 Remove cache migration script (#10619) 2025-01-21 07:22:59 -10:00
YiYi Xu
a1f9a71238 fix offload gpu tests etc (#10366)
* add

* style
2025-01-21 18:52:36 +05:30
Fanli Lin
ec37e20972 [tests] make tests device-agnostic (part 3) (#10437)
* initial comit

* fix empty cache

* fix one more

* fix style

* update device functions

* update

* update

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update tests/pipelines/controlnet/test_controlnet.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/utils/testing_utils.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update tests/pipelines/controlnet/test_controlnet.py

Co-authored-by: hlky <hlky@hlky.ac>

* with gc.collect

* update

* make style

* check_torch_dependencies

* add mps empty cache

* bug fix

* Apply suggestions from code review

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-21 12:15:45 +00:00
Muyang Li
158a5a87fb Remove the FP32 Wrapper when evaluating (#10617)
Remove the FP32 Wrapper

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-01-21 16:16:54 +05:30
jiqing-feng
012d08b1bc Enable dreambooth lora finetune example on other devices (#10602)
* enable dreambooth_lora on other devices

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* enable xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check cuda device before empty cache

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* import free_memory

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-01-21 14:09:45 +05:30
Sayak Paul
4ace7d0483 [chore] change licensing to 2025 from 2024. (#10615)
change licensing to 2025 from 2024.
2025-01-20 16:57:27 -10:00
baymax591
75a636da48 bugfix for npu not support float64 (#10123)
* bugfix for npu not support float64

* is_mps is_npu

---------

Co-authored-by: 白超 <baichao19@huawei.com>
Co-authored-by: hlky <hlky@hlky.ac>
2025-01-20 09:35:24 -10:00
sunxunle
4842f5d8de chore: remove redundant words (#10609)
Signed-off-by: sunxunle <sunxunle@ampere.tech>
2025-01-20 08:15:26 -10:00
Sayak Paul
328e0d20a7 [training] set rest of the blocks with requires_grad False. (#10607)
set rest of the blocks with requires_grad False.
2025-01-19 19:34:53 +05:30
Shenghai Yuan
23b467c79c [core] ConsisID (#10140)
* Update __init__.py

* add consisid

* update consisid

* update consisid

* make style

* make_style

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* add doc

* make style

* Rename consisid .md to consisid.md

* Update geodiff_molecule_conformation.ipynb

* Update geodiff_molecule_conformation.ipynb

* Update geodiff_molecule_conformation.ipynb

* Update demo.ipynb

* Update pipeline_consisid.py

* make fix-copies

* Update docs/source/en/using-diffusers/consisid.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/consisid.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/using-diffusers/consisid.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update doc & pipeline code

* fix typo

* make style

* update example

* Update docs/source/en/using-diffusers/consisid.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update example

* update example

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update src/diffusers/pipelines/consisid/pipeline_consisid.py

Co-authored-by: hlky <hlky@hlky.ac>

* update

* add test and update

* remove some changes from docs

* refactor

* fix

* undo changes to examples

* remove save/load and fuse methods

* update

* link hf-doc-img & make test extremely small

* update

* add lora

* fix test

* update

* update

* change expected_diff_max to 0.4

* fix typo

* fix link

* fix typo

* update docs

* update

* remove consisid lora tests

---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2025-01-19 13:10:08 +05:30
Juan Acevedo
aeac0a00f8 implementing flux on TPUs with ptxla (#10515)
* implementing flux on TPUs with ptxla

* add xla flux attention class

* run make style/quality

* Update src/diffusers/models/attention_processor.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Update src/diffusers/models/attention_processor.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* run style and quality

---------

Co-authored-by: Juan Acevedo <jfacevedo@google.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-16 08:46:02 -10:00
Leo Jiang
cecada5280 NPU adaption for RMSNorm (#10534)
* NPU adaption for RMSNorm

* NPU adaption for RMSNorm

---------

Co-authored-by: J石页 <jiangshuo9@h-partners.com>
2025-01-16 08:45:29 -10:00
C
17d99c4d22 [Docs] Add documentation about using ParaAttention to optimize FLUX and HunyuanVideo (#10544)
* add para_attn_flux.md and para_attn_hunyuan_video.md

* add enable_sequential_cpu_offload in para_attn_hunyuan_video.md

* add comment

* refactor

* fix

* fix

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix

* update links

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/optimization/para_attn.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-16 10:05:13 -08:00
hlky
08e62fe0c2 Scheduling fixes on MPS (#10549)
* use np.int32 in scheduling

* test_add_noise_device

* -np.int32, fixes
2025-01-16 07:45:03 -10:00
Daniel Regado
9e1b8a0017 [Docs] Update SD3 ip_adapter model_id to diffusers checkpoint (#10597)
Update to diffusers ip_adapter ckpt
2025-01-16 07:43:29 -10:00
hlky
0b065c099a Move buffers to device (#10523)
* Move buffers to device

* add test

* named_buffers
2025-01-16 07:42:56 -10:00
Junyu Chen
b785ddb654 [DC-AE, SANA] fix SanaMultiscaleLinearAttention apply_quadratic_attention bf16 (#10595)
* autoencoder_dc tiling

* add tiling and slicing support in SANA pipelines

* create variables for padding length because the line becomes too long

* add tiling and slicing support in pag SANA pipelines

* revert changes to tile size

* make style

* add vae tiling test

* fix SanaMultiscaleLinearAttention apply_quadratic_attention bf16

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-01-16 16:49:02 +05:30
Daniel Regado
e8114bd068 IP-Adapter for StableDiffusion3Img2ImgPipeline (#10589)
Added support for IP-Adapter
2025-01-16 09:46:22 +00:00
Leo Jiang
b0c8973834 [Sana 4K] Add vae tiling option to avoid OOM (#10583)
Co-authored-by: J石页 <jiangshuo9@h-partners.com>
2025-01-16 02:06:07 +05:30
Sayak Paul
c944f0651f [Chore] fix vae annotation in mochi pipeline (#10585)
fix vae annotation in mochi pipeline
2025-01-15 15:19:51 +05:30
Sayak Paul
bba59fb88b [Tests] add: test to check 8bit bnb quantized models work with lora loading. (#10576)
* add: test to check 8bit bnb quantized models work with lora loading.

* Update tests/quantization/bnb/test_mixed_int8.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-01-15 13:05:26 +05:30
Sayak Paul
2432f80ca3 [LoRA] feat: support loading loras into 4bit quantized Flux models. (#10578)
* feat: support loading loras into 4bit quantized models.

* updates

* update

* remove weight check.
2025-01-15 12:40:40 +05:30
Aryan
f9e957f011 Fix offload tests for CogVideoX and CogView3 (#10547)
* update

* update
2025-01-15 12:24:46 +05:30
Daniel Regado
4dec63c18e IP-Adapter for StableDiffusion3InpaintPipeline (#10581)
* Added support for IP-Adapter

* Added joint_attention_kwargs property
2025-01-15 06:52:23 +00:00
Junsong Chen
3d70777379 [Sana-4K] (#10537)
* [Sana 4K]
add 4K support for Sana

* [Sana-4K] fix SanaPAGPipeline

* add VAE automatically tiling function;

* set clean_caption to False;

* add warnings for VAE OOM.

* style

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2025-01-14 11:48:56 -10:00
Teriks
6b727842d7 allow passing hf_token to load_textual_inversion (#10546)
Co-authored-by: Teriks <Teriks@users.noreply.github.com>
2025-01-14 11:48:34 -10:00
Dhruv Nair
be62c85cd9 [CI] Update HF Token on Fast GPU Model Tests (#10570)
update
2025-01-14 17:00:32 +05:30
Marc Sun
fbff43acc9 [FEAT] DDUF format (#10037)
* load and save dduf archive

* style

* switch to zip uncompressed

* updates

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* first draft

* remove print

* switch to dduf_file for consistency

* switch to huggingface hub api

* fix log

* add a basic test

* Update src/diffusers/configuration_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* fix

* fix variant

* change saving logic

* DDUF - Load transformers components manually (#10171)

* update hfh version

* Load transformers components manually

* load encoder from_pretrained with state_dict

* working version with transformers and tokenizer !

* add generation_config case

* fix tests

* remove saving for now

* typing

* need next version from transformers

* Update src/diffusers/configuration_utils.py

Co-authored-by: Lucain <lucain@huggingface.co>

* check path corectly

* Apply suggestions from code review

Co-authored-by: Lucain <lucain@huggingface.co>

* udapte

* typing

* remove check for subfolder

* quality

* revert setup changes

* oups

* more readable condition

* add loading from the hub test

* add basic docs.

* Apply suggestions from code review

Co-authored-by: Lucain <lucain@huggingface.co>

* add example

* add

* make functions private

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* minor.

* fixes

* fix

* change the precdence of parameterized.

* error out when custom pipeline is passed with dduf_file.

* updates

* fix

* updates

* fixes

* updates

* fix xfail condition.

* fix xfail

* fixes

* sharded checkpoint compat

* add test for sharded checkpoint

* add suggestions

* Update src/diffusers/models/model_loading_utils.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* from suggestions

* add class attributes to flag dduf tests

* last one

* fix logic

* remove comment

* revert changes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Lucain <lucain@huggingface.co>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-14 13:21:42 +05:30
Dhruv Nair
3279751bf9 [CI] Update HF Token in Fast GPU Tests (#10568)
update
2025-01-14 13:04:26 +05:30
hlky
4a4afd5ece Fix batch > 1 in HunyuanVideo (#10548) 2025-01-14 10:25:06 +05:30
Aryan
aa79d7da46 Test sequential cpu offload for torchao quantization (#10506)
test sequential cpu offload
2025-01-14 09:54:06 +05:30
Sayak Paul
74b67524b5 [Docs] Update hunyuan_video.md to rectify the checkpoint id (#10524)
* Update hunyuan_video.md to rectify the checkpoint id

* bfloat16

* more fixes

* don't update the checkpoint ids.

* update

* t -> T

* Apply suggestions from code review

* fix

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-13 10:59:13 -10:00
Vinh H. Pham
794f7e49a9 Implement framewise encoding/decoding in LTX Video VAE (#10488)
* add framewise decode

* add framewise encode, refactor tiled encode/decode

* add sanity test tiling for ltx

* run make style

* Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py

Co-authored-by: Aryan <contact.aryanvs@gmail.com>

---------

Co-authored-by: Pham Hong Vinh <vinhph3@vng.com.vn>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
2025-01-13 10:58:32 -10:00
Daniel Regado
9fc9c6dd71 Added IP-Adapter for StableDiffusion3ControlNetInpaintingPipeline (#10561)
* Added support for IP-Adapter

* Fixed Copied inconsistency
2025-01-13 10:15:36 -10:00
Omar Awile
df355ea2c6 Fix documentation for FluxPipeline (#10563)
Fix argument name in 8bit quantized example

Found a tiny mistake in the documentation where the text encoder model was passed to the wrong argument in the FluxPipeline.from_pretrained function.
2025-01-13 11:56:32 -08:00
Junsong Chen
ae019da9e3 [Sana] add Sana to auto-text2image-pipeline; (#10538)
add Sana to auto-text2image-pipeline;
2025-01-13 09:54:37 -10:00
Sayak Paul
329771e542 [LoRA] improve failure handling for peft. (#10551)
* improve failure handling for peft.

* emppty

* Update src/diffusers/loaders/peft.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2025-01-13 09:20:49 -10:00
Dhruv Nair
f7cb595428 [Single File] Fix loading Flux Dev finetunes with Comfy Prefix (#10545)
* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-13 21:25:07 +05:30
hlky
c3478a42b9 Fix Nightly AudioLDM2PipelineFastTests (#10556)
* Fix Nightly AudioLDM2PipelineFastTests

* add phonemizer to setup extras test

* fix

* make style
2025-01-13 13:54:06 +00:00
hlky
980736b792 Fix train_dreambooth_lora_sd3_miniature (#10554) 2025-01-13 13:47:27 +00:00
hlky
50c81df4e7 Fix StableDiffusionInstructPix2PixPipelineSingleFileSlowTests (#10557) 2025-01-13 13:47:10 +00:00
Aryan
e1c7269720 Fix Latte output_type (#10558)
update
2025-01-13 19:15:59 +05:30
Sayak Paul
edb8c1bce6 [Flux] Improve true cfg condition (#10539)
* improve flux true cfg condition

* add test
2025-01-12 18:33:34 +05:30
Sayak Paul
0785dba4df [Docs] Add negative prompt docs to FluxPipeline (#10531)
* add negative_prompt documentation.

* add proper docs for negative prompts

* fix-copies

* remove comment.

* Apply suggestions from code review

Co-authored-by: hlky <hlky@hlky.ac>

* fix-copies

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-12 18:02:46 +05:30
Muyang Li
5cda8ea521 Use randn_tensor to replace torch.randn (#10535)
`torch.randn` requires `generator` and `latents` on the same device, while the wrapped function `randn_tensor` does not have this issue.
2025-01-12 11:41:41 +05:30
Sayak Paul
36acdd7517 [Tests] skip tests properly with unittest.skip() (#10527)
* skip tests properly.

* more

* more
2025-01-11 08:46:22 +05:30
Junyu Chen
e7db062e10 [DC-AE] support tiling for DC-AE (#10510)
* autoencoder_dc tiling

* add tiling and slicing support in SANA pipelines

* create variables for padding length because the line becomes too long

* add tiling and slicing support in pag SANA pipelines

* revert changes to tile size

* make style

* add vae tiling test

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-01-11 07:15:26 +05:30
andreabosisio
1b0fe63656 Typo fix in the table number of a referenced paper (#10528)
Correcting a typo in the table number of a referenced paper (in scheduling_ddim_inverse.py)

Changed the number of the referenced table from 1 to 2 in a comment of the set_timesteps() method of the DDIMInverseScheduler class (also according to the description of the 'timestep_spacing' attribute of its __init__ method).
2025-01-10 17:15:25 -08:00
chaowenguo
d6c030fd37 add the xm.mark_step for the first denosing loop (#10530)
* Update rerender_a_video.py

* Update rerender_a_video.py

* Update examples/community/rerender_a_video.py

Co-authored-by: hlky <hlky@hlky.ac>

* Update rerender_a_video.py

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-10 21:03:41 +00:00
Sayak Paul
9f06a0d1a4 [CI] Match remaining assertions from big runner (#10521)
* print

* remove print.

* print

* update slice.

* empty
2025-01-10 16:37:36 +05:30
Daniel Hipke
52c05bd4cd Add a disable_mmap option to the from_single_file loader to improve load performance on network mounts (#10305)
* Add no_mmap arg.

* Fix arg parsing.

* Update another method to force no mmap.

* logging

* logging2

* propagate no_mmap

* logging3

* propagate no_mmap

* logging4

* fix open call

* clean up logging

* cleanup

* fix missing arg

* update logging and comments

* Rename to disable_mmap and update other references.

* [Docs] Update ltx_video.md to remove generator from `from_pretrained()` (#10316)

Update ltx_video.md to remove generator from `from_pretrained()`

* docs: fix a mistake in docstring (#10319)

Update pipeline_hunyuan_video.py

docs: fix a mistake

* [BUG FIX] [Stable Audio Pipeline] Resolve torch.Tensor.new_zeros() TypeError in function prepare_latents caused by audio_vae_length (#10306)

[BUG FIX] [Stable Audio Pipeline] TypeError: new_zeros(): argument 'size' failed to unpack the object at pos 3 with error "type must be tuple of ints,but got float"

torch.Tensor.new_zeros() takes a single argument size (int...) – a list, tuple, or torch.Size of integers defining the shape of the output tensor.

in function prepare_latents:
audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length
audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
...
audio = initial_audio_waveforms.new_zeros(audio_shape)

audio_vae_length evaluates to float because self.transformer.config.sample_size returns a float

Co-authored-by: hlky <hlky@hlky.ac>

* [docs] Fix quantization links (#10323)

Update overview.md

* [Sana]add 2K related model for Sana (#10322)

add 2K related model for Sana

* Update src/diffusers/loaders/single_file_model.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update src/diffusers/loaders/single_file.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Leojc <liao_junchao@outlook.com>
Co-authored-by: Aditya Raj <syntaxticsugr@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Junsong Chen <cjs1020440147@icloud.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-01-10 15:41:04 +05:30
Sayak Paul
a6f043a80f [LoRA] allow big CUDA tests to run properly for LoRA (and others) (#9845)
* allow big lora tests to run on the CI.

* print

* print.

* print

* print

* print

* print

* more

* print

* remove print.

* remove print

* directly place on cuda.

* remove pipeline.

* remove

* fix

* fix

* spaces

* quality

* updates

* directly place flux controlnet pipeline on cuda.

* torch_device instead of cuda.

* style

* device placement.

* fixes

* add big gpu marker for mochi; rename test correctly

* address feedback

* fix

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2025-01-10 12:50:24 +05:30
hlky
12fbe3f7dc Use Pipelines without unet (#10440)
* Use Pipelines without unet

* unet.config.in_channels

* default_sample_size

* is_unet_version_less_0_9_0

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-10 04:45:42 +00:00
Linoy Tsaban
83ba01a38d small readme changes for advanced training examples (#10473)
add to readme about hf login and wandb installation to address https://github.com/huggingface/diffusers/issues/10142#issuecomment-2571655570

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-10 07:35:19 +05:30
Zehuan Huang
7116fd24e5 Support pass kwargs to cogvideox custom attention processor (#10456)
* Support pass kwargs to cogvideox custom attention processor

* remove args in cogvideox attn processor

* remove unused kwargs
2025-01-09 11:57:03 -10:00
Sayak Paul
553b13845f [LoRA] clean up load_lora_into_text_encoder() and fuse_lora() copied from (#10495)
* factor out text encoder loading.

* make fix-copies

* remove copied from fuse_lora and unfuse_lora as needed.

* remove unused imports
2025-01-09 11:29:16 -10:00
chaowenguo
7bc8b92384 add callable object to convert frame into control_frame to reduce cpu memory usage. (#10501)
* Update rerender_a_video.py

* Update rerender_a_video.py

* Update examples/community/rerender_a_video.py

Co-authored-by: hlky <hlky@hlky.ac>

---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-09 11:25:53 -10:00
Vladimir Mandic
f0c6d9784b flux: make scheduler config params optional (#10384)
* dont assume scheduler has optional config params

* make style, make fix-copies

* calculate_shift

* fix-copies, usage in pipelines

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-09 10:44:26 -10:00
Steven Liu
d006f0769b [docs] Fix missing parameters in docstrings (#10419)
* fix docstrings

* add
2025-01-09 10:54:39 -08:00
geronimi73
a26d57097a AutoModel instead of AutoModelForCausalLM (#10507) 2025-01-09 16:28:04 +05:30
Sayak Paul
daf9d0f119 [chore] remove prints from tests. (#10505)
remove prints from tests.
2025-01-09 14:19:43 +05:30
hlky
95c5ce4e6f PyTorch/XLA support (#10498)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-08 12:31:27 -10:00
Junsong Chen
c0964571fc [Sana 4K] (#10493)
add 4K support for Sana
2025-01-08 11:58:11 -10:00
hlky
b13cdbb294 UNet2DModel mid_block_type (#10469) 2025-01-08 10:50:29 -10:00
Bagheera
a0acbdc989 fix for #7365, prevent pipelines from overriding provided prompt embeds (#7926)
* fix for #7365, prevent pipelines from overriding provided prompt embeds

* fix-copies

* fix implementation

* update

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: sayakpaul <spsayakpaul@gmail.com>
2025-01-08 10:12:12 -10:00
Parag Ekbote
5655b22ead Notebooks for Community Scripts-5 (#10499)
Add 5 Notebooks for Diffusers Community
Pipelines.
2025-01-08 08:56:17 -08:00
hlky
4df9d49218 Fix tokenizers install from main in LoRA tests (#10494)
* Fix tokenizers install from main in LoRA tests

* @

* rust

* -e

* uv

* just update tokenizers
2025-01-08 16:14:25 +00:00
Dhruv Nair
9731773d39 [CI] Torch Min Version Test Fix (#10491)
update
2025-01-08 19:43:38 +05:30
Marc Sun
e2deb82e69 Fix compatibility with pipeline when loading model with device_map on single gpu (#10390)
* fix device issue in single gpu case

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-08 11:35:00 +01:00
hlky
1288c8560a Update tokenizers in pr_test_peft_backend (#10132)
Update tokenizers
2025-01-08 10:09:32 +00:00
AstraliteHeart
cb342b745a Add AuraFlow GGUF support (#10463)
* Add support for loading AuraFlow models from GGUF

https://huggingface.co/city96/AuraFlow-v0.3-gguf

* Update AuraFlow documentation for GGUF, add GGUF tests and model detection.

* Address code review comments.

* Remove unused config.

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-08 13:23:12 +05:30
Junsong Chen
80fd9260bb [Sana][bug fix]change clean_caption from True to False. (#10481)
change clean_caption from True to False.
2025-01-07 15:31:23 -10:00
Aryan
71ad16b463 Add _no_split_modules to some models (#10308)
* set supports gradient checkpointing to true where necessary; add missing no split modules

* fix cogvideox tests

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-01-08 06:34:19 +05:30
hlky
ee7e141d80 Use pipelines without vae (#10441)
* Use pipelines without vae

* getattr

* vqvae

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 13:26:51 -10:00
hlky
01bd79649e Fix HunyuanVideo produces NaN on PyTorch<2.5 (#10482)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 13:13:55 -10:00
Teriks
03bcf5aefe RFInversionFluxPipeline, small fix for enable_model_cpu_offload & enable_sequential_cpu_offload compatibility (#10480)
RFInversionFluxPipeline.encode_image, device fix

Use self._execution_device instead of self.device when selecting
a device for the input image tensor.

This allows for compatibility with enable_model_cpu_offload &
enable_sequential_cpu_offload

Co-authored-by: Teriks <Teriks@users.noreply.github.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-01-07 15:47:28 +01:00
dependabot[bot]
e0b96ba7b0 Bump jinja2 from 3.1.4 to 3.1.5 in /examples/research_projects/realfill (#10377)
Bumps [jinja2](https://github.com/pallets/jinja) from 3.1.4 to 3.1.5.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/main/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/3.1.4...3.1.5)

---
updated-dependencies:
- dependency-name: jinja2
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-01-07 19:59:41 +05:30
Dhruv Nair
854a04659c [CI] Add minimal testing for legacy Torch versions (#10479)
* update

* update
2025-01-07 18:51:41 +05:30
hlky
628f2c544a Use Pipelines without scheduler (#10439)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 12:07:08 +00:00
Aryan
811560b1d7 [LoRA] Support original format loras for HunyuanVideo (#10376)
* update

* fix make copies

* update

* add relevant markers to the integration test suite.

* add copied.

* fox-copies

* temporarily add print.

* directly place on CUDA as CPU isn't that big on the CIO.

* fixes to fuse_lora, aryan was right.

* fixes

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 13:18:57 +05:30
Rahul Raman
f1e0c7ce4a Refactor instructpix2pix lora to support peft (#10205)
* make base code changes referred from train_instructpix2pix script in examples

* change code to use PEFT as discussed in issue 10062

* update README training command

* update README training command

* refactor variable name and freezing unet

* Update examples/research_projects/instructpix2pix_lora/train_instruct_pix2pix_lora.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* update README installation instructions.

* cleanup code using make style and quality

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-07 12:00:45 +05:30
Sayak Paul
b94cfd7937 [Training] QoL improvements in the Flux Control training scripts (#10461)
* qol improvements to the Flux script.

* propagate the dataloader changes.
2025-01-07 11:56:17 +05:30
Aryan
661bde0ff2 Fix style (#10478)
fix
2025-01-07 11:06:36 +05:30
Ameer Azam
4f5e3e35d2 Regarding the RunwayML path for V1.5 did change to stable-diffusion-v1-5/[stable-diffusion-v1-5/ stable-diffusion-inpainting] (#10476)
* Update pipeline_controlnet.py

* Update pipeline_controlnet_img2img.py

runwayml Take-down so change all from to this
stable-diffusion-v1-5/stable-diffusion-v1-5

* Update pipeline_controlnet_inpaint.py

* runwayml take-down make change to sd-legacy

* runwayml take-down make change to sd-legacy

* runwayml take-down make change to sd-legacy

* runwayml take-down make change to sd-legacy

* Update convert_blipdiffusion_to_diffusers.py

style change
2025-01-06 15:01:52 -08:00
hlky
8f2253c58c Add torch_xla and from_single_file to instruct-pix2pix (#10444)
* Add torch_xla and from_single_file to instruct-pix2pix

* StableDiffusionInstructPix2PixPipelineSingleFileSlowTests

* StableDiffusionInstructPix2PixPipelineSingleFileSlowTests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-06 10:11:16 -10:00
Aryan
7747b588e2 Fix hunyuan video attention mask dim (#10454)
* fix

* add coauthor

Co-Authored-By: Nerogar <nerogar@arcor.de>

---------

Co-authored-by: Nerogar <nerogar@arcor.de>
2025-01-06 10:07:54 -10:00
Sayak Paul
d9d94e12f3 [LoRA] fix: lora unloading when using expanded Flux LoRAs. (#10397)
* fix: lora unloading when using expanded Flux LoRAs.

* fix argument name.

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>

* docs.

---------

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>
2025-01-06 08:35:05 -10:00
hlky
2f25156c14 LEditsPP - examples, check height/width, add tiling/slicing (#10471)
* LEditsPP - examples, check height/width, add tiling/slicing

* make style
2025-01-06 08:19:53 -10:00
SahilCarterr
6da6406529 [Fix] broken links in docs (#10434)
* Fix broken links in docs

* fix parenthesis
2025-01-06 10:07:38 -08:00
Aryan
04e783cd9e Update variable names correctly in docs (#10435)
fix
2025-01-06 08:56:43 -08:00
hlky
1896b1f7c1 lora_bias PEFT version check in unet.load_attn_procs (#10474)
`lora_bias` PEFT version check in `unet.load_attn_procs` path
2025-01-06 21:27:56 +05:30
Sayak Paul
b5726358cf [Tests] add slow and nightly markers to sd3 lora integation. (#10458)
add slow and nightly markers to sd3 lora integation.
2025-01-06 07:29:04 +05:30
hlky
fdcbbdf0bb Add torch_xla and from_single_file support to TextToVideoZeroPipeline (#10445)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-05 05:24:28 +00:00
chaowenguo
4e44534845 Update rerender_a_video.py fix dtype error (#10451)
Update rerender_a_video.py
2025-01-04 14:52:50 +00:00
chaowenguo
a17832b2d9 add pythor_xla support for render a video (#10443)
* Update rerender_a_video.py

* Update rerender_a_video.py

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-03 16:00:02 +00:00
hlky
c28db0aa5b Fix AutoPipeline from_pipe where source pipeline is missing target pipeline's optional components (#10400)
* Optional components in AutoPipeline

* missing_modules

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-02 11:06:51 -10:00
Doug J
f7822ae4bf Update train_text_to_image_sdxl.py (#8830)
Enable VAE hash to be able to change with args change. If not, train_dataset_with_embeddiings may have row number inconsistency with train_dataset_with_vae.

Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2025-01-02 10:41:18 -10:00
Steven Liu
d81cc6f1da [docs] Fix internal links (#10418)
fix links

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-02 10:11:16 -10:00
Aryan
476795c5c3 Update Flux docstrings (#10423)
update
2025-01-02 10:06:18 -10:00
Sayak Paul
3cb66865f7 [LTX-Video] fix attribute adjustment for ltx. (#10426)
fix attribute adjustment for ltx.
2025-01-02 10:05:41 -10:00
Daniel Regado
68bd6934b1 IP-Adapter support for StableDiffusion3ControlNetPipeline (#10363)
* IP-Adapter support for `StableDiffusion3ControlNetPipeline`

* Update src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py

Co-authored-by: hlky <hlky@hlky.ac>

---------

Co-authored-by: hlky <hlky@hlky.ac>
2025-01-02 10:02:32 -10:00
G.O.D
f4fdb3a0ab fix bug for ascend npu (#10429) 2025-01-02 09:52:53 -10:00
Junsong Chen
7ab7c12173 [Sana] 1k PE bug fixed (#10431)
fix pe bug for Sana

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2025-01-02 09:50:51 -10:00
maxs-kan
44640c8358 Fix Flux multiple Lora loading bug (#10388)
* check for base_layer key in transformer state dict

* test_lora_expansion_works_for_absent_keys

* check

* Update tests/lora/test_lora_layers_flux.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* check

* test_lora_expansion_works_for_absent_keys/test_lora_expansion_works_for_extra_keys

* absent->extra

---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2025-01-02 08:34:48 -10:00
Dev Rajput
4b9f1c7d8c Add correct number of channels when resuming from checkpoint for Flux Control LoRa training (#10422)
* Add correct number of channels when resuming from checkpoint

* Fix Formatting
2025-01-02 15:51:44 +05:30
Steven Liu
91008aabc4 [docs] Video generation update (#10272)
* update

* update

* feedback

* fix videos

* use previous checkpoint

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-31 12:44:57 -08:00
Steven Liu
0744378dc0 [docs] Quantization tip (#10249)
* quantization

* add other vid models

* typo

* more pipelines

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-31 08:52:11 -08:00
Luchao Qi
3f591ef975 [Typo] Update md files (#10404)
* Update pix2pix.md

fix hyperlink error

* fix md link typos

* fix md typo - remove ".md" at the end of links

* [Fix] Broken links in hunyuan docs (#10402)

* fix-hunyuan-broken-links

* [Fix] docs broken links hunyuan

* [training] add ds support to lora sd3. (#10378)

* add ds support to lora sd3.

Co-authored-by: leisuzz <jiangshuonb@gmail.com>

* style.

---------

Co-authored-by: leisuzz <jiangshuonb@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>

* fix md typo - remove ".md" at the end of links

* fix md link typos

* fix md typo - remove ".md" at the end of links

---------

Co-authored-by: SahilCarterr <110806554+SahilCarterr@users.noreply.github.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: leisuzz <jiangshuonb@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-12-31 08:37:00 -08:00
Sayak Paul
5f72473543 [training] add ds support to lora sd3. (#10378)
* add ds support to lora sd3.

Co-authored-by: leisuzz <jiangshuonb@gmail.com>

* style.

---------

Co-authored-by: leisuzz <jiangshuonb@gmail.com>
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
2024-12-30 19:31:05 +05:30
SahilCarterr
01780c3c9c [Fix] Broken links in hunyuan docs (#10402)
* fix-hunyuan-broken-links

* [Fix] docs broken links hunyuan
2024-12-28 10:01:26 -10:00
hlky
55ac1dbdf2 Default values in SD3 pipelines when submodules are not loaded (#10393)
SD3 pipelines hasattr
2024-12-27 07:58:49 -10:00
SahilCarterr
83da817f73 [Add] torch_xla support to pipeline_sana.py (#10364)
[Add] torch_xla support in pipeline_sana.py
2024-12-27 08:33:11 +00:00
Alan Ponnachan
f430a0cf32 Add torch_xla support to pipeline_aura_flow.py (#10365)
* Add torch_xla support to pipeline_aura_flow.py

* make style

---------

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-27 07:53:04 +00:00
Sayak Paul
1b202c5730 [LoRA] feat: support unload_lora_weights() for Flux Control. (#10206)
* feat: support unload_lora_weights() for Flux Control.

* tighten test

* minor

* updates

* meta device fixes.
2024-12-25 17:27:16 +05:30
Aryan
cd991d1e1a Fix TorchAO related bugs; revert device_map changes (#10371)
* Revert "Add support for sharded models when TorchAO quantization is enabled (#10256)"

This reverts commit 41ba8c0bf6.

* update tests

* udpate

* update

* update

* update device map tests

* apply review suggestions

* update

* make style

* fix

* update docs

* update tests

* update workflow

* update

* improve tests

* allclose tolerance

* Update src/diffusers/models/modeling_utils.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Update tests/quantization/torchao/test_torchao.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* improve tests

* fix

* update correct slices

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-25 15:37:49 +05:30
Sayak Paul
825979ddc3 [training] fix: registration of out_channels in the control flux scripts. (#10367)
* fix: registration of out_channels in the control flux scripts.

* free memory.
2024-12-24 21:44:44 +05:30
Fanli Lin
023b0e0d55 [tests] fix AssertionError: Torch not compiled with CUDA enabled (#10356)
fix bug on xpu
2024-12-24 15:28:50 +00:00
Eliseu Silva
c0c11683f3 Make passing the IP Adapter mask to the attention mechanism optional (#10346)
Make passing the IP Adapter mask to the attention mechanism optional if there is no need to apply it to a given IP Adapter.
2024-12-24 15:28:42 +00:00
YiYi Xu
6dfaec3487 make style for https://github.com/huggingface/diffusers/pull/10368 (#10370)
* fix bug for torch.uint1-7 not support in torch<2.6

* up

---------

Co-authored-by: baymax591 <cbai@mail.nwpu.edu.cn>
2024-12-23 19:52:21 -10:00
suzukimain
c1e7fd5b34 [Docs] Added model search to community_projects.md (#10358)
Update community_projects.md
2024-12-23 17:14:26 -10:00
Sayak Paul
9d2c8d8859 fix test pypi installation in the release workflow (#10360)
fix
2024-12-24 07:48:18 +05:30
Sayak Paul
92933ec36a [chore] post release 0.32.0 (#10361)
* post release 0.32.0

* stylew
2024-12-23 10:03:34 -10:00
Aryan
4b557132ce [core] LTX Video 0.9.1 (#10330)
* update

* make style

* update

* update

* update

* make style

* single file related changes

* update

* fix

* update single file urls and docs

* update

* fix
2024-12-23 19:51:33 +05:30
Sayak Paul
851dfa30ae [Tests] Fix more tests sayak (#10359)
* fixes to tests

* fixture

* fixes
2024-12-23 19:11:21 +05:30
Sayak Paul
ea1ba0ba53 [LoRA] test fix (#10351)
updates
2024-12-23 15:45:45 +05:30
Aryan
9d27df8071 Rename LTX blocks and docs title (#10213)
* rename blocks and docs

* fix docs

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-23 15:29:10 +05:30
Aryan
055d95543a Fix failing CogVideoX LoRA fuse test (#10352)
fix
2024-12-23 14:22:09 +05:30
hlky
71cc2013fe Fix FluxIPAdapterTesterMixin (#10354) 2024-12-23 14:20:06 +05:30
Sayak Paul
c34fc34563 [Tests] QoL improvements to the LoRA test suite (#10304)
* misc lora test improvements.

* updates

* fixes to tests
2024-12-23 13:59:55 +05:30
Dhruv Nair
5fcee4a447 [Single File] Fix loading (#10349)
update
2024-12-23 13:12:23 +05:30
Sayak Paul
76e2727b5c [SANA LoRA] sana lora training tests and misc. (#10296)
* sana lora training tests and misc.

* remove push to hub

* Update examples/dreambooth/train_dreambooth_lora_sana.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-23 12:35:13 +05:30
Aryan
02c777c065 [tests] Refactor TorchAO serialization fast tests (#10271)
refactor
2024-12-23 11:04:57 +05:30
Sayak Paul
6a970a45c5 [docs] fix: torchao example. (#10278)
fix: torchao example.
2024-12-23 11:03:50 +05:30
Aryan
ffc0eaab6d Bump minimum TorchAO version to 0.7.0 (#10293)
* bump min torchao version to 0.7.0

* update
2024-12-23 11:03:04 +05:30
Thien Tran
3c2e2aa8a9 .from_single_file() - Add missing .shape (#10332)
Add missing `.shape`
2024-12-23 08:57:25 +05:30
Junsong Chen
b58868e6f4 [Sana bug] bug fix for 2K model config (#10340)
* fix the Positinoal Embedding bug in 2K model;

* Change the default model to the BF16 one for more stable training and output

* make style

* substract buffer size

* add compute_module_persistent_sizes

---------

Co-authored-by: yiyixuxu <yixu310@gmail.com>
2024-12-23 08:56:25 +05:30
Dhruv Nair
da21d590b5 [Single File] Add Single File support for HunYuan video (#10320)
* update

* Update src/diffusers/loaders/single_file_utils.py

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-23 08:44:58 +05:30
YiYi Xu
7c2f0afb1c update get_parameter_dtype (#10342)
add:
q
2024-12-23 08:14:13 +05:30
hlky
f615f00f58 Fix enable_sequential_cpu_offload in test_kandinsky_combined (#10324)
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-22 15:28:28 -10:00
Aryan
6aaa0518e3 Community hosted weights for diffusers format HunyuanVideo weights (#10344)
update docs and example to use community weights
2024-12-22 15:26:28 -10:00
Mehmet Yiğit Özgenç
233dffdc3f flux controlnet inpaint config bug (#10291)
* flux controlnet inpaint config bug

* Update src/diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py

---------

Co-authored-by: yigitozgenc <yigit@quantuslabs.ai>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-21 18:44:43 +00:00
hlky
be2070991f Support Flux IP Adapter (#10261)
* Flux IP-Adapter

* test cfg

* make style

* temp remove copied from

* fix test

* fix test

* v2

* fix

* make style

* temp remove copied from

* Apply suggestions from code review

Co-authored-by: YiYi Xu <yixu310@gmail.com>

* Move encoder_hid_proj to inside FluxTransformer2DModel

* merge

* separate encode_prompt, add copied from, image_encoder offload

* make

* fix test

* fix

* Update src/diffusers/pipelines/flux/pipeline_flux.py

* test_flux_prompt_embeds change not needed

* true_cfg -> true_cfg_scale

* fix merge conflict

* test_flux_ip_adapter_inference

* add fast test

* FluxIPAdapterMixin not test mixin

* Update pipeline_flux.py

Co-authored-by: YiYi Xu <yixu310@gmail.com>

---------

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-21 17:49:58 +00:00
hlky
bf9a641f1a Fix EMAModel test_from_pretrained (#10325) 2024-12-21 14:10:44 +00:00
hlky
a756694bf0 Fix push_tests_mps.yml (#10326) 2024-12-21 14:10:32 +00:00
Sayak Paul
d41388145e [Docs] Update gguf.md to remove generator from the pipeline from_pretrained (#10299)
Update gguf.md to remove generator from the pipeline from_pretrained
2024-12-21 07:15:03 +05:30
Junsong Chen
a6288a5571 [Sana]add 2K related model for Sana (#10322)
add 2K related model for Sana
2024-12-20 07:21:34 -10:00
Steven Liu
7d4db57037 [docs] Fix quantization links (#10323)
Update overview.md
2024-12-20 08:30:21 -08:00
Aditya Raj
902008608a [BUG FIX] [Stable Audio Pipeline] Resolve torch.Tensor.new_zeros() TypeError in function prepare_latents caused by audio_vae_length (#10306)
[BUG FIX] [Stable Audio Pipeline] TypeError: new_zeros(): argument 'size' failed to unpack the object at pos 3 with error "type must be tuple of ints,but got float"

torch.Tensor.new_zeros() takes a single argument size (int...) – a list, tuple, or torch.Size of integers defining the shape of the output tensor.

in function prepare_latents:
audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length
audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
...
audio = initial_audio_waveforms.new_zeros(audio_shape)

audio_vae_length evaluates to float because self.transformer.config.sample_size returns a float

Co-authored-by: hlky <hlky@hlky.ac>
2024-12-20 15:29:58 +00:00
Leojc
c8ee4af228 docs: fix a mistake in docstring (#10319)
Update pipeline_hunyuan_video.py

docs: fix a mistake
2024-12-20 15:22:32 +00:00
Sayak Paul
b64ca6c11c [Docs] Update ltx_video.md to remove generator from from_pretrained() (#10316)
Update ltx_video.md to remove generator from `from_pretrained()`
2024-12-20 18:32:22 +05:30
Dhruv Nair
e12d610faa Mochi docs (#9934)
* update

* update

* update

* update

* update

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-20 16:27:38 +05:30
Sayak Paul
bf6eaa8aec [Tests] add integration tests for lora expansion stuff in Flux. (#10318)
add integration tests for lora expansion stuff in Flux.
2024-12-20 16:14:58 +05:30
Sayak Paul
17128c42a4 [LoRA] feat: support loading regular Flux LoRAs into Flux Control, and Fill (#10259)
* lora expansion with dummy zeros.

* updates

* fix working 🥳

* working.

* use torch.device meta for state dict expansion.

* tests

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>

* fixes

* fixes

* switch to debug

* fix

* Apply suggestions from code review

Co-authored-by: Aryan <aryan@huggingface.co>

* fix stuff

* docs

---------

Co-authored-by: a-r-r-o-w <contact.aryanvs@gmail.com>
Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-20 14:30:32 +05:30
Dhruv Nair
dbc1d505f0 [Single File] Add GGUF support for LTX (#10298)
* update

* add docs.

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-20 11:52:29 +05:30
Aryan
151b74cd77 Make tensors in ResNet contiguous for Hunyuan VAE (#10309)
contiguous tensors in resnet

Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-20 11:45:37 +05:30
Aryan
41ba8c0bf6 Add support for sharded models when TorchAO quantization is enabled (#10256)
* add sharded + device_map check
2024-12-19 15:42:20 -10:00
Daniel Regado
3191248472 [WIP] SD3.5 IP-Adapter Pipeline Integration (#9987)
* Added support for single IPAdapter on SD3.5 pipeline



---------

Co-authored-by: hlky <hlky@hlky.ac>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-19 14:48:18 -10:00
dg845
648d968cfc Enable Gradient Checkpointing for UNet2DModel (New) (#7201)
* Port UNet2DModel gradient checkpointing code from #6718.


---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Vincent Neemie <92559302+VincentNeemie@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: hlky <hlky@hlky.ac>
2024-12-19 14:45:45 -10:00
djm
b756ec6e80 unet's sample_size attribute is to accept tuple(h, w) in StableDiffusionPipeline (#10181) 2024-12-19 22:24:18 +00:00
Aryan
d8825e7697 Fix failing lora tests after HunyuanVideo lora (#10307)
fix
2024-12-20 02:35:41 +05:30
hlky
074798b299 Fix local_files_only for checkpoints with shards (#10294) 2024-12-19 07:04:57 -10:00
Dhruv Nair
3ee966950b Allow Mochi Transformer to be split across multiple GPUs (#10300)
update
2024-12-19 22:34:44 +05:30
Dhruv Nair
9764f229d4 [Single File] Add single file support for Mochi Transformer (#10268)
update
2024-12-19 22:20:40 +05:30
Shenghai Yuan
1826a1e7d3 [LoRA] Support HunyuanVideo (#10254)
* 1217

* 1217

* 1217

* update

* reverse

* add test

* update test

* make style

* update

* make style

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-19 16:22:20 +05:30
hlky
0ed09a17bb Check correct model type is passed to from_pretrained (#10189)
* Check correct model type is passed to `from_pretrained`

* Flax, skip scheduler

* test_wrong_model

* Fix for scheduler

* Update tests/pipelines/test_pipelines.py

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* EnumMeta

* Flax

* scheduler in expected types

* make

* type object 'CLIPTokenizer' has no attribute '_PipelineFastTests__name'

* support union

* fix typing in kandinsky

* make

* add LCMScheduler

* 'LCMScheduler' object has no attribute 'sigmas'

* tests for wrong scheduler

* make

* update

* warning

* tests

* Update src/diffusers/pipelines/pipeline_utils.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* import FlaxSchedulerMixin

* skip scheduler

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2024-12-19 09:24:52 +00:00
赵三石
2f7a417d1f Update lora_conversion_utils.py (#9980)
x-flux single-blocks lora load

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
2024-12-18 23:07:50 -10:00
hlky
4450d26b63 Add Flux Control to AutoPipeline (#10292) 2024-12-18 22:28:56 -10:00
Aryan
f781b8c30c Hunyuan VAE tiling fixes and transformer docs (#10295)
* update

* udpate

* fix test
2024-12-19 10:28:10 +05:30
Sayak Paul
9c0e20de61 [chore] Update README_sana.md to update the default model (#10285)
Update README_sana.md to update the default model
2024-12-19 10:24:57 +05:30
Aryan
f35a38725b [tests] remove nullop import checks from lora tests (#10273)
remove nullop imports
2024-12-19 01:19:08 +05:30
Aryan
f66bd3261c Rename Mochi integration test correctly (#10220)
rename integration test
2024-12-18 22:41:23 +05:30
Aryan
c4c99c3907 [tests] Fix broken cuda, nightly and lora tests on main for CogVideoX (#10270)
fix joint pos embedding device
2024-12-18 22:36:08 +05:30
Dhruv Nair
862a7d5038 [Single File] Add single file support for Flux Canny, Depth and Fill (#10288)
update
2024-12-18 19:19:47 +05:30
Dhruv Nair
8304adce2a Make zeroing prompt embeds for Mochi Pipeline configurable (#10284)
update
2024-12-18 18:32:53 +05:30
Dhruv Nair
b389f339ec Fix Doc links in GGUF and Quantization overview docs (#10279)
* update

* Update docs/source/en/quantization/gguf.md

Co-authored-by: Aryan <aryan@huggingface.co>

---------

Co-authored-by: Aryan <aryan@huggingface.co>
2024-12-18 18:32:36 +05:30
hlky
e222246b4e Fix sigma_last with use_flow_sigmas (#10267) 2024-12-18 12:22:10 +00:00
667 changed files with 17326 additions and 3505 deletions

View File

@@ -34,7 +34,7 @@ jobs:
id: file_changes
uses: jitterbit/get-changed-files@v1
with:
format: 'space-delimited'
format: "space-delimited"
token: ${{ secrets.GITHUB_TOKEN }}
- name: Build Changed Docker Images
@@ -67,6 +67,7 @@ jobs:
- diffusers-pytorch-cuda
- diffusers-pytorch-compile-cuda
- diffusers-pytorch-xformers-cuda
- diffusers-pytorch-minimum-cuda
- diffusers-flax-cpu
- diffusers-flax-tpu
- diffusers-onnxruntime-cpu

View File

@@ -235,7 +235,64 @@ jobs:
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_version_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
tests/pipelines/test_pipeline_utils.py \
tests/pipelines/test_pipelines.py \
tests/pipelines/test_pipelines_auto.py \
tests/schedulers/test_schedulers.py \
tests/others
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_minimum_version_cuda_stats.txt
cat reports/tests_torch_minimum_version_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_minimum_version_cuda_test_reports
path: reports
run_flax_tpu_tests:
name: Nightly Flax TPU Tests
runs-on:
@@ -359,6 +416,8 @@ jobs:
test_location: "bnb"
- backend: "gguf"
test_location: "gguf"
- backend: "torchao"
test_location: "torchao"
runs-on:
group: aws-g6e-xlarge-plus
container:

View File

@@ -266,6 +266,7 @@ jobs:
# TODO (sayakpaul, DN6): revisit `--no-deps`
python -m pip install -U peft@git+https://github.com/huggingface/peft.git --no-deps
python -m uv pip install -U transformers@git+https://github.com/huggingface/transformers.git --no-deps
python -m uv pip install -U tokenizers
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git --no-deps
- name: Environment

View File

@@ -83,7 +83,7 @@ jobs:
python utils/print_env.py
- name: PyTorch CUDA checkpoint tests on Ubuntu
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
@@ -137,7 +137,7 @@ jobs:
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |

View File

@@ -46,7 +46,7 @@ jobs:
shell: arch -arch arm64 bash {0}
run: |
${CONDA_RUN} python -m pip install --upgrade pip uv
${CONDA_RUN} python -m uv pip install -e [quality,test]
${CONDA_RUN} python -m uv pip install -e ".[quality,test]"
${CONDA_RUN} python -m uv pip install torch torchvision torchaudio
${CONDA_RUN} python -m uv pip install accelerate@git+https://github.com/huggingface/accelerate.git
${CONDA_RUN} python -m uv pip install transformers --upgrade

View File

@@ -68,7 +68,7 @@ jobs:
- name: Test installing diffusers and importing
run: |
pip install diffusers && pip uninstall diffusers -y
pip install -i https://testpypi.python.org/pypi diffusers
pip install -i https://test.pypi.org/simple/ diffusers
python -c "from diffusers import __version__; print(__version__)"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('fusing/unet-ldm-dummy-update'); pipe()"
python -c "from diffusers import DiffusionPipeline; pipe = DiffusionPipeline.from_pretrained('hf-internal-testing/tiny-stable-diffusion-pipe', safety_checker=None); pipe('ah suh du')"

View File

@@ -157,6 +157,63 @@ jobs:
name: torch_cuda_${{ matrix.module }}_test_reports
path: reports
torch_minimum_version_cuda_tests:
name: Torch Minimum Version CUDA Tests
runs-on:
group: aws-g4dn-2xlarge
container:
image: diffusers/diffusers-pytorch-minimum-cuda
options: --shm-size "16gb" --ipc host --gpus 0
defaults:
run:
shell: bash
steps:
- name: Checkout diffusers
uses: actions/checkout@v3
with:
fetch-depth: 2
- name: Install dependencies
run: |
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
python -m uv pip install -e [quality,test]
python -m uv pip install peft@git+https://github.com/huggingface/peft.git
pip uninstall accelerate -y && python -m uv pip install -U accelerate@git+https://github.com/huggingface/accelerate.git
- name: Environment
run: |
python utils/print_env.py
- name: Run PyTorch CUDA tests
env:
HF_TOKEN: ${{ secrets.HF_TOKEN }}
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
CUBLAS_WORKSPACE_CONFIG: :16:8
run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
-s -v -k "not Flax and not Onnx" \
--make-reports=tests_torch_minimum_cuda \
tests/models/test_modeling_common.py \
tests/pipelines/test_pipelines_common.py \
tests/pipelines/test_pipeline_utils.py \
tests/pipelines/test_pipelines.py \
tests/pipelines/test_pipelines_auto.py \
tests/schedulers/test_schedulers.py \
tests/others
- name: Failure short reports
if: ${{ failure() }}
run: |
cat reports/tests_torch_minimum_version_cuda_stats.txt
cat reports/tests_torch_minimum_version_cuda_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: torch_minimum_version_cuda_test_reports
path: reports
flax_tpu_tests:
name: Flax TPU Tests
runs-on: docker-tpu

View File

@@ -0,0 +1,53 @@
FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ENV DEBIAN_FRONTEND=noninteractive
ENV MINIMUM_SUPPORTED_TORCH_VERSION="2.1.0"
ENV MINIMUM_SUPPORTED_TORCHVISION_VERSION="0.16.0"
ENV MINIMUM_SUPPORTED_TORCHAUDIO_VERSION="2.1.0"
RUN apt-get -y update \
&& apt-get install -y software-properties-common \
&& add-apt-repository ppa:deadsnakes/ppa
RUN apt install -y bash \
build-essential \
git \
git-lfs \
curl \
ca-certificates \
libsndfile1-dev \
libgl1 \
python3.10 \
python3.10-dev \
python3-pip \
python3.10-venv && \
rm -rf /var/lib/apt/lists
# make sure to use venv
RUN python3.10 -m venv /opt/venv
ENV PATH="/opt/venv/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
RUN python3.10 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \
python3.10 -m uv pip install --no-cache-dir \
torch==$MINIMUM_SUPPORTED_TORCH_VERSION \
torchvision==$MINIMUM_SUPPORTED_TORCHVISION_VERSION \
torchaudio==$MINIMUM_SUPPORTED_TORCHAUDIO_VERSION \
invisible_watermark && \
python3.10 -m pip install --no-cache-dir \
accelerate \
datasets \
hf-doc-builder \
huggingface-hub \
hf_transfer \
Jinja2 \
librosa \
numpy==1.26.4 \
scipy \
tensorboard \
transformers \
hf_transfer
CMD ["/bin/bash"]

View File

@@ -48,7 +48,7 @@
- local: using-diffusers/inpaint
title: Inpainting
- local: using-diffusers/text-img2vid
title: Text or image-to-video
title: Video generation
- local: using-diffusers/depth2img
title: Depth-to-image
title: Generative tasks
@@ -79,6 +79,8 @@
- sections:
- local: using-diffusers/cogvideox
title: CogVideoX
- local: using-diffusers/consisid
title: ConsisID
- local: using-diffusers/sdxl
title: Stable Diffusion XL
- local: using-diffusers/sdxl_turbo
@@ -179,6 +181,8 @@
title: TGATE
- local: optimization/xdit
title: xDiT
- local: optimization/para_attn
title: ParaAttention
- sections:
- local: using-diffusers/stable_diffusion_jax_how_to
title: JAX/Flax
@@ -238,6 +242,8 @@
title: Textual Inversion
- local: api/loaders/unet
title: UNet
- local: api/loaders/transformer_sd3
title: SD3Transformer2D
- local: api/loaders/peft
title: PEFT
title: Loaders
@@ -266,6 +272,8 @@
title: AuraFlowTransformer2DModel
- local: api/models/cogvideox_transformer3d
title: CogVideoXTransformer3DModel
- local: api/models/consisid_transformer3d
title: ConsisIDTransformer3DModel
- local: api/models/cogview3plus_transformer2d
title: CogView3PlusTransformer2DModel
- local: api/models/dit_transformer2d
@@ -368,6 +376,8 @@
title: CogVideoX
- local: api/pipelines/cogview3
title: CogView3
- local: api/pipelines/consisid
title: ConsisID
- local: api/pipelines/consistency_models
title: Consistency Models
- local: api/pipelines/controlnet
@@ -427,7 +437,7 @@
- local: api/pipelines/ledits_pp
title: LEDITS++
- local: api/pipelines/ltx_video
title: LTX
title: LTXVideo
- local: api/pipelines/lumina
title: Lumina-T2X
- local: api/pipelines/marigold

View File

@@ -86,6 +86,8 @@ An attention processor is a class for applying different types of attention mech
[[autodoc]] models.attention_processor.IPAdapterAttnProcessor2_0
[[autodoc]] models.attention_processor.SD3IPAdapterJointAttnProcessor2_0
## JointAttnProcessor2_0
[[autodoc]] models.attention_processor.JointAttnProcessor2_0

View File

@@ -24,6 +24,12 @@ Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter [loading]
[[autodoc]] loaders.ip_adapter.IPAdapterMixin
## SD3IPAdapterMixin
[[autodoc]] loaders.ip_adapter.SD3IPAdapterMixin
- all
- is_ip_adapter_active
## IPAdapterMaskProcessor
[[autodoc]] image_processor.IPAdapterMaskProcessor

View File

@@ -0,0 +1,29 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# SD3Transformer2D
This class is useful when *only* loading weights into a [`SD3Transformer2DModel`]. If you need to load weights into the text encoder or a text encoder and SD3Transformer2DModel, check [`SD3LoraLoaderMixin`](lora#diffusers.loaders.SD3LoraLoaderMixin) class instead.
The [`SD3Transformer2DLoadersMixin`] class currently only loads IP-Adapter weights, but will be used in the future to save weights and load LoRAs.
<Tip>
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
</Tip>
## SD3Transformer2DLoadersMixin
[[autodoc]] loaders.transformer_sd3.SD3Transformer2DLoadersMixin
- all
- _load_ip_adapter_weights

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AllegroTransformer3DModel
vae = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
transformer = AllegroTransformer3DModel.from_pretrained("rhymes-ai/Allegro", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## AllegroTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLHunyuanVideo
vae = AutoencoderKLHunyuanVideo.from_pretrained("tencent/HunyuanVideo", torch_dtype=torch.float16)
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16)
```
## AutoencoderKLHunyuanVideo

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import AutoencoderKLLTXVideo
vae = AutoencoderKLLTXVideo.from_pretrained("TODO/TODO", subfolder="vae", torch_dtype=torch.float32).to("cuda")
vae = AutoencoderKLLTXVideo.from_pretrained("Lightricks/LTX-Video", subfolder="vae", torch_dtype=torch.float32).to("cuda")
```
## AutoencoderKLLTXVideo

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import CogVideoXTransformer3DModel
vae = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## CogVideoXTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import CogView3PlusTransformer2DModel
vae = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
transformer = CogView3PlusTransformer2DModel.from_pretrained("THUDM/CogView3Plus-3b", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## CogView3PlusTransformer2DModel

View File

@@ -0,0 +1,30 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# ConsisIDTransformer3DModel
A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/pdf/2411.17440) by Peking University & University of Rochester & etc.
The model can be loaded with the following code snippet.
```python
from diffusers import ConsisIDTransformer3DModel
transformer = ConsisIDTransformer3DModel.from_pretrained("BestWishYsh/ConsisID-preview", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## ConsisIDTransformer3DModel
[[autodoc]] ConsisIDTransformer3DModel
## Transformer2DModelOutput
[[autodoc]] models.modeling_outputs.Transformer2DModelOutput

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import HunyuanVideoTransformer3DModel
transformer = HunyuanVideoTransformer3DModel.from_pretrained("tencent/HunyuanVideo", torch_dtype=torch.bfloat16)
transformer = HunyuanVideoTransformer3DModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## HunyuanVideoTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import LTXVideoTransformer3DModel
transformer = LTXVideoTransformer3DModel.from_pretrained("TODO/TODO", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
transformer = LTXVideoTransformer3DModel.from_pretrained("Lightricks/LTX-Video", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
```
## LTXVideoTransformer3DModel

View File

@@ -18,7 +18,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import MochiTransformer3DModel
vae = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
transformer = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
```
## MochiTransformer3DModel

View File

@@ -22,7 +22,7 @@ The model can be loaded with the following code snippet.
```python
from diffusers import SanaTransformer2DModel
transformer = SanaTransformer2DModel.from_pretrained("Efficient-Large-Model/Sana_1600M_1024px_diffusers", subfolder="transformer", torch_dtype=torch.float16)
transformer = SanaTransformer2DModel.from_pretrained("Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
```
## SanaTransformer2DModel

View File

@@ -19,10 +19,55 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`AllegroPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, AllegroTransformer3DModel, AllegroPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"rhymes-ai/Allegro",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = AllegroTransformer3DModel.from_pretrained(
"rhymes-ai/Allegro",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = AllegroPipeline.from_pretrained(
"rhymes-ai/Allegro",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = (
"A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, "
"the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this "
"location might be a popular spot for docking fishing boats."
)
video = pipeline(prompt, guidance_scale=7.5, max_sequence_length=512).frames[0]
export_to_video(video, "harbor.mp4", fps=15)
```
## AllegroPipeline
[[autodoc]] AllegroPipeline

View File

@@ -803,7 +803,7 @@ FreeInit is not really free - the improved quality comes at the cost of extra co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ You can find additional information about Attend-and-Excite on the [project page
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -37,7 +37,7 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -60,7 +60,7 @@ The following example demonstrates how to construct good music and speech genera
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# AuraFlow
AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stable_diffusion_3.md) and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the [GenEval](https://github.com/djghosh13/geneval) benchmark.
AuraFlow is inspired by [Stable Diffusion 3](../pipelines/stable_diffusion/stable_diffusion_3) and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the [GenEval](https://github.com/djghosh13/geneval) benchmark.
It was developed by the Fal team and more details about it can be found in [this blog post](https://blog.fal.ai/auraflow/).
@@ -22,6 +22,73 @@ AuraFlow can be quite expensive to run on consumer hardware devices. However, yo
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`AuraFlowPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, AuraFlowTransformer2DModel, AuraFlowPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"fal/AuraFlow",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = AuraFlowTransformer2DModel.from_pretrained(
"fal/AuraFlow",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("auraflow.png")
```
Loading [GGUF checkpoints](https://huggingface.co/docs/diffusers/quantization/gguf) are also supported:
```py
import torch
from diffusers import (
AuraFlowPipeline,
GGUFQuantizationConfig,
AuraFlowTransformer2DModel,
)
transformer = AuraFlowTransformer2DModel.from_single_file(
"https://huggingface.co/city96/AuraFlow-v0.3-gguf/blob/main/aura_flow_0.3-Q2_K.gguf",
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipeline = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
prompt = "a cute pony in a field of flowers"
image = pipeline(prompt).images[0]
image.save("auraflow.png")
```
## AuraFlowPipeline
[[autodoc]] AuraFlowPipeline

View File

@@ -25,7 +25,7 @@ The original codebase can be found at [salesforce/LAVIS](https://github.com/sale
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -23,7 +23,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -112,13 +112,46 @@ CogVideoX-2b requires about 19 GB of GPU memory to decode 49 frames (6 seconds o
- With enabling cpu offloading and tiling, memory usage is `11 GB`
- `pipe.vae.enable_slicing()`
### Quantized inference
## Quantization
[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs!
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below.
- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897)
- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa)
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`CogVideoXPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-2b",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=8)
```
## CogVideoXPipeline

View File

@@ -23,7 +23,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -0,0 +1,60 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
-->
# ConsisID
[Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/abs/2411.17440) from Peking University & University of Rochester & etc, by Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, Li Yuan.
The abstract from the paper is:
*Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in the literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving Diffusion Transformer (DiT)-based control scheme. To achieve these goals, we propose **ConsisID**, a tuning-free DiT-based controllable IPT2V model to keep human-**id**entity **consis**tent in the generated video. Inspired by prior findings in frequency analysis of vision/diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features (e.g., profile, proportions) and high-frequency intrinsic features (e.g., identity markers that remain unaffected by pose changes). First, from a low-frequency perspective, we introduce a global facial extractor, which encodes the reference image and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into the shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into the transformer blocks, enhancing the model's ability to preserve fine-grained features. To leverage the frequency information for identity preservation, we propose a hierarchical training strategy, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our **ConsisID** achieves excellent results in generating high-quality, identity-preserving videos, making strides towards more effective IPT2V. The model weight of ConsID is publicly available at https://github.com/PKU-YuanGroup/ConsisID.*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
This pipeline was contributed by [SHYuanBest](https://github.com/SHYuanBest). The original codebase can be found [here](https://github.com/PKU-YuanGroup/ConsisID). The original weights can be found under [hf.co/BestWishYsh](https://huggingface.co/BestWishYsh).
There are two official ConsisID checkpoints for identity-preserving text-to-video.
| checkpoints | recommended inference dtype |
|:---:|:---:|
| [`BestWishYsh/ConsisID-preview`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 |
| [`BestWishYsh/ConsisID-1.5`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 |
### Memory optimization
ConsisID requires about 44 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/SHYuanBest/bc4207c36f454f9e969adbb50eaf8258) script.
| Feature (overlay the previous) | Max Memory Allocated | Max Memory Reserved |
| :----------------------------- | :------------------- | :------------------ |
| - | 37 GB | 44 GB |
| enable_model_cpu_offload | 22 GB | 25 GB |
| enable_sequential_cpu_offload | 16 GB | 22 GB |
| vae.enable_slicing | 16 GB | 22 GB |
| vae.enable_tiling | 5 GB | 7 GB |
## ConsisIDPipeline
[[autodoc]] ConsisIDPipeline
- all
- __call__
## ConsisIDPipelineOutput
[[autodoc]] pipelines.consisid.pipeline_output.ConsisIDPipelineOutput

View File

@@ -26,7 +26,7 @@ The original codebase can be found at [lllyasviel/ControlNet](https://github.com
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -42,7 +42,7 @@ XLabs ControlNets are also supported, which was contributed by the [XLabs team](
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ This code is implemented by Tencent Hunyuan Team. You can find pre-trained check
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -36,7 +36,7 @@ This controlnet code is mainly implemented by [The InstantX Team](https://huggin
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -32,7 +32,7 @@ If you don't see a checkpoint you're interested in, you can train your own SDXL
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -32,7 +32,7 @@ This model was contributed by [UmerHA](https://twitter.com/UmerHAdil). ❤️
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,7 +19,7 @@ Dance Diffusion is the first in a suite of generative audio tools for producers
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [hohonathanho/diffusion](https://github.co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [facebookresearch/dit](https://github.com/
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -268,6 +268,47 @@ images = pipe(
images[0].save("flux-redux.png")
```
## Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux
We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps' inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).
```py
from diffusers import FluxControlPipeline
from image_gen_aux import DepthPreprocessor
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
import torch
control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora", adapter_name="depth")
control_pipe.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
)
control_pipe.set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
control_pipe.enable_model_cpu_offload()
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = control_pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=8,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
```
## Note about `unload_lora_weights()` when using Flux LoRAs
When unloading the Control LoRA weights, call `pipe.unload_lora_weights(reset_to_overwritten_params=True)` to reset the `pipe.transformer` completely back to its original form. The resultant pipeline can then be used with methods like [`DiffusionPipeline.from_pipe`]. More details about this argument are available in [this PR](https://github.com/huggingface/diffusers/pull/10397).
## Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
@@ -297,6 +338,46 @@ out = pipe(
out.save("image.png")
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`FluxPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, FluxTransformer2DModel, FluxPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
text_encoder_2=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt, guidance_scale=3.5, height=768, width=1360, num_inference_steps=50).images[0]
image.save("flux.png")
```
## Single File Loading for the `FluxTransformer2DModel`
The `FluxTransformer2DModel` supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.

View File

@@ -16,11 +16,11 @@
[HunyuanVideo](https://www.arxiv.org/abs/2412.03603) by Tencent.
*Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at [this https URL](https://github.com/Tencent/HunyuanVideo).*
*Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at [this https URL](https://github.com/tencent/HunyuanVideo).*
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -29,9 +29,40 @@ Recommendations for inference:
- Transformer should be in `torch.bfloat16`.
- VAE should be in `torch.float16`.
- `num_frames` should be of the form `4 * k + 1`, for example `49` or `129`.
- For smaller resolution images, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For smaller resolution videos, try lower values of `shift` (between `2.0` to `5.0`) in the [Scheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers/flow_match_euler_discrete#diffusers.FlowMatchEulerDiscreteScheduler.shift). For larger resolution images, try higher values (between `7.0` and `12.0`). The default value is `7.0` for HunyuanVideo.
- For more information about supported resolutions and other details, please refer to the original repository [here](https://github.com/Tencent/HunyuanVideo/).
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`HunyuanVideoPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline
from diffusers.utils import export_to_video
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = HunyuanVideoTransformer3DModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
)
pipeline = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A cat walks on the grass, realistic style."
video = pipeline(prompt=prompt, num_frames=61, num_inference_steps=30).frames[0]
export_to_video(video, "cat.mp4", fps=15)
```
## HunyuanVideoPipeline
[[autodoc]] HunyuanVideoPipeline

View File

@@ -30,7 +30,7 @@ HunyuanDiT has the following components:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found [here](https://github.com/ali-vilab/i2vgen-xl
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
</Tip>

View File

@@ -25,7 +25,7 @@ Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community)
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -32,7 +32,7 @@ Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community)
<Tip>
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -25,7 +25,7 @@ Check out the [Kandinsky Community](https://huggingface.co/kandinsky-community)
<Tip>
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The original codebase can be found at [CompVis/latent-diffusion](https://github.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -28,7 +28,7 @@ This pipeline was contributed by [maxin-cn](https://github.com/maxin-cn). The or
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -70,6 +70,47 @@ Without torch.compile(): Average inference time: 16.246 seconds.
With torch.compile(): Average inference time: 14.573 seconds.
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LattePipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, LatteTransformer3DModel, LattePipeline
from diffusers.utils import export_to_gif
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"maxin-cn/Latte-1",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = LatteTransformer3DModel.from_pretrained(
"maxin-cn/Latte-1",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LattePipeline.from_pretrained(
"maxin-cn/Latte-1",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A small cactus with a happy face in the Sahara desert."
video = pipeline(prompt).frames[0]
export_to_gif(video, "latte.gif")
```
## LattePipeline
[[autodoc]] LattePipeline

View File

@@ -12,24 +12,34 @@
# See the License for the specific language governing permissions and
# limitations under the License. -->
# LTX
# LTX Video
[LTX Video](https://huggingface.co/Lightricks/LTX-Video) is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
Available models:
| Model name | Recommended dtype |
|:-------------:|:-----------------:|
| [`LTX Video 0.9.0`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.safetensors) | `torch.bfloat16` |
| [`LTX Video 0.9.1`](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) | `torch.bfloat16` |
Note: The recommended dtype is for the transformer component. The VAE and text encoders can be either `torch.float32`, `torch.bfloat16` or `torch.float16` but the recommended dtype is `torch.bfloat16` as used in the original repository.
## Loading Single Files
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`].
Loading the original LTX Video checkpoints is also possible with [`~ModelMixin.from_single_file`]. We recommend using `from_single_file` for the Lightricks series of models, as they plan to release multiple models in the future in the single file format.
```python
import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel
# `single_file_url` could also be https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.1.safetensors
single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(
single_file_url, torch_dtype=torch.bfloat16
@@ -61,8 +71,115 @@ pipe = LTXImageToVideoPipeline.from_single_file(
)
```
Loading [LTX GGUF checkpoints](https://huggingface.co/city96/LTX-Video-gguf) are also supported:
```py
import torch
from diffusers.utils import export_to_video
from diffusers import LTXPipeline, LTXVideoTransformer3DModel, GGUFQuantizationConfig
ckpt_path = (
"https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf"
)
transformer = LTXVideoTransformer3DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
pipe = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=704,
height=480,
num_frames=161,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output_gguf_ltx.mp4", fps=24)
```
Make sure to read the [documentation on GGUF](../../quantization/gguf) to learn more about our GGUF support.
<!-- TODO(aryan): Update this when official weights are supported -->
Loading and running inference with [LTX Video 0.9.1](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.safetensors) weights.
```python
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LTXPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, LTXVideoTransformer3DModel, LTXPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = LTXVideoTransformer3DModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting."
video = pipeline(prompt=prompt, num_frames=161, num_inference_steps=50).frames[0]
export_to_video(video, "ship.mp4", fps=24)
```
## LTXPipeline
[[autodoc]] LTXPipeline

View File

@@ -47,7 +47,7 @@ This pipeline was contributed by [PommesPeter](https://github.com/PommesPeter).
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -82,6 +82,46 @@ pipeline.vae.decode = torch.compile(pipeline.vae.decode, mode="max-autotune", fu
image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0]
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`LuminaText2ImgPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, Transformer2DModel, LuminaText2ImgPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = Transformer2DModel.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = LuminaText2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Next-SFT-diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("lumina.png")
```
## LuminaText2ImgPipeline
[[autodoc]] LuminaText2ImgPipeline

View File

@@ -43,7 +43,7 @@ The original checkpoints can be found under the [PRS-ETH](https://huggingface.co
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines. Also, to know more about reducing the memory usage of this pipeline, refer to the ["Reduce memory usage"] section [here](../../using-diffusers/svd#reduce-memory-usage).
</Tip>

View File

@@ -13,18 +13,257 @@
# limitations under the License.
-->
# Mochi
# Mochi 1 Preview
[Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) from Genmo.
> [!TIP]
> Only a research preview of the model weights is available at the moment.
[Mochi 1](https://huggingface.co/genmo/mochi-1-preview) is a video generation model by Genmo with a strong focus on prompt adherence and motion quality. The model features a 10B parameter Asmmetric Diffusion Transformer (AsymmDiT) architecture, and uses non-square QKV and output projection layers to reduce inference memory requirements. A single T5-XXL model is used to encode prompts.
*Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation. This model dramatically closes the gap between closed and open video generation systems. The model is released under a permissive Apache 2.0 license.*
> [!TIP]
> Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`MochiPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, MochiTransformer3DModel, MochiPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"genmo/mochi-1-preview",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = MochiTransformer3DModel.from_pretrained(
"genmo/mochi-1-preview",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = MochiPipeline.from_pretrained(
"genmo/mochi-1-preview",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
video = pipeline(
"Close-up of a cats eye, with the galaxy reflected in the cats eye. Ultra high resolution 4k.",
num_inference_steps=28,
guidance_scale=3.5
).frames[0]
export_to_video(video, "cat.mp4")
```
## Generating videos with Mochi-1 Preview
The following example will download the full precision `mochi-1-preview` weights and produce the highest quality results but will require at least 42GB VRAM to run.
```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")
# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
with torch.autocast("cuda", torch.bfloat16, cache_enabled=False):
frames = pipe(prompt, num_frames=85).frames[0]
export_to_video(frames, "mochi.mp4", fps=30)
```
## Using a lower precision variant to save memory
The following example will use the `bfloat16` variant of the model and requires 22GB VRAM to run. There is a slight drop in the quality of the generated video as a result.
```python
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
# Enable memory savings
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
frames = pipe(prompt, num_frames=85).frames[0]
export_to_video(frames, "mochi.mp4", fps=30)
```
## Reproducing the results from the Genmo Mochi repo
The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the original implementation, please refer to the following example.
<Tip>
The original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
When enabling `force_zeros_for_empty_prompt`, it is recommended to run the text encoding step outside the autocast context in full precision.
</Tip>
<Tip>
Decoding the latents in full precision is very memory intensive. You will need at least 70GB VRAM to generate the 163 frames in this example. To reduce memory, either reduce the number of frames or run the decoding step in `torch.bfloat16`.
</Tip>
```python
import torch
from torch.nn.attention import SDPBackend, sdpa_kernel
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
from diffusers.video_processor import VideoProcessor
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", force_zeros_for_empty_prompt=True)
pipe.enable_vae_tiling()
pipe.enable_model_cpu_offload()
prompt = "An aerial shot of a parade of elephants walking across the African savannah. The camera showcases the herd and the surrounding landscape."
with torch.no_grad():
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = (
pipe.encode_prompt(prompt=prompt)
)
with torch.autocast("cuda", torch.bfloat16):
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
frames = pipe(
prompt_embeds=prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_embeds=negative_prompt_embeds,
negative_prompt_attention_mask=negative_prompt_attention_mask,
guidance_scale=4.5,
num_inference_steps=64,
height=480,
width=848,
num_frames=163,
generator=torch.Generator("cuda").manual_seed(0),
output_type="latent",
return_dict=False,
)[0]
video_processor = VideoProcessor(vae_scale_factor=8)
has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None
has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
)
latents_std = (
torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
)
frames = frames * latents_std / pipe.vae.config.scaling_factor + latents_mean
else:
frames = frames / pipe.vae.config.scaling_factor
with torch.no_grad():
video = pipe.vae.decode(frames.to(pipe.vae.dtype), return_dict=False)[0]
video = video_processor.postprocess_video(video)[0]
export_to_video(video, "mochi.mp4", fps=30)
```
## Running inference with multiple GPUs
It is possible to split the large Mochi transformer across multiple GPUs using the `device_map` and `max_memory` options in `from_pretrained`. In the following example we split the model across two GPUs, each with 24GB of VRAM.
```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video
model_id = "genmo/mochi-1-preview"
transformer = MochiTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
device_map="auto",
max_memory={0: "24GB", 1: "24GB"}
)
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
frames = pipe(
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
negative_prompt="",
height=480,
width=848,
num_frames=85,
num_inference_steps=50,
guidance_scale=4.5,
num_videos_per_prompt=1,
generator=torch.Generator(device="cuda").manual_seed(0),
max_sequence_length=256,
output_type="pil",
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
## Using single file loading with the Mochi Transformer
You can use `from_single_file` to load the Mochi transformer in its original format.
<Tip>
Diffusers currently doesn't support using the FP8 scaled versions of the Mochi single file checkpoints.
</Tip>
```python
import torch
from diffusers import MochiPipeline, MochiTransformer3DModel
from diffusers.utils import export_to_video
model_id = "genmo/mochi-1-preview"
ckpt_path = "https://huggingface.co/Comfy-Org/mochi_preview_repackaged/blob/main/split_files/diffusion_models/mochi_preview_bf16.safetensors"
transformer = MochiTransformer3DModel.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16)
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
frames = pipe(
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
negative_prompt="",
height=480,
width=848,
num_frames=85,
num_inference_steps=50,
guidance_scale=4.5,
num_videos_per_prompt=1,
generator=torch.Generator(device="cuda").manual_seed(0),
max_sequence_length=256,
output_type="pil",
).frames[0]
export_to_video(frames, "output.mp4", fps=30)
```
## MochiPipeline
[[autodoc]] MochiPipeline

View File

@@ -42,7 +42,7 @@ During inference:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -26,7 +26,7 @@ Paint by Example is supported by the official [Fantasy-Studio/Paint-by-Example](
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -37,7 +37,7 @@ But with circular padding, the right and the left parts are matching (`circular_
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ You can find additional information about InstructPix2Pix on the [project page](
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -31,7 +31,7 @@ Some notes about this pipeline:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -22,7 +22,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>
@@ -32,9 +32,9 @@ Available models:
| Model | Recommended dtype |
|:-----:|:-----------------:|
| [`Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers) | `torch.bfloat16` |
| [`Efficient-Large-Model/Sana_1600M_512px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_512px_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers) | `torch.float16` |
| [`Efficient-Large-Model/Sana_600M_1024px_diffusers`](https://huggingface.co/Efficient-Large-Model/Sana_600M_1024px_diffusers) | `torch.float16` |
@@ -50,6 +50,46 @@ Make sure to pass the `variant` argument for downloaded checkpoints to use lower
</Tip>
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`SanaPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SanaTransformer2DModel, SanaPipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, AutoModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = AutoModel.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SanaTransformer2DModel.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = SanaPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt).images[0]
image.save("sana.png")
```
## SanaPipeline
[[autodoc]] SanaPipeline

View File

@@ -22,7 +22,7 @@ You can find additional information about Self-Attention Guidance on the [projec
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -21,7 +21,7 @@ The abstract from the paper is:
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,7 +19,7 @@ The original codebase can be found at [openai/shap-e](https://github.com/openai/
<Tip>
See the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
See the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -35,6 +35,57 @@ During inference:
* The _quality_ of the generated audio sample can be controlled by the `num_inference_steps` argument; higher steps give higher quality audio at the expense of slower inference.
* Multiple waveforms can be generated in one go: set `num_waveforms_per_prompt` to a value greater than 1 to enable. Automatic scoring will be performed between the generated waveforms and prompt text, and the audios ranked from best to worst accordingly.
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`StableAudioPipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, StableAudioDiTModel, StableAudioPipeline
from diffusers.utils import export_to_video
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"stabilityai/stable-audio-open-1.0",
subfolder="text_encoder",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = StableAudioDiTModel.from_pretrained(
"stabilityai/stable-audio-open-1.0",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = StableAudioPipeline.from_pretrained(
"stabilityai/stable-audio-open-1.0",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "The sound of a hammer hitting a wooden surface."
negative_prompt = "Low quality."
audio = pipeline(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=200,
audio_end_in_s=10.0,
num_waveforms_per_prompt=3,
generator=generator,
).audios
output = audio[0].T.float().cpu().numpy()
sf.write("hammer.wav", output, pipeline.vae.sampling_rate)
```
## StableAudioPipeline
[[autodoc]] StableAudioPipeline

View File

@@ -59,9 +59,76 @@ image.save("sd3_hello_world.png")
- [`stabilityai/stable-diffusion-3.5-large`](https://huggingface.co/stabilityai/stable-diffusion-3-5-large)
- [`stabilityai/stable-diffusion-3.5-large-turbo`](https://huggingface.co/stabilityai/stable-diffusion-3-5-large-turbo)
## Image Prompting with IP-Adapters
An IP-Adapter lets you prompt SD3 with images, in addition to the text prompt. This is especially useful when describing complex concepts that are difficult to articulate through text alone and you have reference images. To load and use an IP-Adapter, you need:
- `image_encoder`: Pre-trained vision model used to obtain image features, usually a CLIP image encoder.
- `feature_extractor`: Image processor that prepares the input image for the chosen `image_encoder`.
- `ip_adapter_id`: Checkpoint containing parameters of image cross attention layers and image projection.
IP-Adapters are trained for a specific model architecture, so they also work in finetuned variations of the base model. You can use the [`~SD3IPAdapterMixin.set_ip_adapter_scale`] function to adjust how strongly the output aligns with the image prompt. The higher the value, the more closely the model follows the image prompt. A default value of 0.5 is typically a good balance, ensuring the model considers both the text and image prompts equally.
```python
import torch
from PIL import Image
from diffusers import StableDiffusion3Pipeline
from transformers import SiglipVisionModel, SiglipImageProcessor
image_encoder_id = "google/siglip-so400m-patch14-384"
ip_adapter_id = "guiyrt/InstantX-SD3.5-Large-IP-Adapter-diffusers"
feature_extractor = SiglipImageProcessor.from_pretrained(
image_encoder_id,
torch_dtype=torch.float16
)
image_encoder = SiglipVisionModel.from_pretrained(
image_encoder_id,
torch_dtype=torch.float16
).to( "cuda")
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
torch_dtype=torch.float16,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
).to("cuda")
pipe.load_ip_adapter(ip_adapter_id)
pipe.set_ip_adapter_scale(0.6)
ref_img = Image.open("image.jpg").convert('RGB')
image = pipe(
width=1024,
height=1024,
prompt="a cat",
negative_prompt="lowres, low quality, worst quality",
num_inference_steps=24,
guidance_scale=5.0,
ip_adapter_image=ref_img
).images[0]
image.save("result.jpg")
```
<div class="justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sd3_ip_adapter_example.png"/>
<figcaption class="mt-2 text-sm text-center text-gray-500">IP-Adapter examples with prompt "a cat"</figcaption>
</div>
<Tip>
Check out [IP-Adapter](../../../using-diffusers/ip_adapter) to learn more about how IP-Adapters work.
</Tip>
## Memory Optimisations for SD3
SD3 uses three text encoders, one if which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using `fp16` precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
SD3 uses three text encoders, one of which is the very large T5-XXL model. This makes it challenging to run the model on GPUs with less than 24GB of VRAM, even when using `fp16` precision. The following section outlines a few memory optimizations in Diffusers that make it easier to run SD3 on low resource hardware.
### Running Inference with Model Offloading
@@ -201,6 +268,46 @@ image.save("sd3_hello_world.png")
Check out the full script [here](https://gist.github.com/sayakpaul/508d89d7aad4f454900813da5d42ca97).
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) overview to learn more about supported quantization backends and selecting a quantization backend that supports your use case. The example below demonstrates how to load a quantized [`StableDiffusion3Pipeline`] for inference with bitsandbytes.
```py
import torch
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, SD3Transformer2DModel, StableDiffusion3Pipeline
from transformers import BitsAndBytesConfig as BitsAndBytesConfig, T5EncoderModel
quant_config = BitsAndBytesConfig(load_in_8bit=True)
text_encoder_8bit = T5EncoderModel.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
subfolder="text_encoder_3",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True)
transformer_8bit = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
subfolder="transformer",
quantization_config=quant_config,
torch_dtype=torch.float16,
)
pipeline = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3.5-large",
text_encoder=text_encoder_8bit,
transformer=transformer_8bit,
torch_dtype=torch.float16,
device_map="balanced",
)
prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(prompt, num_inference_steps=28, guidance_scale=7.0).images[0]
image.save("sd3.png")
```
## Using Long Prompts with the T5 Text Encoder
By default, the T5 Text Encoder prompt uses a maximum sequence length of `256`. This can be adjusted by setting the `max_sequence_length` to accept fewer or more tokens. Keep in mind that longer sequences require additional resources and result in longer generation times, such as during batch inference.

View File

@@ -97,7 +97,7 @@ image
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -175,7 +175,7 @@ Check out the [Text or image-to-video](text-img2vid) guide for more details abou
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -284,7 +284,7 @@ You can filter out some available DreamBooth-trained models with [this link](htt
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -19,7 +19,7 @@ You can find lucidrains' DALL-E 2 recreation at [lucidrains/DALLE2-pytorch](http
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -192,7 +192,7 @@ print(final_prompt)
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -30,7 +30,7 @@ The script to run the model is available [here](https://github.com/huggingface/d
<Tip>
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines.
</Tip>

View File

@@ -79,4 +79,8 @@ Happy exploring, and thank you for being part of the Diffusers community!
<td><a href="https://github.com/Netwrck/stable-diffusion-server"> Stable Diffusion Server </a></td>
<td>A server configured for Inpainting/Generation/img2img with one stable diffusion model</td>
</tr>
<tr style="border-top: 2px solid black">
<td><a href="https://github.com/suzukimain/auto_diffusers"> Model Search </a></td>
<td>Search models on Civitai and Hugging Face</td>
</tr>
</table>

View File

@@ -0,0 +1,497 @@
# ParaAttention
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-performance.png">
</div>
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/hunyuan-video-performance.png">
</div>
Large image and video generation models, such as [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo), can be an inference challenge for real-time applications and deployment because of their size.
[ParaAttention](https://github.com/chengzeyi/ParaAttention) is a library that implements **context parallelism** and **first block cache**, and can be combined with other techniques (torch.compile, fp8 dynamic quantization), to accelerate inference.
This guide will show you how to apply ParaAttention to FLUX.1-dev and HunyuanVideo on NVIDIA L20 GPUs.
No optimizations are applied for our baseline benchmark, except for HunyuanVideo to avoid out-of-memory errors.
Our baseline benchmark shows that FLUX.1-dev is able to generate a 1024x1024 resolution image in 28 steps in 26.36 seconds, and HunyuanVideo is able to generate 129 frames at 720p resolution in 30 steps in 3675.71 seconds.
> [!TIP]
> For even faster inference with context parallelism, try using NVIDIA A100 or H100 GPUs (if available) with NVLink support, especially when there is a large number of GPUs.
## First Block Cache
Caching the output of the transformers blocks in the model and reusing them in the next inference steps reduces the computation cost and makes inference faster.
However, it is hard to decide when to reuse the cache to ensure quality generated images or videos. ParaAttention directly uses the **residual difference of the first transformer block output** to approximate the difference among model outputs. When the difference is small enough, the residual difference of previous inference steps is reused. In other words, the denoising step is skipped.
This achieves a 2x speedup on FLUX.1-dev and HunyuanVideo inference with very good quality.
<figure>
<img src="https://huggingface.co/datasets/chengzeyi/documentation-images/resolve/main/diffusers/para-attn/ada-cache.png" alt="Cache in Diffusion Transformer" />
<figcaption>How AdaCache works, First Block Cache is a variant of it</figcaption>
</figure>
<hfoptions id="first-block-cache">
<hfoption id="FLUX-1.dev">
To apply first block cache on FLUX.1-dev, call `apply_cache_on_pipe` as shown below. 0.08 is the default residual difference value for FLUX models.
```python
import time
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
).to("cuda")
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(pipe, residual_diff_threshold=0.08)
# Enable memory savings
# pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
begin = time.time()
image = pipe(
"A cat holding a sign that says hello world",
num_inference_steps=28,
).images[0]
end = time.time()
print(f"Time: {end - begin:.2f}s")
print("Saving image to flux.png")
image.save("flux.png")
```
| Optimizations | Original | FBCache rdt=0.06 | FBCache rdt=0.08 | FBCache rdt=0.10 | FBCache rdt=0.12 |
| - | - | - | - | - | - |
| Preview | ![Original](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-original.png) | ![FBCache rdt=0.06](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-fbc-0.06.png) | ![FBCache rdt=0.08](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-fbc-0.08.png) | ![FBCache rdt=0.10](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-fbc-0.10.png) | ![FBCache rdt=0.12](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/flux-fbc-0.12.png) |
| Wall Time (s) | 26.36 | 21.83 | 17.01 | 16.00 | 13.78 |
First Block Cache reduced the inference speed to 17.01 seconds compared to the baseline, or 1.55x faster, while maintaining nearly zero quality loss.
</hfoption>
<hfoption id="HunyuanVideo">
To apply First Block Cache on HunyuanVideo, `apply_cache_on_pipe` as shown below. 0.06 is the default residual difference value for HunyuanVideo models.
```python
import time
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
model_id = "tencent/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch.bfloat16,
revision="refs/pr/18",
)
pipe = HunyuanVideoPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=torch.float16,
revision="refs/pr/18",
).to("cuda")
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(pipe, residual_diff_threshold=0.6)
pipe.vae.enable_tiling()
begin = time.time()
output = pipe(
prompt="A cat walks on the grass, realistic",
height=720,
width=1280,
num_frames=129,
num_inference_steps=30,
).frames[0]
end = time.time()
print(f"Time: {end - begin:.2f}s")
print("Saving video to hunyuan_video.mp4")
export_to_video(output, "hunyuan_video.mp4", fps=15)
```
<video controls>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/hunyuan-video-original.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
<small> HunyuanVideo without FBCache </small>
<video controls>
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/para-attn/hunyuan-video-fbc.mp4" type="video/mp4">
Your browser does not support the video tag.
</video>
<small> HunyuanVideo with FBCache </small>
First Block Cache reduced the inference speed to 2271.06 seconds compared to the baseline, or 1.62x faster, while maintaining nearly zero quality loss.
</hfoption>
</hfoptions>
## fp8 quantization
fp8 with dynamic quantization further speeds up inference and reduces memory usage. Both the activations and weights must be quantized in order to use the 8-bit [NVIDIA Tensor Cores](https://www.nvidia.com/en-us/data-center/tensor-cores/).
Use `float8_weight_only` and `float8_dynamic_activation_float8_weight` to quantize the text encoder and transformer model.
The default quantization method is per tensor quantization, but if your GPU supports row-wise quantization, you can also try it for better accuracy.
Install [torchao](https://github.com/pytorch/ao/tree/main) with the command below.
```bash
pip3 install -U torch torchao
```
[torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) with `mode="max-autotune-no-cudagraphs"` or `mode="max-autotune"` selects the best kernel for performance. Compilation can take a long time if it's the first time the model is called, but it is worth it once the model has been compiled.
This example only quantizes the transformer model, but you can also quantize the text encoder to reduce memory usage even more.
> [!TIP]
> Dynamic quantization can significantly change the distribution of the model output, so you need to change the `residual_diff_threshold` to a larger value for it to take effect.
<hfoptions id="fp8-quantization">
<hfoption id="FLUX-1.dev">
```python
import time
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
).to("cuda")
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(
pipe,
residual_diff_threshold=0.12, # Use a larger value to make the cache take effect
)
from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight, float8_weight_only
quantize_(pipe.text_encoder, float8_weight_only())
quantize_(pipe.transformer, float8_dynamic_activation_float8_weight())
pipe.transformer = torch.compile(
pipe.transformer, mode="max-autotune-no-cudagraphs",
)
# Enable memory savings
# pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
for i in range(2):
begin = time.time()
image = pipe(
"A cat holding a sign that says hello world",
num_inference_steps=28,
).images[0]
end = time.time()
if i == 0:
print(f"Warm up time: {end - begin:.2f}s")
else:
print(f"Time: {end - begin:.2f}s")
print("Saving image to flux.png")
image.save("flux.png")
```
fp8 dynamic quantization and torch.compile reduced the inference speed to 7.56 seconds compared to the baseline, or 3.48x faster.
</hfoption>
<hfoption id="HunyuanVideo">
```python
import time
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
model_id = "tencent/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch.bfloat16,
revision="refs/pr/18",
)
pipe = HunyuanVideoPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=torch.float16,
revision="refs/pr/18",
).to("cuda")
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(pipe)
from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight, float8_weight_only
quantize_(pipe.text_encoder, float8_weight_only())
quantize_(pipe.transformer, float8_dynamic_activation_float8_weight())
pipe.transformer = torch.compile(
pipe.transformer, mode="max-autotune-no-cudagraphs",
)
# Enable memory savings
pipe.vae.enable_tiling()
# pipe.enable_model_cpu_offload()
# pipe.enable_sequential_cpu_offload()
for i in range(2):
begin = time.time()
output = pipe(
prompt="A cat walks on the grass, realistic",
height=720,
width=1280,
num_frames=129,
num_inference_steps=1 if i == 0 else 30,
).frames[0]
end = time.time()
if i == 0:
print(f"Warm up time: {end - begin:.2f}s")
else:
print(f"Time: {end - begin:.2f}s")
print("Saving video to hunyuan_video.mp4")
export_to_video(output, "hunyuan_video.mp4", fps=15)
```
A NVIDIA L20 GPU only has 48GB memory and could face out-of-memory (OOM) errors after compilation and if `enable_model_cpu_offload` isn't called because HunyuanVideo has very large activation tensors when running with high resolution and large number of frames. For GPUs with less than 80GB of memory, you can try reducing the resolution and number of frames to avoid OOM errors.
Large video generation models are usually bottlenecked by the attention computations rather than the fully connected layers. These models don't significantly benefit from quantization and torch.compile.
</hfoption>
</hfoptions>
## Context Parallelism
Context Parallelism parallelizes inference and scales with multiple GPUs. The ParaAttention compositional design allows you to combine Context Parallelism with First Block Cache and dynamic quantization.
> [!TIP]
> Refer to the [ParaAttention](https://github.com/chengzeyi/ParaAttention/tree/main) repository for detailed instructions and examples of how to scale inference with multiple GPUs.
If the inference process needs to be persistent and serviceable, it is suggested to use [torch.multiprocessing](https://pytorch.org/docs/stable/multiprocessing.html) to write your own inference processor. This can eliminate the overhead of launching the process and loading and recompiling the model.
<hfoptions id="context-parallelism">
<hfoption id="FLUX-1.dev">
The code sample below combines First Block Cache, fp8 dynamic quantization, torch.compile, and Context Parallelism for the fastest inference speed.
```python
import time
import torch
import torch.distributed as dist
from diffusers import FluxPipeline
dist.init_process_group()
torch.cuda.set_device(dist.get_rank())
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
).to("cuda")
from para_attn.context_parallel import init_context_parallel_mesh
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
from para_attn.parallel_vae.diffusers_adapters import parallelize_vae
mesh = init_context_parallel_mesh(
pipe.device.type,
max_ring_dim_size=2,
)
parallelize_pipe(
pipe,
mesh=mesh,
)
parallelize_vae(pipe.vae, mesh=mesh._flatten())
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(
pipe,
residual_diff_threshold=0.12, # Use a larger value to make the cache take effect
)
from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight, float8_weight_only
quantize_(pipe.text_encoder, float8_weight_only())
quantize_(pipe.transformer, float8_dynamic_activation_float8_weight())
torch._inductor.config.reorder_for_compute_comm_overlap = True
pipe.transformer = torch.compile(
pipe.transformer, mode="max-autotune-no-cudagraphs",
)
# Enable memory savings
# pipe.enable_model_cpu_offload(gpu_id=dist.get_rank())
# pipe.enable_sequential_cpu_offload(gpu_id=dist.get_rank())
for i in range(2):
begin = time.time()
image = pipe(
"A cat holding a sign that says hello world",
num_inference_steps=28,
output_type="pil" if dist.get_rank() == 0 else "pt",
).images[0]
end = time.time()
if dist.get_rank() == 0:
if i == 0:
print(f"Warm up time: {end - begin:.2f}s")
else:
print(f"Time: {end - begin:.2f}s")
if dist.get_rank() == 0:
print("Saving image to flux.png")
image.save("flux.png")
dist.destroy_process_group()
```
Save to `run_flux.py` and launch it with [torchrun](https://pytorch.org/docs/stable/elastic/run.html).
```bash
# Use --nproc_per_node to specify the number of GPUs
torchrun --nproc_per_node=2 run_flux.py
```
Inference speed is reduced to 8.20 seconds compared to the baseline, or 3.21x faster, with 2 NVIDIA L20 GPUs. On 4 L20s, inference speed is 3.90 seconds, or 6.75x faster.
</hfoption>
<hfoption id="HunyuanVideo">
The code sample below combines First Block Cache and Context Parallelism for the fastest inference speed.
```python
import time
import torch
import torch.distributed as dist
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
dist.init_process_group()
torch.cuda.set_device(dist.get_rank())
model_id = "tencent/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id,
subfolder="transformer",
torch_dtype=torch.bfloat16,
revision="refs/pr/18",
)
pipe = HunyuanVideoPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=torch.float16,
revision="refs/pr/18",
).to("cuda")
from para_attn.context_parallel import init_context_parallel_mesh
from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
from para_attn.parallel_vae.diffusers_adapters import parallelize_vae
mesh = init_context_parallel_mesh(
pipe.device.type,
)
parallelize_pipe(
pipe,
mesh=mesh,
)
parallelize_vae(pipe.vae, mesh=mesh._flatten())
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
apply_cache_on_pipe(pipe)
# from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight, float8_weight_only
#
# torch._inductor.config.reorder_for_compute_comm_overlap = True
#
# quantize_(pipe.text_encoder, float8_weight_only())
# quantize_(pipe.transformer, float8_dynamic_activation_float8_weight())
# pipe.transformer = torch.compile(
# pipe.transformer, mode="max-autotune-no-cudagraphs",
# )
# Enable memory savings
pipe.vae.enable_tiling()
# pipe.enable_model_cpu_offload(gpu_id=dist.get_rank())
# pipe.enable_sequential_cpu_offload(gpu_id=dist.get_rank())
for i in range(2):
begin = time.time()
output = pipe(
prompt="A cat walks on the grass, realistic",
height=720,
width=1280,
num_frames=129,
num_inference_steps=1 if i == 0 else 30,
output_type="pil" if dist.get_rank() == 0 else "pt",
).frames[0]
end = time.time()
if dist.get_rank() == 0:
if i == 0:
print(f"Warm up time: {end - begin:.2f}s")
else:
print(f"Time: {end - begin:.2f}s")
if dist.get_rank() == 0:
print("Saving video to hunyuan_video.mp4")
export_to_video(output, "hunyuan_video.mp4", fps=15)
dist.destroy_process_group()
```
Save to `run_hunyuan_video.py` and launch it with [torchrun](https://pytorch.org/docs/stable/elastic/run.html).
```bash
# Use --nproc_per_node to specify the number of GPUs
torchrun --nproc_per_node=8 run_hunyuan_video.py
```
Inference speed is reduced to 649.23 seconds compared to the baseline, or 5.66x faster, with 8 NVIDIA L20 GPUs.
</hfoption>
</hfoptions>
## Benchmarks
<hfoptions id="conclusion">
<hfoption id="FLUX-1.dev">
| GPU Type | Number of GPUs | Optimizations | Wall Time (s) | Speedup |
| - | - | - | - | - |
| NVIDIA L20 | 1 | Baseline | 26.36 | 1.00x |
| NVIDIA L20 | 1 | FBCache (rdt=0.08) | 17.01 | 1.55x |
| NVIDIA L20 | 1 | FP8 DQ | 13.40 | 1.96x |
| NVIDIA L20 | 1 | FBCache (rdt=0.12) + FP8 DQ | 7.56 | 3.48x |
| NVIDIA L20 | 2 | FBCache (rdt=0.12) + FP8 DQ + CP | 4.92 | 5.35x |
| NVIDIA L20 | 4 | FBCache (rdt=0.12) + FP8 DQ + CP | 3.90 | 6.75x |
</hfoption>
<hfoption id="HunyuanVideo">
| GPU Type | Number of GPUs | Optimizations | Wall Time (s) | Speedup |
| - | - | - | - | - |
| NVIDIA L20 | 1 | Baseline | 3675.71 | 1.00x |
| NVIDIA L20 | 1 | FBCache | 2271.06 | 1.62x |
| NVIDIA L20 | 2 | FBCache + CP | 1132.90 | 3.24x |
| NVIDIA L20 | 4 | FBCache + CP | 718.15 | 5.12x |
| NVIDIA L20 | 8 | FBCache + CP | 649.23 | 5.66x |
</hfoption>
</hfoptions>

View File

@@ -25,9 +25,9 @@ pip install -U gguf
Since GGUF is a single file format, use [`~FromSingleFileMixin.from_single_file`] to load the model and pass in the [`GGUFQuantizationConfig`].
When using GGUF checkpoints, the quantized weights remain in a low memory `dtype`(typically `torch.unint8`) and are dynamically dequantized and cast to the configured `compute_dtype` during each module's forward pass through the model. The `GGUFQuantizationConfig` allows you to set the `compute_dtype`.
When using GGUF checkpoints, the quantized weights remain in a low memory `dtype`(typically `torch.uint8`) and are dynamically dequantized and cast to the configured `compute_dtype` during each module's forward pass through the model. The `GGUFQuantizationConfig` allows you to set the `compute_dtype`.
The functions used for dynamic dequantizatation are based on the great work done by [city96](https://github.com/city96/ComfyUI-GGUF), who created the Pytorch ports of the original (`numpy`)[https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/quants.py] implementation by [compilade](https://github.com/compilade).
The functions used for dynamic dequantizatation are based on the great work done by [city96](https://github.com/city96/ComfyUI-GGUF), who created the Pytorch ports of the original [`numpy`](https://github.com/ggerganov/llama.cpp/blob/master/gguf-py/gguf/quants.py) implementation by [compilade](https://github.com/compilade).
```python
import torch
@@ -45,12 +45,11 @@ transformer = FluxTransformer2DModel.from_single_file(
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
generator=torch.manual_seed(0),
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt).images[0]
image = pipe(prompt, generator=torch.manual_seed(0)).images[0]
image.save("flux-gguf.png")
```

View File

@@ -33,8 +33,8 @@ If you are new to the quantization field, we recommend you to check out these be
## When to use what?
Diffusers currently supports the following quantization methods.
- [BitsandBytes]()
- [TorchAO]()
- [GGUF]()
- [BitsandBytes](./bitsandbytes)
- [TorchAO](./torchao)
- [GGUF](./gguf)
[This resource](https://huggingface.co/docs/transformers/main/en/quantization/overview#when-to-use-what) provides a good overview of the pros and cons of different quantization techniques.

View File

@@ -25,9 +25,10 @@ Quantize a model by passing [`TorchAoConfig`] to [`~ModelMixin.from_pretrained`]
The example below only quantizes the weights to int8.
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig
model_id = "black-forest-labs/Flux.1-Dev"
model_id = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
quantization_config = TorchAoConfig("int8wo")
@@ -44,8 +45,14 @@ pipe = FluxPipeline.from_pretrained(
)
pipe.to("cuda")
# Without quantization: ~31.447 GB
# With quantization: ~20.40 GB
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB")
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, num_inference_steps=28, guidance_scale=0.0).images[0]
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
```
@@ -86,6 +93,63 @@ Some quantization methods are aliases (for example, `int8wo` is the commonly use
Refer to the official torchao documentation for a better understanding of the available quantization methods and the exhaustive list of configuration options available.
## Serializing and Deserializing quantized models
To serialize a quantized model in a given dtype, first load the model with the desired quantization dtype and then save it using the [`~ModelMixin.save_pretrained`] method.
```python
import torch
from diffusers import FluxTransformer2DModel, TorchAoConfig
quantization_config = TorchAoConfig("int8wo")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/Flux.1-Dev",
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
)
transformer.save_pretrained("/path/to/flux_int8wo", safe_serialization=False)
```
To load a serialized quantized model, use the [`~ModelMixin.from_pretrained`] method.
```python
import torch
from diffusers import FluxPipeline, FluxTransformer2DModel
transformer = FluxTransformer2DModel.from_pretrained("/path/to/flux_int8wo", torch_dtype=torch.bfloat16, use_safetensors=False)
pipe = FluxPipeline.from_pretrained("black-forest-labs/Flux.1-Dev", transformer=transformer, torch_dtype=torch.bfloat16)
pipe.to("cuda")
prompt = "A cat holding a sign that says hello world"
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.0).images[0]
image.save("output.png")
```
Some quantization methods, such as `uint4wo`, cannot be loaded directly and may result in an `UnpicklingError` when trying to load the models, but work as expected when saving them. In order to work around this, one can load the state dict manually into the model. Note, however, that this requires using `weights_only=False` in `torch.load`, so it should be run only if the weights were obtained from a trustable source.
```python
import torch
from accelerate import init_empty_weights
from diffusers import FluxPipeline, FluxTransformer2DModel, TorchAoConfig
# Serialize the model
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/Flux.1-Dev",
subfolder="transformer",
quantization_config=TorchAoConfig("uint4wo"),
torch_dtype=torch.bfloat16,
)
transformer.save_pretrained("/path/to/flux_uint4wo", safe_serialization=False, max_shard_size="50GB")
# ...
# Load the model
state_dict = torch.load("/path/to/flux_uint4wo/diffusion_pytorch_model.bin", weights_only=False, map_location="cpu")
with init_empty_weights():
transformer = FluxTransformer2DModel.from_config("/path/to/flux_uint4wo/config.json")
transformer.load_state_dict(state_dict, strict=True, assign=True)
```
## Resources
- [TorchAO Quantization API](https://github.com/pytorch/ao/blob/main/torchao/quantization/README.md)

View File

@@ -56,7 +56,7 @@ image
With the `adapter_name` parameter, it is really easy to use another adapter for inference! Load the [nerijs/pixel-art-xl](https://huggingface.co/nerijs/pixel-art-xl) adapter that has been fine-tuned to generate pixel art images and call it `"pixel"`.
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~PeftAdapterMixin.set_adapters`] method:
The pipeline automatically sets the first loaded adapter (`"toy"`) as the active adapter, but you can activate the `"pixel"` adapter with the [`~loaders.peft.PeftAdapterMixin.set_adapters`] method:
```python
pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
@@ -85,7 +85,7 @@ By default, if the most up-to-date versions of PEFT and Transformers are detecte
You can also merge different adapter checkpoints for inference to blend their styles together.
Once again, use the [`~PeftAdapterMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
Once again, use the [`~loaders.peft.PeftAdapterMixin.set_adapters`] method to activate the `pixel` and `toy` adapters and specify the weights for how they should be merged.
```python
pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
@@ -114,7 +114,7 @@ Impressive! As you can see, the model generated an image that mixed the characte
> [!TIP]
> Through its PEFT integration, Diffusers also offers more efficient merging methods which you can learn about in the [Merge LoRAs](../using-diffusers/merge_loras) guide!
To return to only using one adapter, use the [`~PeftAdapterMixin.set_adapters`] method to activate the `"toy"` adapter:
To return to only using one adapter, use the [`~loaders.peft.PeftAdapterMixin.set_adapters`] method to activate the `"toy"` adapter:
```python
pipe.set_adapters("toy")
@@ -127,7 +127,7 @@ image = pipe(
image
```
Or to disable all adapters entirely, use the [`~PeftAdapterMixin.disable_lora`] method to return the base model.
Or to disable all adapters entirely, use the [`~loaders.peft.PeftAdapterMixin.disable_lora`] method to return the base model.
```python
pipe.disable_lora()
@@ -141,7 +141,7 @@ image
### Customize adapters strength
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~PeftAdapterMixin.set_adapters`].
For even more customization, you can control how strongly the adapter affects each part of the pipeline. For this, pass a dictionary with the control strengths (called "scales") to [`~loaders.peft.PeftAdapterMixin.set_adapters`].
For example, here's how you can turn on the adapter for the `down` parts, but turn it off for the `mid` and `up` parts:
```python
@@ -214,7 +214,7 @@ list_adapters_component_wise
{"text_encoder": ["toy", "pixel"], "unet": ["toy", "pixel"], "text_encoder_2": ["toy", "pixel"]}
```
The [`~PeftAdapterMixin.delete_adapters`] function completely removes an adapter and their LoRA layers from a model.
The [`~loaders.peft.PeftAdapterMixin.delete_adapters`] function completely removes an adapter and their LoRA layers from a model.
```py
pipe.delete_adapters("toy")

View File

@@ -0,0 +1,96 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ConsisID
[ConsisID](https://github.com/PKU-YuanGroup/ConsisID) is an identity-preserving text-to-video generation model that keeps the face consistent in the generated video by frequency decomposition. The main features of ConsisID are:
- Frequency decomposition: The characteristics of the DiT architecture are analyzed from the frequency domain perspective, and based on these characteristics, a reasonable control information injection method is designed.
- Consistency training strategy: A coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss further enhance the model's generalization ability and identity preservation performance.
- Inference without finetuning: Previous methods required case-by-case finetuning of the input ID before inference, leading to significant time and computational costs. In contrast, ConsisID is tuning-free.
This guide will walk you through using ConsisID for use cases.
## Load Model Checkpoints
Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method.
```python
# !pip install consisid_eva_clip insightface facexlib
import torch
from diffusers import ConsisIDPipeline
from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
from huggingface_hub import snapshot_download
# Download ckpts
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
# Load face helper model to preprocess input face image
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16)
# Load consisid base model
pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
pipe.to("cuda")
```
## Identity-Preserving Text-to-Video
For identity-preserving text-to-video, pass a text prompt and an image contain clear face (e.g., preferably half-body or full-body). By default, ConsisID generates a 720x480 video for the best results.
```python
from diffusers.utils import export_to_video
prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."
image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true"
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True)
video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42))
export_to_video(video.frames[0], "output.mp4", fps=8)
```
<table>
<tr>
<th style="text-align: center;">Face Image</th>
<th style="text-align: center;">Video</th>
<th style="text-align: center;">Description</th
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_0.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_0.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress, which moves gracefully with the rhythm of the horse, the fabric flowing fluidly in the animated motion. The dappled sunlight filters through the trees, casting soft, painterly patterns on the forest floor. Her posture is poised, showing both control and elegance as she guides the horse with ease. The animation's gentle, fluid style adds a dreamlike quality to the scene, with the womans calm demeanor and the peaceful surroundings evoking a sense of freedom and harmony.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_1.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_1.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air, which is rendered with soft, ethereal strokes. A faint smile plays on her lips as she summons a wisp of ice magic, watching with focus as the surrounding trees and ground begin to shimmer and freeze, covered in delicate ice crystals. The animations fluid motion brings the magic to life, with the frost spreading outward in intricate, sparkling patterns. The environment is painted with soft, watercolor-like hues, enhancing the magical, dreamlike atmosphere. The overall mood is serene yet powerful, with the quiet winter air amplifying the delicate beauty of the frozen scene.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_2.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_2.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes squinting slightly against the sun, while a few wisps of hair flutter in the wind. He is dressed in a light, pastel-colored shirt, and the balloons around him sway with the wind, adding a sense of playfulness to the scene. The background blurs softly, with hints of a vibrant market or park, enhancing the light-hearted, yet tender mood of the moment.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_3.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_3.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_4.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_4.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge. The setting appears playful, with colorful toys scattered around and a soft rug underfoot, while sunlight streams through a nearby window, highlighting the fluttering cape and adding to the impression of heroism. The overall atmosphere is lighthearted and fun, with the baby's expressions capturing a mix of innocence and an adorable attempt at bravery, as if truly ready to save the day.</td>
</tr>
</table>
## Resources
Learn more about ConsisID with the following resources.
- A [video](https://www.youtube.com/watch?v=PhlgC-bI5SQ) demonstrating ConsisID's main features.
- The research paper, [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://hf.co/papers/2411.17440) for more details.

View File

@@ -240,6 +240,46 @@ Benefits of using a single-file layout include:
1. Easy compatibility with diffusion interfaces such as [ComfyUI](https://github.com/comfyanonymous/ComfyUI) or [Automatic1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) which commonly use a single-file layout.
2. Easier to manage (download and share) a single file.
### DDUF
> [!WARNING]
> DDUF is an experimental file format and APIs related to it can change in the future.
DDUF (**D**DUF **D**iffusion **U**nified **F**ormat) is a file format designed to make storing, distributing, and using diffusion models much easier. Built on the ZIP file format, DDUF offers a standardized, efficient, and flexible way to package all parts of a diffusion model into a single, easy-to-manage file. It provides a balance between Diffusers multi-folder format and the widely popular single-file format.
Learn more details about DDUF on the Hugging Face Hub [documentation](https://huggingface.co/docs/hub/dduf).
Pass a checkpoint to the `dduf_file` parameter to load it in [`DiffusionPipeline`].
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"DDUF/FLUX.1-dev-DDUF", dduf_file="FLUX.1-dev.dduf", torch_dtype=torch.bfloat16
).to("cuda")
image = pipe(
"photo a cat holding a sign that says Diffusers", num_inference_steps=50, guidance_scale=3.5
).images[0]
image.save("cat.png")
```
To save a pipeline as a `.dduf` checkpoint, use the [`~huggingface_hub.export_folder_as_dduf`] utility, which takes care of all the necessary file-level validations.
```py
from huggingface_hub import export_folder_as_dduf
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
save_folder = "flux-dev"
pipe.save_pretrained("flux-dev")
export_folder_as_dduf("flux-dev.dduf", folder_path=save_folder)
> [!TIP]
> Packaging and loading quantized checkpoints in the DDUF format is supported as long as they respect the multi-folder structure.
## Convert layout and files
Diffusers provides many scripts and methods to convert storage layouts and file formats to enable broader support across the diffusion ecosystem.

View File

@@ -1,4 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@@ -10,31 +10,20 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Text or image-to-video
# Video generation
Driven by the success of text-to-image diffusion models, generative video models are able to generate short clips of video from a text prompt or an initial image. These models extend a pretrained diffusion model to generate videos by adding some type of temporal and/or spatial convolution layer to the architecture. A mixed dataset of images and videos are used to train the model which learns to output a series of video frames based on the text or image conditioning.
Video generation models include a temporal dimension to bring images, or frames, together to create a video. These models are trained on large-scale datasets of high-quality text-video pairs to learn how to combine the modalities to ensure the generated video is coherent and realistic.
This guide will show you how to generate videos, how to configure video model parameters, and how to control video generation.
[Explore](https://huggingface.co/models?other=video-generation) some of the more popular open-source video generation models available from Diffusers below.
## Popular models
<hfoptions id="popular-models">
<hfoption id="CogVideoX">
> [!TIP]
> Discover other cool and trending video generation models on the Hub [here](https://huggingface.co/models?pipeline_tag=text-to-video&sort=trending)!
[CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) uses a 3D causal Variational Autoencoder (VAE) to compress videos along the spatial and temporal dimensions, and it includes a stack of expert transformer blocks with a 3D full attention mechanism to better capture visual, semantic, and motion information in the data.
[Stable Video Diffusions (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid), [I2VGen-XL](https://huggingface.co/ali-vilab/i2vgen-xl/), [AnimateDiff](https://huggingface.co/guoyww/animatediff), and [ModelScopeT2V](https://huggingface.co/ali-vilab/text-to-video-ms-1.7b) are popular models used for video diffusion. Each model is distinct. For example, AnimateDiff inserts a motion modeling module into a frozen text-to-image model to generate personalized animated images, whereas SVD is entirely pretrained from scratch with a three-stage training process to generate short high-quality videos.
The CogVideoX family also includes models capable of generating videos from images and videos in addition to text. The image-to-video models are indicated by **I2V** in the checkpoint name, and they should be used with the [`CogVideoXImageToVideoPipeline`]. The regular checkpoints support video-to-video through the [`CogVideoXVideoToVideoPipeline`].
[CogVideoX](https://huggingface.co/collections/THUDM/cogvideo-66c08e62f1685a3ade464cce) is another popular video generation model. The model is a multidimensional transformer that integrates text, time, and space. It employs full attention in the attention module and includes an expert block at the layer level to spatially align text and video.
### CogVideoX
[CogVideoX](../api/pipelines/cogvideox) uses a 3D Variational Autoencoder (VAE) to compress videos along the spatial and temporal dimensions.
Begin by loading the [`CogVideoXPipeline`] and passing an initial text or image to generate a video.
<Tip>
CogVideoX is available for image-to-video and text-to-video. [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V) uses the [`CogVideoXImageToVideoPipeline`] for image-to-video. [THUDM/CogVideoX-5b](https://huggingface.co/THUDM/CogVideoX-5b) and [THUDM/CogVideoX-2b](https://huggingface.co/THUDM/CogVideoX-2b) are available for text-to-video with the [`CogVideoXPipeline`].
</Tip>
The example below demonstrates how to generate a video from an image and text prompt with [THUDM/CogVideoX-5b-I2V](https://huggingface.co/THUDM/CogVideoX-5b-I2V).
```py
import torch
@@ -42,12 +31,13 @@ from diffusers import CogVideoXImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
prompt = "A vast, shimmering ocean flows gracefully under a twilight sky, its waves undulating in a mesmerizing dance of blues and greens. The surface glints with the last rays of the setting sun, casting golden highlights that ripple across the water. Seagulls soar above, their cries blending with the gentle roar of the waves. The horizon stretches infinitely, where the ocean meets the sky in a seamless blend of hues. Close-ups reveal the intricate patterns of the waves, capturing the fluidity and dynamic beauty of the sea in motion."
image = load_image(image="cogvideox_rocket.png")
image = load_image(image="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cogvideox/cogvideox_rocket.png")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
)
# reduce memory requirements
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
@@ -60,7 +50,6 @@ video = pipe(
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
```
@@ -75,12 +64,103 @@ export_to_video(video, "output.mp4", fps=8)
</div>
</div>
### Stable Video Diffusion
</hfoption>
<hfoption id="HunyuanVideo">
[SVD](../api/pipelines/svd) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image. You can learn more details about model, like micro-conditioning, in the [Stable Video Diffusion](../using-diffusers/svd) guide.
> [!TIP]
> HunyuanVideo is a 13B parameter model and requires a lot of memory. Refer to the HunyuanVideo [Quantization](../api/pipelines/hunyuan_video#quantization) guide to learn how to quantize the model. CogVideoX and LTX-Video are more lightweight options that can still generate high-quality videos.
Begin by loading the [`StableVideoDiffusionPipeline`] and passing an initial image to generate a video from.
[HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo) features a dual-stream to single-stream diffusion transformer (DiT) for learning video and text tokens separately, and then subsequently concatenating the video and text tokens to combine their information. A single multimodal large language model (MLLM) serves as the text encoder, and videos are also spatio-temporally compressed with a 3D causal VAE.
```py
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", transformer=transformer, torch_dtype=torch.float16
)
# reduce memory requirements
pipe.vae.enable_tiling()
pipe.to("cuda")
video = pipe(
prompt="A cat walks on the grass, realistic",
height=320,
width=512,
num_frames=61,
num_inference_steps=30,
).frames[0]
export_to_video(video, "output.mp4", fps=15)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hunyuan-video-output.gif"/>
</div>
</hfoption>
<hfoption id="LTX-Video">
[LTX-Video (LTXV)](https://huggingface.co/Lightricks/LTX-Video) is a diffusion transformer (DiT) with a focus on speed. It generates 768x512 resolution videos at 24 frames per second (fps), enabling near real-time generation of high-quality videos. LTXV is relatively lightweight compared to other modern video generation models, making it possible to run on consumer GPUs.
```py
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A man walks towards a window, looks out, and then turns around. He has short, dark hair, dark skin, and is wearing a brown coat over a red and gray scarf. He walks from left to right towards a window, his gaze fixed on something outside. The camera follows him from behind at a medium distance. The room is brightly lit, with white walls and a large window covered by a white curtain. As he approaches the window, he turns his head slightly to the left, then back to the right. He then turns his entire body to the right, facing the window. The camera remains stationary as he stands in front of the window. The scene is captured in real-life footage."
video = pipe(
prompt=prompt,
width=704,
height=480,
num_frames=161,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```
<div class="flex justify-center">
<img src="https://huggingface.co/Lightricks/LTX-Video/resolve/main/media/ltx-video_example_00014.gif"/>
</div>
</hfoption>
<hfoption id="Mochi-1">
> [!TIP]
> Mochi-1 is a 10B parameter model and requires a lot of memory. Refer to the Mochi [Quantization](../api/pipelines/mochi#quantization) guide to learn how to quantize the model. CogVideoX and LTX-Video are more lightweight options that can still generate high-quality videos.
[Mochi-1](https://huggingface.co/genmo/mochi-1-preview) introduces the Asymmetric Diffusion Transformer (AsymmDiT) and Asymmetric Variational Autoencoder (AsymmVAE) to reduces memory requirements. AsymmVAE causally compresses videos 128x to improve memory efficiency, and AsymmDiT jointly attends to the compressed video tokens and user text tokens. This model is noted for generating videos with high-quality motion dynamics and strong prompt adherence.
```py
import torch
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
# reduce memory requirements
pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
video = pipe(prompt, num_frames=84).frames[0]
export_to_video(video, "output.mp4", fps=30)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/mochi-video-output.gif"/>
</div>
</hfoption>
<hfoption id="StableVideoDiffusion">
[StableVideoDiffusion (SVD)](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt) is based on the Stable Diffusion 2.1 model and it is trained on images, then low-resolution videos, and finally a smaller dataset of high-resolution videos. This model generates a short 2-4 second video from an initial image.
```py
import torch
@@ -90,6 +170,8 @@ from diffusers.utils import load_image, export_to_video
pipeline = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
)
# reduce memory requirements
pipeline.enable_model_cpu_offload()
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png")
@@ -111,54 +193,12 @@ export_to_video(frames, "generated.mp4", fps=7)
</div>
</div>
### I2VGen-XL
</hfoption>
<hfoption id="AnimateDiff">
[I2VGen-XL](../api/pipelines/i2vgenxl) is a diffusion model that can generate higher resolution videos than SVD and it is also capable of accepting text prompts in addition to images. The model is trained with two hierarchical encoders (detail and global encoder) to better capture low and high-level details in images. These learned details are used to train a video diffusion model which refines the video resolution and details in the generated video.
[AnimateDiff](https://huggingface.co/guoyww/animatediff) is an adapter model that inserts a motion module into a pretrained diffusion model to animate an image. The adapter is trained on video clips to learn motion which is used to condition the generation process to create a video. It is faster and easier to only train the adapter and it can be loaded into most diffusion models, effectively turning them into “video models”.
You can use I2VGen-XL by loading the [`I2VGenXLPipeline`], and passing a text and image prompt to generate a video.
```py
import torch
from diffusers import I2VGenXLPipeline
from diffusers.utils import export_to_gif, load_image
pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
image = load_image(image_url).convert("RGB")
prompt = "Papers were floating in the air on a table in the library"
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
generator = torch.manual_seed(8888)
frames = pipeline(
prompt=prompt,
image=image,
num_inference_steps=50,
negative_prompt=negative_prompt,
guidance_scale=9.0,
generator=generator
).frames[0]
export_to_gif(frames, "i2v.gif")
```
<div class="flex gap-4">
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">initial image</figcaption>
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/i2vgen-xl-example.gif"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">generated video</figcaption>
</div>
</div>
### AnimateDiff
[AnimateDiff](../api/pipelines/animatediff) is an adapter model that inserts a motion module into a pretrained diffusion model to animate an image. The adapter is trained on video clips to learn motion which is used to condition the generation process to create a video. It is faster and easier to only train the adapter and it can be loaded into most diffusion models, effectively turning them into "video models".
Start by loading a [`MotionAdapter`].
Load a `MotionAdapter` and pass it to the [`AnimateDiffPipeline`].
```py
import torch
@@ -166,11 +206,6 @@ from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
```
Then load a finetuned Stable Diffusion model with the [`AnimateDiffPipeline`].
```py
pipeline = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
@@ -181,13 +216,11 @@ scheduler = DDIMScheduler.from_pretrained(
steps_offset=1,
)
pipeline.scheduler = scheduler
# reduce memory requirements
pipeline.enable_vae_slicing()
pipeline.enable_model_cpu_offload()
```
Create a prompt and generate the video.
```py
output = pipeline(
prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution",
negative_prompt="bad quality, worse quality, low resolution",
@@ -201,38 +234,11 @@ export_to_gif(frames, "animation.gif")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff.gif"/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff.gif"/>
</div>
### ModelscopeT2V
[ModelscopeT2V](../api/pipelines/text_to_video) adds spatial and temporal convolutions and attention to a UNet, and it is trained on image-text and video-text datasets to enhance what it learns during training. The model takes a prompt, encodes it and creates text embeddings which are denoised by the UNet, and then decoded by a VQGAN into a video.
<Tip>
ModelScopeT2V generates watermarked videos due to the datasets it was trained on. To use a watermark-free model, try the [cerspense/zeroscope_v2_76w](https://huggingface.co/cerspense/zeroscope_v2_576w) model with the [`TextToVideoSDPipeline`] first, and then upscale it's output with the [cerspense/zeroscope_v2_XL](https://huggingface.co/cerspense/zeroscope_v2_XL) checkpoint using the [`VideoToVideoSDPipeline`].
</Tip>
Load a ModelScopeT2V checkpoint into the [`DiffusionPipeline`] along with a prompt to generate a video.
```py
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
pipeline = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
prompt = "Confident teddy bear surfer rides the wave in the tropics"
video_frames = pipeline(prompt).frames[0]
export_to_video(video_frames, "modelscopet2v.mp4", fps=10)
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/modelscopet2v.gif" />
</div>
</hfoption>
</hfoptions>
## Configure model parameters
@@ -548,3 +554,9 @@ If memory is not an issue and you want to optimize for speed, try wrapping the U
+ pipeline.to("cuda")
+ pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
```
## Quantization
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
Refer to the [Quantization](../../quantization/overview) to learn more about supported quantization backends (bitsandbytes, torchao, gguf) and selecting a quantization backend that supports your use case.

View File

@@ -5,6 +5,8 @@
title: 快速入门
- local: stable_diffusion
title: 有效和高效的扩散
- local: consisid
title: 身份保持的文本到视频生成
- local: installation
title: 安装
title: 开始

100
docs/source/zh/consisid.md Normal file
View File

@@ -0,0 +1,100 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ConsisID
[ConsisID](https://github.com/PKU-YuanGroup/ConsisID)是一种身份保持的文本到视频生成模型,其通过频率分解在生成的视频中保持面部一致性。它具有以下特点:
- 基于频率分解将人物ID特征解耦为高频和低频部分从频域的角度分析DIT架构的特性并且基于此特性设计合理的控制信息注入方式。
- 一致性训练策略:我们提出粗到细训练策略、动态掩码损失、动态跨脸损失,进一步提高了模型的泛化能力和身份保持效果。
- 推理无需微调之前的方法在推理前需要对输入id进行case-by-case微调时间和算力开销较大而我们的方法是tuning-free的。
本指南将指导您使用 ConsisID 生成身份保持的视频。
## Load Model Checkpoints
模型权重可以存储在Hub上或本地的单独子文件夹中在这种情况下您应该使用 [`~DiffusionPipeline.from_pretrained`] 方法。
```python
# !pip install consisid_eva_clip insightface facexlib
import torch
from diffusers import ConsisIDPipeline
from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
from huggingface_hub import snapshot_download
# Download ckpts
snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
# Load face helper model to preprocess input face image
face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16)
# Load consisid base model
pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
pipe.to("cuda")
```
## Identity-Preserving Text-to-Video
对于身份保持的文本到视频生成需要输入文本提示和包含清晰面部例如最好是半身或全身的图像。默认情况下ConsisID 会生成 720x480 的视频以获得最佳效果。
```python
from diffusers.utils import export_to_video
prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."
image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true"
id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True)
video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42))
export_to_video(video.frames[0], "output.mp4", fps=8)
```
<table>
<tr>
<th style="text-align: center;">Face Image</th>
<th style="text-align: center;">Video</th>
<th style="text-align: center;">Description</th
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_0.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_0.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress, which moves gracefully with the rhythm of the horse, the fabric flowing fluidly in the animated motion. The dappled sunlight filters through the trees, casting soft, painterly patterns on the forest floor. Her posture is poised, showing both control and elegance as she guides the horse with ease. The animation's gentle, fluid style adds a dreamlike quality to the scene, with the womans calm demeanor and the peaceful surroundings evoking a sense of freedom and harmony.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_1.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_1.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air, which is rendered with soft, ethereal strokes. A faint smile plays on her lips as she summons a wisp of ice magic, watching with focus as the surrounding trees and ground begin to shimmer and freeze, covered in delicate ice crystals. The animations fluid motion brings the magic to life, with the frost spreading outward in intricate, sparkling patterns. The environment is painted with soft, watercolor-like hues, enhancing the magical, dreamlike atmosphere. The overall mood is serene yet powerful, with the quiet winter air amplifying the delicate beauty of the frozen scene.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_2.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_2.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes squinting slightly against the sun, while a few wisps of hair flutter in the wind. He is dressed in a light, pastel-colored shirt, and the balloons around him sway with the wind, adding a sense of playfulness to the scene. The background blurs softly, with hints of a vibrant market or park, enhancing the light-hearted, yet tender mood of the moment.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_3.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_3.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel.</td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_image_4.png?download=true" style="height: auto; width: 600px;"></td>
<td><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_output_4.gif?download=true" style="height: auto; width: 2000px;"></td>
<td>The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge. The setting appears playful, with colorful toys scattered around and a soft rug underfoot, while sunlight streams through a nearby window, highlighting the fluttering cape and adding to the impression of heroism. The overall atmosphere is lighthearted and fun, with the baby's expressions capturing a mix of innocence and an adorable attempt at bravery, as if truly ready to save the day.</td>
</tr>
</table>
## Resources
通过以下资源了解有关 ConsisID 的更多信息:
- 一段 [视频](https://www.youtube.com/watch?v=PhlgC-bI5SQ) 演示了 ConsisID 的主要功能;
- 有关更多详细信息,请参阅研究论文 [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://hf.co/papers/2411.17440)。

View File

@@ -67,6 +67,17 @@ write_basic_config()
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.
Lastly, we recommend logging into your HF account so that your trained LoRA is automatically uploaded to the hub:
```bash
huggingface-cli login
```
This command will prompt you for a token. Copy-paste yours from your [settings/tokens](https://huggingface.co/settings/tokens),and press Enter.
> [!NOTE]
> In the examples below we use `wandb` to document the training runs. To do the same, make sure to install `wandb`:
> `pip install wandb`
> Alternatively, you can use other tools / train without reporting by modifying the flag `--report_to="wandb"`.
### Pivotal Tuning
**Training with text encoder(s)**

View File

@@ -65,6 +65,17 @@ write_basic_config()
When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.6.0` installed in your environment.
Lastly, we recommend logging into your HF account so that your trained LoRA is automatically uploaded to the hub:
```bash
huggingface-cli login
```
This command will prompt you for a token. Copy-paste yours from your [settings/tokens](https://huggingface.co/settings/tokens),and press Enter.
> [!NOTE]
> In the examples below we use `wandb` to document the training runs. To do the same, make sure to install `wandb`:
> `pip install wandb`
> Alternatively, you can use other tools / train without reporting by modifying the flag `--report_to="wandb"`.
### Target Modules
When LoRA was first adapted from language models to diffusion models, it was applied to the cross-attention layers in the Unet that relate the image representations with the prompts that describe them.
More recently, SOTA text-to-image diffusion models replaced the Unet with a diffusion Transformer(DiT). With this change, we may also want to explore

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -74,7 +74,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -73,7 +73,7 @@ from diffusers.utils.import_utils import is_xformers_available
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)
@@ -160,7 +160,7 @@ to trigger concept `{key}` → use `{tokens}` in your prompt \n
from diffusers import AutoPipelineForText2Image
import torch
{diffusers_imports_pivotal}
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline = AutoPipelineForText2Image.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors')
{diffusers_example_pivotal}
image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0]

View File

@@ -1,6 +1,6 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -79,7 +79,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -1,5 +1,5 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@@ -61,7 +61,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -52,7 +52,7 @@ if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.32.0.dev0")
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)

View File

@@ -33,12 +33,12 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - | [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | - | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
| Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_comparison.ipynb) | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
| MagicMix | Diffusion Pipeline for semantic mixing of an image and a text prompt | [MagicMix](#magic-mix) | - | [Partho Das](https://github.com/daspartho) |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | - | [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| Stable UnCLIP | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ). | [Stable UnCLIP](#stable-unclip) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb) | [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| UnCLIP Image Interpolation Pipeline | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | - | [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| DDIM Noise Comparative Analysis Pipeline | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227)) | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)| [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline | Doing CLIP guidance for image to image generation with Stable Diffusion | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion) | - | [Nipun Jindal](https://github.com/nipunjindal/) |
| TensorRT Stable Diffusion Text to Image Pipeline | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline) | - | [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| EDICT Image Editing Pipeline | Diffusion pipeline for text-guided image editing | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) | [Joqsan Azocar](https://github.com/Joqsan) |
@@ -50,7 +50,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| IADB Pipeline | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) | [IADB Pipeline](#iadb-pipeline) | - | [Thomas Chambon](https://github.com/tchambon)
| Zero1to3 Pipeline | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) | [Zero1to3 Pipeline](#zero1to3-pipeline) | - | [Xin Kong](https://github.com/kxhit) |
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | - | [Shauray Singh](https://shauray8.github.io/about_shauray/) |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |

View File

@@ -372,7 +372,7 @@ class AdaptiveMaskInpaintPipeline(
self.register_adaptive_mask_model()
self.register_adaptive_mask_settings()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -386,7 +386,7 @@ class AdaptiveMaskInpaintPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
if scheduler is not None and getattr(scheduler.config, "skip_prk_steps", True) is False:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
@@ -416,10 +416,14 @@ class AdaptiveMaskInpaintPipeline(
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
is_unet_version_less_0_9_0 = (
unet is not None
and hasattr(unet.config, "_diffusers_version")
and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0")
)
is_unet_sample_size_less_64 = (
unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
)
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
@@ -438,7 +442,7 @@ class AdaptiveMaskInpaintPipeline(
unet._internal_dict = FrozenDict(new_config)
# Check shapes, assume num_channels_latents == 4, num_channels_mask == 1, num_channels_masked == 4
if unet.config.in_channels != 9:
if unet is not None and unet.config.in_channels != 9:
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.")
self.register_modules(
@@ -450,7 +454,7 @@ class AdaptiveMaskInpaintPipeline(
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -89,7 +89,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -103,7 +103,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -132,10 +132,14 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
is_unet_version_less_0_9_0 = (
unet is not None
and hasattr(unet.config, "_diffusers_version")
and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0")
)
is_unet_sample_size_less_64 = (
unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
)
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
@@ -162,7 +166,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.register_to_config(requires_safety_checker=requires_safety_checker)
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):

View File

@@ -35,7 +35,7 @@ class EDICTPipeline(DiffusionPipeline):
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
def _encode_prompt(

View File

@@ -404,10 +404,11 @@ def my_forward(
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
is_npu = sample.device.type == "npu"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
@@ -1342,7 +1343,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False

View File

@@ -221,7 +221,7 @@ class GlueGenStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin, St
language_adapter=language_adapter,
tensor_norm=tensor_norm,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -95,7 +95,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "

View File

@@ -109,7 +109,7 @@ class InstaFlowPipeline(
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
@@ -123,7 +123,7 @@ class InstaFlowPipeline(
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
@@ -152,10 +152,14 @@ class InstaFlowPipeline(
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
is_unet_version_less_0_9_0 = (
unet is not None
and hasattr(unet.config, "_diffusers_version")
and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0")
)
is_unet_sample_size_less_64 = (
unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
)
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
@@ -182,7 +186,7 @@ class InstaFlowPipeline(
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)

View File

@@ -86,7 +86,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "

Some files were not shown because too many files have changed in this diff Show More