Compare commits

...

3 Commits

Author SHA1 Message Date
sayakpaul
49b256efe5 add tests for robust model loading. 2026-02-10 22:05:01 +05:30
Álvaro Somoza
5bf248ddd8 [SkyReelsV2] Fix ftfy import (#13113)
fix
2026-02-10 12:56:13 +05:30
Dhruv Nair
bedc67c75f [Docs] Add guide for AutoModel with custom code (#13099)
update
2026-02-10 12:19:44 +05:30
5 changed files with 122 additions and 4 deletions

View File

@@ -29,8 +29,31 @@ text_encoder = AutoModel.from_pretrained(
)
```
## Custom models
[`AutoModel`] also loads models from the [Hub](https://huggingface.co/models) that aren't included in Diffusers. Set `trust_remote_code=True` in [`AutoModel.from_pretrained`] to load custom models.
A custom model repository needs a Python module with the model class, and a `config.json` with an `auto_map` entry that maps `"AutoModel"` to `"module_file.ClassName"`.
```
custom/custom-transformer-model/
├── config.json
├── my_model.py
└── diffusion_pytorch_model.safetensors
```
The `config.json` includes the `auto_map` field pointing to the custom class.
```json
{
"auto_map": {
"AutoModel": "my_model.MyCustomModel"
}
}
```
Then load it with `trust_remote_code=True`.
```py
import torch
from diffusers import AutoModel
@@ -40,7 +63,39 @@ transformer = AutoModel.from_pretrained(
)
```
For a real-world example, [Overworld/Waypoint-1-Small](https://huggingface.co/Overworld/Waypoint-1-Small/tree/main/transformer) hosts a custom `WorldModel` class across several modules in its `transformer` subfolder.
```
transformer/
├── config.json # auto_map: "model.WorldModel"
├── model.py
├── attn.py
├── nn.py
├── cache.py
├── quantize.py
├── __init__.py
└── diffusion_pytorch_model.safetensors
```
```py
import torch
from diffusers import AutoModel
transformer = AutoModel.from_pretrained(
"Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="cuda"
)
```
If the custom model inherits from the [`ModelMixin`] class, it gets access to the same features as Diffusers model classes, like [regional compilation](../optimization/fp16#regional-compilation) and [group offloading](../optimization/memory#group-offloading).
> [!WARNING]
> As a precaution with `trust_remote_code=True`, pass a commit hash to the `revision` argument in [`AutoModel.from_pretrained`] to make sure the code hasn't been updated with new malicious code (unless you fully trust the model owners).
>
> ```py
> transformer = AutoModel.from_pretrained(
> "Overworld/Waypoint-1-Small", subfolder="transformer", trust_remote_code=True, revision="a3d8cb2"
> )
> ```
> [!NOTE]
> Learn more about implementing custom models in the [Community components](../using-diffusers/custom_pipeline_overview#community-components) guide.

View File

@@ -18,7 +18,6 @@ import re
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
import ftfy
import torch
from transformers import AutoTokenizer, UMT5EncoderModel

View File

@@ -18,7 +18,6 @@ import re
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import ftfy
import PIL
import torch
from transformers import AutoTokenizer, UMT5EncoderModel

View File

@@ -19,7 +19,6 @@ import re
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
import ftfy
import torch
from PIL import Image
from transformers import AutoTokenizer, UMT5EncoderModel

View File

@@ -6,7 +6,7 @@ import pytest
import torch
import diffusers
from diffusers import ComponentsManager, ModularPipeline, ModularPipelineBlocks
from diffusers import AutoModel, ComponentsManager, ModularPipeline, ModularPipelineBlocks
from diffusers.guiders import ClassifierFreeGuidance
from diffusers.modular_pipelines.modular_pipeline_utils import (
ComponentSpec,
@@ -598,3 +598,69 @@ class TestModularModelCardContent:
content = generate_modular_model_card_content(blocks)
assert "5-block architecture" in content["model_description"]
class TestAutoModelLoadIdTagging:
def test_automodel_tags_load_id(self):
model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe", subfolder="unet")
assert hasattr(model, "_diffusers_load_id"), "Model should have _diffusers_load_id attribute"
assert model._diffusers_load_id != "null", "_diffusers_load_id should not be 'null'"
# Verify load_id contains the expected fields
load_id = model._diffusers_load_id
assert "hf-internal-testing/tiny-stable-diffusion-xl-pipe" in load_id
assert "unet" in load_id
def test_automodel_update_components(self):
pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
pipe.load_components(torch_dtype=torch.float32)
auto_model = AutoModel.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe", subfolder="unet")
pipe.update_components(unet=auto_model)
assert pipe.unet is auto_model
assert "unet" in pipe._component_specs
spec = pipe._component_specs["unet"]
assert spec.pretrained_model_name_or_path == "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
assert spec.subfolder == "unet"
class TestLoadComponentsSkipBehavior:
def test_load_components_skips_already_loaded(self):
pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
pipe.load_components(torch_dtype=torch.float32)
original_unet = pipe.unet
pipe.load_components()
# Verify that the unet is the same object (not reloaded)
assert pipe.unet is original_unet, "load_components should skip already loaded components"
def test_load_components_selective_loading(self):
pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
pipe.load_components(names="unet", torch_dtype=torch.float32)
# Verify only requested component was loaded.
assert hasattr(pipe, "unet")
assert pipe.unet is not None
if "vae" in pipe._component_specs:
assert getattr(pipe, "vae", None) is None
def test_load_components_skips_invalid_pretrained_path(self):
pipe = ModularPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
pipe._component_specs["test_component"] = ComponentSpec(
name="test_component",
type_hint=torch.nn.Module,
pretrained_model_name_or_path=None,
default_creation_method="from_pretrained",
)
pipe.load_components(torch_dtype=torch.float32)
# Verify test_component was not loaded
assert not hasattr(pipe, "test_component") or pipe.test_component is None