|
|
|
|
@@ -0,0 +1,951 @@
|
|
|
|
|
# Copyright 2023 TencentARC and The HuggingFace Team. All rights reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import inspect
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import PIL
|
|
|
|
|
import torch
|
|
|
|
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
|
|
|
|
|
|
|
|
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
|
|
|
|
|
|
|
|
|
from ...image_processor import VaeImageProcessor
|
|
|
|
|
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
|
|
|
|
from ...models import AutoencoderKL, MultiAdapter, T2IAdapter, UNet2DConditionModel
|
|
|
|
|
from ...models.attention_processor import (
|
|
|
|
|
AttnProcessor2_0,
|
|
|
|
|
LoRAAttnProcessor2_0,
|
|
|
|
|
LoRAXFormersAttnProcessor,
|
|
|
|
|
XFormersAttnProcessor,
|
|
|
|
|
)
|
|
|
|
|
from ...schedulers import KarrasDiffusionSchedulers
|
|
|
|
|
from ...utils import (
|
|
|
|
|
PIL_INTERPOLATION,
|
|
|
|
|
is_accelerate_available,
|
|
|
|
|
is_accelerate_version,
|
|
|
|
|
logging,
|
|
|
|
|
randn_tensor,
|
|
|
|
|
replace_example_docstring,
|
|
|
|
|
)
|
|
|
|
|
from ..pipeline_utils import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
|
|
|
Examples:
|
|
|
|
|
```py
|
|
|
|
|
>>> import torch
|
|
|
|
|
>>> from diffusers import T2IAdapter, StableDiffusionXLAdapterPipeline, DDPMScheduler
|
|
|
|
|
>>> from diffusers.utils import load_image
|
|
|
|
|
|
|
|
|
|
>>> sketch_image = load_image("https://huggingface.co/Adapter/t2iadapter/resolve/main/sketch.png").convert("L")
|
|
|
|
|
|
|
|
|
|
>>> model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
|
|
|
|
|
|
|
>>> adapter = T2IAdapter.from_pretrained(
|
|
|
|
|
... "Adapter/t2iadapter",
|
|
|
|
|
... subfolder="sketch_sdxl_1.0",
|
|
|
|
|
... torch_dtype=torch.float16,
|
|
|
|
|
... adapter_type="full_adapter_xl",
|
|
|
|
|
... )
|
|
|
|
|
>>> scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
|
|
|
|
|
|
|
|
|
>>> pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
|
|
|
|
... model_id, adapter=adapter, torch_dtype=torch.float16, variant="fp16", scheduler=scheduler
|
|
|
|
|
... ).to("cuda")
|
|
|
|
|
|
|
|
|
|
>>> generator = torch.manual_seed(42)
|
|
|
|
|
>>> sketch_image_out = pipe(
|
|
|
|
|
... prompt="a photo of a dog in real world, high quality",
|
|
|
|
|
... negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality",
|
|
|
|
|
... image=sketch_image,
|
|
|
|
|
... generator=generator,
|
|
|
|
|
... guidance_scale=7.5,
|
|
|
|
|
... ).images[0]
|
|
|
|
|
```
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _preprocess_adapter_image(image, height, width):
|
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
|
|
|
return image
|
|
|
|
|
elif isinstance(image, PIL.Image.Image):
|
|
|
|
|
image = [image]
|
|
|
|
|
|
|
|
|
|
if isinstance(image[0], PIL.Image.Image):
|
|
|
|
|
image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image]
|
|
|
|
|
image = [
|
|
|
|
|
i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image
|
|
|
|
|
] # expand [h, w] or [h, w, c] to [b, h, w, c]
|
|
|
|
|
image = np.concatenate(image, axis=0)
|
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
|
|
image = image.transpose(0, 3, 1, 2)
|
|
|
|
|
image = torch.from_numpy(image)
|
|
|
|
|
elif isinstance(image[0], torch.Tensor):
|
|
|
|
|
if image[0].ndim == 3:
|
|
|
|
|
image = torch.stack(image, dim=0)
|
|
|
|
|
elif image[0].ndim == 4:
|
|
|
|
|
image = torch.cat(image, dim=0)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
|
|
|
|
|
)
|
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
|
|
|
"""
|
|
|
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
|
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
|
|
|
"""
|
|
|
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
|
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
|
|
# rescale the results from guidance (fixes overexposure)
|
|
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
|
|
|
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
|
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
|
|
|
return noise_cfg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class StableDiffusionXLAdapterPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
|
|
|
|
r"""
|
|
|
|
|
Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter
|
|
|
|
|
https://arxiv.org/abs/2302.08453
|
|
|
|
|
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
|
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`):
|
|
|
|
|
Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a
|
|
|
|
|
list, the outputs from each Adapter are added together to create one combined additional conditioning.
|
|
|
|
|
adapter_weights (`List[float]`, *optional*, defaults to None):
|
|
|
|
|
List of floats representing the weight which will be multiply to each adapter's output before adding them
|
|
|
|
|
together.
|
|
|
|
|
vae ([`AutoencoderKL`]):
|
|
|
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
|
|
|
text_encoder ([`CLIPTextModel`]):
|
|
|
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
|
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
|
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
|
|
|
tokenizer (`CLIPTokenizer`):
|
|
|
|
|
Tokenizer of class
|
|
|
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
|
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
|
|
|
scheduler ([`SchedulerMixin`]):
|
|
|
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
|
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
|
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
|
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
|
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
|
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
|
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
vae: AutoencoderKL,
|
|
|
|
|
text_encoder: CLIPTextModel,
|
|
|
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
|
|
|
tokenizer: CLIPTokenizer,
|
|
|
|
|
tokenizer_2: CLIPTokenizer,
|
|
|
|
|
unet: UNet2DConditionModel,
|
|
|
|
|
adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]],
|
|
|
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
|
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
|
|
|
):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.register_modules(
|
|
|
|
|
vae=vae,
|
|
|
|
|
text_encoder=text_encoder,
|
|
|
|
|
text_encoder_2=text_encoder_2,
|
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
|
tokenizer_2=tokenizer_2,
|
|
|
|
|
unet=unet,
|
|
|
|
|
adapter=adapter,
|
|
|
|
|
scheduler=scheduler,
|
|
|
|
|
)
|
|
|
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
|
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
|
self.default_sample_size = self.unet.config.sample_size
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
|
|
|
|
def enable_vae_slicing(self):
|
|
|
|
|
r"""
|
|
|
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|
|
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|
|
|
|
"""
|
|
|
|
|
self.vae.enable_slicing()
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
|
|
|
|
def disable_vae_slicing(self):
|
|
|
|
|
r"""
|
|
|
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
|
|
|
|
computing decoding in one step.
|
|
|
|
|
"""
|
|
|
|
|
self.vae.disable_slicing()
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
|
|
|
|
def enable_vae_tiling(self):
|
|
|
|
|
r"""
|
|
|
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|
|
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|
|
|
|
processing larger images.
|
|
|
|
|
"""
|
|
|
|
|
self.vae.enable_tiling()
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
|
|
|
|
def disable_vae_tiling(self):
|
|
|
|
|
r"""
|
|
|
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
|
|
|
|
computing decoding in one step.
|
|
|
|
|
"""
|
|
|
|
|
self.vae.disable_tiling()
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.enable_model_cpu_offload
|
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0):
|
|
|
|
|
r"""
|
|
|
|
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
|
|
|
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
|
|
|
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
|
|
|
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
|
|
|
|
"""
|
|
|
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
|
|
|
|
from accelerate import cpu_offload_with_hook
|
|
|
|
|
else:
|
|
|
|
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
|
|
|
|
|
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
|
|
|
|
|
|
if self.device.type != "cpu":
|
|
|
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
|
|
|
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
|
|
|
|
|
|
|
|
|
model_sequence = (
|
|
|
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
|
|
|
)
|
|
|
|
|
model_sequence.extend([self.unet, self.vae])
|
|
|
|
|
|
|
|
|
|
hook = None
|
|
|
|
|
for cpu_offloaded_model in model_sequence:
|
|
|
|
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
|
|
|
|
|
|
|
|
|
# We'll offload the last model manually.
|
|
|
|
|
self.final_offload_hook = hook
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
|
|
|
|
def encode_prompt(
|
|
|
|
|
self,
|
|
|
|
|
prompt: str,
|
|
|
|
|
prompt_2: Optional[str] = None,
|
|
|
|
|
device: Optional[torch.device] = None,
|
|
|
|
|
num_images_per_prompt: int = 1,
|
|
|
|
|
do_classifier_free_guidance: bool = True,
|
|
|
|
|
negative_prompt: Optional[str] = None,
|
|
|
|
|
negative_prompt_2: Optional[str] = None,
|
|
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
lora_scale: Optional[float] = None,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
prompt to be encoded
|
|
|
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
|
|
|
used in both text-encoders
|
|
|
|
|
device: (`torch.device`):
|
|
|
|
|
torch device
|
|
|
|
|
num_images_per_prompt (`int`):
|
|
|
|
|
number of images that should be generated per prompt
|
|
|
|
|
do_classifier_free_guidance (`bool`):
|
|
|
|
|
whether to use classifier free guidance or not
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
|
|
|
less than `1`).
|
|
|
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
|
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
|
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
|
|
|
argument.
|
|
|
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
|
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
|
|
|
input argument.
|
|
|
|
|
lora_scale (`float`, *optional*):
|
|
|
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
|
|
|
"""
|
|
|
|
|
device = device or self._execution_device
|
|
|
|
|
|
|
|
|
|
# set lora scale so that monkey patched LoRA
|
|
|
|
|
# function of text encoder can correctly access it
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
|
|
|
|
self._lora_scale = lora_scale
|
|
|
|
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
|
batch_size = 1
|
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
# Define tokenizers and text encoders
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
|
|
|
|
text_encoders = (
|
|
|
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt_embeds is None:
|
|
|
|
|
prompt_2 = prompt_2 or prompt
|
|
|
|
|
# textual inversion: procecss multi-vector tokens if necessary
|
|
|
|
|
prompt_embeds_list = []
|
|
|
|
|
prompts = [prompt, prompt_2]
|
|
|
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
|
|
|
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
|
|
|
|
|
|
|
|
|
text_inputs = tokenizer(
|
|
|
|
|
prompt,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=tokenizer.model_max_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
|
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
|
|
|
text_input_ids, untruncated_ids
|
|
|
|
|
):
|
|
|
|
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
|
|
|
|
logger.warning(
|
|
|
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
|
|
|
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = text_encoder(
|
|
|
|
|
text_input_ids.to(device),
|
|
|
|
|
output_hidden_states=True,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
|
|
|
|
|
|
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
|
|
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
|
|
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
|
|
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
|
|
|
|
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
|
|
|
negative_prompt = negative_prompt or ""
|
|
|
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
|
|
|
|
|
|
|
uncond_tokens: List[str]
|
|
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
|
|
|
raise TypeError(
|
|
|
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
|
|
|
f" {type(prompt)}."
|
|
|
|
|
)
|
|
|
|
|
elif isinstance(negative_prompt, str):
|
|
|
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
|
elif batch_size != len(negative_prompt):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
|
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
|
|
|
" the batch size of `prompt`."
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds_list = []
|
|
|
|
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
|
|
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
|
|
|
|
|
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
|
|
|
uncond_input = tokenizer(
|
|
|
|
|
negative_prompt,
|
|
|
|
|
padding="max_length",
|
|
|
|
|
max_length=max_length,
|
|
|
|
|
truncation=True,
|
|
|
|
|
return_tensors="pt",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds = text_encoder(
|
|
|
|
|
uncond_input.input_ids.to(device),
|
|
|
|
|
output_hidden_states=True,
|
|
|
|
|
)
|
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
|
|
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
|
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
|
|
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
|
|
|
bs_embed * num_images_per_prompt, -1
|
|
|
|
|
)
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
|
|
|
bs_embed * num_images_per_prompt, -1
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
|
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
|
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
|
|
|
# and should be between [0, 1]
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
|
|
extra_step_kwargs = {}
|
|
|
|
|
if accepts_eta:
|
|
|
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
|
|
|
|
# check if the scheduler accepts generator
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
|
|
|
if accepts_generator:
|
|
|
|
|
extra_step_kwargs["generator"] = generator
|
|
|
|
|
return extra_step_kwargs
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.check_inputs
|
|
|
|
|
def check_inputs(
|
|
|
|
|
self,
|
|
|
|
|
prompt,
|
|
|
|
|
prompt_2,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
callback_steps,
|
|
|
|
|
negative_prompt=None,
|
|
|
|
|
negative_prompt_2=None,
|
|
|
|
|
prompt_embeds=None,
|
|
|
|
|
negative_prompt_embeds=None,
|
|
|
|
|
pooled_prompt_embeds=None,
|
|
|
|
|
negative_pooled_prompt_embeds=None,
|
|
|
|
|
):
|
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
|
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
|
|
|
|
|
|
if (callback_steps is None) or (
|
|
|
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
|
|
|
):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
|
|
|
f" {type(callback_steps)}."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
|
|
|
" only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
elif prompt_2 is not None and prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
|
|
|
" only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
elif prompt is None and prompt_embeds is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
|
|
|
)
|
|
|
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
|
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
|
|
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
|
|
|
|
|
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
|
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
|
|
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
|
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
|
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
|
|
|
f" {negative_prompt_embeds.shape}."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
|
|
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if latents is None:
|
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
|
else:
|
|
|
|
|
latents = latents.to(device)
|
|
|
|
|
|
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
|
|
|
return latents
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
|
|
|
|
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
|
|
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
|
|
|
|
|
|
|
|
passed_add_embed_dim = (
|
|
|
|
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
|
|
|
|
)
|
|
|
|
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
|
|
|
|
|
|
|
|
|
if expected_add_embed_dim != passed_add_embed_dim:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
|
|
|
|
return add_time_ids
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
|
|
|
|
def upcast_vae(self):
|
|
|
|
|
dtype = self.vae.dtype
|
|
|
|
|
self.vae.to(dtype=torch.float32)
|
|
|
|
|
use_torch_2_0_or_xformers = isinstance(
|
|
|
|
|
self.vae.decoder.mid_block.attentions[0].processor,
|
|
|
|
|
(
|
|
|
|
|
AttnProcessor2_0,
|
|
|
|
|
XFormersAttnProcessor,
|
|
|
|
|
LoRAXFormersAttnProcessor,
|
|
|
|
|
LoRAAttnProcessor2_0,
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
# if xformers or torch_2_0 is used attention block does not need
|
|
|
|
|
# to be in float32 which can save lots of memory
|
|
|
|
|
if use_torch_2_0_or_xformers:
|
|
|
|
|
self.vae.post_quant_conv.to(dtype)
|
|
|
|
|
self.vae.decoder.conv_in.to(dtype)
|
|
|
|
|
self.vae.decoder.mid_block.to(dtype)
|
|
|
|
|
|
|
|
|
|
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
|
|
|
|
|
def _default_height_width(self, height, width, image):
|
|
|
|
|
# NOTE: It is possible that a list of images have different
|
|
|
|
|
# dimensions for each image, so just checking the first image
|
|
|
|
|
# is not _exactly_ correct, but it is simple.
|
|
|
|
|
while isinstance(image, list):
|
|
|
|
|
image = image[0]
|
|
|
|
|
|
|
|
|
|
if height is None:
|
|
|
|
|
if isinstance(image, PIL.Image.Image):
|
|
|
|
|
height = image.height
|
|
|
|
|
elif isinstance(image, torch.Tensor):
|
|
|
|
|
height = image.shape[-2]
|
|
|
|
|
|
|
|
|
|
# round down to nearest multiple of `self.adapter.total_downscale_factor`
|
|
|
|
|
height = (height // self.adapter.total_downscale_factor) * self.adapter.total_downscale_factor
|
|
|
|
|
|
|
|
|
|
if width is None:
|
|
|
|
|
if isinstance(image, PIL.Image.Image):
|
|
|
|
|
width = image.width
|
|
|
|
|
elif isinstance(image, torch.Tensor):
|
|
|
|
|
width = image.shape[-1]
|
|
|
|
|
|
|
|
|
|
# round down to nearest multiple of `self.adapter.total_downscale_factor`
|
|
|
|
|
width = (width // self.adapter.total_downscale_factor) * self.adapter.total_downscale_factor
|
|
|
|
|
|
|
|
|
|
return height, width
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
|
|
def __call__(
|
|
|
|
|
self,
|
|
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
image: Union[torch.Tensor, PIL.Image.Image, List[PIL.Image.Image]] = None,
|
|
|
|
|
height: Optional[int] = None,
|
|
|
|
|
width: Optional[int] = None,
|
|
|
|
|
num_inference_steps: int = 50,
|
|
|
|
|
denoising_end: Optional[float] = None,
|
|
|
|
|
guidance_scale: float = 5.0,
|
|
|
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
|
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
|
eta: float = 0.0,
|
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
output_type: Optional[str] = "pil",
|
|
|
|
|
return_dict: bool = True,
|
|
|
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
|
|
callback_steps: int = 1,
|
|
|
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
|
guidance_rescale: float = 0.0,
|
|
|
|
|
original_size: Optional[Tuple[int, int]] = None,
|
|
|
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
|
|
|
target_size: Optional[Tuple[int, int]] = None,
|
|
|
|
|
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
|
|
|
cond_tau: float = 1.0,
|
|
|
|
|
):
|
|
|
|
|
r"""
|
|
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
|
|
|
instead.
|
|
|
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
|
|
|
used in both text-encoders
|
|
|
|
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`):
|
|
|
|
|
The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the
|
|
|
|
|
type is specified as `Torch.FloatTensor`, it is passed to Adapter as is. PIL.Image.Image` can also be
|
|
|
|
|
accepted as an image. The control image is automatically resized to fit the output image.
|
|
|
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
|
The height in pixels of the generated image.
|
|
|
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
|
|
|
The width in pixels of the generated image.
|
|
|
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
|
expense of slower inference.
|
|
|
|
|
denoising_end (`float`, *optional*):
|
|
|
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
|
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
|
|
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
|
|
|
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
|
|
|
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
|
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
|
|
|
|
guidance_scale (`float`, *optional*, defaults to 5.0):
|
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
|
|
usually at the expense of lower image quality.
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
|
|
|
less than `1`).
|
|
|
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
|
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
|
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
|
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
|
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
|
|
to make generation deterministic.
|
|
|
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
|
|
|
argument.
|
|
|
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
|
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
|
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
|
|
|
input argument.
|
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
|
The output format of the generate image. Choose between
|
|
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionAdapterPipelineOutput`]
|
|
|
|
|
instead of a plain tuple.
|
|
|
|
|
callback (`Callable`, *optional*):
|
|
|
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
|
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
|
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
|
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
|
|
|
called at every step.
|
|
|
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
|
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
|
|
|
`self.processor` in
|
|
|
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
|
|
|
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
|
|
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
|
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
|
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
|
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
|
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
|
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
|
|
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
|
|
|
|
explained in section 2.2 of
|
|
|
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
|
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
|
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
|
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
|
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
|
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
|
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
|
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
|
|
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
|
|
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
|
|
|
adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
|
|
|
The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the
|
|
|
|
|
residual in the original unet. If multiple adapters are specified in init, you can set the
|
|
|
|
|
corresponding scale as a list.
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`:
|
|
|
|
|
[`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a
|
|
|
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
|
|
|
"""
|
|
|
|
|
# 0. Default height and width to unet
|
|
|
|
|
|
|
|
|
|
height, width = self._default_height_width(height, width, image)
|
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
|
|
|
|
adapter_input = _preprocess_adapter_image(image, height, width).to(device)
|
|
|
|
|
|
|
|
|
|
original_size = original_size or (height, width)
|
|
|
|
|
target_size = target_size or (height, width)
|
|
|
|
|
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
|
self.check_inputs(
|
|
|
|
|
prompt,
|
|
|
|
|
prompt_2,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
callback_steps,
|
|
|
|
|
negative_prompt,
|
|
|
|
|
negative_prompt_2,
|
|
|
|
|
prompt_embeds,
|
|
|
|
|
negative_prompt_embeds,
|
|
|
|
|
pooled_prompt_embeds,
|
|
|
|
|
negative_pooled_prompt_embeds,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 2. Define call parameters
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
|
batch_size = 1
|
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
|
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
|
# corresponds to doing no classifier free guidance.
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
|
|
# 3. Encode input prompt
|
|
|
|
|
(
|
|
|
|
|
prompt_embeds,
|
|
|
|
|
negative_prompt_embeds,
|
|
|
|
|
pooled_prompt_embeds,
|
|
|
|
|
negative_pooled_prompt_embeds,
|
|
|
|
|
) = self.encode_prompt(
|
|
|
|
|
prompt=prompt,
|
|
|
|
|
prompt_2=prompt_2,
|
|
|
|
|
device=device,
|
|
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
|
|
|
negative_prompt=negative_prompt,
|
|
|
|
|
negative_prompt_2=negative_prompt_2,
|
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
|
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 4. Prepare timesteps
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
|
|
|
|
|
|
|
|
timesteps = self.scheduler.timesteps
|
|
|
|
|
|
|
|
|
|
# 5. Prepare latent variables
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels
|
|
|
|
|
latents = self.prepare_latents(
|
|
|
|
|
batch_size * num_images_per_prompt,
|
|
|
|
|
num_channels_latents,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
prompt_embeds.dtype,
|
|
|
|
|
device,
|
|
|
|
|
generator,
|
|
|
|
|
latents,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
|
|
|
|
# 7. Prepare added time ids & embeddings & adapter features
|
|
|
|
|
adapter_input = adapter_input.type(latents.dtype)
|
|
|
|
|
adapter_state = self.adapter(adapter_input)
|
|
|
|
|
for k, v in enumerate(adapter_state):
|
|
|
|
|
adapter_state[k] = v * adapter_conditioning_scale
|
|
|
|
|
if num_images_per_prompt > 1:
|
|
|
|
|
for k, v in enumerate(adapter_state):
|
|
|
|
|
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
for k, v in enumerate(adapter_state):
|
|
|
|
|
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
|
|
|
|
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds
|
|
|
|
|
add_time_ids = self._get_add_time_ids(
|
|
|
|
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
|
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
|
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
|
|
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
|
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
|
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
|
|
|
|
|
|
# 8. Denoising loop
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
|
|
|
|
|
|
# 7.1 Apply denoising_end
|
|
|
|
|
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
|
|
|
|
discrete_timestep_cutoff = int(
|
|
|
|
|
round(
|
|
|
|
|
self.scheduler.config.num_train_timesteps
|
|
|
|
|
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
|
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
|
for i, t in enumerate(timesteps):
|
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
|
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
|
|
# predict the noise residual
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
|
|
|
|
|
|
|
|
if i < int(num_inference_steps * cond_tau):
|
|
|
|
|
down_block_additional_residuals = [state.clone() for state in adapter_state]
|
|
|
|
|
else:
|
|
|
|
|
down_block_additional_residuals = None
|
|
|
|
|
|
|
|
|
|
noise_pred = self.unet(
|
|
|
|
|
latent_model_input,
|
|
|
|
|
t,
|
|
|
|
|
encoder_hidden_states=prompt_embeds,
|
|
|
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
|
|
|
return_dict=False,
|
|
|
|
|
down_block_additional_residuals=down_block_additional_residuals,
|
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
|
# perform guidance
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
|
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
|
|
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
|
progress_bar.update()
|
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
|
|
|
callback(i, t, latents)
|
|
|
|
|
|
|
|
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
|
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
|
|
|
|
self.upcast_vae()
|
|
|
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
|
|
|
|
|
|
if not output_type == "latent":
|
|
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
|
|
|
else:
|
|
|
|
|
image = latents
|
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
|
|
|
|
|
|
# Offload last model to CPU
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
|
|
|
self.final_offload_hook.offload()
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
|
return (image,)
|
|
|
|
|
|
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|