Compare commits

..

2 Commits

Author SHA1 Message Date
DN6
cfff46069d add custom mesh support 2026-02-02 13:12:09 +05:30
Sayak Paul
bff672f47f fix Dockerfiles for cuda and xformers. (#13022) 2026-01-23 16:45:14 +05:30
5 changed files with 22 additions and 25 deletions

View File

@@ -2,7 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ARG PYTHON_VERSION=3.11
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
@@ -32,10 +32,12 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# Install torch, torchvision, and torchaudio together to ensure compatibility
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
torchaudio \
--index-url https://download.pytorch.org/whl/cu121
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"

View File

@@ -2,7 +2,7 @@ FROM nvidia/cuda:12.1.0-runtime-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="diffusers"
ARG PYTHON_VERSION=3.12
ARG PYTHON_VERSION=3.11
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -y update \
@@ -32,10 +32,12 @@ RUN uv venv --python ${PYTHON_VERSION} --seed ${VIRTUAL_ENV}
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py)
# Install torch, torchvision, and torchaudio together to ensure compatibility
RUN uv pip install --no-cache-dir \
torch \
torchvision \
torchaudio
torchaudio \
--index-url https://download.pytorch.org/whl/cu121
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/diffusers.git@main#egg=diffusers[test]"

View File

@@ -59,6 +59,12 @@ class ContextParallelConfig:
rotate_method (`str`, *optional*, defaults to `"allgather"`):
Method to use for rotating key/value states across devices in ring attention. Currently, only `"allgather"`
is supported.
mesh (`torch.distributed.device_mesh.DeviceMesh`, *optional*):
A custom device mesh to use for context parallelism. If provided, this mesh will be used instead of
creating a new one. This is useful when combining context parallelism with other parallelism strategies
(e.g., FSDP, tensor parallelism) that share the same device mesh. The mesh must have both "ring" and
"ulysses" dimensions. Use size 1 for dimensions not being used (e.g., `mesh_shape=(2, 1, 4)` with
`mesh_dim_names=("ring", "ulysses", "fsdp")` for ring attention only with FSDP).
"""
@@ -67,6 +73,7 @@ class ContextParallelConfig:
convert_to_fp32: bool = True
# TODO: support alltoall
rotate_method: Literal["allgather", "alltoall"] = "allgather"
mesh: Optional[torch.distributed.device_mesh.DeviceMesh] = None
_rank: int = None
_world_size: int = None
@@ -115,7 +122,7 @@ class ContextParallelConfig:
f"The product of `ring_degree` ({self.ring_degree}) and `ulysses_degree` ({self.ulysses_degree}) must not exceed the world size ({world_size})."
)
self._flattened_mesh = self._mesh._flatten()
self._flattened_mesh = self._mesh["ring", "ulysses"]._flatten()
self._ring_mesh = self._mesh["ring"]
self._ulysses_mesh = self._mesh["ulysses"]
self._ring_local_rank = self._ring_mesh.get_local_rank()

View File

@@ -1569,7 +1569,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
mesh = None
if config.context_parallel_config is not None:
cp_config = config.context_parallel_config
mesh = torch.distributed.device_mesh.init_device_mesh(
mesh = cp_config.mesh or torch.distributed.device_mesh.init_device_mesh(
device_type=device_type,
mesh_shape=cp_config.mesh_shape,
mesh_dim_names=cp_config.mesh_dim_names,

View File

@@ -111,7 +111,7 @@ LIBRARIES = []
for library in LOADABLE_CLASSES:
LIBRARIES.append(library)
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device(), "cpu"]
SUPPORTED_DEVICE_MAP = ["balanced"] + [get_device()]
logger = logging.get_logger(__name__)
@@ -467,7 +467,8 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
pipeline_is_sequentially_offloaded = any(
module_is_sequentially_offloaded(module) for _, module in self.components.items()
)
is_pipeline_device_mapped = self._is_pipeline_device_mapped()
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
@@ -1186,7 +1187,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
"""
self._maybe_raise_error_if_group_offload_active(raise_error=True)
is_pipeline_device_mapped = self._is_pipeline_device_mapped()
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
@@ -1310,7 +1311,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
self.remove_all_hooks()
is_pipeline_device_mapped = self._is_pipeline_device_mapped()
is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
if is_pipeline_device_mapped:
raise ValueError(
"It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
@@ -2199,21 +2200,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
return True
return False
def _is_pipeline_device_mapped(self):
# We support passing `device_map="cuda"`, for example. This is helpful, in case
# users want to pass `device_map="cpu"` when initializing a pipeline. This explicit declaration is desirable
# in limited VRAM environments because quantized models often initialize directly on the accelerator.
device_map = self.hf_device_map
is_device_type_map = False
if isinstance(device_map, str):
try:
torch.device(device_map)
is_device_type_map = True
except RuntimeError:
pass
return not is_device_type_map and isinstance(device_map, dict) and len(device_map) > 1
class StableDiffusionMixin:
r"""