mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-26 06:14:50 +08:00
Compare commits
3 Commits
device-map
...
sayakpaul-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3e27287cff | ||
|
|
f6b6a7181e | ||
|
|
52766e6a69 |
@@ -250,9 +250,6 @@ The code snippets available in [this](https://github.com/huggingface/diffusers/p
|
||||
|
||||
The general rule of thumb to keep in mind when preparing inputs for the VACE pipeline is that the input images, or frames of a video that you want to use for conditioning, should have a corresponding mask that is black in color. The black mask signifies that the model will not generate new content for that area, and only use those parts for conditioning the generation process. For parts/frames that should be generated by the model, the mask should be white in color.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Wan-Animate: Unified Character Animation and Replacement with Holistic Replication
|
||||
|
||||
[Wan-Animate](https://huggingface.co/papers/2509.14055) by the Wan Team.
|
||||
|
||||
@@ -21,8 +21,8 @@ from transformers import (
|
||||
BertModel,
|
||||
BertTokenizer,
|
||||
CLIPImageProcessor,
|
||||
MT5Tokenizer,
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
)
|
||||
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
@@ -260,7 +260,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -295,7 +295,7 @@ class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2=T5EncoderModel,
|
||||
tokenizer_2=MT5Tokenizer,
|
||||
tokenizer_2=T5Tokenizer,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
@@ -675,6 +675,7 @@ else:
|
||||
"ZImageControlNetInpaintPipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageImg2ImgPipeline",
|
||||
"ZImageOmniPipeline",
|
||||
"ZImagePipeline",
|
||||
]
|
||||
)
|
||||
@@ -1386,6 +1387,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import List, Literal, Optional
|
||||
from typing import List, Literal, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -170,6 +170,21 @@ class FeedForward(nn.Module):
|
||||
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
||||
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.select_per_token
|
||||
def select_per_token(
|
||||
value_noisy: torch.Tensor,
|
||||
value_clean: torch.Tensor,
|
||||
noise_mask: torch.Tensor,
|
||||
seq_len: int,
|
||||
) -> torch.Tensor:
|
||||
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
|
||||
return torch.where(
|
||||
noise_mask_expanded == 1,
|
||||
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
)
|
||||
|
||||
|
||||
@maybe_allow_in_graph
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformerBlock
|
||||
class ZImageTransformerBlock(nn.Module):
|
||||
@@ -220,12 +235,37 @@ class ZImageTransformerBlock(nn.Module):
|
||||
attn_mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
adaln_input: Optional[torch.Tensor] = None,
|
||||
noise_mask: Optional[torch.Tensor] = None,
|
||||
adaln_noisy: Optional[torch.Tensor] = None,
|
||||
adaln_clean: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if self.modulation:
|
||||
assert adaln_input is not None
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
seq_len = x.shape[1]
|
||||
|
||||
if noise_mask is not None:
|
||||
# Per-token modulation: different modulation for noisy/clean tokens
|
||||
mod_noisy = self.adaLN_modulation(adaln_noisy)
|
||||
mod_clean = self.adaLN_modulation(adaln_clean)
|
||||
|
||||
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
|
||||
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
|
||||
|
||||
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
|
||||
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
|
||||
|
||||
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
|
||||
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
|
||||
|
||||
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
|
||||
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
|
||||
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
|
||||
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
|
||||
else:
|
||||
# Global modulation: same modulation for all tokens (avoid double select)
|
||||
mod = self.adaLN_modulation(adaln_input)
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
|
||||
# Attention block
|
||||
attn_out = self.attention(
|
||||
@@ -493,112 +533,93 @@ class ZImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOrigi
|
||||
def create_coordinate_grid(size, start=None, device=None):
|
||||
if start is None:
|
||||
start = (0 for _ in size)
|
||||
|
||||
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
|
||||
grids = torch.meshgrid(axes, indexing="ij")
|
||||
return torch.stack(grids, dim=-1)
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel._patchify_image
|
||||
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
|
||||
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
|
||||
pH, pW, pF = patch_size, patch_size, f_patch_size
|
||||
C, F, H, W = image.size()
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel._pad_with_ids
|
||||
def _pad_with_ids(
|
||||
self,
|
||||
feat: torch.Tensor,
|
||||
pos_grid_size: Tuple,
|
||||
pos_start: Tuple,
|
||||
device: torch.device,
|
||||
noise_mask_val: Optional[int] = None,
|
||||
):
|
||||
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
|
||||
ori_len = len(feat)
|
||||
pad_len = (-ori_len) % SEQ_MULTI_OF
|
||||
total_len = ori_len + pad_len
|
||||
|
||||
# Pos IDs
|
||||
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
|
||||
if pad_len > 0:
|
||||
pad_pos_ids = (
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(pad_len, 1)
|
||||
)
|
||||
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
|
||||
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
|
||||
pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros(ori_len, dtype=torch.bool, device=device),
|
||||
torch.ones(pad_len, dtype=torch.bool, device=device),
|
||||
]
|
||||
)
|
||||
else:
|
||||
pos_ids = ori_pos_ids
|
||||
padded_feat = feat
|
||||
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
|
||||
|
||||
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
|
||||
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
|
||||
|
||||
# Copied from diffusers.models.transformers.transformer_z_image.ZImageTransformer2DModel.patchify_and_embed
|
||||
def patchify_and_embed(
|
||||
self,
|
||||
all_image: List[torch.Tensor],
|
||||
all_cap_feats: List[torch.Tensor],
|
||||
patch_size: int,
|
||||
f_patch_size: int,
|
||||
self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int
|
||||
):
|
||||
pH = pW = patch_size
|
||||
pF = f_patch_size
|
||||
"""Patchify for basic mode: single image per batch item."""
|
||||
device = all_image[0].device
|
||||
all_img_out, all_img_size, all_img_pos_ids, all_img_pad_mask = [], [], [], []
|
||||
all_cap_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
|
||||
|
||||
all_image_out = []
|
||||
all_image_size = []
|
||||
all_image_pos_ids = []
|
||||
all_image_pad_mask = []
|
||||
all_cap_pos_ids = []
|
||||
all_cap_pad_mask = []
|
||||
all_cap_feats_out = []
|
||||
|
||||
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
|
||||
### Process Caption
|
||||
cap_ori_len = len(cap_feat)
|
||||
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
|
||||
# padded position ids
|
||||
cap_padded_pos_ids = self.create_coordinate_grid(
|
||||
size=(cap_ori_len + cap_padding_len, 1, 1),
|
||||
start=(1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
all_cap_pos_ids.append(cap_padded_pos_ids)
|
||||
# pad mask
|
||||
cap_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_cap_pad_mask.append(
|
||||
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
|
||||
for image, cap_feat in zip(all_image, all_cap_feats):
|
||||
# Caption
|
||||
cap_out, cap_pos_ids, cap_pad_mask, cap_len, _ = self._pad_with_ids(
|
||||
cap_feat, (len(cap_feat) + (-len(cap_feat)) % SEQ_MULTI_OF, 1, 1), (1, 0, 0), device
|
||||
)
|
||||
all_cap_out.append(cap_out)
|
||||
all_cap_pos_ids.append(cap_pos_ids)
|
||||
all_cap_pad_mask.append(cap_pad_mask)
|
||||
|
||||
# padded feature
|
||||
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
|
||||
all_cap_feats_out.append(cap_padded_feat)
|
||||
|
||||
### Process Image
|
||||
C, F, H, W = image.size()
|
||||
all_image_size.append((F, H, W))
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
|
||||
image_ori_len = len(image)
|
||||
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
|
||||
|
||||
image_ori_pos_ids = self.create_coordinate_grid(
|
||||
size=(F_tokens, H_tokens, W_tokens),
|
||||
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
image_padded_pos_ids = torch.cat(
|
||||
[
|
||||
image_ori_pos_ids,
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(image_padding_len, 1),
|
||||
],
|
||||
dim=0,
|
||||
# Image
|
||||
img_patches, size, (F_t, H_t, W_t) = self._patchify_image(image, patch_size, f_patch_size)
|
||||
img_out, img_pos_ids, img_pad_mask, _, _ = self._pad_with_ids(
|
||||
img_patches, (F_t, H_t, W_t), (cap_len + 1, 0, 0), device
|
||||
)
|
||||
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
|
||||
# pad mask
|
||||
image_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_image_pad_mask.append(
|
||||
image_pad_mask
|
||||
if image_padding_len > 0
|
||||
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
|
||||
)
|
||||
# padded feature
|
||||
image_padded_feat = torch.cat(
|
||||
[image, image[-1:].repeat(image_padding_len, 1)],
|
||||
dim=0,
|
||||
)
|
||||
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
|
||||
all_img_out.append(img_out)
|
||||
all_img_size.append(size)
|
||||
all_img_pos_ids.append(img_pos_ids)
|
||||
all_img_pad_mask.append(img_pad_mask)
|
||||
|
||||
return (
|
||||
all_image_out,
|
||||
all_cap_feats_out,
|
||||
all_image_size,
|
||||
all_image_pos_ids,
|
||||
all_img_out,
|
||||
all_cap_out,
|
||||
all_img_size,
|
||||
all_img_pos_ids,
|
||||
all_cap_pos_ids,
|
||||
all_image_pad_mask,
|
||||
all_img_pad_mask,
|
||||
all_cap_pad_mask,
|
||||
)
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -32,6 +32,7 @@ from ..modeling_outputs import Transformer2DModelOutput
|
||||
|
||||
ADALN_EMBED_DIM = 256
|
||||
SEQ_MULTI_OF = 32
|
||||
X_PAD_DIM = 64
|
||||
|
||||
|
||||
class TimestepEmbedder(nn.Module):
|
||||
@@ -152,6 +153,20 @@ class ZSingleStreamAttnProcessor:
|
||||
return output
|
||||
|
||||
|
||||
def select_per_token(
|
||||
value_noisy: torch.Tensor,
|
||||
value_clean: torch.Tensor,
|
||||
noise_mask: torch.Tensor,
|
||||
seq_len: int,
|
||||
) -> torch.Tensor:
|
||||
noise_mask_expanded = noise_mask.unsqueeze(-1) # (batch, seq_len, 1)
|
||||
return torch.where(
|
||||
noise_mask_expanded == 1,
|
||||
value_noisy.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
value_clean.unsqueeze(1).expand(-1, seq_len, -1),
|
||||
)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim: int, hidden_dim: int):
|
||||
super().__init__()
|
||||
@@ -215,12 +230,37 @@ class ZImageTransformerBlock(nn.Module):
|
||||
attn_mask: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
adaln_input: Optional[torch.Tensor] = None,
|
||||
noise_mask: Optional[torch.Tensor] = None,
|
||||
adaln_noisy: Optional[torch.Tensor] = None,
|
||||
adaln_clean: Optional[torch.Tensor] = None,
|
||||
):
|
||||
if self.modulation:
|
||||
assert adaln_input is not None
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
seq_len = x.shape[1]
|
||||
|
||||
if noise_mask is not None:
|
||||
# Per-token modulation: different modulation for noisy/clean tokens
|
||||
mod_noisy = self.adaLN_modulation(adaln_noisy)
|
||||
mod_clean = self.adaLN_modulation(adaln_clean)
|
||||
|
||||
scale_msa_noisy, gate_msa_noisy, scale_mlp_noisy, gate_mlp_noisy = mod_noisy.chunk(4, dim=1)
|
||||
scale_msa_clean, gate_msa_clean, scale_mlp_clean, gate_mlp_clean = mod_clean.chunk(4, dim=1)
|
||||
|
||||
gate_msa_noisy, gate_mlp_noisy = gate_msa_noisy.tanh(), gate_mlp_noisy.tanh()
|
||||
gate_msa_clean, gate_mlp_clean = gate_msa_clean.tanh(), gate_mlp_clean.tanh()
|
||||
|
||||
scale_msa_noisy, scale_mlp_noisy = 1.0 + scale_msa_noisy, 1.0 + scale_mlp_noisy
|
||||
scale_msa_clean, scale_mlp_clean = 1.0 + scale_msa_clean, 1.0 + scale_mlp_clean
|
||||
|
||||
scale_msa = select_per_token(scale_msa_noisy, scale_msa_clean, noise_mask, seq_len)
|
||||
scale_mlp = select_per_token(scale_mlp_noisy, scale_mlp_clean, noise_mask, seq_len)
|
||||
gate_msa = select_per_token(gate_msa_noisy, gate_msa_clean, noise_mask, seq_len)
|
||||
gate_mlp = select_per_token(gate_mlp_noisy, gate_mlp_clean, noise_mask, seq_len)
|
||||
else:
|
||||
# Global modulation: same modulation for all tokens (avoid double select)
|
||||
mod = self.adaLN_modulation(adaln_input)
|
||||
scale_msa, gate_msa, scale_mlp, gate_mlp = mod.unsqueeze(1).chunk(4, dim=2)
|
||||
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
|
||||
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
|
||||
|
||||
# Attention block
|
||||
attn_out = self.attention(
|
||||
@@ -252,9 +292,21 @@ class FinalLayer(nn.Module):
|
||||
nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True),
|
||||
)
|
||||
|
||||
def forward(self, x, c):
|
||||
scale = 1.0 + self.adaLN_modulation(c)
|
||||
x = self.norm_final(x) * scale.unsqueeze(1)
|
||||
def forward(self, x, c=None, noise_mask=None, c_noisy=None, c_clean=None):
|
||||
seq_len = x.shape[1]
|
||||
|
||||
if noise_mask is not None:
|
||||
# Per-token modulation
|
||||
scale_noisy = 1.0 + self.adaLN_modulation(c_noisy)
|
||||
scale_clean = 1.0 + self.adaLN_modulation(c_clean)
|
||||
scale = select_per_token(scale_noisy, scale_clean, noise_mask, seq_len)
|
||||
else:
|
||||
# Original global modulation
|
||||
assert c is not None, "Either c or (c_noisy, c_clean) must be provided"
|
||||
scale = 1.0 + self.adaLN_modulation(c)
|
||||
scale = scale.unsqueeze(1)
|
||||
|
||||
x = self.norm_final(x) * scale
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
||||
@@ -325,6 +377,7 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
norm_eps=1e-5,
|
||||
qk_norm=True,
|
||||
cap_feat_dim=2560,
|
||||
siglip_feat_dim=None, # Optional: set to enable SigLIP support for Omni
|
||||
rope_theta=256.0,
|
||||
t_scale=1000.0,
|
||||
axes_dims=[32, 48, 48],
|
||||
@@ -386,6 +439,31 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024)
|
||||
self.cap_embedder = nn.Sequential(RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, dim, bias=True))
|
||||
|
||||
# Optional SigLIP components (for Omni variant)
|
||||
if siglip_feat_dim is not None:
|
||||
self.siglip_embedder = nn.Sequential(
|
||||
RMSNorm(siglip_feat_dim, eps=norm_eps), nn.Linear(siglip_feat_dim, dim, bias=True)
|
||||
)
|
||||
self.siglip_refiner = nn.ModuleList(
|
||||
[
|
||||
ZImageTransformerBlock(
|
||||
2000 + layer_id,
|
||||
dim,
|
||||
n_heads,
|
||||
n_kv_heads,
|
||||
norm_eps,
|
||||
qk_norm,
|
||||
modulation=False,
|
||||
)
|
||||
for layer_id in range(n_refiner_layers)
|
||||
]
|
||||
)
|
||||
self.siglip_pad_token = nn.Parameter(torch.empty((1, dim)))
|
||||
else:
|
||||
self.siglip_embedder = None
|
||||
self.siglip_refiner = None
|
||||
self.siglip_pad_token = None
|
||||
|
||||
self.x_pad_token = nn.Parameter(torch.empty((1, dim)))
|
||||
self.cap_pad_token = nn.Parameter(torch.empty((1, dim)))
|
||||
|
||||
@@ -402,259 +480,561 @@ class ZImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOr
|
||||
|
||||
self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens)
|
||||
|
||||
def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]:
|
||||
def unpatchify(
|
||||
self,
|
||||
x: List[torch.Tensor],
|
||||
size: List[Tuple],
|
||||
patch_size,
|
||||
f_patch_size,
|
||||
x_pos_offsets: Optional[List[Tuple[int, int]]] = None,
|
||||
) -> List[torch.Tensor]:
|
||||
pH = pW = patch_size
|
||||
pF = f_patch_size
|
||||
bsz = len(x)
|
||||
assert len(size) == bsz
|
||||
for i in range(bsz):
|
||||
F, H, W = size[i]
|
||||
ori_len = (F // pF) * (H // pH) * (W // pW)
|
||||
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
|
||||
x[i] = (
|
||||
x[i][:ori_len]
|
||||
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
||||
.permute(6, 0, 3, 1, 4, 2, 5)
|
||||
.reshape(self.out_channels, F, H, W)
|
||||
)
|
||||
return x
|
||||
|
||||
if x_pos_offsets is not None:
|
||||
# Omni: extract target image from unified sequence (cond_images + target)
|
||||
result = []
|
||||
for i in range(bsz):
|
||||
unified_x = x[i][x_pos_offsets[i][0] : x_pos_offsets[i][1]]
|
||||
cu_len = 0
|
||||
x_item = None
|
||||
for j in range(len(size[i])):
|
||||
if size[i][j] is None:
|
||||
ori_len = 0
|
||||
pad_len = SEQ_MULTI_OF
|
||||
cu_len += pad_len + ori_len
|
||||
else:
|
||||
F, H, W = size[i][j]
|
||||
ori_len = (F // pF) * (H // pH) * (W // pW)
|
||||
pad_len = (-ori_len) % SEQ_MULTI_OF
|
||||
x_item = (
|
||||
unified_x[cu_len : cu_len + ori_len]
|
||||
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
||||
.permute(6, 0, 3, 1, 4, 2, 5)
|
||||
.reshape(self.out_channels, F, H, W)
|
||||
)
|
||||
cu_len += ori_len + pad_len
|
||||
result.append(x_item) # Return only the last (target) image
|
||||
return result
|
||||
else:
|
||||
# Original mode: simple unpatchify
|
||||
for i in range(bsz):
|
||||
F, H, W = size[i]
|
||||
ori_len = (F // pF) * (H // pH) * (W // pW)
|
||||
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
|
||||
x[i] = (
|
||||
x[i][:ori_len]
|
||||
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
|
||||
.permute(6, 0, 3, 1, 4, 2, 5)
|
||||
.reshape(self.out_channels, F, H, W)
|
||||
)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def create_coordinate_grid(size, start=None, device=None):
|
||||
if start is None:
|
||||
start = (0 for _ in size)
|
||||
|
||||
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
|
||||
grids = torch.meshgrid(axes, indexing="ij")
|
||||
return torch.stack(grids, dim=-1)
|
||||
|
||||
def patchify_and_embed(
|
||||
def _patchify_image(self, image: torch.Tensor, patch_size: int, f_patch_size: int):
|
||||
"""Patchify a single image tensor: (C, F, H, W) -> (num_patches, patch_dim)."""
|
||||
pH, pW, pF = patch_size, patch_size, f_patch_size
|
||||
C, F, H, W = image.size()
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
return image, (F, H, W), (F_tokens, H_tokens, W_tokens)
|
||||
|
||||
def _pad_with_ids(
|
||||
self,
|
||||
all_image: List[torch.Tensor],
|
||||
all_cap_feats: List[torch.Tensor],
|
||||
patch_size: int,
|
||||
f_patch_size: int,
|
||||
feat: torch.Tensor,
|
||||
pos_grid_size: Tuple,
|
||||
pos_start: Tuple,
|
||||
device: torch.device,
|
||||
noise_mask_val: Optional[int] = None,
|
||||
):
|
||||
pH = pW = patch_size
|
||||
pF = f_patch_size
|
||||
"""Pad feature to SEQ_MULTI_OF, create position IDs and pad mask."""
|
||||
ori_len = len(feat)
|
||||
pad_len = (-ori_len) % SEQ_MULTI_OF
|
||||
total_len = ori_len + pad_len
|
||||
|
||||
# Pos IDs
|
||||
ori_pos_ids = self.create_coordinate_grid(size=pos_grid_size, start=pos_start, device=device).flatten(0, 2)
|
||||
if pad_len > 0:
|
||||
pad_pos_ids = (
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(pad_len, 1)
|
||||
)
|
||||
pos_ids = torch.cat([ori_pos_ids, pad_pos_ids], dim=0)
|
||||
padded_feat = torch.cat([feat, feat[-1:].repeat(pad_len, 1)], dim=0)
|
||||
pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros(ori_len, dtype=torch.bool, device=device),
|
||||
torch.ones(pad_len, dtype=torch.bool, device=device),
|
||||
]
|
||||
)
|
||||
else:
|
||||
pos_ids = ori_pos_ids
|
||||
padded_feat = feat
|
||||
pad_mask = torch.zeros(ori_len, dtype=torch.bool, device=device)
|
||||
|
||||
noise_mask = [noise_mask_val] * total_len if noise_mask_val is not None else None # token level
|
||||
return padded_feat, pos_ids, pad_mask, total_len, noise_mask
|
||||
|
||||
def patchify_and_embed(
|
||||
self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int
|
||||
):
|
||||
"""Patchify for basic mode: single image per batch item."""
|
||||
device = all_image[0].device
|
||||
all_img_out, all_img_size, all_img_pos_ids, all_img_pad_mask = [], [], [], []
|
||||
all_cap_out, all_cap_pos_ids, all_cap_pad_mask = [], [], []
|
||||
|
||||
all_image_out = []
|
||||
all_image_size = []
|
||||
all_image_pos_ids = []
|
||||
all_image_pad_mask = []
|
||||
all_cap_pos_ids = []
|
||||
all_cap_pad_mask = []
|
||||
all_cap_feats_out = []
|
||||
|
||||
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
|
||||
### Process Caption
|
||||
cap_ori_len = len(cap_feat)
|
||||
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
|
||||
# padded position ids
|
||||
cap_padded_pos_ids = self.create_coordinate_grid(
|
||||
size=(cap_ori_len + cap_padding_len, 1, 1),
|
||||
start=(1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
all_cap_pos_ids.append(cap_padded_pos_ids)
|
||||
# pad mask
|
||||
cap_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_cap_pad_mask.append(
|
||||
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
|
||||
for image, cap_feat in zip(all_image, all_cap_feats):
|
||||
# Caption
|
||||
cap_out, cap_pos_ids, cap_pad_mask, cap_len, _ = self._pad_with_ids(
|
||||
cap_feat, (len(cap_feat) + (-len(cap_feat)) % SEQ_MULTI_OF, 1, 1), (1, 0, 0), device
|
||||
)
|
||||
all_cap_out.append(cap_out)
|
||||
all_cap_pos_ids.append(cap_pos_ids)
|
||||
all_cap_pad_mask.append(cap_pad_mask)
|
||||
|
||||
# padded feature
|
||||
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
|
||||
all_cap_feats_out.append(cap_padded_feat)
|
||||
|
||||
### Process Image
|
||||
C, F, H, W = image.size()
|
||||
all_image_size.append((F, H, W))
|
||||
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
|
||||
|
||||
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
|
||||
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
|
||||
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
|
||||
|
||||
image_ori_len = len(image)
|
||||
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
|
||||
|
||||
image_ori_pos_ids = self.create_coordinate_grid(
|
||||
size=(F_tokens, H_tokens, W_tokens),
|
||||
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
|
||||
device=device,
|
||||
).flatten(0, 2)
|
||||
image_padded_pos_ids = torch.cat(
|
||||
[
|
||||
image_ori_pos_ids,
|
||||
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
|
||||
.flatten(0, 2)
|
||||
.repeat(image_padding_len, 1),
|
||||
],
|
||||
dim=0,
|
||||
# Image
|
||||
img_patches, size, (F_t, H_t, W_t) = self._patchify_image(image, patch_size, f_patch_size)
|
||||
img_out, img_pos_ids, img_pad_mask, _, _ = self._pad_with_ids(
|
||||
img_patches, (F_t, H_t, W_t), (cap_len + 1, 0, 0), device
|
||||
)
|
||||
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
|
||||
# pad mask
|
||||
image_pad_mask = torch.cat(
|
||||
[
|
||||
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
|
||||
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
all_image_pad_mask.append(
|
||||
image_pad_mask
|
||||
if image_padding_len > 0
|
||||
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
|
||||
)
|
||||
# padded feature
|
||||
image_padded_feat = torch.cat(
|
||||
[image, image[-1:].repeat(image_padding_len, 1)],
|
||||
dim=0,
|
||||
)
|
||||
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
|
||||
all_img_out.append(img_out)
|
||||
all_img_size.append(size)
|
||||
all_img_pos_ids.append(img_pos_ids)
|
||||
all_img_pad_mask.append(img_pad_mask)
|
||||
|
||||
return (
|
||||
all_image_out,
|
||||
all_cap_feats_out,
|
||||
all_image_size,
|
||||
all_image_pos_ids,
|
||||
all_img_out,
|
||||
all_cap_out,
|
||||
all_img_size,
|
||||
all_img_pos_ids,
|
||||
all_cap_pos_ids,
|
||||
all_image_pad_mask,
|
||||
all_img_pad_mask,
|
||||
all_cap_pad_mask,
|
||||
)
|
||||
|
||||
def forward(
|
||||
def patchify_and_embed_omni(
|
||||
self,
|
||||
x: List[torch.Tensor],
|
||||
t,
|
||||
cap_feats: List[torch.Tensor],
|
||||
controlnet_block_samples: Optional[Dict[int, torch.Tensor]] = None,
|
||||
patch_size=2,
|
||||
f_patch_size=1,
|
||||
return_dict: bool = True,
|
||||
all_x: List[List[torch.Tensor]],
|
||||
all_cap_feats: List[List[torch.Tensor]],
|
||||
all_siglip_feats: List[List[torch.Tensor]],
|
||||
patch_size: int,
|
||||
f_patch_size: int,
|
||||
images_noise_mask: List[List[int]],
|
||||
):
|
||||
assert patch_size in self.all_patch_size
|
||||
assert f_patch_size in self.all_f_patch_size
|
||||
"""Patchify for omni mode: multiple images per batch item with noise masks."""
|
||||
bsz = len(all_x)
|
||||
device = all_x[0][-1].device
|
||||
dtype = all_x[0][-1].dtype
|
||||
|
||||
bsz = len(x)
|
||||
device = x[0].device
|
||||
t = t * self.t_scale
|
||||
t = self.t_embedder(t)
|
||||
all_x_out, all_x_size, all_x_pos_ids, all_x_pad_mask, all_x_len, all_x_noise_mask = [], [], [], [], [], []
|
||||
all_cap_out, all_cap_pos_ids, all_cap_pad_mask, all_cap_len, all_cap_noise_mask = [], [], [], [], []
|
||||
all_sig_out, all_sig_pos_ids, all_sig_pad_mask, all_sig_len, all_sig_noise_mask = [], [], [], [], []
|
||||
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
x_size,
|
||||
x_pos_ids,
|
||||
cap_pos_ids,
|
||||
x_inner_pad_mask,
|
||||
cap_inner_pad_mask,
|
||||
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
|
||||
for i in range(bsz):
|
||||
num_images = len(all_x[i])
|
||||
cap_feats_list, cap_pos_list, cap_mask_list, cap_lens, cap_noise = [], [], [], [], []
|
||||
cap_end_pos = []
|
||||
cap_cu_len = 1
|
||||
|
||||
# x embed & refine
|
||||
x_item_seqlens = [len(_) for _ in x]
|
||||
assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens)
|
||||
x_max_item_seqlen = max(x_item_seqlens)
|
||||
# Process captions
|
||||
for j, cap_item in enumerate(all_cap_feats[i]):
|
||||
noise_val = images_noise_mask[i][j] if j < len(images_noise_mask[i]) else 1
|
||||
cap_out, cap_pos, cap_mask, cap_len, cap_nm = self._pad_with_ids(
|
||||
cap_item,
|
||||
(len(cap_item) + (-len(cap_item)) % SEQ_MULTI_OF, 1, 1),
|
||||
(cap_cu_len, 0, 0),
|
||||
device,
|
||||
noise_val,
|
||||
)
|
||||
cap_feats_list.append(cap_out)
|
||||
cap_pos_list.append(cap_pos)
|
||||
cap_mask_list.append(cap_mask)
|
||||
cap_lens.append(cap_len)
|
||||
cap_noise.extend(cap_nm)
|
||||
cap_cu_len += len(cap_item)
|
||||
cap_end_pos.append(cap_cu_len)
|
||||
cap_cu_len += 2 # for image vae and siglip tokens
|
||||
|
||||
x = torch.cat(x, dim=0)
|
||||
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)
|
||||
all_cap_out.append(torch.cat(cap_feats_list, dim=0))
|
||||
all_cap_pos_ids.append(torch.cat(cap_pos_list, dim=0))
|
||||
all_cap_pad_mask.append(torch.cat(cap_mask_list, dim=0))
|
||||
all_cap_len.append(cap_lens)
|
||||
all_cap_noise_mask.append(cap_noise)
|
||||
|
||||
# Match t_embedder output dtype to x for layerwise casting compatibility
|
||||
adaln_input = t.type_as(x)
|
||||
x[torch.cat(x_inner_pad_mask)] = self.x_pad_token
|
||||
x = list(x.split(x_item_seqlens, dim=0))
|
||||
x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split([len(_) for _ in x_pos_ids], dim=0))
|
||||
# Process images
|
||||
x_feats_list, x_pos_list, x_mask_list, x_lens, x_size, x_noise = [], [], [], [], [], []
|
||||
for j, x_item in enumerate(all_x[i]):
|
||||
noise_val = images_noise_mask[i][j]
|
||||
if x_item is not None:
|
||||
x_patches, size, (F_t, H_t, W_t) = self._patchify_image(x_item, patch_size, f_patch_size)
|
||||
x_out, x_pos, x_mask, x_len, x_nm = self._pad_with_ids(
|
||||
x_patches, (F_t, H_t, W_t), (cap_end_pos[j], 0, 0), device, noise_val
|
||||
)
|
||||
x_size.append(size)
|
||||
else:
|
||||
x_len = SEQ_MULTI_OF
|
||||
x_out = torch.zeros((x_len, X_PAD_DIM), dtype=dtype, device=device)
|
||||
x_pos = self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(x_len, 1)
|
||||
x_mask = torch.ones(x_len, dtype=torch.bool, device=device)
|
||||
x_nm = [noise_val] * x_len
|
||||
x_size.append(None)
|
||||
x_feats_list.append(x_out)
|
||||
x_pos_list.append(x_pos)
|
||||
x_mask_list.append(x_mask)
|
||||
x_lens.append(x_len)
|
||||
x_noise.extend(x_nm)
|
||||
|
||||
x = pad_sequence(x, batch_first=True, padding_value=0.0)
|
||||
x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0)
|
||||
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
|
||||
x_freqs_cis = x_freqs_cis[:, : x.shape[1]]
|
||||
all_x_out.append(torch.cat(x_feats_list, dim=0))
|
||||
all_x_pos_ids.append(torch.cat(x_pos_list, dim=0))
|
||||
all_x_pad_mask.append(torch.cat(x_mask_list, dim=0))
|
||||
all_x_size.append(x_size)
|
||||
all_x_len.append(x_lens)
|
||||
all_x_noise_mask.append(x_noise)
|
||||
|
||||
x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(x_item_seqlens):
|
||||
x_attn_mask[i, :seq_len] = 1
|
||||
# Process siglip
|
||||
if all_siglip_feats[i] is None:
|
||||
all_sig_len.append([0] * num_images)
|
||||
all_sig_out.append(None)
|
||||
else:
|
||||
sig_feats_list, sig_pos_list, sig_mask_list, sig_lens, sig_noise = [], [], [], [], []
|
||||
for j, sig_item in enumerate(all_siglip_feats[i]):
|
||||
noise_val = images_noise_mask[i][j]
|
||||
if sig_item is not None:
|
||||
sig_H, sig_W, sig_C = sig_item.size()
|
||||
sig_flat = sig_item.permute(2, 0, 1).reshape(sig_H * sig_W, sig_C)
|
||||
sig_out, sig_pos, sig_mask, sig_len, sig_nm = self._pad_with_ids(
|
||||
sig_flat, (1, sig_H, sig_W), (cap_end_pos[j] + 1, 0, 0), device, noise_val
|
||||
)
|
||||
# Scale position IDs to match x resolution
|
||||
if x_size[j] is not None:
|
||||
sig_pos = sig_pos.float()
|
||||
sig_pos[..., 1] = sig_pos[..., 1] / max(sig_H - 1, 1) * (x_size[j][1] - 1)
|
||||
sig_pos[..., 2] = sig_pos[..., 2] / max(sig_W - 1, 1) * (x_size[j][2] - 1)
|
||||
sig_pos = sig_pos.to(torch.int32)
|
||||
else:
|
||||
sig_len = SEQ_MULTI_OF
|
||||
sig_out = torch.zeros((sig_len, self.config.siglip_feat_dim), dtype=dtype, device=device)
|
||||
sig_pos = (
|
||||
self.create_coordinate_grid((1, 1, 1), (0, 0, 0), device).flatten(0, 2).repeat(sig_len, 1)
|
||||
)
|
||||
sig_mask = torch.ones(sig_len, dtype=torch.bool, device=device)
|
||||
sig_nm = [noise_val] * sig_len
|
||||
sig_feats_list.append(sig_out)
|
||||
sig_pos_list.append(sig_pos)
|
||||
sig_mask_list.append(sig_mask)
|
||||
sig_lens.append(sig_len)
|
||||
sig_noise.extend(sig_nm)
|
||||
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for layer in self.noise_refiner:
|
||||
x = self._gradient_checkpointing_func(layer, x, x_attn_mask, x_freqs_cis, adaln_input)
|
||||
else:
|
||||
for layer in self.noise_refiner:
|
||||
x = layer(x, x_attn_mask, x_freqs_cis, adaln_input)
|
||||
all_sig_out.append(torch.cat(sig_feats_list, dim=0))
|
||||
all_sig_pos_ids.append(torch.cat(sig_pos_list, dim=0))
|
||||
all_sig_pad_mask.append(torch.cat(sig_mask_list, dim=0))
|
||||
all_sig_len.append(sig_lens)
|
||||
all_sig_noise_mask.append(sig_noise)
|
||||
|
||||
# cap embed & refine
|
||||
cap_item_seqlens = [len(_) for _ in cap_feats]
|
||||
cap_max_item_seqlen = max(cap_item_seqlens)
|
||||
# Compute x position offsets
|
||||
all_x_pos_offsets = [(sum(all_cap_len[i]), sum(all_cap_len[i]) + sum(all_x_len[i])) for i in range(bsz)]
|
||||
|
||||
cap_feats = torch.cat(cap_feats, dim=0)
|
||||
cap_feats = self.cap_embedder(cap_feats)
|
||||
cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token
|
||||
cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0))
|
||||
cap_freqs_cis = list(
|
||||
self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split([len(_) for _ in cap_pos_ids], dim=0)
|
||||
return (
|
||||
all_x_out,
|
||||
all_cap_out,
|
||||
all_sig_out,
|
||||
all_x_size,
|
||||
all_x_pos_ids,
|
||||
all_cap_pos_ids,
|
||||
all_sig_pos_ids,
|
||||
all_x_pad_mask,
|
||||
all_cap_pad_mask,
|
||||
all_sig_pad_mask,
|
||||
all_x_pos_offsets,
|
||||
all_x_noise_mask,
|
||||
all_cap_noise_mask,
|
||||
all_sig_noise_mask,
|
||||
)
|
||||
|
||||
cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0)
|
||||
cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0)
|
||||
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
|
||||
cap_freqs_cis = cap_freqs_cis[:, : cap_feats.shape[1]]
|
||||
def _prepare_sequence(
|
||||
self,
|
||||
feats: List[torch.Tensor],
|
||||
pos_ids: List[torch.Tensor],
|
||||
inner_pad_mask: List[torch.Tensor],
|
||||
pad_token: torch.nn.Parameter,
|
||||
noise_mask: Optional[List[List[int]]] = None,
|
||||
device: torch.device = None,
|
||||
):
|
||||
"""Prepare sequence: apply pad token, RoPE embed, pad to batch, create attention mask."""
|
||||
item_seqlens = [len(f) for f in feats]
|
||||
max_seqlen = max(item_seqlens)
|
||||
bsz = len(feats)
|
||||
|
||||
cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(cap_item_seqlens):
|
||||
cap_attn_mask[i, :seq_len] = 1
|
||||
# Pad token
|
||||
feats_cat = torch.cat(feats, dim=0)
|
||||
feats_cat[torch.cat(inner_pad_mask)] = pad_token
|
||||
feats = list(feats_cat.split(item_seqlens, dim=0))
|
||||
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = self._gradient_checkpointing_func(layer, cap_feats, cap_attn_mask, cap_freqs_cis)
|
||||
else:
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis)
|
||||
# RoPE
|
||||
freqs_cis = list(self.rope_embedder(torch.cat(pos_ids, dim=0)).split([len(p) for p in pos_ids], dim=0))
|
||||
|
||||
# unified
|
||||
# Pad to batch
|
||||
feats = pad_sequence(feats, batch_first=True, padding_value=0.0)
|
||||
freqs_cis = pad_sequence(freqs_cis, batch_first=True, padding_value=0.0)[:, : feats.shape[1]]
|
||||
|
||||
# Attention mask
|
||||
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(item_seqlens):
|
||||
attn_mask[i, :seq_len] = 1
|
||||
|
||||
# Noise mask
|
||||
noise_mask_tensor = None
|
||||
if noise_mask is not None:
|
||||
noise_mask_tensor = pad_sequence(
|
||||
[torch.tensor(m, dtype=torch.long, device=device) for m in noise_mask],
|
||||
batch_first=True,
|
||||
padding_value=0,
|
||||
)[:, : feats.shape[1]]
|
||||
|
||||
return feats, freqs_cis, attn_mask, item_seqlens, noise_mask_tensor
|
||||
|
||||
def _build_unified_sequence(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
x_freqs: torch.Tensor,
|
||||
x_seqlens: List[int],
|
||||
x_noise_mask: Optional[List[List[int]]],
|
||||
cap: torch.Tensor,
|
||||
cap_freqs: torch.Tensor,
|
||||
cap_seqlens: List[int],
|
||||
cap_noise_mask: Optional[List[List[int]]],
|
||||
siglip: Optional[torch.Tensor],
|
||||
siglip_freqs: Optional[torch.Tensor],
|
||||
siglip_seqlens: Optional[List[int]],
|
||||
siglip_noise_mask: Optional[List[List[int]]],
|
||||
omni_mode: bool,
|
||||
device: torch.device,
|
||||
):
|
||||
"""Build unified sequence: x, cap, and optionally siglip.
|
||||
Basic mode order: [x, cap]; Omni mode order: [cap, x, siglip]
|
||||
"""
|
||||
bsz = len(x_seqlens)
|
||||
unified = []
|
||||
unified_freqs_cis = []
|
||||
unified_freqs = []
|
||||
unified_noise_mask = []
|
||||
|
||||
for i in range(bsz):
|
||||
x_len = x_item_seqlens[i]
|
||||
cap_len = cap_item_seqlens[i]
|
||||
unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]]))
|
||||
unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]]))
|
||||
unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)]
|
||||
assert unified_item_seqlens == [len(_) for _ in unified]
|
||||
unified_max_item_seqlen = max(unified_item_seqlens)
|
||||
x_len, cap_len = x_seqlens[i], cap_seqlens[i]
|
||||
|
||||
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
|
||||
unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0)
|
||||
unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(unified_item_seqlens):
|
||||
unified_attn_mask[i, :seq_len] = 1
|
||||
if omni_mode:
|
||||
# Omni: [cap, x, siglip]
|
||||
if siglip is not None and siglip_seqlens is not None:
|
||||
sig_len = siglip_seqlens[i]
|
||||
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len], siglip[i][:sig_len]]))
|
||||
unified_freqs.append(
|
||||
torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len], siglip_freqs[i][:sig_len]])
|
||||
)
|
||||
unified_noise_mask.append(
|
||||
torch.tensor(
|
||||
cap_noise_mask[i] + x_noise_mask[i] + siglip_noise_mask[i], dtype=torch.long, device=device
|
||||
)
|
||||
)
|
||||
else:
|
||||
unified.append(torch.cat([cap[i][:cap_len], x[i][:x_len]]))
|
||||
unified_freqs.append(torch.cat([cap_freqs[i][:cap_len], x_freqs[i][:x_len]]))
|
||||
unified_noise_mask.append(
|
||||
torch.tensor(cap_noise_mask[i] + x_noise_mask[i], dtype=torch.long, device=device)
|
||||
)
|
||||
else:
|
||||
# Basic: [x, cap]
|
||||
unified.append(torch.cat([x[i][:x_len], cap[i][:cap_len]]))
|
||||
unified_freqs.append(torch.cat([x_freqs[i][:x_len], cap_freqs[i][:cap_len]]))
|
||||
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for layer_idx, layer in enumerate(self.layers):
|
||||
unified = self._gradient_checkpointing_func(
|
||||
layer, unified, unified_attn_mask, unified_freqs_cis, adaln_input
|
||||
)
|
||||
if controlnet_block_samples is not None:
|
||||
if layer_idx in controlnet_block_samples:
|
||||
unified = unified + controlnet_block_samples[layer_idx]
|
||||
# Compute unified seqlens
|
||||
if omni_mode:
|
||||
if siglip is not None and siglip_seqlens is not None:
|
||||
unified_seqlens = [a + b + c for a, b, c in zip(cap_seqlens, x_seqlens, siglip_seqlens)]
|
||||
else:
|
||||
unified_seqlens = [a + b for a, b in zip(cap_seqlens, x_seqlens)]
|
||||
else:
|
||||
for layer_idx, layer in enumerate(self.layers):
|
||||
unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input)
|
||||
if controlnet_block_samples is not None:
|
||||
if layer_idx in controlnet_block_samples:
|
||||
unified = unified + controlnet_block_samples[layer_idx]
|
||||
unified_seqlens = [a + b for a, b in zip(x_seqlens, cap_seqlens)]
|
||||
|
||||
unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input)
|
||||
unified = list(unified.unbind(dim=0))
|
||||
x = self.unpatchify(unified, x_size, patch_size, f_patch_size)
|
||||
max_seqlen = max(unified_seqlens)
|
||||
|
||||
if not return_dict:
|
||||
return (x,)
|
||||
# Pad to batch
|
||||
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
|
||||
unified_freqs = pad_sequence(unified_freqs, batch_first=True, padding_value=0.0)
|
||||
|
||||
return Transformer2DModelOutput(sample=x)
|
||||
# Attention mask
|
||||
attn_mask = torch.zeros((bsz, max_seqlen), dtype=torch.bool, device=device)
|
||||
for i, seq_len in enumerate(unified_seqlens):
|
||||
attn_mask[i, :seq_len] = 1
|
||||
|
||||
# Noise mask
|
||||
noise_mask_tensor = None
|
||||
if omni_mode:
|
||||
noise_mask_tensor = pad_sequence(unified_noise_mask, batch_first=True, padding_value=0)[
|
||||
:, : unified.shape[1]
|
||||
]
|
||||
|
||||
return unified, unified_freqs, attn_mask, noise_mask_tensor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Union[List[torch.Tensor], List[List[torch.Tensor]]],
|
||||
t,
|
||||
cap_feats: Union[List[torch.Tensor], List[List[torch.Tensor]]],
|
||||
return_dict: bool = True,
|
||||
controlnet_block_samples: Optional[Dict[int, torch.Tensor]] = None,
|
||||
siglip_feats: Optional[List[List[torch.Tensor]]] = None,
|
||||
image_noise_mask: Optional[List[List[int]]] = None,
|
||||
patch_size: int = 2,
|
||||
f_patch_size: int = 1,
|
||||
):
|
||||
"""
|
||||
Flow: patchify -> t_embed -> x_embed -> x_refine -> cap_embed -> cap_refine
|
||||
-> [siglip_embed -> siglip_refine] -> build_unified -> main_layers -> final_layer -> unpatchify
|
||||
"""
|
||||
assert patch_size in self.all_patch_size and f_patch_size in self.all_f_patch_size
|
||||
omni_mode = isinstance(x[0], list)
|
||||
device = x[0][-1].device if omni_mode else x[0].device
|
||||
|
||||
if omni_mode:
|
||||
# Dual embeddings: noisy (t) and clean (t=1)
|
||||
t_noisy = self.t_embedder(t * self.t_scale).type_as(x[0][-1])
|
||||
t_clean = self.t_embedder(torch.ones_like(t) * self.t_scale).type_as(x[0][-1])
|
||||
adaln_input = None
|
||||
else:
|
||||
# Single embedding for all tokens
|
||||
adaln_input = self.t_embedder(t * self.t_scale).type_as(x[0])
|
||||
t_noisy = t_clean = None
|
||||
|
||||
# Patchify
|
||||
if omni_mode:
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
siglip_feats,
|
||||
x_size,
|
||||
x_pos_ids,
|
||||
cap_pos_ids,
|
||||
siglip_pos_ids,
|
||||
x_pad_mask,
|
||||
cap_pad_mask,
|
||||
siglip_pad_mask,
|
||||
x_pos_offsets,
|
||||
x_noise_mask,
|
||||
cap_noise_mask,
|
||||
siglip_noise_mask,
|
||||
) = self.patchify_and_embed_omni(x, cap_feats, siglip_feats, patch_size, f_patch_size, image_noise_mask)
|
||||
else:
|
||||
(
|
||||
x,
|
||||
cap_feats,
|
||||
x_size,
|
||||
x_pos_ids,
|
||||
cap_pos_ids,
|
||||
x_pad_mask,
|
||||
cap_pad_mask,
|
||||
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
|
||||
x_pos_offsets = x_noise_mask = cap_noise_mask = siglip_noise_mask = None
|
||||
|
||||
# X embed & refine
|
||||
x_seqlens = [len(xi) for xi in x]
|
||||
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](torch.cat(x, dim=0)) # embed
|
||||
x, x_freqs, x_mask, _, x_noise_tensor = self._prepare_sequence(
|
||||
list(x.split(x_seqlens, dim=0)), x_pos_ids, x_pad_mask, self.x_pad_token, x_noise_mask, device
|
||||
)
|
||||
|
||||
for layer in self.noise_refiner:
|
||||
x = (
|
||||
self._gradient_checkpointing_func(
|
||||
layer, x, x_mask, x_freqs, adaln_input, x_noise_tensor, t_noisy, t_clean
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(x, x_mask, x_freqs, adaln_input, x_noise_tensor, t_noisy, t_clean)
|
||||
)
|
||||
|
||||
# Cap embed & refine
|
||||
cap_seqlens = [len(ci) for ci in cap_feats]
|
||||
cap_feats = self.cap_embedder(torch.cat(cap_feats, dim=0)) # embed
|
||||
cap_feats, cap_freqs, cap_mask, _, _ = self._prepare_sequence(
|
||||
list(cap_feats.split(cap_seqlens, dim=0)), cap_pos_ids, cap_pad_mask, self.cap_pad_token, None, device
|
||||
)
|
||||
|
||||
for layer in self.context_refiner:
|
||||
cap_feats = (
|
||||
self._gradient_checkpointing_func(layer, cap_feats, cap_mask, cap_freqs)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(cap_feats, cap_mask, cap_freqs)
|
||||
)
|
||||
|
||||
# Siglip embed & refine
|
||||
siglip_seqlens = siglip_freqs = None
|
||||
if omni_mode and siglip_feats[0] is not None and self.siglip_embedder is not None:
|
||||
siglip_seqlens = [len(si) for si in siglip_feats]
|
||||
siglip_feats = self.siglip_embedder(torch.cat(siglip_feats, dim=0)) # embed
|
||||
siglip_feats, siglip_freqs, siglip_mask, _, _ = self._prepare_sequence(
|
||||
list(siglip_feats.split(siglip_seqlens, dim=0)),
|
||||
siglip_pos_ids,
|
||||
siglip_pad_mask,
|
||||
self.siglip_pad_token,
|
||||
None,
|
||||
device,
|
||||
)
|
||||
|
||||
for layer in self.siglip_refiner:
|
||||
siglip_feats = (
|
||||
self._gradient_checkpointing_func(layer, siglip_feats, siglip_mask, siglip_freqs)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(siglip_feats, siglip_mask, siglip_freqs)
|
||||
)
|
||||
|
||||
# Unified sequence
|
||||
unified, unified_freqs, unified_mask, unified_noise_tensor = self._build_unified_sequence(
|
||||
x,
|
||||
x_freqs,
|
||||
x_seqlens,
|
||||
x_noise_mask,
|
||||
cap_feats,
|
||||
cap_freqs,
|
||||
cap_seqlens,
|
||||
cap_noise_mask,
|
||||
siglip_feats,
|
||||
siglip_freqs,
|
||||
siglip_seqlens,
|
||||
siglip_noise_mask,
|
||||
omni_mode,
|
||||
device,
|
||||
)
|
||||
|
||||
# Main transformer layers
|
||||
for layer_idx, layer in enumerate(self.layers):
|
||||
unified = (
|
||||
self._gradient_checkpointing_func(
|
||||
layer, unified, unified_mask, unified_freqs, adaln_input, unified_noise_tensor, t_noisy, t_clean
|
||||
)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing
|
||||
else layer(unified, unified_mask, unified_freqs, adaln_input, unified_noise_tensor, t_noisy, t_clean)
|
||||
)
|
||||
if controlnet_block_samples is not None and layer_idx in controlnet_block_samples:
|
||||
unified = unified + controlnet_block_samples[layer_idx]
|
||||
|
||||
unified = (
|
||||
self.all_final_layer[f"{patch_size}-{f_patch_size}"](
|
||||
unified, noise_mask=unified_noise_tensor, c_noisy=t_noisy, c_clean=t_clean
|
||||
)
|
||||
if omni_mode
|
||||
else self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, c=adaln_input)
|
||||
)
|
||||
|
||||
# Unpatchify
|
||||
x = self.unpatchify(list(unified.unbind(dim=0)), x_size, patch_size, f_patch_size, x_pos_offsets)
|
||||
|
||||
return (x,) if not return_dict else Transformer2DModelOutput(sample=x)
|
||||
|
||||
@@ -411,6 +411,7 @@ else:
|
||||
"ZImagePipeline",
|
||||
"ZImageControlNetPipeline",
|
||||
"ZImageControlNetInpaintPipeline",
|
||||
"ZImageOmniPipeline",
|
||||
]
|
||||
_import_structure["skyreels_v2"] = [
|
||||
"SkyReelsV2DiffusionForcingPipeline",
|
||||
@@ -856,6 +857,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
|
||||
@@ -120,7 +120,13 @@ from .stable_diffusion_xl import (
|
||||
)
|
||||
from .wan import WanImageToVideoPipeline, WanPipeline, WanVideoToVideoPipeline
|
||||
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline
|
||||
from .z_image import ZImageImg2ImgPipeline, ZImagePipeline
|
||||
from .z_image import (
|
||||
ZImageControlNetInpaintPipeline,
|
||||
ZImageControlNetPipeline,
|
||||
ZImageImg2ImgPipeline,
|
||||
ZImageOmniPipeline,
|
||||
ZImagePipeline,
|
||||
)
|
||||
|
||||
|
||||
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
@@ -165,6 +171,9 @@ AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict(
|
||||
("qwenimage", QwenImagePipeline),
|
||||
("qwenimage-controlnet", QwenImageControlNetPipeline),
|
||||
("z-image", ZImagePipeline),
|
||||
("z-image-controlnet", ZImageControlNetPipeline),
|
||||
("z-image-controlnet-inpaint", ZImageControlNetInpaintPipeline),
|
||||
("z-image-omni", ZImageOmniPipeline),
|
||||
("ovis", OvisImagePipeline),
|
||||
]
|
||||
)
|
||||
|
||||
@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
@@ -185,7 +185,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -229,7 +229,7 @@ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
|
||||
HunyuanDiT2DMultiControlNetModel,
|
||||
],
|
||||
text_encoder_2: Optional[T5EncoderModel] = None,
|
||||
tokenizer_2: Optional[MT5Tokenizer] = None,
|
||||
tokenizer_2: Optional[T5Tokenizer] = None,
|
||||
requires_safety_checker: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
@@ -169,7 +169,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -204,7 +204,7 @@ class HunyuanDiTPipeline(DiffusionPipeline):
|
||||
feature_extractor: CLIPImageProcessor,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2: Optional[T5EncoderModel] = None,
|
||||
tokenizer_2: Optional[MT5Tokenizer] = None,
|
||||
tokenizer_2: Optional[T5Tokenizer] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
|
||||
from transformers import BertModel, BertTokenizer, CLIPImageProcessor, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
|
||||
@@ -173,7 +173,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
|
||||
The HunyuanDiT model designed by Tencent Hunyuan.
|
||||
text_encoder_2 (`T5EncoderModel`):
|
||||
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
|
||||
tokenizer_2 (`MT5Tokenizer`):
|
||||
tokenizer_2 (`T5Tokenizer`):
|
||||
The tokenizer for the mT5 embedder.
|
||||
scheduler ([`DDPMScheduler`]):
|
||||
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
|
||||
@@ -208,7 +208,7 @@ class HunyuanDiTPAGPipeline(DiffusionPipeline, PAGMixin):
|
||||
feature_extractor: Optional[CLIPImageProcessor] = None,
|
||||
requires_safety_checker: bool = True,
|
||||
text_encoder_2: Optional[T5EncoderModel] = None,
|
||||
tokenizer_2: Optional[MT5Tokenizer] = None,
|
||||
tokenizer_2: Optional[T5Tokenizer] = None,
|
||||
pag_applied_layers: Union[str, List[str]] = "blocks.1", # "blocks.16.attn1", "blocks.16", "16", 16
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -26,6 +26,7 @@ else:
|
||||
_import_structure["pipeline_z_image_controlnet"] = ["ZImageControlNetPipeline"]
|
||||
_import_structure["pipeline_z_image_controlnet_inpaint"] = ["ZImageControlNetInpaintPipeline"]
|
||||
_import_structure["pipeline_z_image_img2img"] = ["ZImageImg2ImgPipeline"]
|
||||
_import_structure["pipeline_z_image_omni"] = ["ZImageOmniPipeline"]
|
||||
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
@@ -41,7 +42,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .pipeline_z_image_controlnet import ZImageControlNetPipeline
|
||||
from .pipeline_z_image_controlnet_inpaint import ZImageControlNetInpaintPipeline
|
||||
from .pipeline_z_image_img2img import ZImageImg2ImgPipeline
|
||||
|
||||
from .pipeline_z_image_omni import ZImageOmniPipeline
|
||||
else:
|
||||
import sys
|
||||
|
||||
|
||||
742
src/diffusers/pipelines/z_image/pipeline_z_image_omni.py
Normal file
742
src/diffusers/pipelines/z_image/pipeline_z_image_omni.py
Normal file
@@ -0,0 +1,742 @@
|
||||
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import PIL
|
||||
import torch
|
||||
from transformers import AutoTokenizer, PreTrainedModel, Siglip2ImageProcessorFast, Siglip2VisionModel
|
||||
|
||||
from ...loaders import FromSingleFileMixin, ZImageLoraLoaderMixin
|
||||
from ...models.autoencoders import AutoencoderKL
|
||||
from ...models.transformers import ZImageTransformer2DModel
|
||||
from ...pipelines.pipeline_utils import DiffusionPipeline
|
||||
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from ...utils import logging, replace_example_docstring
|
||||
from ...utils.torch_utils import randn_tensor
|
||||
from ..flux2.image_processor import Flux2ImageProcessor
|
||||
from .pipeline_output import ZImagePipelineOutput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
EXAMPLE_DOC_STRING = """
|
||||
Examples:
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from diffusers import ZImageOmniPipeline
|
||||
|
||||
>>> pipe = ZImageOmniPipeline.from_pretrained("Z-a-o/Z-Image-Turbo", torch_dtype=torch.bfloat16)
|
||||
>>> pipe.to("cuda")
|
||||
|
||||
>>> # Optionally, set the attention backend to flash-attn 2 or 3, default is SDPA in PyTorch.
|
||||
>>> # (1) Use flash attention 2
|
||||
>>> # pipe.transformer.set_attention_backend("flash")
|
||||
>>> # (2) Use flash attention 3
|
||||
>>> # pipe.transformer.set_attention_backend("_flash_3")
|
||||
|
||||
>>> prompt = "一幅为名为“造相「Z-IMAGE-TURBO」”的项目设计的创意海报。画面巧妙地将文字概念视觉化:一辆复古蒸汽小火车化身为巨大的拉链头,正拉开厚厚的冬日积雪,展露出一个生机盎然的春天。"
|
||||
>>> image = pipe(
|
||||
... prompt,
|
||||
... height=1024,
|
||||
... width=1024,
|
||||
... num_inference_steps=9,
|
||||
... guidance_scale=0.0,
|
||||
... generator=torch.Generator("cuda").manual_seed(42),
|
||||
... ).images[0]
|
||||
>>> image.save("zimage.png")
|
||||
```
|
||||
"""
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
|
||||
class ZImageOmniPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin):
|
||||
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
||||
_optional_components = []
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: PreTrainedModel,
|
||||
tokenizer: AutoTokenizer,
|
||||
transformer: ZImageTransformer2DModel,
|
||||
siglip: Siglip2VisionModel,
|
||||
siglip_processor: Siglip2ImageProcessorFast,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
transformer=transformer,
|
||||
siglip=siglip,
|
||||
siglip_processor=siglip_processor,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
# self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
self.image_processor = Flux2ImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 512,
|
||||
num_condition_images: int = 0,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt=prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
num_condition_images=num_condition_images,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
if negative_prompt is None:
|
||||
negative_prompt = ["" for _ in prompt]
|
||||
else:
|
||||
negative_prompt = [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
assert len(prompt) == len(negative_prompt)
|
||||
negative_prompt_embeds = self._encode_prompt(
|
||||
prompt=negative_prompt,
|
||||
device=device,
|
||||
prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
num_condition_images=num_condition_images,
|
||||
)
|
||||
else:
|
||||
negative_prompt_embeds = []
|
||||
return prompt_embeds, negative_prompt_embeds
|
||||
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
max_sequence_length: int = 512,
|
||||
num_condition_images: int = 0,
|
||||
) -> List[torch.FloatTensor]:
|
||||
device = device or self._execution_device
|
||||
|
||||
if prompt_embeds is not None:
|
||||
return prompt_embeds
|
||||
|
||||
if isinstance(prompt, str):
|
||||
prompt = [prompt]
|
||||
|
||||
for i, prompt_item in enumerate(prompt):
|
||||
if num_condition_images == 0:
|
||||
prompt[i] = ["<|im_start|>user\n" + prompt_item + "<|im_end|>\n<|im_start|>assistant\n"]
|
||||
elif num_condition_images > 0:
|
||||
prompt_list = ["<|im_start|>user\n<|vision_start|>"]
|
||||
prompt_list += ["<|vision_end|><|vision_start|>"] * (num_condition_images - 1)
|
||||
prompt_list += ["<|vision_end|>" + prompt_item + "<|im_end|>\n<|im_start|>assistant\n<|vision_start|>"]
|
||||
prompt_list += ["<|vision_end|><|im_end|>"]
|
||||
prompt[i] = prompt_list
|
||||
|
||||
flattened_prompt = []
|
||||
prompt_list_lengths = []
|
||||
|
||||
for i in range(len(prompt)):
|
||||
prompt_list_lengths.append(len(prompt[i]))
|
||||
flattened_prompt.extend(prompt[i])
|
||||
|
||||
text_inputs = self.tokenizer(
|
||||
flattened_prompt,
|
||||
padding="max_length",
|
||||
max_length=max_sequence_length,
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids.to(device)
|
||||
prompt_masks = text_inputs.attention_mask.to(device).bool()
|
||||
|
||||
prompt_embeds = self.text_encoder(
|
||||
input_ids=text_input_ids,
|
||||
attention_mask=prompt_masks,
|
||||
output_hidden_states=True,
|
||||
).hidden_states[-2]
|
||||
|
||||
embeddings_list = []
|
||||
start_idx = 0
|
||||
for i in range(len(prompt_list_lengths)):
|
||||
batch_embeddings = []
|
||||
end_idx = start_idx + prompt_list_lengths[i]
|
||||
for j in range(start_idx, end_idx):
|
||||
batch_embeddings.append(prompt_embeds[j][prompt_masks[j]])
|
||||
embeddings_list.append(batch_embeddings)
|
||||
start_idx = end_idx
|
||||
|
||||
return embeddings_list
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
return latents
|
||||
|
||||
def prepare_image_latents(
|
||||
self,
|
||||
images: List[torch.Tensor],
|
||||
batch_size,
|
||||
device,
|
||||
dtype,
|
||||
):
|
||||
image_latents = []
|
||||
for image in images:
|
||||
image = image.to(device=device, dtype=dtype)
|
||||
image_latent = (
|
||||
self.vae.encode(image.bfloat16()).latent_dist.mode()[0] - self.vae.config.shift_factor
|
||||
) * self.vae.config.scaling_factor
|
||||
image_latent = image_latent.unsqueeze(1).to(dtype)
|
||||
image_latents.append(image_latent) # (16, 128, 128)
|
||||
|
||||
# image_latents = [image_latents] * batch_size
|
||||
image_latents = [image_latents.copy() for _ in range(batch_size)]
|
||||
|
||||
return image_latents
|
||||
|
||||
def prepare_siglip_embeds(
|
||||
self,
|
||||
images: List[torch.Tensor],
|
||||
batch_size,
|
||||
device,
|
||||
dtype,
|
||||
):
|
||||
siglip_embeds = []
|
||||
for image in images:
|
||||
siglip_inputs = self.siglip_processor(images=[image], return_tensors="pt").to(device)
|
||||
shape = siglip_inputs.spatial_shapes[0]
|
||||
hidden_state = self.siglip(**siglip_inputs).last_hidden_state
|
||||
B, N, C = hidden_state.shape
|
||||
hidden_state = hidden_state[:, : shape[0] * shape[1]]
|
||||
hidden_state = hidden_state.view(shape[0], shape[1], C)
|
||||
siglip_embeds.append(hidden_state.to(dtype))
|
||||
|
||||
# siglip_embeds = [siglip_embeds] * batch_size
|
||||
siglip_embeds = [siglip_embeds.copy() for _ in range(batch_size)]
|
||||
|
||||
return siglip_embeds
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||||
def __call__(
|
||||
self,
|
||||
image: Optional[Union[List[PIL.Image.Image], PIL.Image.Image]] = None,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
cfg_normalization: bool = False,
|
||||
cfg_truncation: float = 1.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
||||
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
||||
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
||||
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
||||
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
|
||||
latents as `image`, but if passing latents directly it is not encoded again.
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
height (`int`, *optional*, defaults to 1024):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to 1024):
|
||||
The width in pixels of the generated image.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||||
will be used.
|
||||
guidance_scale (`float`, *optional*, defaults to 5.0):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
cfg_normalization (`bool`, *optional*, defaults to False):
|
||||
Whether to apply configuration normalization.
|
||||
cfg_truncation (`float`, *optional*, defaults to 1.0):
|
||||
The truncation value for configuration.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will be generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
negative_prompt_embeds (`List[torch.FloatTensor]`, *optional*):
|
||||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||||
argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.ZImagePipelineOutput`] instead of a plain
|
||||
tuple.
|
||||
joint_attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, *optional*):
|
||||
A function that calls at the end of each denoising steps during the inference. The function is called
|
||||
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
||||
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
||||
`callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
max_sequence_length (`int`, *optional*, defaults to 512):
|
||||
Maximum sequence length to use with the `prompt`.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.z_image.ZImagePipelineOutput`] or `tuple`: [`~pipelines.z_image.ZImagePipelineOutput`] if
|
||||
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
|
||||
generated images.
|
||||
"""
|
||||
|
||||
if image is not None and not isinstance(image, list):
|
||||
image = [image]
|
||||
num_condition_images = len(image) if image is not None else 0
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
self._cfg_normalization = cfg_normalization
|
||||
self._cfg_truncation = cfg_truncation
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = len(prompt_embeds)
|
||||
|
||||
# If prompt_embeds is provided and prompt is None, skip encoding
|
||||
if prompt_embeds is not None and prompt is None:
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
raise ValueError(
|
||||
"When `prompt_embeds` is provided without `prompt`, "
|
||||
"`negative_prompt_embeds` must also be provided for classifier-free guidance."
|
||||
)
|
||||
else:
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
device=device,
|
||||
max_sequence_length=max_sequence_length,
|
||||
num_condition_images=num_condition_images,
|
||||
)
|
||||
|
||||
# 3. Process condition images. Copied from diffusers.pipelines.flux2.pipeline_flux2
|
||||
condition_images = []
|
||||
resized_images = []
|
||||
if image is not None:
|
||||
for img in image:
|
||||
self.image_processor.check_image_input(img)
|
||||
for img in image:
|
||||
image_width, image_height = img.size
|
||||
if image_width * image_height > 1024 * 1024:
|
||||
if height is not None and width is not None:
|
||||
img = self.image_processor._resize_to_target_area(img, height * width)
|
||||
else:
|
||||
img = self.image_processor._resize_to_target_area(img, 1024 * 1024)
|
||||
image_width, image_height = img.size
|
||||
resized_images.append(img)
|
||||
|
||||
multiple_of = self.vae_scale_factor * 2
|
||||
image_width = (image_width // multiple_of) * multiple_of
|
||||
image_height = (image_height // multiple_of) * multiple_of
|
||||
img = self.image_processor.preprocess(img, height=image_height, width=image_width, resize_mode="crop")
|
||||
condition_images.append(img)
|
||||
|
||||
if len(condition_images) > 0:
|
||||
height = height or image_height
|
||||
width = width or image_width
|
||||
|
||||
else:
|
||||
height = height or 1024
|
||||
width = width or 1024
|
||||
|
||||
vae_scale = self.vae_scale_factor * 2
|
||||
if height % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Height must be divisible by {vae_scale} (got {height}). "
|
||||
f"Please adjust the height to a multiple of {vae_scale}."
|
||||
)
|
||||
if width % vae_scale != 0:
|
||||
raise ValueError(
|
||||
f"Width must be divisible by {vae_scale} (got {width}). "
|
||||
f"Please adjust the width to a multiple of {vae_scale}."
|
||||
)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.in_channels
|
||||
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
condition_latents = self.prepare_image_latents(
|
||||
images=condition_images,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
condition_latents = [[lat.to(self.transformer.dtype) for lat in lats] for lats in condition_latents]
|
||||
if self.do_classifier_free_guidance:
|
||||
negative_condition_latents = [[lat.clone() for lat in batch] for batch in condition_latents]
|
||||
|
||||
condition_siglip_embeds = self.prepare_siglip_embeds(
|
||||
images=resized_images,
|
||||
batch_size=batch_size * num_images_per_prompt,
|
||||
device=device,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
condition_siglip_embeds = [[se.to(self.transformer.dtype) for se in sels] for sels in condition_siglip_embeds]
|
||||
if self.do_classifier_free_guidance:
|
||||
negative_condition_siglip_embeds = [[se.clone() for se in batch] for batch in condition_siglip_embeds]
|
||||
|
||||
# Repeat prompt_embeds for num_images_per_prompt
|
||||
if num_images_per_prompt > 1:
|
||||
prompt_embeds = [pe for pe in prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
if self.do_classifier_free_guidance and negative_prompt_embeds:
|
||||
negative_prompt_embeds = [npe for npe in negative_prompt_embeds for _ in range(num_images_per_prompt)]
|
||||
|
||||
condition_siglip_embeds = [None if sels == [] else sels + [None] for sels in condition_siglip_embeds]
|
||||
negative_condition_siglip_embeds = [
|
||||
None if sels == [] else sels + [None] for sels in negative_condition_siglip_embeds
|
||||
]
|
||||
|
||||
actual_batch_size = batch_size * num_images_per_prompt
|
||||
image_seq_len = (latents.shape[2] // 2) * (latents.shape[3] // 2)
|
||||
|
||||
# 5. Prepare timesteps
|
||||
mu = calculate_shift(
|
||||
image_seq_len,
|
||||
self.scheduler.config.get("base_image_seq_len", 256),
|
||||
self.scheduler.config.get("max_image_seq_len", 4096),
|
||||
self.scheduler.config.get("base_shift", 0.5),
|
||||
self.scheduler.config.get("max_shift", 1.15),
|
||||
)
|
||||
self.scheduler.sigma_min = 0.0
|
||||
scheduler_kwargs = {"mu": mu}
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
**scheduler_kwargs,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latents.shape[0])
|
||||
timestep = (1000 - timestep) / 1000
|
||||
# Normalized time for time-aware config (0 at start, 1 at end)
|
||||
t_norm = timestep[0].item()
|
||||
|
||||
# Handle cfg truncation
|
||||
current_guidance_scale = self.guidance_scale
|
||||
if (
|
||||
self.do_classifier_free_guidance
|
||||
and self._cfg_truncation is not None
|
||||
and float(self._cfg_truncation) <= 1
|
||||
):
|
||||
if t_norm > self._cfg_truncation:
|
||||
current_guidance_scale = 0.0
|
||||
|
||||
# Run CFG only if configured AND scale is non-zero
|
||||
apply_cfg = self.do_classifier_free_guidance and current_guidance_scale > 0
|
||||
|
||||
if apply_cfg:
|
||||
latents_typed = latents.to(self.transformer.dtype)
|
||||
latent_model_input = latents_typed.repeat(2, 1, 1, 1)
|
||||
prompt_embeds_model_input = prompt_embeds + negative_prompt_embeds
|
||||
condition_latents_model_input = condition_latents + negative_condition_latents
|
||||
condition_siglip_embeds_model_input = condition_siglip_embeds + negative_condition_siglip_embeds
|
||||
timestep_model_input = timestep.repeat(2)
|
||||
else:
|
||||
latent_model_input = latents.to(self.transformer.dtype)
|
||||
prompt_embeds_model_input = prompt_embeds
|
||||
condition_latents_model_input = condition_latents
|
||||
condition_siglip_embeds_model_input = condition_siglip_embeds
|
||||
timestep_model_input = timestep
|
||||
|
||||
latent_model_input = latent_model_input.unsqueeze(2)
|
||||
latent_model_input_list = list(latent_model_input.unbind(dim=0))
|
||||
|
||||
# Combine condition latents with target latent
|
||||
current_batch_size = len(latent_model_input_list)
|
||||
x_combined = [
|
||||
condition_latents_model_input[i] + [latent_model_input_list[i]] for i in range(current_batch_size)
|
||||
]
|
||||
# Create noise mask: 0 for condition images (clean), 1 for target image (noisy)
|
||||
image_noise_mask = [
|
||||
[0] * len(condition_latents_model_input[i]) + [1] for i in range(current_batch_size)
|
||||
]
|
||||
|
||||
model_out_list = self.transformer(
|
||||
x=x_combined,
|
||||
t=timestep_model_input,
|
||||
cap_feats=prompt_embeds_model_input,
|
||||
siglip_feats=condition_siglip_embeds_model_input,
|
||||
image_noise_mask=image_noise_mask,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if apply_cfg:
|
||||
# Perform CFG
|
||||
pos_out = model_out_list[:actual_batch_size]
|
||||
neg_out = model_out_list[actual_batch_size:]
|
||||
|
||||
noise_pred = []
|
||||
for j in range(actual_batch_size):
|
||||
pos = pos_out[j].float()
|
||||
neg = neg_out[j].float()
|
||||
|
||||
pred = pos + current_guidance_scale * (pos - neg)
|
||||
|
||||
# Renormalization
|
||||
if self._cfg_normalization and float(self._cfg_normalization) > 0.0:
|
||||
ori_pos_norm = torch.linalg.vector_norm(pos)
|
||||
new_pos_norm = torch.linalg.vector_norm(pred)
|
||||
max_new_norm = ori_pos_norm * float(self._cfg_normalization)
|
||||
if new_pos_norm > max_new_norm:
|
||||
pred = pred * (max_new_norm / new_pos_norm)
|
||||
|
||||
noise_pred.append(pred)
|
||||
|
||||
noise_pred = torch.stack(noise_pred, dim=0)
|
||||
else:
|
||||
noise_pred = torch.stack([t.float() for t in model_out_list], dim=0)
|
||||
|
||||
noise_pred = noise_pred.squeeze(2)
|
||||
noise_pred = -noise_pred
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred.to(torch.float32), t, latents, return_dict=False)[0]
|
||||
assert latents.dtype == torch.float32
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ZImagePipelineOutput(images=image)
|
||||
@@ -3917,6 +3917,21 @@ class ZImageImg2ImgPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ZImageOmniPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class ZImagePipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user