Compare commits

...

2 Commits

Author SHA1 Message Date
DN6
e59ff73ee9 update 2024-11-25 20:35:23 +05:30
DN6
03002a9141 update 2024-11-25 20:04:23 +05:30
3 changed files with 3850 additions and 3709 deletions

File diff suppressed because one or more lines are too long

View File

@@ -26,8 +26,7 @@
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"import torch\n",
"from diffusers import StableDiffusionGLIGENTextImagePipeline, StableDiffusionGLIGENPipeline"
"from diffusers import StableDiffusionGLIGENPipeline"
]
},
{
@@ -36,16 +35,17 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from transformers import CLIPTextModel, CLIPTokenizer\n",
"\n",
"import diffusers\n",
"from diffusers import (\n",
" AutoencoderKL,\n",
" DDPMScheduler,\n",
" UNet2DConditionModel,\n",
" UniPCMultistepScheduler,\n",
" EulerDiscreteScheduler,\n",
" UNet2DConditionModel,\n",
")\n",
"from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer\n",
"\n",
"\n",
"# pretrained_model_name_or_path = 'masterful/gligen-1-4-generation-text-box'\n",
"\n",
"pretrained_model_name_or_path = '/root/data/zhizhonghuang/checkpoints/models--masterful--gligen-1-4-generation-text-box/snapshots/d2820dc1e9ba6ca082051ce79cfd3eb468ae2c83'\n",
@@ -122,6 +122,7 @@
"\n",
"import numpy as np\n",
"\n",
"\n",
"boxes = np.array([x[1] for x in gen_boxes])\n",
"boxes = boxes / 512\n",
"boxes[:, 2] = boxes[:, 0] + boxes[:, 2]\n",

View File

@@ -19,18 +19,163 @@ import torch
import torch.nn as nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from ...utils import is_torch_version, logging
from ...utils.torch_utils import maybe_allow_in_graph
from ..attention import FeedForward
from ..attention_processor import Attention, MochiAttnProcessor2_0
from ..attention_processor import MochiAttnProcessor2_0
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import ModelMixin
from ..normalization import AdaLayerNormContinuous, LuminaLayerNormContinuous, MochiRMSNormZero, RMSNorm
from ..normalization import (
AdaLayerNormContinuous,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
logger = logging.get_logger(__name__) # pylint: disable=invalid-n
class MochiModulatedRMSNorm(nn.Module):
def __init__(self, eps: float):
super().__init__()
self.eps = eps
def forward(self, hidden_states, scale=None):
hidden_states_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states.to(torch.float32) * torch.rsqrt(variance + self.eps)
if scale is not None:
hidden_states = hidden_states * scale
hidden_states = hidden_states.to(hidden_states_dtype)
return hidden_states
class MochiLayerNormContinuous(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
eps=1e-5,
bias=True,
):
super().__init__()
# AdaLN
self.silu = nn.SiLU()
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
self.norm = MochiModulatedRMSNorm(eps=eps)
def forward(
self,
x: torch.Tensor,
conditioning_embedding: torch.Tensor,
) -> torch.Tensor:
input_dtype = x.dtype
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32)))
return x.to(input_dtype)
class MochiRMSNormZero(nn.Module):
r"""
Adaptive RMS Norm used in Mochi.
Parameters:
embedding_dim (`int`): The size of each embedding vector.
"""
def __init__(
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
) -> None:
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, hidden_dim)
self.norm = MochiModulatedRMSNorm(eps=eps)
def forward(
self, hidden_states: torch.Tensor, emb: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
hidden_states_dtype = hidden_states.dtype
emb = self.linear(self.silu(emb))
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
hidden_states = self.norm(hidden_states, (1 + scale_msa[:, None].to(torch.float32)))
hidden_states = hidden_states.to(hidden_states_dtype)
return hidden_states, gate_msa, scale_mlp, gate_mlp
class MochiAttention(nn.Module):
def __init__(
self,
query_dim: int,
processor: Optional["MochiAttnProcessor2_0"],
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_dim: int = None,
out_context_dim: int = None,
out_bias: bool = True,
context_pre_only: bool = False,
eps: float = 1e-5,
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim else query_dim
self.context_pre_only = context_pre_only
self.heads = out_dim // dim_head if out_dim is not None else heads
self.norm_q = MochiModulatedRMSNorm(eps)
self.norm_k = MochiModulatedRMSNorm(eps)
self.norm_added_q = MochiModulatedRMSNorm(eps)
self.norm_added_k = MochiModulatedRMSNorm(eps)
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias)
self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias)
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
if self.context_pre_only is not None:
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
self.to_out.append(nn.Dropout(dropout))
if not self.context_pre_only:
self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias)
self.processor = processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
):
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs,
)
@maybe_allow_in_graph
@@ -77,38 +222,32 @@ class MochiTransformerBlock(nn.Module):
if not context_pre_only:
self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False)
else:
self.norm1_context = LuminaLayerNormContinuous(
self.norm1_context = MochiLayerNormContinuous(
embedding_dim=pooled_projection_dim,
conditioning_embedding_dim=dim,
eps=eps,
elementwise_affine=False,
norm_type="rms_norm",
out_dim=None,
)
self.attn1 = Attention(
self.attn1 = MochiAttention(
query_dim=dim,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
bias=False,
qk_norm=qk_norm,
added_kv_proj_dim=pooled_projection_dim,
added_proj_bias=False,
out_dim=dim,
out_context_dim=pooled_projection_dim,
context_pre_only=context_pre_only,
processor=MochiAttnProcessor2_0(),
eps=eps,
elementwise_affine=True,
eps=1e-5,
)
# TODO(aryan): norm_context layers are not needed when `context_pre_only` is True
self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm2_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm2 = MochiModulatedRMSNorm(eps=eps)
self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
self.norm3 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm3_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm3 = MochiModulatedRMSNorm(eps)
self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
self.ff_context = None
@@ -120,8 +259,8 @@ class MochiTransformerBlock(nn.Module):
bias=False,
)
self.norm4 = RMSNorm(dim, eps=eps, elementwise_affine=False)
self.norm4_context = RMSNorm(pooled_projection_dim, eps=eps, elementwise_affine=False)
self.norm4 = MochiModulatedRMSNorm(eps=eps)
self.norm4_context = MochiModulatedRMSNorm(eps=eps)
def forward(
self,
@@ -129,6 +268,7 @@ class MochiTransformerBlock(nn.Module):
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[torch.Tensor] = None,
joint_attention_mask=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
@@ -143,22 +283,25 @@ class MochiTransformerBlock(nn.Module):
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
attention_mask=joint_attention_mask,
)
hidden_states = hidden_states + self.norm2(attn_hidden_states) * torch.tanh(gate_msa).unsqueeze(1)
norm_hidden_states = self.norm3(hidden_states) * (1 + scale_mlp.unsqueeze(1))
hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1))
norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32)))
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + self.norm4(ff_output) * torch.tanh(gate_mlp).unsqueeze(1)
hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1))
if not self.context_pre_only:
encoder_hidden_states = encoder_hidden_states + self.norm2_context(
context_attn_hidden_states
) * torch.tanh(enc_gate_msa).unsqueeze(1)
norm_encoder_hidden_states = self.norm3_context(encoder_hidden_states) * (1 + enc_scale_mlp.unsqueeze(1))
context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1)
)
norm_encoder_hidden_states = self.norm3_context(
encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32))
)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states + self.norm4_context(context_ff_output) * torch.tanh(
enc_gate_mlp
).unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + self.norm4_context(
context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1)
)
return hidden_states, encoder_hidden_states
@@ -203,7 +346,8 @@ class MochiRoPE(nn.Module):
return positions
def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
freqs = torch.einsum("nd,dhf->nhf", pos, freqs.float())
with torch.autocast("cuda", enabled=False):
freqs = torch.einsum("nd,dhf->nhf", pos.to(freqs), freqs)
freqs_cos = torch.cos(freqs)
freqs_sin = torch.sin(freqs)
return freqs_cos, freqs_sin
@@ -223,7 +367,7 @@ class MochiRoPE(nn.Module):
@maybe_allow_in_graph
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
class MochiTransformer3DModel(ModelMixin, ConfigMixin):
r"""
A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
@@ -309,7 +453,11 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
)
self.norm_out = AdaLayerNormContinuous(
inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm"
inner_dim,
inner_dim,
elementwise_affine=False,
eps=1e-6,
norm_type="layer_norm",
)
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
@@ -325,24 +473,9 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
encoder_hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_attention_mask: torch.Tensor,
attention_kwargs: Optional[Dict[str, Any]] = None,
joint_attention_mask=None,
return_dict: bool = True,
) -> torch.Tensor:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p = self.config.patch_size
@@ -350,7 +483,10 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
post_patch_width = width // p
temb, encoder_hidden_states = self.time_embed(
timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype
timestep,
encoder_hidden_states,
encoder_attention_mask,
hidden_dtype=hidden_states.dtype,
)
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
@@ -390,8 +526,8 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
encoder_hidden_states=encoder_hidden_states,
temb=temb,
image_rotary_emb=image_rotary_emb,
joint_attention_mask=joint_attention_mask,
)
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
@@ -399,10 +535,6 @@ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)