mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 14:06:03 +08:00
Compare commits
29 Commits
devanshi00
...
modular-wo
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
20c35da75c | ||
|
|
6a549f5f55 | ||
|
|
412e51c856 | ||
|
|
23d06423ab | ||
|
|
aba551c868 | ||
|
|
1f9576a2ca | ||
|
|
d75fbc43c7 | ||
|
|
b7127ce7a7 | ||
|
|
7e9d2b954e | ||
|
|
94525200fd | ||
|
|
f056af1fbb | ||
|
|
8d45ff5bf6 | ||
|
|
fb15752d55 | ||
|
|
1f2dbc9dd2 | ||
|
|
002c3e8239 | ||
|
|
de03d7f100 | ||
|
|
25c968a38f | ||
|
|
aea0d046f6 | ||
|
|
1c90ce33f2 | ||
|
|
507953f415 | ||
|
|
f0555af1c6 | ||
|
|
2a81f2ec54 | ||
|
|
d20f413f78 | ||
|
|
ff09bf1a63 | ||
|
|
34a743e2dc | ||
|
|
43ab14845d | ||
|
|
fbfe5c8d6b | ||
|
|
b29873dee7 | ||
|
|
7b499de6d0 |
20
.github/workflows/pr_modular_tests.yml
vendored
20
.github/workflows/pr_modular_tests.yml
vendored
@@ -75,9 +75,27 @@ jobs:
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
echo "Repo consistency check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and run 'make fix-copies'" >> $GITHUB_STEP_SUMMARY
|
||||
check_auto_docs:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.10"
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
pip install .[quality]
|
||||
- name: Check auto docs
|
||||
run: make modular-autodoctrings
|
||||
- name: Check if failure
|
||||
if: ${{ failure() }}
|
||||
run: |
|
||||
echo "Auto docstring checks failed. Please run `python utils/modular_auto_docstring.py --fix_and_overwrite`." >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_fast_tests:
|
||||
needs: [check_code_quality, check_repository_consistency]
|
||||
needs: [check_code_quality, check_repository_consistency, check_auto_docs]
|
||||
name: Fast PyTorch Modular Pipeline CPU tests
|
||||
|
||||
runs-on:
|
||||
|
||||
4
Makefile
4
Makefile
@@ -70,6 +70,10 @@ fix-copies:
|
||||
python utils/check_copies.py --fix_and_overwrite
|
||||
python utils/check_dummies.py --fix_and_overwrite
|
||||
|
||||
# Auto docstrings in modular blocks
|
||||
modular-autodoctrings:
|
||||
python utils/modular_auto_docstring.py
|
||||
|
||||
# Run tests for the library
|
||||
|
||||
test:
|
||||
|
||||
@@ -496,8 +496,6 @@
|
||||
title: Bria 3.2
|
||||
- local: api/pipelines/bria_fibo
|
||||
title: Bria Fibo
|
||||
- local: api/pipelines/bria_fibo_edit
|
||||
title: Bria Fibo Edit
|
||||
- local: api/pipelines/chroma
|
||||
title: Chroma
|
||||
- local: api/pipelines/cogview3
|
||||
|
||||
@@ -1,33 +0,0 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Bria Fibo Edit
|
||||
|
||||
Fibo Edit is an 8B parameter image-to-image model that introduces a new paradigm of structured control, operating on JSON inputs paired with source images to enable deterministic and repeatable editing workflows.
|
||||
Featuring native masking for granular precision, it moves beyond simple prompt-based diffusion to offer explicit, interpretable control optimized for production environments.
|
||||
Its lightweight architecture is designed for deep customization, empowering researchers to build specialized "Edit" models for domain-specific tasks while delivering top-tier aesthetic quality
|
||||
|
||||
## Usage
|
||||
_As the model is gated, before using it with diffusers you first need to go to the [Bria Fibo Hugging Face page](https://huggingface.co/briaai/Fibo-Edit), fill in the form and accept the gate. Once you are in, you need to login so that your system knows you’ve accepted the gate._
|
||||
|
||||
Use the command below to log in:
|
||||
|
||||
```bash
|
||||
hf auth login
|
||||
```
|
||||
|
||||
|
||||
## BriaFiboEditPipeline
|
||||
|
||||
[[autodoc]] BriaFiboEditPipeline
|
||||
- all
|
||||
- __call__
|
||||
@@ -457,7 +457,6 @@ else:
|
||||
"AuraFlowPipeline",
|
||||
"BlipDiffusionControlNetPipeline",
|
||||
"BlipDiffusionPipeline",
|
||||
"BriaFiboEditPipeline",
|
||||
"BriaFiboPipeline",
|
||||
"BriaPipeline",
|
||||
"ChromaImg2ImgPipeline",
|
||||
@@ -1186,7 +1185,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
AudioLDM2UNet2DConditionModel,
|
||||
AudioLDMPipeline,
|
||||
AuraFlowPipeline,
|
||||
BriaFiboEditPipeline,
|
||||
BriaFiboPipeline,
|
||||
BriaPipeline,
|
||||
ChromaImg2ImgPipeline,
|
||||
|
||||
@@ -478,7 +478,7 @@ class PeftAdapterMixin:
|
||||
Args:
|
||||
adapter_names (`List[str]` or `str`):
|
||||
The names of the adapters to use.
|
||||
weights (`Union[List[float], float]`, *optional*):
|
||||
adapter_weights (`Union[List[float], float]`, *optional*):
|
||||
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
||||
adapters.
|
||||
|
||||
@@ -495,7 +495,7 @@ class PeftAdapterMixin:
|
||||
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
||||
)
|
||||
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
||||
pipeline.unet.set_adapters(["cinematic", "pixel"], weights=[0.5, 0.5])
|
||||
pipeline.unet.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
||||
```
|
||||
"""
|
||||
if not USE_PEFT_BACKEND:
|
||||
|
||||
@@ -675,7 +675,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
variant: Optional[str] = None,
|
||||
max_shard_size: Union[int, str] = "10GB",
|
||||
push_to_hub: bool = False,
|
||||
use_flashpack: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@@ -708,9 +707,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
|
||||
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
||||
namespace).
|
||||
use_flashpack (`bool`, *optional*, defaults to `False`):
|
||||
Whether to save the model in [FlashPack](https://github.com/fal-ai/flashpack) format. FlashPack is a
|
||||
binary format that allows for faster loading. Requires the `flashpack` library to be installed.
|
||||
kwargs (`Dict[str, Any]`, *optional*):
|
||||
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
||||
"""
|
||||
@@ -731,6 +727,12 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
" the logger on the traceback to understand the reason why the quantized model is not serializable."
|
||||
)
|
||||
|
||||
weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
|
||||
weights_name = _add_variant(weights_name, variant)
|
||||
weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
|
||||
".safetensors", "{suffix}.safetensors"
|
||||
)
|
||||
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
|
||||
if push_to_hub:
|
||||
@@ -744,80 +746,67 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
# Only save the model itself if we are using distributed training
|
||||
model_to_save = self
|
||||
|
||||
# Attach architecture to the config
|
||||
# Save the config
|
||||
if is_main_process:
|
||||
model_to_save.save_config(save_directory)
|
||||
|
||||
if use_flashpack:
|
||||
if not is_main_process:
|
||||
return
|
||||
# Save the model
|
||||
state_dict = model_to_save.state_dict()
|
||||
|
||||
from ..utils.flashpack_utils import save_flashpack
|
||||
# Save the model
|
||||
state_dict_split = split_torch_state_dict_into_shards(
|
||||
state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
|
||||
)
|
||||
|
||||
save_flashpack(model_to_save, save_directory, variant=variant)
|
||||
else:
|
||||
weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
|
||||
weights_name = _add_variant(weights_name, variant)
|
||||
weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
|
||||
".safetensors", "{suffix}.safetensors"
|
||||
)
|
||||
# Clean the folder from a previous save
|
||||
if is_main_process:
|
||||
for filename in os.listdir(save_directory):
|
||||
if filename in state_dict_split.filename_to_tensors.keys():
|
||||
continue
|
||||
full_filename = os.path.join(save_directory, filename)
|
||||
if not os.path.isfile(full_filename):
|
||||
continue
|
||||
weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
|
||||
weights_without_ext = weights_without_ext.replace("{suffix}", "")
|
||||
filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
|
||||
# make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
|
||||
if (
|
||||
filename.startswith(weights_without_ext)
|
||||
and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
|
||||
):
|
||||
os.remove(full_filename)
|
||||
|
||||
state_dict = model_to_save.state_dict()
|
||||
state_dict_split = split_torch_state_dict_into_shards(
|
||||
state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
|
||||
)
|
||||
|
||||
# Clean the folder from a previous save
|
||||
if is_main_process:
|
||||
for filename in os.listdir(save_directory):
|
||||
if filename in state_dict_split.filename_to_tensors.keys():
|
||||
continue
|
||||
full_filename = os.path.join(save_directory, filename)
|
||||
if not os.path.isfile(full_filename):
|
||||
continue
|
||||
weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
|
||||
weights_without_ext = weights_without_ext.replace("{suffix}", "")
|
||||
filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
|
||||
# make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
|
||||
if (
|
||||
filename.startswith(weights_without_ext)
|
||||
and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
|
||||
):
|
||||
os.remove(full_filename)
|
||||
|
||||
# Save each shard
|
||||
for filename, tensors in state_dict_split.filename_to_tensors.items():
|
||||
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
||||
filepath = os.path.join(save_directory, filename)
|
||||
if safe_serialization:
|
||||
# At some point we will need to deal better with save_function (used for TPU and other distributed
|
||||
# joyfulness), but for now this enough.
|
||||
safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(shard, filepath)
|
||||
|
||||
# Save index file if sharded
|
||||
if state_dict_split.is_sharded:
|
||||
index = {
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
|
||||
save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
|
||||
# Save the index as well
|
||||
with open(save_index_file, "w", encoding="utf-8") as f:
|
||||
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
||||
f.write(content)
|
||||
logger.info(
|
||||
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
|
||||
f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
|
||||
f"index located at {save_index_file}."
|
||||
)
|
||||
for filename, tensors in state_dict_split.filename_to_tensors.items():
|
||||
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
||||
filepath = os.path.join(save_directory, filename)
|
||||
if safe_serialization:
|
||||
# At some point we will need to deal better with save_function (used for TPU and other distributed
|
||||
# joyfulness), but for now this enough.
|
||||
safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
|
||||
else:
|
||||
path_to_weights = os.path.join(save_directory, weights_name)
|
||||
logger.info(f"Model weights saved in {path_to_weights}")
|
||||
torch.save(shard, filepath)
|
||||
|
||||
if state_dict_split.is_sharded:
|
||||
index = {
|
||||
"metadata": state_dict_split.metadata,
|
||||
"weight_map": state_dict_split.tensor_to_filename,
|
||||
}
|
||||
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
|
||||
save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
|
||||
# Save the index as well
|
||||
with open(save_index_file, "w", encoding="utf-8") as f:
|
||||
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
||||
f.write(content)
|
||||
logger.info(
|
||||
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
|
||||
f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
|
||||
f"index located at {save_index_file}."
|
||||
)
|
||||
else:
|
||||
path_to_weights = os.path.join(save_directory, weights_name)
|
||||
logger.info(f"Model weights saved in {path_to_weights}")
|
||||
|
||||
# Push to hub if requested (common to both paths)
|
||||
if push_to_hub:
|
||||
# Create a new empty model card and eventually tag it
|
||||
model_card = load_or_create_model_card(repo_id, token=token)
|
||||
@@ -950,10 +939,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
||||
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
||||
weights. If set to `False`, `safetensors` weights are not loaded.
|
||||
use_flashpack (`bool`, *optional*, defaults to `False`):
|
||||
If set to `True`, the model is first loaded from `flashpack` (https://github.com/fal-ai/flashpack)
|
||||
weights if a compatible `.flashpack` file is found. If flashpack is unavailable or the `.flashpack`
|
||||
file cannot be used, automatic fallback to the standard loading path (for example, `safetensors`).
|
||||
disable_mmap ('bool', *optional*, defaults to 'False'):
|
||||
Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
|
||||
is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
|
||||
@@ -997,7 +982,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
||||
variant = kwargs.pop("variant", None)
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
use_flashpack = kwargs.pop("use_flashpack", False)
|
||||
quantization_config = kwargs.pop("quantization_config", None)
|
||||
dduf_entries: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_entries", None)
|
||||
disable_mmap = kwargs.pop("disable_mmap", False)
|
||||
@@ -1215,31 +1199,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model
|
||||
|
||||
model = load_flax_checkpoint_in_pytorch_model(model, resolved_model_file)
|
||||
|
||||
flashpack_file = None
|
||||
if use_flashpack:
|
||||
try:
|
||||
flashpack_file = _get_model_file(
|
||||
pretrained_model_name_or_path,
|
||||
weights_name=_add_variant("model.flashpack", variant),
|
||||
cache_dir=cache_dir,
|
||||
force_download=force_download,
|
||||
proxies=proxies,
|
||||
local_files_only=local_files_only,
|
||||
token=token,
|
||||
revision=revision,
|
||||
subfolder=subfolder,
|
||||
user_agent=user_agent,
|
||||
commit_hash=commit_hash,
|
||||
dduf_entries=dduf_entries,
|
||||
)
|
||||
except EnvironmentError:
|
||||
flashpack_file = None
|
||||
logger.warning(
|
||||
"`use_flashpack` was specified to be True but not flashpack file was found. Resorting to non-flashpack alternatives."
|
||||
)
|
||||
|
||||
if flashpack_file is None:
|
||||
else:
|
||||
# in the case it is sharded, we have already the index
|
||||
if is_sharded:
|
||||
resolved_model_file, sharded_metadata = _get_checkpoint_shard_files(
|
||||
@@ -1255,7 +1215,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
dduf_entries=dduf_entries,
|
||||
)
|
||||
elif use_safetensors:
|
||||
logger.warning("Trying to load model weights with safetensors format.")
|
||||
try:
|
||||
resolved_model_file = _get_model_file(
|
||||
pretrained_model_name_or_path,
|
||||
@@ -1321,29 +1280,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
if dtype_orig is not None:
|
||||
torch.set_default_dtype(dtype_orig)
|
||||
|
||||
if flashpack_file is not None:
|
||||
from ..utils.flashpack_utils import load_flashpack
|
||||
|
||||
# Even when using FlashPack, we preserve `low_cpu_mem_usage` behavior by initializing
|
||||
# the model with meta tensors. Since FlashPack cannot write into meta tensors, we
|
||||
# explicitly materialize parameters before loading to ensure correctness and parity
|
||||
# with the standard loading path.
|
||||
if any(p.device.type == "meta" for p in model.parameters()):
|
||||
model.to_empty(device="cpu")
|
||||
load_flashpack(model, flashpack_file)
|
||||
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
||||
model.eval()
|
||||
|
||||
if output_loading_info:
|
||||
return model, {
|
||||
"missing_keys": [],
|
||||
"unexpected_keys": [],
|
||||
"mismatched_keys": [],
|
||||
"error_msgs": [],
|
||||
}
|
||||
|
||||
return model
|
||||
|
||||
state_dict = None
|
||||
if not is_sharded:
|
||||
# Time to load the checkpoint
|
||||
@@ -1391,6 +1327,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
keep_in_fp32_modules=keep_in_fp32_modules,
|
||||
dduf_entries=dduf_entries,
|
||||
is_parallel_loading_enabled=is_parallel_loading_enabled,
|
||||
disable_mmap=disable_mmap,
|
||||
)
|
||||
loading_info = {
|
||||
"missing_keys": missing_keys,
|
||||
@@ -1436,8 +1373,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
|
||||
if output_loading_info:
|
||||
return model, loading_info
|
||||
|
||||
logger.warning(f"Model till end {pretrained_model_name_or_path} loaded successfully")
|
||||
|
||||
return model
|
||||
|
||||
# Adapted from `transformers`.
|
||||
|
||||
@@ -39,8 +39,11 @@ from .modular_pipeline_utils import (
|
||||
InputParam,
|
||||
InsertableDict,
|
||||
OutputParam,
|
||||
combine_inputs,
|
||||
combine_outputs,
|
||||
format_components,
|
||||
format_configs,
|
||||
format_workflow,
|
||||
make_doc_string,
|
||||
)
|
||||
|
||||
@@ -242,6 +245,7 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
|
||||
config_name = "modular_config.json"
|
||||
model_name = None
|
||||
_workflow_map = None
|
||||
|
||||
@classmethod
|
||||
def _get_signature_keys(cls, obj):
|
||||
@@ -297,6 +301,35 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
def outputs(self) -> List[OutputParam]:
|
||||
return self._get_outputs()
|
||||
|
||||
# currentlyonly ConditionalPipelineBlocks and SequentialPipelineBlocks support `get_execution_blocks`
|
||||
def get_execution_blocks(self, **kwargs):
|
||||
"""
|
||||
Get the block(s) that would execute given the inputs. Must be implemented by subclasses that support
|
||||
conditional block selection.
|
||||
|
||||
Args:
|
||||
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
||||
"""
|
||||
raise NotImplementedError(f"`get_execution_blocks` is not implemented for {self.__class__.__name__}")
|
||||
|
||||
# currently only SequentialPipelineBlocks support workflows
|
||||
@property
|
||||
def workflow_names(self):
|
||||
"""
|
||||
Returns a list of available workflow names. Must be implemented by subclasses that define `_workflow_map`.
|
||||
"""
|
||||
raise NotImplementedError(f"`workflow_names` is not implemented for {self.__class__.__name__}")
|
||||
|
||||
def get_workflow(self, workflow_name: str):
|
||||
"""
|
||||
Get the execution blocks for a specific workflow. Must be implemented by subclasses that define
|
||||
`_workflow_map`.
|
||||
|
||||
Args:
|
||||
workflow_name: Name of the workflow to retrieve.
|
||||
"""
|
||||
raise NotImplementedError(f"`get_workflow` is not implemented for {self.__class__.__name__}")
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(
|
||||
cls,
|
||||
@@ -434,72 +467,6 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
if current_value is not param: # Using identity comparison to check if object was modified
|
||||
state.set(param_name, param, input_param.kwargs_type)
|
||||
|
||||
@staticmethod
|
||||
def combine_inputs(*named_input_lists: List[Tuple[str, List[InputParam]]]) -> List[InputParam]:
|
||||
"""
|
||||
Combines multiple lists of InputParam objects from different blocks. For duplicate inputs, updates only if
|
||||
current default value is None and new default value is not None. Warns if multiple non-None default values
|
||||
exist for the same input.
|
||||
|
||||
Args:
|
||||
named_input_lists: List of tuples containing (block_name, input_param_list) pairs
|
||||
|
||||
Returns:
|
||||
List[InputParam]: Combined list of unique InputParam objects
|
||||
"""
|
||||
combined_dict = {} # name -> InputParam
|
||||
value_sources = {} # name -> block_name
|
||||
|
||||
for block_name, inputs in named_input_lists:
|
||||
for input_param in inputs:
|
||||
if input_param.name is None and input_param.kwargs_type is not None:
|
||||
input_name = "*_" + input_param.kwargs_type
|
||||
else:
|
||||
input_name = input_param.name
|
||||
if input_name in combined_dict:
|
||||
current_param = combined_dict[input_name]
|
||||
if (
|
||||
current_param.default is not None
|
||||
and input_param.default is not None
|
||||
and current_param.default != input_param.default
|
||||
):
|
||||
warnings.warn(
|
||||
f"Multiple different default values found for input '{input_name}': "
|
||||
f"{current_param.default} (from block '{value_sources[input_name]}') and "
|
||||
f"{input_param.default} (from block '{block_name}'). Using {current_param.default}."
|
||||
)
|
||||
if current_param.default is None and input_param.default is not None:
|
||||
combined_dict[input_name] = input_param
|
||||
value_sources[input_name] = block_name
|
||||
else:
|
||||
combined_dict[input_name] = input_param
|
||||
value_sources[input_name] = block_name
|
||||
|
||||
return list(combined_dict.values())
|
||||
|
||||
@staticmethod
|
||||
def combine_outputs(*named_output_lists: List[Tuple[str, List[OutputParam]]]) -> List[OutputParam]:
|
||||
"""
|
||||
Combines multiple lists of OutputParam objects from different blocks. For duplicate outputs, keeps the first
|
||||
occurrence of each output name.
|
||||
|
||||
Args:
|
||||
named_output_lists: List of tuples containing (block_name, output_param_list) pairs
|
||||
|
||||
Returns:
|
||||
List[OutputParam]: Combined list of unique OutputParam objects
|
||||
"""
|
||||
combined_dict = {} # name -> OutputParam
|
||||
|
||||
for block_name, outputs in named_output_lists:
|
||||
for output_param in outputs:
|
||||
if (output_param.name not in combined_dict) or (
|
||||
combined_dict[output_param.name].kwargs_type is None and output_param.kwargs_type is not None
|
||||
):
|
||||
combined_dict[output_param.name] = output_param
|
||||
|
||||
return list(combined_dict.values())
|
||||
|
||||
@property
|
||||
def input_names(self) -> List[str]:
|
||||
return [input_param.name for input_param in self.inputs if input_param.name is not None]
|
||||
@@ -531,7 +498,8 @@ class ModularPipelineBlocks(ConfigMixin, PushToHubMixin):
|
||||
class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
"""
|
||||
A Pipeline Blocks that conditionally selects a block to run based on the inputs. Subclasses must implement the
|
||||
`select_block` method to define the logic for selecting the block.
|
||||
`select_block` method to define the logic for selecting the block. Currently, we only support selection logic based
|
||||
on the presence or absence of inputs (i.e., whether they are `None` or not)
|
||||
|
||||
This class inherits from [`ModularPipelineBlocks`]. Check the superclass documentation for the generic methods the
|
||||
library implements for all the pipeline blocks (such as loading or saving etc.)
|
||||
@@ -539,15 +507,20 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
> [!WARNING] > This is an experimental feature and is likely to change in the future.
|
||||
|
||||
Attributes:
|
||||
block_classes: List of block classes to be used
|
||||
block_names: List of prefixes for each block
|
||||
block_trigger_inputs: List of input names that select_block() uses to determine which block to run
|
||||
block_classes: List of block classes to be used. Must have the same length as `block_names`.
|
||||
block_names: List of names for each block. Must have the same length as `block_classes`.
|
||||
block_trigger_inputs: List of input names that `select_block()` uses to determine which block to run.
|
||||
For `ConditionalPipelineBlocks`, this does not need to correspond to `block_names` and `block_classes`. For
|
||||
`AutoPipelineBlocks`, this must have the same length as `block_names` and `block_classes`, where each
|
||||
element specifies the trigger input for the corresponding block.
|
||||
default_block_name: Name of the default block to run when no trigger inputs match.
|
||||
If None, this block can be skipped entirely when no trigger inputs are provided.
|
||||
"""
|
||||
|
||||
block_classes = []
|
||||
block_names = []
|
||||
block_trigger_inputs = []
|
||||
default_block_name = None # name of the default block if no trigger inputs are provided, if None, this block can be skipped if no trigger inputs are provided
|
||||
default_block_name = None
|
||||
|
||||
def __init__(self):
|
||||
sub_blocks = InsertableDict()
|
||||
@@ -611,7 +584,7 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[Tuple[str, Any]]:
|
||||
named_inputs = [(name, block.inputs) for name, block in self.sub_blocks.items()]
|
||||
combined_inputs = self.combine_inputs(*named_inputs)
|
||||
combined_inputs = combine_inputs(*named_inputs)
|
||||
# mark Required inputs only if that input is required by all the blocks
|
||||
for input_param in combined_inputs:
|
||||
if input_param.name in self.required_inputs:
|
||||
@@ -623,15 +596,16 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
named_outputs = [(name, block.intermediate_outputs) for name, block in self.sub_blocks.items()]
|
||||
combined_outputs = self.combine_outputs(*named_outputs)
|
||||
combined_outputs = combine_outputs(*named_outputs)
|
||||
return combined_outputs
|
||||
|
||||
@property
|
||||
def outputs(self) -> List[str]:
|
||||
named_outputs = [(name, block.outputs) for name, block in self.sub_blocks.items()]
|
||||
combined_outputs = self.combine_outputs(*named_outputs)
|
||||
combined_outputs = combine_outputs(*named_outputs)
|
||||
return combined_outputs
|
||||
|
||||
# used for `__repr__`
|
||||
def _get_trigger_inputs(self) -> set:
|
||||
"""
|
||||
Returns a set of all unique trigger input values found in this block and nested blocks.
|
||||
@@ -660,11 +634,6 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
|
||||
return all_triggers
|
||||
|
||||
@property
|
||||
def trigger_inputs(self):
|
||||
"""All trigger inputs including from nested blocks."""
|
||||
return self._get_trigger_inputs()
|
||||
|
||||
def select_block(self, **kwargs) -> Optional[str]:
|
||||
"""
|
||||
Select the block to run based on the trigger inputs. Subclasses must implement this method to define the logic
|
||||
@@ -704,6 +673,39 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
logger.error(error_msg)
|
||||
raise
|
||||
|
||||
def get_execution_blocks(self, **kwargs) -> Optional["ModularPipelineBlocks"]:
|
||||
"""
|
||||
Get the block(s) that would execute given the inputs.
|
||||
|
||||
Recursively resolves nested ConditionalPipelineBlocks until reaching either:
|
||||
- A leaf block (no sub_blocks) → returns single `ModularPipelineBlocks`
|
||||
- A `SequentialPipelineBlocks` → delegates to its `get_execution_blocks()` which returns
|
||||
a `SequentialPipelineBlocks` containing the resolved execution blocks
|
||||
|
||||
Args:
|
||||
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
||||
|
||||
Returns:
|
||||
- `ModularPipelineBlocks`: A leaf block or resolved `SequentialPipelineBlocks`
|
||||
- `None`: If this block would be skipped (no trigger matched and no default)
|
||||
"""
|
||||
trigger_kwargs = {name: kwargs.get(name) for name in self.block_trigger_inputs if name is not None}
|
||||
block_name = self.select_block(**trigger_kwargs)
|
||||
|
||||
if block_name is None:
|
||||
block_name = self.default_block_name
|
||||
|
||||
if block_name is None:
|
||||
return None
|
||||
|
||||
block = self.sub_blocks[block_name]
|
||||
|
||||
# Recursively resolve until we hit a leaf block or a SequentialPipelineBlocks
|
||||
if block.sub_blocks:
|
||||
return block.get_execution_blocks(**kwargs)
|
||||
|
||||
return block
|
||||
|
||||
def __repr__(self):
|
||||
class_name = self.__class__.__name__
|
||||
base_class = self.__class__.__bases__[0].__name__
|
||||
@@ -711,11 +713,11 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
f"{class_name}(\n Class: {base_class}\n" if base_class and base_class != "object" else f"{class_name}(\n"
|
||||
)
|
||||
|
||||
if self.trigger_inputs:
|
||||
if self._get_trigger_inputs():
|
||||
header += "\n"
|
||||
header += " " + "=" * 100 + "\n"
|
||||
header += " This pipeline contains blocks that are selected at runtime based on inputs.\n"
|
||||
header += f" Trigger Inputs: {sorted(self.trigger_inputs)}\n"
|
||||
header += f" Trigger Inputs: {sorted(self._get_trigger_inputs())}\n"
|
||||
header += " " + "=" * 100 + "\n\n"
|
||||
|
||||
# Format description with proper indentation
|
||||
@@ -782,24 +784,56 @@ class ConditionalPipelineBlocks(ModularPipelineBlocks):
|
||||
|
||||
class AutoPipelineBlocks(ConditionalPipelineBlocks):
|
||||
"""
|
||||
A Pipeline Blocks that automatically selects a block to run based on the presence of trigger inputs.
|
||||
A Pipeline Blocks that automatically selects a block to run based on the presence of trigger inputs.
|
||||
|
||||
This is a specialized version of `ConditionalPipelineBlocks` where:
|
||||
- Each block has one corresponding trigger input (1:1 mapping)
|
||||
- Block selection is automatic: the first block whose trigger input is present gets selected
|
||||
- `block_trigger_inputs` must have the same length as `block_names` and `block_classes`
|
||||
- Use `None` in `block_trigger_inputs` to specify the default block, i.e the block that will run if no trigger
|
||||
inputs are present
|
||||
|
||||
Attributes:
|
||||
block_classes:
|
||||
List of block classes to be used. Must have the same length as `block_names` and
|
||||
`block_trigger_inputs`.
|
||||
block_names:
|
||||
List of names for each block. Must have the same length as `block_classes` and `block_trigger_inputs`.
|
||||
block_trigger_inputs:
|
||||
List of input names where each element specifies the trigger input for the corresponding block. Use
|
||||
`None` to mark the default block.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class MyAutoBlock(AutoPipelineBlocks):
|
||||
block_classes = [InpaintEncoderBlock, ImageEncoderBlock, TextEncoderBlock]
|
||||
block_names = ["inpaint", "img2img", "text2img"]
|
||||
block_trigger_inputs = ["mask_image", "image", None] # text2img is the default
|
||||
```
|
||||
|
||||
With this definition:
|
||||
- As long as `mask_image` is provided, "inpaint" block runs (regardless of `image` being provided or not)
|
||||
- If `mask_image` is not provided but `image` is provided, "img2img" block runs
|
||||
- Otherwise, "text2img" block runs (default, trigger is `None`)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
if self.default_block_name is not None:
|
||||
raise ValueError(
|
||||
f"In {self.__class__.__name__}, do not set `default_block_name` for AutoPipelineBlocks. "
|
||||
f"Use `None` in `block_trigger_inputs` to specify the default block."
|
||||
)
|
||||
|
||||
if not (len(self.block_classes) == len(self.block_names) == len(self.block_trigger_inputs)):
|
||||
raise ValueError(
|
||||
f"In {self.__class__.__name__}, the number of block_classes, block_names, and block_trigger_inputs must be the same."
|
||||
)
|
||||
|
||||
@property
|
||||
def default_block_name(self) -> Optional[str]:
|
||||
"""Derive default_block_name from block_trigger_inputs (None entry)."""
|
||||
if None in self.block_trigger_inputs:
|
||||
idx = self.block_trigger_inputs.index(None)
|
||||
return self.block_names[idx]
|
||||
return None
|
||||
self.default_block_name = self.block_names[idx]
|
||||
|
||||
def select_block(self, **kwargs) -> Optional[str]:
|
||||
"""Select block based on which trigger input is present (not None)."""
|
||||
@@ -853,6 +887,29 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
expected_configs.append(config)
|
||||
return expected_configs
|
||||
|
||||
@property
|
||||
def workflow_names(self):
|
||||
if self._workflow_map is None:
|
||||
raise NotImplementedError(
|
||||
f"workflows is not supported because _workflow_map is not set for {self.__class__.__name__}"
|
||||
)
|
||||
|
||||
return list(self._workflow_map.keys())
|
||||
|
||||
def get_workflow(self, workflow_name: str):
|
||||
if self._workflow_map is None:
|
||||
raise NotImplementedError(
|
||||
f"workflows is not supported because _workflow_map is not set for {self.__class__.__name__}"
|
||||
)
|
||||
|
||||
if workflow_name not in self._workflow_map:
|
||||
raise ValueError(f"Workflow {workflow_name} not found in {self.__class__.__name__}")
|
||||
|
||||
trigger_inputs = self._workflow_map[workflow_name]
|
||||
workflow_blocks = self.get_execution_blocks(**trigger_inputs)
|
||||
|
||||
return workflow_blocks
|
||||
|
||||
@classmethod
|
||||
def from_blocks_dict(
|
||||
cls, blocks_dict: Dict[str, Any], description: Optional[str] = None
|
||||
@@ -948,7 +1005,7 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
# filter out them here so they do not end up as intermediate_outputs
|
||||
if name not in inp_names:
|
||||
named_outputs.append((name, block.intermediate_outputs))
|
||||
combined_outputs = self.combine_outputs(*named_outputs)
|
||||
combined_outputs = combine_outputs(*named_outputs)
|
||||
return combined_outputs
|
||||
|
||||
# YiYi TODO: I think we can remove the outputs property
|
||||
@@ -972,6 +1029,7 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
raise
|
||||
return pipeline, state
|
||||
|
||||
# used for `trigger_inputs` property
|
||||
def _get_trigger_inputs(self):
|
||||
"""
|
||||
Returns a set of all unique trigger input values found in the blocks.
|
||||
@@ -995,89 +1053,50 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
|
||||
return fn_recursive_get_trigger(self.sub_blocks)
|
||||
|
||||
@property
|
||||
def trigger_inputs(self):
|
||||
return self._get_trigger_inputs()
|
||||
|
||||
def _traverse_trigger_blocks(self, active_inputs):
|
||||
def get_execution_blocks(self, **kwargs) -> "SequentialPipelineBlocks":
|
||||
"""
|
||||
Traverse blocks and select which ones would run given the active inputs.
|
||||
Get the blocks that would execute given the specified inputs.
|
||||
|
||||
Args:
|
||||
active_inputs: Dict of input names to values that are "present"
|
||||
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
||||
|
||||
Returns:
|
||||
OrderedDict of block_name -> block that would execute
|
||||
SequentialPipelineBlocks containing only the blocks that would execute
|
||||
"""
|
||||
# Copy kwargs so we can add outputs as we traverse
|
||||
active_inputs = dict(kwargs)
|
||||
|
||||
def fn_recursive_traverse(block, block_name, active_inputs):
|
||||
result_blocks = OrderedDict()
|
||||
|
||||
# ConditionalPipelineBlocks (includes AutoPipelineBlocks)
|
||||
if isinstance(block, ConditionalPipelineBlocks):
|
||||
trigger_kwargs = {name: active_inputs.get(name) for name in block.block_trigger_inputs}
|
||||
selected_block_name = block.select_block(**trigger_kwargs)
|
||||
|
||||
if selected_block_name is None:
|
||||
selected_block_name = block.default_block_name
|
||||
|
||||
if selected_block_name is None:
|
||||
block = block.get_execution_blocks(**active_inputs)
|
||||
if block is None:
|
||||
return result_blocks
|
||||
|
||||
selected_block = block.sub_blocks[selected_block_name]
|
||||
|
||||
if selected_block.sub_blocks:
|
||||
result_blocks.update(fn_recursive_traverse(selected_block, block_name, active_inputs))
|
||||
else:
|
||||
result_blocks[block_name] = selected_block
|
||||
if hasattr(selected_block, "outputs"):
|
||||
for out in selected_block.outputs:
|
||||
active_inputs[out.name] = True
|
||||
|
||||
return result_blocks
|
||||
|
||||
# SequentialPipelineBlocks or LoopSequentialPipelineBlocks
|
||||
if block.sub_blocks:
|
||||
# Has sub_blocks (SequentialPipelineBlocks/ConditionalPipelineBlocks)
|
||||
if block.sub_blocks and not isinstance(block, LoopSequentialPipelineBlocks):
|
||||
for sub_block_name, sub_block in block.sub_blocks.items():
|
||||
blocks_to_update = fn_recursive_traverse(sub_block, sub_block_name, active_inputs)
|
||||
blocks_to_update = {f"{block_name}.{k}": v for k, v in blocks_to_update.items()}
|
||||
result_blocks.update(blocks_to_update)
|
||||
nested_blocks = fn_recursive_traverse(sub_block, sub_block_name, active_inputs)
|
||||
nested_blocks = {f"{block_name}.{k}": v for k, v in nested_blocks.items()}
|
||||
result_blocks.update(nested_blocks)
|
||||
else:
|
||||
# Leaf block: single ModularPipelineBlocks or LoopSequentialPipelineBlocks
|
||||
result_blocks[block_name] = block
|
||||
if hasattr(block, "outputs"):
|
||||
for out in block.outputs:
|
||||
# Add outputs to active_inputs so subsequent blocks can use them as triggers
|
||||
if hasattr(block, "intermediate_outputs"):
|
||||
for out in block.intermediate_outputs:
|
||||
active_inputs[out.name] = True
|
||||
|
||||
return result_blocks
|
||||
|
||||
all_blocks = OrderedDict()
|
||||
for block_name, block in self.sub_blocks.items():
|
||||
blocks_to_update = fn_recursive_traverse(block, block_name, active_inputs)
|
||||
all_blocks.update(blocks_to_update)
|
||||
return all_blocks
|
||||
nested_blocks = fn_recursive_traverse(block, block_name, active_inputs)
|
||||
all_blocks.update(nested_blocks)
|
||||
|
||||
def get_execution_blocks(self, **kwargs):
|
||||
"""
|
||||
Get the blocks that would execute given the specified inputs.
|
||||
|
||||
Args:
|
||||
**kwargs: Input names and values. Only trigger inputs affect block selection.
|
||||
Pass any inputs that would be non-None at runtime.
|
||||
|
||||
Returns:
|
||||
SequentialPipelineBlocks containing only the blocks that would execute
|
||||
|
||||
Example:
|
||||
# Get blocks for inpainting workflow blocks = pipeline.get_execution_blocks(prompt="a cat", mask=mask,
|
||||
image=image)
|
||||
|
||||
# Get blocks for text2image workflow blocks = pipeline.get_execution_blocks(prompt="a cat")
|
||||
"""
|
||||
# Filter out None values
|
||||
active_inputs = {k: v for k, v in kwargs.items() if v is not None}
|
||||
|
||||
blocks_triggered = self._traverse_trigger_blocks(active_inputs)
|
||||
return SequentialPipelineBlocks.from_blocks_dict(blocks_triggered)
|
||||
return SequentialPipelineBlocks.from_blocks_dict(all_blocks)
|
||||
|
||||
def __repr__(self):
|
||||
class_name = self.__class__.__name__
|
||||
@@ -1086,18 +1105,23 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
f"{class_name}(\n Class: {base_class}\n" if base_class and base_class != "object" else f"{class_name}(\n"
|
||||
)
|
||||
|
||||
if self.trigger_inputs:
|
||||
if self._workflow_map is None and self._get_trigger_inputs():
|
||||
header += "\n"
|
||||
header += " " + "=" * 100 + "\n"
|
||||
header += " This pipeline contains blocks that are selected at runtime based on inputs.\n"
|
||||
header += f" Trigger Inputs: {[inp for inp in self.trigger_inputs if inp is not None]}\n"
|
||||
header += f" Trigger Inputs: {[inp for inp in self._get_trigger_inputs() if inp is not None]}\n"
|
||||
# Get first trigger input as example
|
||||
example_input = next(t for t in self.trigger_inputs if t is not None)
|
||||
example_input = next(t for t in self._get_trigger_inputs() if t is not None)
|
||||
header += f" Use `get_execution_blocks()` to see selected blocks (e.g. `get_execution_blocks({example_input}=...)`).\n"
|
||||
header += " " + "=" * 100 + "\n\n"
|
||||
|
||||
description = self.description
|
||||
if self._workflow_map is not None:
|
||||
workflow_str = format_workflow(self._workflow_map)
|
||||
description = f"{self.description}\n\n{workflow_str}"
|
||||
|
||||
# Format description with proper indentation
|
||||
desc_lines = self.description.split("\n")
|
||||
desc_lines = description.split("\n")
|
||||
desc = []
|
||||
# First line with "Description:" label
|
||||
desc.append(f" Description: {desc_lines[0]}")
|
||||
@@ -1145,10 +1169,15 @@ class SequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
|
||||
@property
|
||||
def doc(self):
|
||||
description = self.description
|
||||
if self._workflow_map is not None:
|
||||
workflow_str = format_workflow(self._workflow_map)
|
||||
description = f"{self.description}\n\n{workflow_str}"
|
||||
|
||||
return make_doc_string(
|
||||
self.inputs,
|
||||
self.outputs,
|
||||
self.description,
|
||||
description=description,
|
||||
class_name=self.__class__.__name__,
|
||||
expected_components=self.expected_components,
|
||||
expected_configs=self.expected_configs,
|
||||
@@ -1281,7 +1310,7 @@ class LoopSequentialPipelineBlocks(ModularPipelineBlocks):
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
named_outputs = [(name, block.intermediate_outputs) for name, block in self.sub_blocks.items()]
|
||||
combined_outputs = self.combine_outputs(*named_outputs)
|
||||
combined_outputs = combine_outputs(*named_outputs)
|
||||
for output in self.loop_intermediate_outputs:
|
||||
if output.name not in {output.name for output in combined_outputs}:
|
||||
combined_outputs.append(output)
|
||||
|
||||
@@ -14,10 +14,12 @@
|
||||
|
||||
import inspect
|
||||
import re
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass, field, fields
|
||||
from typing import Any, Dict, List, Literal, Optional, Type, Union
|
||||
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, Union
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ..configuration_utils import ConfigMixin, FrozenDict
|
||||
@@ -323,11 +325,192 @@ class ConfigSpec:
|
||||
description: Optional[str] = None
|
||||
|
||||
|
||||
# YiYi Notes: both inputs and intermediate_inputs are InputParam objects
|
||||
# however some fields are not relevant for intermediate_inputs
|
||||
# e.g. unlike inputs, required only used in docstring for intermediate_inputs, we do not check if a required intermediate inputs is passed
|
||||
# default is not used for intermediate_inputs, we only use default from inputs, so it is ignored if it is set for intermediate_inputs
|
||||
# -> should we use different class for inputs and intermediate_inputs?
|
||||
# ======================================================
|
||||
# InputParam and OutputParam templates
|
||||
# ======================================================
|
||||
|
||||
INPUT_PARAM_TEMPLATES = {
|
||||
"prompt": {
|
||||
"type_hint": str,
|
||||
"required": True,
|
||||
"description": "The prompt or prompts to guide image generation.",
|
||||
},
|
||||
"negative_prompt": {
|
||||
"type_hint": str,
|
||||
"description": "The prompt or prompts not to guide the image generation.",
|
||||
},
|
||||
"max_sequence_length": {
|
||||
"type_hint": int,
|
||||
"default": 512,
|
||||
"description": "Maximum sequence length for prompt encoding.",
|
||||
},
|
||||
"height": {
|
||||
"type_hint": int,
|
||||
"description": "The height in pixels of the generated image.",
|
||||
},
|
||||
"width": {
|
||||
"type_hint": int,
|
||||
"description": "The width in pixels of the generated image.",
|
||||
},
|
||||
"num_inference_steps": {
|
||||
"type_hint": int,
|
||||
"default": 50,
|
||||
"description": "The number of denoising steps.",
|
||||
},
|
||||
"num_images_per_prompt": {
|
||||
"type_hint": int,
|
||||
"default": 1,
|
||||
"description": "The number of images to generate per prompt.",
|
||||
},
|
||||
"generator": {
|
||||
"type_hint": torch.Generator,
|
||||
"description": "Torch generator for deterministic generation.",
|
||||
},
|
||||
"sigmas": {
|
||||
"type_hint": List[float],
|
||||
"description": "Custom sigmas for the denoising process.",
|
||||
},
|
||||
"strength": {
|
||||
"type_hint": float,
|
||||
"default": 0.9,
|
||||
"description": "Strength for img2img/inpainting.",
|
||||
},
|
||||
"image": {
|
||||
"type_hint": Union[PIL.Image.Image, List[PIL.Image.Image]],
|
||||
"required": True,
|
||||
"description": "Reference image(s) for denoising. Can be a single image or list of images.",
|
||||
},
|
||||
"latents": {
|
||||
"type_hint": torch.Tensor,
|
||||
"description": "Pre-generated noisy latents for image generation.",
|
||||
},
|
||||
"timesteps": {
|
||||
"type_hint": torch.Tensor,
|
||||
"description": "Timesteps for the denoising process.",
|
||||
},
|
||||
"output_type": {
|
||||
"type_hint": str,
|
||||
"default": "pil",
|
||||
"description": "Output format: 'pil', 'np', 'pt'.",
|
||||
},
|
||||
"attention_kwargs": {
|
||||
"type_hint": Dict[str, Any],
|
||||
"description": "Additional kwargs for attention processors.",
|
||||
},
|
||||
"denoiser_input_fields": {
|
||||
"name": None,
|
||||
"kwargs_type": "denoiser_input_fields",
|
||||
"description": "conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
|
||||
},
|
||||
# inpainting
|
||||
"mask_image": {
|
||||
"type_hint": PIL.Image.Image,
|
||||
"required": True,
|
||||
"description": "Mask image for inpainting.",
|
||||
},
|
||||
"padding_mask_crop": {
|
||||
"type_hint": int,
|
||||
"description": "Padding for mask cropping in inpainting.",
|
||||
},
|
||||
# controlnet
|
||||
"control_image": {
|
||||
"type_hint": PIL.Image.Image,
|
||||
"required": True,
|
||||
"description": "Control image for ControlNet conditioning.",
|
||||
},
|
||||
"control_guidance_start": {
|
||||
"type_hint": float,
|
||||
"default": 0.0,
|
||||
"description": "When to start applying ControlNet.",
|
||||
},
|
||||
"control_guidance_end": {
|
||||
"type_hint": float,
|
||||
"default": 1.0,
|
||||
"description": "When to stop applying ControlNet.",
|
||||
},
|
||||
"controlnet_conditioning_scale": {
|
||||
"type_hint": float,
|
||||
"default": 1.0,
|
||||
"description": "Scale for ControlNet conditioning.",
|
||||
},
|
||||
"layers": {
|
||||
"type_hint": int,
|
||||
"default": 4,
|
||||
"description": "Number of layers to extract from the image",
|
||||
},
|
||||
# common intermediate inputs
|
||||
"prompt_embeds": {
|
||||
"type_hint": torch.Tensor,
|
||||
"required": True,
|
||||
"description": "text embeddings used to guide the image generation. Can be generated from text_encoder step.",
|
||||
},
|
||||
"prompt_embeds_mask": {
|
||||
"type_hint": torch.Tensor,
|
||||
"required": True,
|
||||
"description": "mask for the text embeddings. Can be generated from text_encoder step.",
|
||||
},
|
||||
"negative_prompt_embeds": {
|
||||
"type_hint": torch.Tensor,
|
||||
"description": "negative text embeddings used to guide the image generation. Can be generated from text_encoder step.",
|
||||
},
|
||||
"negative_prompt_embeds_mask": {
|
||||
"type_hint": torch.Tensor,
|
||||
"description": "mask for the negative text embeddings. Can be generated from text_encoder step.",
|
||||
},
|
||||
"image_latents": {
|
||||
"type_hint": torch.Tensor,
|
||||
"required": True,
|
||||
"description": "image latents used to guide the image generation. Can be generated from vae_encoder step.",
|
||||
},
|
||||
"batch_size": {
|
||||
"type_hint": int,
|
||||
"default": 1,
|
||||
"description": "Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step.",
|
||||
},
|
||||
"dtype": {
|
||||
"type_hint": torch.dtype,
|
||||
"default": torch.float32,
|
||||
"description": "The dtype of the model inputs, can be generated in input step.",
|
||||
},
|
||||
}
|
||||
|
||||
OUTPUT_PARAM_TEMPLATES = {
|
||||
"images": {
|
||||
"type_hint": List[PIL.Image.Image],
|
||||
"description": "Generated images.",
|
||||
},
|
||||
"latents": {
|
||||
"type_hint": torch.Tensor,
|
||||
"description": "Denoised latents.",
|
||||
},
|
||||
# intermediate outputs
|
||||
"prompt_embeds": {
|
||||
"type_hint": torch.Tensor,
|
||||
"kwargs_type": "denoiser_input_fields",
|
||||
"description": "The prompt embeddings.",
|
||||
},
|
||||
"prompt_embeds_mask": {
|
||||
"type_hint": torch.Tensor,
|
||||
"kwargs_type": "denoiser_input_fields",
|
||||
"description": "The encoder attention mask.",
|
||||
},
|
||||
"negative_prompt_embeds": {
|
||||
"type_hint": torch.Tensor,
|
||||
"kwargs_type": "denoiser_input_fields",
|
||||
"description": "The negative prompt embeddings.",
|
||||
},
|
||||
"negative_prompt_embeds_mask": {
|
||||
"type_hint": torch.Tensor,
|
||||
"kwargs_type": "denoiser_input_fields",
|
||||
"description": "The negative prompt embeddings mask.",
|
||||
},
|
||||
"image_latents": {
|
||||
"type_hint": torch.Tensor,
|
||||
"description": "The latent representation of the input image.",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class InputParam:
|
||||
"""Specification for an input parameter."""
|
||||
@@ -337,11 +520,31 @@ class InputParam:
|
||||
default: Any = None
|
||||
required: bool = False
|
||||
description: str = ""
|
||||
kwargs_type: str = None # YiYi Notes: remove this feature (maybe)
|
||||
kwargs_type: str = None
|
||||
|
||||
def __repr__(self):
|
||||
return f"<{self.name}: {'required' if self.required else 'optional'}, default={self.default}>"
|
||||
|
||||
@classmethod
|
||||
def template(cls, template_name: str, note: str = None, **overrides) -> "InputParam":
|
||||
"""Get template for name if exists, otherwise raise ValueError."""
|
||||
if template_name not in INPUT_PARAM_TEMPLATES:
|
||||
raise ValueError(f"InputParam template for {template_name} not found")
|
||||
|
||||
template_kwargs = INPUT_PARAM_TEMPLATES[template_name].copy()
|
||||
|
||||
# Determine the actual param name:
|
||||
# 1. From overrides if provided
|
||||
# 2. From template if present
|
||||
# 3. Fall back to template_name
|
||||
name = overrides.pop("name", template_kwargs.pop("name", template_name))
|
||||
|
||||
if note and "description" in template_kwargs:
|
||||
template_kwargs["description"] = f"{template_kwargs['description']} ({note})"
|
||||
|
||||
template_kwargs.update(overrides)
|
||||
return cls(name=name, **template_kwargs)
|
||||
|
||||
|
||||
@dataclass
|
||||
class OutputParam:
|
||||
@@ -350,13 +553,33 @@ class OutputParam:
|
||||
name: str
|
||||
type_hint: Any = None
|
||||
description: str = ""
|
||||
kwargs_type: str = None # YiYi notes: remove this feature (maybe)
|
||||
kwargs_type: str = None
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"<{self.name}: {self.type_hint.__name__ if hasattr(self.type_hint, '__name__') else str(self.type_hint)}>"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def template(cls, template_name: str, note: str = None, **overrides) -> "OutputParam":
|
||||
"""Get template for name if exists, otherwise raise ValueError."""
|
||||
if template_name not in OUTPUT_PARAM_TEMPLATES:
|
||||
raise ValueError(f"OutputParam template for {template_name} not found")
|
||||
|
||||
template_kwargs = OUTPUT_PARAM_TEMPLATES[template_name].copy()
|
||||
|
||||
# Determine the actual param name:
|
||||
# 1. From overrides if provided
|
||||
# 2. From template if present
|
||||
# 3. Fall back to template_name
|
||||
name = overrides.pop("name", template_kwargs.pop("name", template_name))
|
||||
|
||||
if note and "description" in template_kwargs:
|
||||
template_kwargs["description"] = f"{template_kwargs['description']} ({note})"
|
||||
|
||||
template_kwargs.update(overrides)
|
||||
return cls(name=name, **template_kwargs)
|
||||
|
||||
|
||||
def format_inputs_short(inputs):
|
||||
"""
|
||||
@@ -509,10 +732,12 @@ def format_params(params, header="Args", indent_level=4, max_line_length=115):
|
||||
desc = re.sub(r"\[(.*?)\]\((https?://[^\s\)]+)\)", r"[\1](\2)", param.description)
|
||||
wrapped_desc = wrap_text(desc, desc_indent, max_line_length)
|
||||
param_str += f"\n{desc_indent}{wrapped_desc}"
|
||||
else:
|
||||
param_str += f"\n{desc_indent}TODO: Add description."
|
||||
|
||||
formatted_params.append(param_str)
|
||||
|
||||
return "\n\n".join(formatted_params)
|
||||
return "\n".join(formatted_params)
|
||||
|
||||
|
||||
def format_input_params(input_params, indent_level=4, max_line_length=115):
|
||||
@@ -582,7 +807,7 @@ def format_components(components, indent_level=4, max_line_length=115, add_empty
|
||||
loading_field_values = []
|
||||
for field_name in component.loading_fields():
|
||||
field_value = getattr(component, field_name)
|
||||
if field_value is not None:
|
||||
if field_value:
|
||||
loading_field_values.append(f"{field_name}={field_value}")
|
||||
|
||||
# Add loading field information if available
|
||||
@@ -636,6 +861,30 @@ def format_configs(configs, indent_level=4, max_line_length=115, add_empty_lines
|
||||
return "\n".join(formatted_configs)
|
||||
|
||||
|
||||
def format_workflow(workflow_map):
|
||||
"""Format a workflow map into a readable string representation.
|
||||
|
||||
Args:
|
||||
workflow_map: Dictionary mapping workflow names to trigger inputs
|
||||
|
||||
Returns:
|
||||
A formatted string representing all workflows
|
||||
"""
|
||||
if workflow_map is None:
|
||||
return ""
|
||||
|
||||
lines = ["Supported workflows:"]
|
||||
for workflow_name, trigger_inputs in workflow_map.items():
|
||||
required_inputs = [k for k, v in trigger_inputs.items() if v]
|
||||
if required_inputs:
|
||||
inputs_str = ", ".join(f"`{t}`" for t in required_inputs)
|
||||
lines.append(f" - `{workflow_name}`: requires {inputs_str}")
|
||||
else:
|
||||
lines.append(f" - `{workflow_name}`: default (no additional inputs required)")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def make_doc_string(
|
||||
inputs,
|
||||
outputs,
|
||||
@@ -669,17 +918,17 @@ def make_doc_string(
|
||||
# Add description
|
||||
if description:
|
||||
desc_lines = description.strip().split("\n")
|
||||
aligned_desc = "\n".join(" " + line for line in desc_lines)
|
||||
aligned_desc = "\n".join(" " + line.rstrip() for line in desc_lines)
|
||||
output += aligned_desc + "\n\n"
|
||||
|
||||
# Add components section if provided
|
||||
if expected_components and len(expected_components) > 0:
|
||||
components_str = format_components(expected_components, indent_level=2)
|
||||
components_str = format_components(expected_components, indent_level=2, add_empty_lines=False)
|
||||
output += components_str + "\n\n"
|
||||
|
||||
# Add configs section if provided
|
||||
if expected_configs and len(expected_configs) > 0:
|
||||
configs_str = format_configs(expected_configs, indent_level=2)
|
||||
configs_str = format_configs(expected_configs, indent_level=2, add_empty_lines=False)
|
||||
output += configs_str + "\n\n"
|
||||
|
||||
# Add inputs section
|
||||
@@ -690,3 +939,69 @@ def make_doc_string(
|
||||
output += format_output_params(outputs, indent_level=2)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def combine_inputs(*named_input_lists: List[Tuple[str, List[InputParam]]]) -> List[InputParam]:
|
||||
"""
|
||||
Combines multiple lists of InputParam objects from different blocks. For duplicate inputs, updates only if current
|
||||
default value is None and new default value is not None. Warns if multiple non-None default values exist for the
|
||||
same input.
|
||||
|
||||
Args:
|
||||
named_input_lists: List of tuples containing (block_name, input_param_list) pairs
|
||||
|
||||
Returns:
|
||||
List[InputParam]: Combined list of unique InputParam objects
|
||||
"""
|
||||
combined_dict = {} # name -> InputParam
|
||||
value_sources = {} # name -> block_name
|
||||
|
||||
for block_name, inputs in named_input_lists:
|
||||
for input_param in inputs:
|
||||
if input_param.name is None and input_param.kwargs_type is not None:
|
||||
input_name = "*_" + input_param.kwargs_type
|
||||
else:
|
||||
input_name = input_param.name
|
||||
if input_name in combined_dict:
|
||||
current_param = combined_dict[input_name]
|
||||
if (
|
||||
current_param.default is not None
|
||||
and input_param.default is not None
|
||||
and current_param.default != input_param.default
|
||||
):
|
||||
warnings.warn(
|
||||
f"Multiple different default values found for input '{input_name}': "
|
||||
f"{current_param.default} (from block '{value_sources[input_name]}') and "
|
||||
f"{input_param.default} (from block '{block_name}'). Using {current_param.default}."
|
||||
)
|
||||
if current_param.default is None and input_param.default is not None:
|
||||
combined_dict[input_name] = input_param
|
||||
value_sources[input_name] = block_name
|
||||
else:
|
||||
combined_dict[input_name] = input_param
|
||||
value_sources[input_name] = block_name
|
||||
|
||||
return list(combined_dict.values())
|
||||
|
||||
|
||||
def combine_outputs(*named_output_lists: List[Tuple[str, List[OutputParam]]]) -> List[OutputParam]:
|
||||
"""
|
||||
Combines multiple lists of OutputParam objects from different blocks. For duplicate outputs, keeps the first
|
||||
occurrence of each output name.
|
||||
|
||||
Args:
|
||||
named_output_lists: List of tuples containing (block_name, output_param_list) pairs
|
||||
|
||||
Returns:
|
||||
List[OutputParam]: Combined list of unique OutputParam objects
|
||||
"""
|
||||
combined_dict = {} # name -> OutputParam
|
||||
|
||||
for block_name, outputs in named_output_lists:
|
||||
for output_param in outputs:
|
||||
if (output_param.name not in combined_dict) or (
|
||||
combined_dict[output_param.name].kwargs_type is None and output_param.kwargs_type is not None
|
||||
):
|
||||
combined_dict[output_param.name] = output_param
|
||||
|
||||
return list(combined_dict.values())
|
||||
|
||||
@@ -118,7 +118,40 @@ def get_timesteps(scheduler, num_inference_steps, strength):
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImagePrepareLatentsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Prepare initial random noise for the generation process
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
dtype (`dtype`, *optional*, defaults to torch.float32):
|
||||
The dtype of the model inputs, can be generated in input step.
|
||||
|
||||
Outputs:
|
||||
height (`int`):
|
||||
if not set, updated to default value
|
||||
width (`int`):
|
||||
if not set, updated to default value
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -134,28 +167,20 @@ class QwenImagePrepareLatentsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("latents"),
|
||||
InputParam(name="height"),
|
||||
InputParam(name="width"),
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="generator"),
|
||||
InputParam(
|
||||
name="batch_size",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step.",
|
||||
),
|
||||
InputParam(
|
||||
name="dtype",
|
||||
required=True,
|
||||
type_hint=torch.dtype,
|
||||
description="The dtype of the model inputs, can be generated in input step.",
|
||||
),
|
||||
InputParam.template("latents"),
|
||||
InputParam.template("height"),
|
||||
InputParam.template("width"),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("generator"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("dtype"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(name="height", type_hint=int, description="if not set, updated to default value"),
|
||||
OutputParam(name="width", type_hint=int, description="if not set, updated to default value"),
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
@@ -209,7 +234,42 @@ class QwenImagePrepareLatentsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredPrepareLatentsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Prepare initial random noise (B, layers+1, C, H, W) for the generation process
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImageLayeredPachifier`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
layers (`int`, *optional*, defaults to 4):
|
||||
Number of layers to extract from the image
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
dtype (`dtype`, *optional*, defaults to torch.float32):
|
||||
The dtype of the model inputs, can be generated in input step.
|
||||
|
||||
Outputs:
|
||||
height (`int`):
|
||||
if not set, updated to default value
|
||||
width (`int`):
|
||||
if not set, updated to default value
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
|
||||
@property
|
||||
@@ -225,29 +285,21 @@ class QwenImageLayeredPrepareLatentsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("latents"),
|
||||
InputParam(name="height"),
|
||||
InputParam(name="width"),
|
||||
InputParam(name="layers", default=4),
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="generator"),
|
||||
InputParam(
|
||||
name="batch_size",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step.",
|
||||
),
|
||||
InputParam(
|
||||
name="dtype",
|
||||
required=True,
|
||||
type_hint=torch.dtype,
|
||||
description="The dtype of the model inputs, can be generated in input step.",
|
||||
),
|
||||
InputParam.template("latents"),
|
||||
InputParam.template("height"),
|
||||
InputParam.template("width"),
|
||||
InputParam.template("layers"),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("generator"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("dtype"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(name="height", type_hint=int, description="if not set, updated to default value"),
|
||||
OutputParam(name="width", type_hint=int, description="if not set, updated to default value"),
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
@@ -301,7 +353,31 @@ class QwenImageLayeredPrepareLatentsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImagePrepareLatentsWithStrengthStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that adds noise to image latents for image-to-image/inpainting. Should be run after set_timesteps,
|
||||
prepare_latents. Both noise and image latents should alreadybe patchified.
|
||||
|
||||
Components:
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The initial random noised, can be generated in prepare latent step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (Can be
|
||||
generated from vae encoder and updated in input step.)
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
|
||||
Outputs:
|
||||
initial_noise (`Tensor`):
|
||||
The initial random noised used for inpainting denoising.
|
||||
latents (`Tensor`):
|
||||
The scaled noisy latents to use for inpainting/image-to-image denoising.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -323,12 +399,7 @@ class QwenImagePrepareLatentsWithStrengthStep(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial random noised, can be generated in prepare latent step.",
|
||||
),
|
||||
InputParam(
|
||||
name="image_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The image latents to use for the denoising process. Can be generated in vae encoder and packed in input step.",
|
||||
),
|
||||
InputParam.template("image_latents", note="Can be generated from vae encoder and updated in input step."),
|
||||
InputParam(
|
||||
name="timesteps",
|
||||
required=True,
|
||||
@@ -345,6 +416,11 @@ class QwenImagePrepareLatentsWithStrengthStep(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial random noised used for inpainting denoising.",
|
||||
),
|
||||
OutputParam(
|
||||
name="latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The scaled noisy latents to use for inpainting/image-to-image denoising.",
|
||||
),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
@@ -382,7 +458,29 @@ class QwenImagePrepareLatentsWithStrengthStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageCreateMaskLatentsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that creates mask latents from preprocessed mask_image by interpolating to latent space.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask to use for the inpainting process.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
dtype (`dtype`, *optional*, defaults to torch.float32):
|
||||
The dtype of the model inputs, can be generated in input step.
|
||||
|
||||
Outputs:
|
||||
mask (`Tensor`):
|
||||
The mask to use for the inpainting process.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -404,9 +502,9 @@ class QwenImageCreateMaskLatentsStep(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="The processed mask to use for the inpainting process.",
|
||||
),
|
||||
InputParam(name="height", required=True),
|
||||
InputParam(name="width", required=True),
|
||||
InputParam(name="dtype", required=True),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam.template("dtype"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -450,7 +548,27 @@ class QwenImageCreateMaskLatentsStep(ModularPipelineBlocks):
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageSetTimestepsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that sets the scheduler's timesteps for text-to-image generation. Should be run after prepare latents step.
|
||||
|
||||
Components:
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
latents (`Tensor`):
|
||||
The initial random noised latents for the denoising process. Can be generated in prepare latents step.
|
||||
|
||||
Outputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -466,13 +584,13 @@ class QwenImageSetTimestepsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="num_inference_steps", default=50),
|
||||
InputParam(name="sigmas"),
|
||||
InputParam.template("num_inference_steps"),
|
||||
InputParam.template("sigmas"),
|
||||
InputParam(
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to use for the denoising process, used to calculate the image sequence length.",
|
||||
description="The initial random noised latents for the denoising process. Can be generated in prepare latents step.",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -516,7 +634,27 @@ class QwenImageSetTimestepsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredSetTimestepsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Set timesteps step for QwenImage Layered with custom mu calculation based on image_latents.
|
||||
|
||||
Components:
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
|
||||
@property
|
||||
@@ -532,15 +670,17 @@ class QwenImageLayeredSetTimestepsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("num_inference_steps", default=50, type_hint=int),
|
||||
InputParam("sigmas", type_hint=List[float]),
|
||||
InputParam("image_latents", required=True, type_hint=torch.Tensor),
|
||||
InputParam.template("num_inference_steps"),
|
||||
InputParam.template("sigmas"),
|
||||
InputParam.template("image_latents"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(name="timesteps", type_hint=torch.Tensor),
|
||||
OutputParam(
|
||||
name="timesteps", type_hint=torch.Tensor, description="The timesteps to use for the denoising process."
|
||||
),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -574,7 +714,32 @@ class QwenImageLayeredSetTimestepsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageSetTimestepsWithStrengthStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that sets the scheduler's timesteps for image-to-image generation, and inpainting. Should be run after prepare
|
||||
latents step.
|
||||
|
||||
Components:
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
latents (`Tensor`):
|
||||
The latents to use for the denoising process. Can be generated in prepare latents step.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
|
||||
Outputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps to perform at inference time. Updated based on strength.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -590,15 +755,15 @@ class QwenImageSetTimestepsWithStrengthStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="num_inference_steps", default=50),
|
||||
InputParam(name="sigmas"),
|
||||
InputParam.template("num_inference_steps"),
|
||||
InputParam.template("sigmas"),
|
||||
InputParam(
|
||||
name="latents",
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to use for the denoising process, used to calculate the image sequence length.",
|
||||
description="The latents to use for the denoising process. Can be generated in prepare latents step.",
|
||||
),
|
||||
InputParam(name="strength", default=0.9),
|
||||
InputParam.template("strength", default=0.9),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -607,7 +772,12 @@ class QwenImageSetTimestepsWithStrengthStep(ModularPipelineBlocks):
|
||||
OutputParam(
|
||||
name="timesteps",
|
||||
type_hint=torch.Tensor,
|
||||
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
description="The timesteps to use for the denoising process.",
|
||||
),
|
||||
OutputParam(
|
||||
name="num_inference_steps",
|
||||
type_hint=int,
|
||||
description="The number of denoising steps to perform at inference time. Updated based on strength.",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -654,7 +824,29 @@ class QwenImageSetTimestepsWithStrengthStep(ModularPipelineBlocks):
|
||||
## RoPE inputs for denoiser
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageRoPEInputsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that prepares the RoPE inputs for the denoising process. Should be place after prepare_latents step
|
||||
|
||||
Inputs:
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
|
||||
Outputs:
|
||||
img_shapes (`List`):
|
||||
The shapes of the images latents, used for RoPE calculation
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -666,11 +858,11 @@ class QwenImageRoPEInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="height", required=True),
|
||||
InputParam(name="width", required=True),
|
||||
InputParam(name="prompt_embeds_mask"),
|
||||
InputParam(name="negative_prompt_embeds_mask"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam.template("prompt_embeds_mask"),
|
||||
InputParam.template("negative_prompt_embeds_mask"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -702,7 +894,34 @@ class QwenImageRoPEInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditRoPEInputsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that prepares the RoPE inputs for denoising process. This is used in QwenImage Edit. Should be placed after
|
||||
prepare_latents step
|
||||
|
||||
Inputs:
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
image_height (`int`):
|
||||
The height of the reference image. Can be generated in input step.
|
||||
image_width (`int`):
|
||||
The width of the reference image. Can be generated in input step.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
|
||||
Outputs:
|
||||
img_shapes (`List`):
|
||||
The shapes of the images latents, used for RoPE calculation
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -712,13 +931,23 @@ class QwenImageEditRoPEInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="image_height", required=True),
|
||||
InputParam(name="image_width", required=True),
|
||||
InputParam(name="height", required=True),
|
||||
InputParam(name="width", required=True),
|
||||
InputParam(name="prompt_embeds_mask"),
|
||||
InputParam(name="negative_prompt_embeds_mask"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam(
|
||||
name="image_height",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The height of the reference image. Can be generated in input step.",
|
||||
),
|
||||
InputParam(
|
||||
name="image_width",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The width of the reference image. Can be generated in input step.",
|
||||
),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam.template("prompt_embeds_mask"),
|
||||
InputParam.template("negative_prompt_embeds_mask"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -756,7 +985,39 @@ class QwenImageEditRoPEInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusRoPEInputsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that prepares the RoPE inputs for denoising process. This is used in QwenImage Edit Plus.
|
||||
Unlike Edit, Edit Plus handles lists of image_height/image_width for multiple reference images. Should be placed
|
||||
after prepare_latents step.
|
||||
|
||||
Inputs:
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
image_height (`List`):
|
||||
The heights of the reference images. Can be generated in input step.
|
||||
image_width (`List`):
|
||||
The widths of the reference images. Can be generated in input step.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
|
||||
Outputs:
|
||||
img_shapes (`List`):
|
||||
The shapes of the image latents, used for RoPE calculation
|
||||
txt_seq_lens (`List`):
|
||||
The sequence lengths of the prompt embeds, used for RoPE calculation
|
||||
negative_txt_seq_lens (`List`):
|
||||
The sequence lengths of the negative prompt embeds, used for RoPE calculation
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
|
||||
@property
|
||||
@@ -770,13 +1031,23 @@ class QwenImageEditPlusRoPEInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="image_height", required=True, type_hint=List[int]),
|
||||
InputParam(name="image_width", required=True, type_hint=List[int]),
|
||||
InputParam(name="height", required=True),
|
||||
InputParam(name="width", required=True),
|
||||
InputParam(name="prompt_embeds_mask"),
|
||||
InputParam(name="negative_prompt_embeds_mask"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam(
|
||||
name="image_height",
|
||||
required=True,
|
||||
type_hint=List[int],
|
||||
description="The heights of the reference images. Can be generated in input step.",
|
||||
),
|
||||
InputParam(
|
||||
name="image_width",
|
||||
required=True,
|
||||
type_hint=List[int],
|
||||
description="The widths of the reference images. Can be generated in input step.",
|
||||
),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam.template("prompt_embeds_mask"),
|
||||
InputParam.template("negative_prompt_embeds_mask"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -832,7 +1103,37 @@ class QwenImageEditPlusRoPEInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredRoPEInputsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that prepares the RoPE inputs for the denoising process. Should be place after prepare_latents step
|
||||
|
||||
Inputs:
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
layers (`int`, *optional*, defaults to 4):
|
||||
Number of layers to extract from the image
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
|
||||
Outputs:
|
||||
img_shapes (`List`):
|
||||
The shapes of the image latents, used for RoPE calculation
|
||||
txt_seq_lens (`List`):
|
||||
The sequence lengths of the prompt embeds, used for RoPE calculation
|
||||
negative_txt_seq_lens (`List`):
|
||||
The sequence lengths of the negative prompt embeds, used for RoPE calculation
|
||||
additional_t_cond (`Tensor`):
|
||||
The additional t cond, used for RoPE calculation
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
|
||||
@property
|
||||
@@ -844,12 +1145,12 @@ class QwenImageLayeredRoPEInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="layers", required=True),
|
||||
InputParam(name="height", required=True),
|
||||
InputParam(name="width", required=True),
|
||||
InputParam(name="prompt_embeds_mask"),
|
||||
InputParam(name="negative_prompt_embeds_mask"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("layers"),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam.template("prompt_embeds_mask"),
|
||||
InputParam.template("negative_prompt_embeds_mask"),
|
||||
]
|
||||
|
||||
@property
|
||||
@@ -914,7 +1215,34 @@ class QwenImageLayeredRoPEInputsStep(ModularPipelineBlocks):
|
||||
|
||||
|
||||
## ControlNet inputs for denoiser
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageControlNetBeforeDenoiserStep(ModularPipelineBlocks):
|
||||
"""
|
||||
step that prepare inputs for controlnet. Insert before the Denoise Step, after set_timesteps step.
|
||||
|
||||
Components:
|
||||
controlnet (`QwenImageControlNetModel`)
|
||||
|
||||
Inputs:
|
||||
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
||||
When to start applying ControlNet.
|
||||
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
||||
When to stop applying ControlNet.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning.
|
||||
control_image_latents (`Tensor`):
|
||||
The control image latents to use for the denoising process. Can be generated in controlnet vae encoder
|
||||
step.
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
|
||||
Outputs:
|
||||
controlnet_keep (`List`):
|
||||
The controlnet keep values
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -930,12 +1258,17 @@ class QwenImageControlNetBeforeDenoiserStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("control_guidance_start", default=0.0),
|
||||
InputParam("control_guidance_end", default=1.0),
|
||||
InputParam("controlnet_conditioning_scale", default=1.0),
|
||||
InputParam("control_image_latents", required=True),
|
||||
InputParam.template("control_guidance_start"),
|
||||
InputParam.template("control_guidance_end"),
|
||||
InputParam.template("controlnet_conditioning_scale"),
|
||||
InputParam(
|
||||
"timesteps",
|
||||
name="control_image_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The control image latents to use for the denoising process. Can be generated in controlnet vae encoder step.",
|
||||
),
|
||||
InputParam(
|
||||
name="timesteps",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
|
||||
@@ -12,10 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Union
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
import PIL
|
||||
import torch
|
||||
|
||||
from ...configuration_utils import FrozenDict
|
||||
@@ -31,7 +29,30 @@ logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
# after denoising loop (unpack latents)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageAfterDenoiseStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that unpack the latents from 3D tensor (batch_size, sequence_length, channels) into 5D tensor (batch_size,
|
||||
channels, 1, height, width)
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
latents (`Tensor`):
|
||||
The latents to decode, can be generated in the denoise step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
The denoisedlatents unpacked to B, C, 1, H, W
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -49,13 +70,21 @@ class QwenImageAfterDenoiseStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="height", required=True),
|
||||
InputParam(name="width", required=True),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam(
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to decode, can be generated in the denoise step",
|
||||
description="The latents to decode, can be generated in the denoise step.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents", type_hint=torch.Tensor, description="The denoisedlatents unpacked to B, C, 1, H, W"
|
||||
),
|
||||
]
|
||||
|
||||
@@ -72,7 +101,29 @@ class QwenImageAfterDenoiseStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredAfterDenoiseStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Unpack latents from (B, seq, C*4) to (B, C, layers+1, H, W) after denoising.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImageLayeredPachifier`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
layers (`int`, *optional*, defaults to 4):
|
||||
Number of layers to extract from the image
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents. (unpacked to B, C, layers+1, H, W)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
|
||||
@property
|
||||
@@ -88,10 +139,21 @@ class QwenImageLayeredAfterDenoiseStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("latents", required=True, type_hint=torch.Tensor),
|
||||
InputParam("height", required=True, type_hint=int),
|
||||
InputParam("width", required=True, type_hint=int),
|
||||
InputParam("layers", required=True, type_hint=int),
|
||||
InputParam(
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoised latents to decode, can be generated in the denoise step.",
|
||||
),
|
||||
InputParam.template("height", required=True),
|
||||
InputParam.template("width", required=True),
|
||||
InputParam.template("layers"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam.template("latents", note="unpacked to B, C, layers+1, H, W"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -112,7 +174,26 @@ class QwenImageLayeredAfterDenoiseStep(ModularPipelineBlocks):
|
||||
|
||||
|
||||
# decode step
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageDecoderStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Step that decodes the latents to images
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images. (tensor output of the vae decoder.)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -134,19 +215,13 @@ class QwenImageDecoderStep(ModularPipelineBlocks):
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to decode, can be generated in the denoise step",
|
||||
description="The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise step.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
return [
|
||||
OutputParam(
|
||||
"images",
|
||||
type_hint=Union[List[PIL.Image.Image], List[torch.Tensor], List[np.array]],
|
||||
description="The generated images, can be a PIL.Image.Image, torch.Tensor or a numpy array",
|
||||
)
|
||||
]
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [OutputParam.template("images", note="tensor output of the vae decoder.")]
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
|
||||
@@ -176,7 +251,26 @@ class QwenImageDecoderStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredDecoderStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Decode unpacked latents (B, C, layers+1, H, W) into layer images.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) image_processor (`VaeImageProcessor`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
|
||||
@property
|
||||
@@ -198,14 +292,19 @@ class QwenImageLayeredDecoderStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("latents", required=True, type_hint=torch.Tensor),
|
||||
InputParam("output_type", default="pil", type_hint=str),
|
||||
InputParam(
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise step.",
|
||||
),
|
||||
InputParam.template("output_type"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(name="images", type_hint=List[List[PIL.Image.Image]]),
|
||||
OutputParam.template("images"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -251,7 +350,27 @@ class QwenImageLayeredDecoderStep(ModularPipelineBlocks):
|
||||
|
||||
|
||||
# postprocess the decoded images
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageProcessImagesOutputStep(ModularPipelineBlocks):
|
||||
"""
|
||||
postprocess the generated image
|
||||
|
||||
Components:
|
||||
image_processor (`VaeImageProcessor`)
|
||||
|
||||
Inputs:
|
||||
images (`Tensor`):
|
||||
the generated image tensor from decoders step
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -272,15 +391,19 @@ class QwenImageProcessImagesOutputStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("images", required=True, description="the generated image from decoders step"),
|
||||
InputParam(
|
||||
name="output_type",
|
||||
default="pil",
|
||||
type_hint=str,
|
||||
description="The type of the output images, can be 'pil', 'np', 'pt'",
|
||||
name="images",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="the generated image tensor from decoders step",
|
||||
),
|
||||
InputParam.template("output_type"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [OutputParam.template("images")]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(output_type):
|
||||
if output_type not in ["pil", "np", "pt"]:
|
||||
@@ -301,7 +424,28 @@ class QwenImageProcessImagesOutputStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageInpaintProcessImagesOutputStep(ModularPipelineBlocks):
|
||||
"""
|
||||
postprocess the generated image, optional apply the mask overally to the original image..
|
||||
|
||||
Components:
|
||||
image_mask_processor (`InpaintProcessor`)
|
||||
|
||||
Inputs:
|
||||
images (`Tensor`):
|
||||
the generated image tensor from decoders step
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
mask_overlay_kwargs (`Dict`, *optional*):
|
||||
The kwargs for the postprocess step to apply the mask overlay. generated in
|
||||
InpaintProcessImagesInputStep.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -322,16 +466,24 @@ class QwenImageInpaintProcessImagesOutputStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("images", required=True, description="the generated image from decoders step"),
|
||||
InputParam(
|
||||
name="output_type",
|
||||
default="pil",
|
||||
type_hint=str,
|
||||
description="The type of the output images, can be 'pil', 'np', 'pt'",
|
||||
name="images",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="the generated image tensor from decoders step",
|
||||
),
|
||||
InputParam.template("output_type"),
|
||||
InputParam(
|
||||
name="mask_overlay_kwargs",
|
||||
type_hint=Dict[str, Any],
|
||||
description="The kwargs for the postprocess step to apply the mask overlay. generated in InpaintProcessImagesInputStep.",
|
||||
),
|
||||
InputParam("mask_overlay_kwargs"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [OutputParam.template("images")]
|
||||
|
||||
@staticmethod
|
||||
def check_inputs(output_type, mask_overlay_kwargs):
|
||||
if output_type not in ["pil", "np", "pt"]:
|
||||
|
||||
@@ -50,7 +50,7 @@ class QwenImageLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
@@ -80,17 +80,12 @@ class QwenImageEditLoopBeforeDenoiser(ModularPipelineBlocks):
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"latents",
|
||||
name="latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
|
||||
),
|
||||
InputParam(
|
||||
"image_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial image latents to use for the denoising process. Can be encoded in vae_encoder step and packed in prepare_image_latents step.",
|
||||
),
|
||||
InputParam.template("image_latents"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -134,29 +129,12 @@ class QwenImageLoopBeforeDenoiserControlNet(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="The control image to use for the denoising process. Can be generated in prepare_controlnet_inputs step.",
|
||||
),
|
||||
InputParam.template("controlnet_conditioning_scale", note="updated in prepare_controlnet_inputs step."),
|
||||
InputParam(
|
||||
"controlnet_conditioning_scale",
|
||||
type_hint=float,
|
||||
description="The controlnet conditioning scale value to use for the denoising process. Can be generated in prepare_controlnet_inputs step.",
|
||||
),
|
||||
InputParam(
|
||||
"controlnet_keep",
|
||||
name="controlnet_keep",
|
||||
required=True,
|
||||
type_hint=List[float],
|
||||
description="The controlnet keep values to use for the denoising process. Can be generated in prepare_controlnet_inputs step.",
|
||||
),
|
||||
InputParam(
|
||||
"num_inference_steps",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
InputParam(
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description=(
|
||||
"All conditional model inputs for the denoiser. "
|
||||
"It should contain prompt_embeds/negative_prompt_embeds."
|
||||
),
|
||||
description="The controlnet keep values. Can be generated in prepare_controlnet_inputs step.",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -217,28 +195,13 @@ class QwenImageLoopDenoiser(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("attention_kwargs"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to use for the denoising process. Can be generated in prepare_latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"num_inference_steps",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
InputParam(
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
|
||||
),
|
||||
InputParam.template("attention_kwargs"),
|
||||
InputParam.template("denoiser_input_fields"),
|
||||
InputParam(
|
||||
"img_shapes",
|
||||
required=True,
|
||||
type_hint=List[Tuple[int, int]],
|
||||
description="The shape of the image latents for RoPE calculation. Can be generated in prepare_additional_inputs step.",
|
||||
description="The shape of the image latents for RoPE calculation. can be generated in prepare_additional_inputs step.",
|
||||
),
|
||||
]
|
||||
|
||||
@@ -317,23 +280,8 @@ class QwenImageEditLoopDenoiser(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam("attention_kwargs"),
|
||||
InputParam(
|
||||
"latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The latents to use for the denoising process. Can be generated in prepare_latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"num_inference_steps",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
InputParam(
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
|
||||
),
|
||||
InputParam.template("attention_kwargs"),
|
||||
InputParam.template("denoiser_input_fields"),
|
||||
InputParam(
|
||||
"img_shapes",
|
||||
required=True,
|
||||
@@ -415,7 +363,7 @@ class QwenImageLoopAfterDenoiser(ModularPipelineBlocks):
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents."),
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -456,24 +404,19 @@ class QwenImageLoopAfterDenoiserInpaint(ModularPipelineBlocks):
|
||||
type_hint=torch.Tensor,
|
||||
description="The mask to use for the inpainting process. Can be generated in inpaint prepare latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"image_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The image latents to use for the inpainting process. Can be generated in inpaint prepare latents step.",
|
||||
),
|
||||
InputParam.template("image_latents"),
|
||||
InputParam(
|
||||
"initial_noise",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The initial noise to use for the inpainting process. Can be generated in inpaint prepare latents step.",
|
||||
),
|
||||
InputParam(
|
||||
"timesteps",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -515,17 +458,12 @@ class QwenImageDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
||||
def loop_inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(
|
||||
"timesteps",
|
||||
name="timesteps",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
InputParam(
|
||||
"num_inference_steps",
|
||||
required=True,
|
||||
type_hint=int,
|
||||
description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
|
||||
),
|
||||
InputParam.template("num_inference_steps", required=True),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -557,7 +495,42 @@ class QwenImageDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Qwen Image (text2image, image2image)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageLoopBeforeDenoiser`
|
||||
- `QwenImageLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
This block supports text2image and image2image tasks for QwenImage.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. can be generated in prepare_additional_inputs step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
block_classes = [
|
||||
@@ -570,8 +543,8 @@ class QwenImageDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Denoise step that iteratively denoise the latents. \n"
|
||||
"Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method \n"
|
||||
"Denoise step that iteratively denoise the latents.\n"
|
||||
"Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method\n"
|
||||
"At each iteration, it runs blocks defined in `sub_blocks` sequencially:\n"
|
||||
" - `QwenImageLoopBeforeDenoiser`\n"
|
||||
" - `QwenImageLoopDenoiser`\n"
|
||||
@@ -581,7 +554,47 @@ class QwenImageDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
|
||||
|
||||
# Qwen Image (inpainting)
|
||||
# auto_docstring
|
||||
class QwenImageInpaintDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageLoopBeforeDenoiser`
|
||||
- `QwenImageLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
- `QwenImageLoopAfterDenoiserInpaint`
|
||||
This block supports inpainting tasks for QwenImage.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. can be generated in prepare_additional_inputs step.
|
||||
mask (`Tensor`):
|
||||
The mask to use for the inpainting process. Can be generated in inpaint prepare latents step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
initial_noise (`Tensor`):
|
||||
The initial noise to use for the inpainting process. Can be generated in inpaint prepare latents step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageLoopBeforeDenoiser,
|
||||
@@ -606,7 +619,47 @@ class QwenImageInpaintDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
|
||||
|
||||
# Qwen Image (text2image, image2image) with controlnet
|
||||
# auto_docstring
|
||||
class QwenImageControlNetDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageLoopBeforeDenoiser`
|
||||
- `QwenImageLoopBeforeDenoiserControlNet`
|
||||
- `QwenImageLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
This block supports text2img/img2img tasks with controlnet for QwenImage.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) controlnet (`QwenImageControlNetModel`) transformer
|
||||
(`QwenImageTransformer2DModel`) scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
control_image_latents (`Tensor`):
|
||||
The control image to use for the denoising process. Can be generated in prepare_controlnet_inputs step.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning. (updated in prepare_controlnet_inputs step.)
|
||||
controlnet_keep (`List`):
|
||||
The controlnet keep values. Can be generated in prepare_controlnet_inputs step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. can be generated in prepare_additional_inputs step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageLoopBeforeDenoiser,
|
||||
@@ -631,7 +684,54 @@ class QwenImageControlNetDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
|
||||
|
||||
# Qwen Image (inpainting) with controlnet
|
||||
# auto_docstring
|
||||
class QwenImageInpaintControlNetDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageLoopBeforeDenoiser`
|
||||
- `QwenImageLoopBeforeDenoiserControlNet`
|
||||
- `QwenImageLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
- `QwenImageLoopAfterDenoiserInpaint`
|
||||
This block supports inpainting tasks with controlnet for QwenImage.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) controlnet (`QwenImageControlNetModel`) transformer
|
||||
(`QwenImageTransformer2DModel`) scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
control_image_latents (`Tensor`):
|
||||
The control image to use for the denoising process. Can be generated in prepare_controlnet_inputs step.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning. (updated in prepare_controlnet_inputs step.)
|
||||
controlnet_keep (`List`):
|
||||
The controlnet keep values. Can be generated in prepare_controlnet_inputs step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. can be generated in prepare_additional_inputs step.
|
||||
mask (`Tensor`):
|
||||
The mask to use for the inpainting process. Can be generated in inpaint prepare latents step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
initial_noise (`Tensor`):
|
||||
The initial noise to use for the inpainting process. Can be generated in inpaint prepare latents step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageLoopBeforeDenoiser,
|
||||
@@ -664,7 +764,42 @@ class QwenImageInpaintControlNetDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
|
||||
|
||||
# Qwen Image Edit (image2image)
|
||||
# auto_docstring
|
||||
class QwenImageEditDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageEditLoopBeforeDenoiser`
|
||||
- `QwenImageEditLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
This block supports QwenImage Edit.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. Can be generated in prepare_additional_inputs step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageEditLoopBeforeDenoiser,
|
||||
@@ -687,7 +822,47 @@ class QwenImageEditDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
|
||||
|
||||
# Qwen Image Edit (inpainting)
|
||||
# auto_docstring
|
||||
class QwenImageEditInpaintDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageEditLoopBeforeDenoiser`
|
||||
- `QwenImageEditLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
- `QwenImageLoopAfterDenoiserInpaint`
|
||||
This block supports inpainting tasks for QwenImage Edit.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. Can be generated in prepare_additional_inputs step.
|
||||
mask (`Tensor`):
|
||||
The mask to use for the inpainting process. Can be generated in inpaint prepare latents step.
|
||||
initial_noise (`Tensor`):
|
||||
The initial noise to use for the inpainting process. Can be generated in inpaint prepare latents step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageEditLoopBeforeDenoiser,
|
||||
@@ -712,7 +887,42 @@ class QwenImageEditInpaintDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
|
||||
|
||||
# Qwen Image Layered (image2image)
|
||||
# auto_docstring
|
||||
class QwenImageLayeredDenoiseStep(QwenImageDenoiseLoopWrapper):
|
||||
"""
|
||||
Denoise step that iteratively denoise the latents.
|
||||
Its loop logic is defined in `QwenImageDenoiseLoopWrapper.__call__` method At each iteration, it runs blocks
|
||||
defined in `sub_blocks` sequencially:
|
||||
- `QwenImageEditLoopBeforeDenoiser`
|
||||
- `QwenImageEditLoopDenoiser`
|
||||
- `QwenImageLoopAfterDenoiser`
|
||||
This block supports QwenImage Layered.
|
||||
|
||||
Components:
|
||||
guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`)
|
||||
|
||||
Inputs:
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
latents (`Tensor`):
|
||||
The initial latents to use for the denoising process. Can be generated in prepare_latent step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
img_shapes (`List`):
|
||||
The shape of the image latents for RoPE calculation. Can be generated in prepare_additional_inputs step.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
block_classes = [
|
||||
QwenImageEditLoopBeforeDenoiser,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Tuple
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
@@ -109,7 +109,44 @@ def calculate_dimension_from_latents(latents: torch.Tensor, vae_scale_factor: in
|
||||
return height, width
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageTextInputsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
Text input processing step that standardizes text embeddings for the pipeline.
|
||||
This step:
|
||||
1. Determines `batch_size` and `dtype` based on `prompt_embeds`
|
||||
2. Ensures all text embeddings have consistent batch sizes (batch_size * num_images_per_prompt)
|
||||
|
||||
This block should be placed after all encoder steps to process the text embeddings before they are used in
|
||||
subsequent pipeline steps.
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -129,26 +166,22 @@ class QwenImageTextInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="prompt_embeds", required=True, kwargs_type="denoiser_input_fields"),
|
||||
InputParam(name="prompt_embeds_mask", required=True, kwargs_type="denoiser_input_fields"),
|
||||
InputParam(name="negative_prompt_embeds", kwargs_type="denoiser_input_fields"),
|
||||
InputParam(name="negative_prompt_embeds_mask", kwargs_type="denoiser_input_fields"),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("prompt_embeds"),
|
||||
InputParam.template("prompt_embeds_mask"),
|
||||
InputParam.template("negative_prompt_embeds"),
|
||||
InputParam.template("negative_prompt_embeds_mask"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[str]:
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
"batch_size",
|
||||
type_hint=int,
|
||||
description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
|
||||
),
|
||||
OutputParam(
|
||||
"dtype",
|
||||
type_hint=torch.dtype,
|
||||
description="Data type of model tensor inputs (determined by `prompt_embeds`)",
|
||||
),
|
||||
OutputParam(name="batch_size", type_hint=int, description="The batch size of the prompt embeddings"),
|
||||
OutputParam(name="dtype", type_hint=torch.dtype, description="The data type of the prompt embeddings"),
|
||||
OutputParam.template("prompt_embeds", note="batch-expanded"),
|
||||
OutputParam.template("prompt_embeds_mask", note="batch-expanded"),
|
||||
OutputParam.template("negative_prompt_embeds", note="batch-expanded"),
|
||||
OutputParam.template("negative_prompt_embeds_mask", note="batch-expanded"),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
@@ -221,20 +254,76 @@ class QwenImageTextInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageAdditionalInputsStep(ModularPipelineBlocks):
|
||||
"""Input step for QwenImage: update height/width, expand batch, patchify."""
|
||||
"""
|
||||
Input processing step that:
|
||||
1. For image latent inputs: Updates height/width if None, patchifies, and expands batch size
|
||||
2. For additional batch inputs: Expands batch dimensions to match final batch size
|
||||
|
||||
Configured inputs:
|
||||
- Image latent inputs: ['image_latents']
|
||||
|
||||
This block should be placed after the encoder steps and the text input step.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified and
|
||||
batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_latent_inputs: List[str] = ["image_latents"],
|
||||
additional_batch_inputs: List[str] = [],
|
||||
image_latent_inputs: Optional[List[InputParam]] = None,
|
||||
additional_batch_inputs: Optional[List[InputParam]] = None,
|
||||
):
|
||||
# by default, process `image_latents`
|
||||
if image_latent_inputs is None:
|
||||
image_latent_inputs = [InputParam.template("image_latents")]
|
||||
if additional_batch_inputs is None:
|
||||
additional_batch_inputs = []
|
||||
|
||||
if not isinstance(image_latent_inputs, list):
|
||||
image_latent_inputs = [image_latent_inputs]
|
||||
raise ValueError(f"image_latent_inputs must be a list, but got {type(image_latent_inputs)}")
|
||||
else:
|
||||
for input_param in image_latent_inputs:
|
||||
if not isinstance(input_param, InputParam):
|
||||
raise ValueError(f"image_latent_inputs must be a list of InputParam, but got {type(input_param)}")
|
||||
|
||||
if not isinstance(additional_batch_inputs, list):
|
||||
additional_batch_inputs = [additional_batch_inputs]
|
||||
raise ValueError(f"additional_batch_inputs must be a list, but got {type(additional_batch_inputs)}")
|
||||
else:
|
||||
for input_param in additional_batch_inputs:
|
||||
if not isinstance(input_param, InputParam):
|
||||
raise ValueError(
|
||||
f"additional_batch_inputs must be a list of InputParam, but got {type(input_param)}"
|
||||
)
|
||||
|
||||
self._image_latent_inputs = image_latent_inputs
|
||||
self._additional_batch_inputs = additional_batch_inputs
|
||||
@@ -252,9 +341,9 @@ class QwenImageAdditionalInputsStep(ModularPipelineBlocks):
|
||||
if self._image_latent_inputs or self._additional_batch_inputs:
|
||||
inputs_info = "\n\nConfigured inputs:"
|
||||
if self._image_latent_inputs:
|
||||
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
|
||||
inputs_info += f"\n - Image latent inputs: {[p.name for p in self._image_latent_inputs]}"
|
||||
if self._additional_batch_inputs:
|
||||
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
|
||||
inputs_info += f"\n - Additional batch inputs: {[p.name for p in self._additional_batch_inputs]}"
|
||||
|
||||
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
|
||||
|
||||
@@ -269,23 +358,19 @@ class QwenImageAdditionalInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
inputs = [
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="height"),
|
||||
InputParam(name="width"),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("height"),
|
||||
InputParam.template("width"),
|
||||
]
|
||||
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
inputs.append(InputParam(name=image_latent_input_name))
|
||||
|
||||
for input_name in self._additional_batch_inputs:
|
||||
inputs.append(InputParam(name=input_name))
|
||||
# default is `image_latents`
|
||||
inputs += self._image_latent_inputs + self._additional_batch_inputs
|
||||
|
||||
return inputs
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
outputs = [
|
||||
OutputParam(
|
||||
name="image_height",
|
||||
type_hint=int,
|
||||
@@ -298,11 +383,43 @@ class QwenImageAdditionalInputsStep(ModularPipelineBlocks):
|
||||
),
|
||||
]
|
||||
|
||||
# `height`/`width` are not new outputs, but they will be updated if any image latent inputs are provided
|
||||
if len(self._image_latent_inputs) > 0:
|
||||
outputs.append(
|
||||
OutputParam(name="height", type_hint=int, description="if not provided, updated to image height")
|
||||
)
|
||||
outputs.append(
|
||||
OutputParam(name="width", type_hint=int, description="if not provided, updated to image width")
|
||||
)
|
||||
|
||||
# image latent inputs are modified in place (patchified and batch-expanded)
|
||||
for input_param in self._image_latent_inputs:
|
||||
outputs.append(
|
||||
OutputParam(
|
||||
name=input_param.name,
|
||||
type_hint=input_param.type_hint,
|
||||
description=input_param.description + " (patchified and batch-expanded)",
|
||||
)
|
||||
)
|
||||
|
||||
# additional batch inputs (batch-expanded only)
|
||||
for input_param in self._additional_batch_inputs:
|
||||
outputs.append(
|
||||
OutputParam(
|
||||
name=input_param.name,
|
||||
type_hint=input_param.type_hint,
|
||||
description=input_param.description + " (batch-expanded)",
|
||||
)
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
# Process image latent inputs
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
for input_param in self._image_latent_inputs:
|
||||
image_latent_input_name = input_param.name
|
||||
image_latent_tensor = getattr(block_state, image_latent_input_name)
|
||||
if image_latent_tensor is None:
|
||||
continue
|
||||
@@ -331,7 +448,8 @@ class QwenImageAdditionalInputsStep(ModularPipelineBlocks):
|
||||
setattr(block_state, image_latent_input_name, image_latent_tensor)
|
||||
|
||||
# Process additional batch inputs (only batch expansion)
|
||||
for input_name in self._additional_batch_inputs:
|
||||
for input_param in self._additional_batch_inputs:
|
||||
input_name = input_param.name
|
||||
input_tensor = getattr(block_state, input_name)
|
||||
if input_tensor is None:
|
||||
continue
|
||||
@@ -349,20 +467,76 @@ class QwenImageAdditionalInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusAdditionalInputsStep(ModularPipelineBlocks):
|
||||
"""Input step for QwenImage Edit Plus: handles list of latents with different sizes."""
|
||||
"""
|
||||
Input processing step for Edit Plus that:
|
||||
1. For image latent inputs (list): Collects heights/widths, patchifies each, concatenates, expands batch
|
||||
2. For additional batch inputs: Expands batch dimensions to match final batch size
|
||||
Height/width defaults to last image in the list.
|
||||
|
||||
Configured inputs:
|
||||
- Image latent inputs: ['image_latents']
|
||||
|
||||
This block should be placed after the encoder steps and the text input step.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
image_height (`List`):
|
||||
The image heights calculated from the image latents dimension
|
||||
image_width (`List`):
|
||||
The image widths calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified,
|
||||
concatenated, and batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_latent_inputs: List[str] = ["image_latents"],
|
||||
additional_batch_inputs: List[str] = [],
|
||||
image_latent_inputs: Optional[List[InputParam]] = None,
|
||||
additional_batch_inputs: Optional[List[InputParam]] = None,
|
||||
):
|
||||
if image_latent_inputs is None:
|
||||
image_latent_inputs = [InputParam.template("image_latents")]
|
||||
if additional_batch_inputs is None:
|
||||
additional_batch_inputs = []
|
||||
|
||||
if not isinstance(image_latent_inputs, list):
|
||||
image_latent_inputs = [image_latent_inputs]
|
||||
raise ValueError(f"image_latent_inputs must be a list, but got {type(image_latent_inputs)}")
|
||||
else:
|
||||
for input_param in image_latent_inputs:
|
||||
if not isinstance(input_param, InputParam):
|
||||
raise ValueError(f"image_latent_inputs must be a list of InputParam, but got {type(input_param)}")
|
||||
|
||||
if not isinstance(additional_batch_inputs, list):
|
||||
additional_batch_inputs = [additional_batch_inputs]
|
||||
raise ValueError(f"additional_batch_inputs must be a list, but got {type(additional_batch_inputs)}")
|
||||
else:
|
||||
for input_param in additional_batch_inputs:
|
||||
if not isinstance(input_param, InputParam):
|
||||
raise ValueError(
|
||||
f"additional_batch_inputs must be a list of InputParam, but got {type(input_param)}"
|
||||
)
|
||||
|
||||
self._image_latent_inputs = image_latent_inputs
|
||||
self._additional_batch_inputs = additional_batch_inputs
|
||||
@@ -381,9 +555,9 @@ class QwenImageEditPlusAdditionalInputsStep(ModularPipelineBlocks):
|
||||
if self._image_latent_inputs or self._additional_batch_inputs:
|
||||
inputs_info = "\n\nConfigured inputs:"
|
||||
if self._image_latent_inputs:
|
||||
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
|
||||
inputs_info += f"\n - Image latent inputs: {[p.name for p in self._image_latent_inputs]}"
|
||||
if self._additional_batch_inputs:
|
||||
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
|
||||
inputs_info += f"\n - Additional batch inputs: {[p.name for p in self._additional_batch_inputs]}"
|
||||
|
||||
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
|
||||
|
||||
@@ -398,23 +572,20 @@ class QwenImageEditPlusAdditionalInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
inputs = [
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="height"),
|
||||
InputParam(name="width"),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("height"),
|
||||
InputParam.template("width"),
|
||||
]
|
||||
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
inputs.append(InputParam(name=image_latent_input_name))
|
||||
|
||||
for input_name in self._additional_batch_inputs:
|
||||
inputs.append(InputParam(name=input_name))
|
||||
# default is `image_latents`
|
||||
inputs += self._image_latent_inputs + self._additional_batch_inputs
|
||||
|
||||
return inputs
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
outputs = [
|
||||
OutputParam(
|
||||
name="image_height",
|
||||
type_hint=List[int],
|
||||
@@ -427,11 +598,43 @@ class QwenImageEditPlusAdditionalInputsStep(ModularPipelineBlocks):
|
||||
),
|
||||
]
|
||||
|
||||
# `height`/`width` are updated if any image latent inputs are provided
|
||||
if len(self._image_latent_inputs) > 0:
|
||||
outputs.append(
|
||||
OutputParam(name="height", type_hint=int, description="if not provided, updated to image height")
|
||||
)
|
||||
outputs.append(
|
||||
OutputParam(name="width", type_hint=int, description="if not provided, updated to image width")
|
||||
)
|
||||
|
||||
# image latent inputs are modified in place (patchified, concatenated, and batch-expanded)
|
||||
for input_param in self._image_latent_inputs:
|
||||
outputs.append(
|
||||
OutputParam(
|
||||
name=input_param.name,
|
||||
type_hint=input_param.type_hint,
|
||||
description=input_param.description + " (patchified, concatenated, and batch-expanded)",
|
||||
)
|
||||
)
|
||||
|
||||
# additional batch inputs (batch-expanded only)
|
||||
for input_param in self._additional_batch_inputs:
|
||||
outputs.append(
|
||||
OutputParam(
|
||||
name=input_param.name,
|
||||
type_hint=input_param.type_hint,
|
||||
description=input_param.description + " (batch-expanded)",
|
||||
)
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
# Process image latent inputs
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
for input_param in self._image_latent_inputs:
|
||||
image_latent_input_name = input_param.name
|
||||
image_latent_tensor = getattr(block_state, image_latent_input_name)
|
||||
if image_latent_tensor is None:
|
||||
continue
|
||||
@@ -476,7 +679,8 @@ class QwenImageEditPlusAdditionalInputsStep(ModularPipelineBlocks):
|
||||
setattr(block_state, image_latent_input_name, packed_image_latent_tensors)
|
||||
|
||||
# Process additional batch inputs (only batch expansion)
|
||||
for input_name in self._additional_batch_inputs:
|
||||
for input_param in self._additional_batch_inputs:
|
||||
input_name = input_param.name
|
||||
input_tensor = getattr(block_state, input_name)
|
||||
if input_tensor is None:
|
||||
continue
|
||||
@@ -494,22 +698,75 @@ class QwenImageEditPlusAdditionalInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# YiYi TODO: support define config default component from the ModularPipeline level.
|
||||
# it is same as QwenImageAdditionalInputsStep, but with layered pachifier.
|
||||
# same as QwenImageAdditionalInputsStep, but with layered pachifier.
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredAdditionalInputsStep(ModularPipelineBlocks):
|
||||
"""Input step for QwenImage Layered: update height/width, expand batch, patchify with layered pachifier."""
|
||||
"""
|
||||
Input processing step for Layered that:
|
||||
1. For image latent inputs: Updates height/width if None, patchifies with layered pachifier, and expands batch
|
||||
size
|
||||
2. For additional batch inputs: Expands batch dimensions to match final batch size
|
||||
|
||||
Configured inputs:
|
||||
- Image latent inputs: ['image_latents']
|
||||
|
||||
This block should be placed after the encoder steps and the text input step.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImageLayeredPachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified
|
||||
with layered pachifier and batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_latent_inputs: List[str] = ["image_latents"],
|
||||
additional_batch_inputs: List[str] = [],
|
||||
image_latent_inputs: Optional[List[InputParam]] = None,
|
||||
additional_batch_inputs: Optional[List[InputParam]] = None,
|
||||
):
|
||||
if image_latent_inputs is None:
|
||||
image_latent_inputs = [InputParam.template("image_latents")]
|
||||
if additional_batch_inputs is None:
|
||||
additional_batch_inputs = []
|
||||
|
||||
if not isinstance(image_latent_inputs, list):
|
||||
image_latent_inputs = [image_latent_inputs]
|
||||
raise ValueError(f"image_latent_inputs must be a list, but got {type(image_latent_inputs)}")
|
||||
else:
|
||||
for input_param in image_latent_inputs:
|
||||
if not isinstance(input_param, InputParam):
|
||||
raise ValueError(f"image_latent_inputs must be a list of InputParam, but got {type(input_param)}")
|
||||
|
||||
if not isinstance(additional_batch_inputs, list):
|
||||
additional_batch_inputs = [additional_batch_inputs]
|
||||
raise ValueError(f"additional_batch_inputs must be a list, but got {type(additional_batch_inputs)}")
|
||||
else:
|
||||
for input_param in additional_batch_inputs:
|
||||
if not isinstance(input_param, InputParam):
|
||||
raise ValueError(
|
||||
f"additional_batch_inputs must be a list of InputParam, but got {type(input_param)}"
|
||||
)
|
||||
|
||||
self._image_latent_inputs = image_latent_inputs
|
||||
self._additional_batch_inputs = additional_batch_inputs
|
||||
@@ -527,9 +784,9 @@ class QwenImageLayeredAdditionalInputsStep(ModularPipelineBlocks):
|
||||
if self._image_latent_inputs or self._additional_batch_inputs:
|
||||
inputs_info = "\n\nConfigured inputs:"
|
||||
if self._image_latent_inputs:
|
||||
inputs_info += f"\n - Image latent inputs: {self._image_latent_inputs}"
|
||||
inputs_info += f"\n - Image latent inputs: {[p.name for p in self._image_latent_inputs]}"
|
||||
if self._additional_batch_inputs:
|
||||
inputs_info += f"\n - Additional batch inputs: {self._additional_batch_inputs}"
|
||||
inputs_info += f"\n - Additional batch inputs: {[p.name for p in self._additional_batch_inputs]}"
|
||||
|
||||
placement_section = "\n\nThis block should be placed after the encoder steps and the text input step."
|
||||
|
||||
@@ -544,21 +801,18 @@ class QwenImageLayeredAdditionalInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
inputs = [
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("batch_size"),
|
||||
]
|
||||
# default is `image_latents`
|
||||
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
inputs.append(InputParam(name=image_latent_input_name))
|
||||
|
||||
for input_name in self._additional_batch_inputs:
|
||||
inputs.append(InputParam(name=input_name))
|
||||
inputs += self._image_latent_inputs + self._additional_batch_inputs
|
||||
|
||||
return inputs
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
outputs = [
|
||||
OutputParam(
|
||||
name="image_height",
|
||||
type_hint=int,
|
||||
@@ -569,15 +823,44 @@ class QwenImageLayeredAdditionalInputsStep(ModularPipelineBlocks):
|
||||
type_hint=int,
|
||||
description="The image width calculated from the image latents dimension",
|
||||
),
|
||||
OutputParam(name="height", type_hint=int, description="The height of the image output"),
|
||||
OutputParam(name="width", type_hint=int, description="The width of the image output"),
|
||||
]
|
||||
|
||||
if len(self._image_latent_inputs) > 0:
|
||||
outputs.append(
|
||||
OutputParam(name="height", type_hint=int, description="if not provided, updated to image height")
|
||||
)
|
||||
outputs.append(
|
||||
OutputParam(name="width", type_hint=int, description="if not provided, updated to image width")
|
||||
)
|
||||
|
||||
# Add outputs for image latent inputs (patchified with layered pachifier and batch-expanded)
|
||||
for input_param in self._image_latent_inputs:
|
||||
outputs.append(
|
||||
OutputParam(
|
||||
name=input_param.name,
|
||||
type_hint=input_param.type_hint,
|
||||
description=input_param.description + " (patchified with layered pachifier and batch-expanded)",
|
||||
)
|
||||
)
|
||||
|
||||
# Add outputs for additional batch inputs (batch-expanded only)
|
||||
for input_param in self._additional_batch_inputs:
|
||||
outputs.append(
|
||||
OutputParam(
|
||||
name=input_param.name,
|
||||
type_hint=input_param.type_hint,
|
||||
description=input_param.description + " (batch-expanded)",
|
||||
)
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
def __call__(self, components: QwenImageModularPipeline, state: PipelineState) -> PipelineState:
|
||||
block_state = self.get_block_state(state)
|
||||
|
||||
# Process image latent inputs
|
||||
for image_latent_input_name in self._image_latent_inputs:
|
||||
for input_param in self._image_latent_inputs:
|
||||
image_latent_input_name = input_param.name
|
||||
image_latent_tensor = getattr(block_state, image_latent_input_name)
|
||||
if image_latent_tensor is None:
|
||||
continue
|
||||
@@ -608,7 +891,8 @@ class QwenImageLayeredAdditionalInputsStep(ModularPipelineBlocks):
|
||||
setattr(block_state, image_latent_input_name, image_latent_tensor)
|
||||
|
||||
# Process additional batch inputs (only batch expansion)
|
||||
for input_name in self._additional_batch_inputs:
|
||||
for input_param in self._additional_batch_inputs:
|
||||
input_name = input_param.name
|
||||
input_tensor = getattr(block_state, input_name)
|
||||
if input_tensor is None:
|
||||
continue
|
||||
@@ -626,7 +910,34 @@ class QwenImageLayeredAdditionalInputsStep(ModularPipelineBlocks):
|
||||
return components, state
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageControlNetInputsStep(ModularPipelineBlocks):
|
||||
"""
|
||||
prepare the `control_image_latents` for controlnet. Insert after all the other inputs steps.
|
||||
|
||||
Inputs:
|
||||
control_image_latents (`Tensor`):
|
||||
The control image latents to use for the denoising process. Can be generated in controlnet vae encoder
|
||||
step.
|
||||
batch_size (`int`, *optional*, defaults to 1):
|
||||
Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can
|
||||
be generated in input step.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
|
||||
Outputs:
|
||||
control_image_latents (`Tensor`):
|
||||
The control image latents (patchified and batch-expanded).
|
||||
height (`int`):
|
||||
if not provided, updated to control image height
|
||||
width (`int`):
|
||||
if not provided, updated to control image width
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
@property
|
||||
@@ -636,11 +947,28 @@ class QwenImageControlNetInputsStep(ModularPipelineBlocks):
|
||||
@property
|
||||
def inputs(self) -> List[InputParam]:
|
||||
return [
|
||||
InputParam(name="control_image_latents", required=True),
|
||||
InputParam(name="batch_size", required=True),
|
||||
InputParam(name="num_images_per_prompt", default=1),
|
||||
InputParam(name="height"),
|
||||
InputParam(name="width"),
|
||||
InputParam(
|
||||
name="control_image_latents",
|
||||
required=True,
|
||||
type_hint=torch.Tensor,
|
||||
description="The control image latents to use for the denoising process. Can be generated in controlnet vae encoder step.",
|
||||
),
|
||||
InputParam.template("batch_size"),
|
||||
InputParam.template("num_images_per_prompt"),
|
||||
InputParam.template("height"),
|
||||
InputParam.template("width"),
|
||||
]
|
||||
|
||||
@property
|
||||
def intermediate_outputs(self) -> List[OutputParam]:
|
||||
return [
|
||||
OutputParam(
|
||||
name="control_image_latents",
|
||||
type_hint=torch.Tensor,
|
||||
description="The control image latents (patchified and batch-expanded).",
|
||||
),
|
||||
OutputParam(name="height", type_hint=int, description="if not provided, updated to control image height"),
|
||||
OutputParam(name="width", type_hint=int, description="if not provided, updated to control image width"),
|
||||
]
|
||||
|
||||
@torch.no_grad()
|
||||
|
||||
@@ -12,14 +12,11 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, ConditionalPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
from ..modular_pipeline_utils import InputParam, InsertableDict, OutputParam
|
||||
from .before_denoise import (
|
||||
QwenImageControlNetBeforeDenoiserStep,
|
||||
QwenImageCreateMaskLatentsStep,
|
||||
@@ -59,11 +56,91 @@ logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
# ====================
|
||||
# 1. VAE ENCODER
|
||||
# 1. TEXT ENCODER
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageAutoTextEncoderStep(AutoPipelineBlocks):
|
||||
"""
|
||||
Text encoder step that encodes the text prompt into a text embedding. This is an auto pipeline block.
|
||||
|
||||
Components:
|
||||
text_encoder (`Qwen2_5_VLForConditionalGeneration`): The text encoder to use tokenizer (`Qwen2Tokenizer`):
|
||||
The tokenizer to use guider (`ClassifierFreeGuidance`)
|
||||
|
||||
Inputs:
|
||||
prompt (`str`, *optional*):
|
||||
The prompt or prompts to guide image generation.
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
max_sequence_length (`int`, *optional*, defaults to 1024):
|
||||
Maximum sequence length for prompt encoding.
|
||||
|
||||
Outputs:
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask.
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings.
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [QwenImageTextEncoderStep()]
|
||||
block_names = ["text_encoder"]
|
||||
block_trigger_inputs = ["prompt"]
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Text encoder step that encodes the text prompt into a text embedding. This is an auto pipeline block."
|
||||
" - `QwenImageTextEncoderStep` (text_encoder) is used when `prompt` is provided."
|
||||
" - if `prompt` is not provided, step will be skipped."
|
||||
|
||||
|
||||
# ====================
|
||||
# 2. VAE ENCODER
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageInpaintVaeEncoderStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
This step is used for processing image and mask inputs for inpainting tasks. It:
|
||||
- Resizes the image to the target size, based on `height` and `width`.
|
||||
- Processes and updates `image` and `mask_image`.
|
||||
- Creates `image_latents`.
|
||||
|
||||
Components:
|
||||
image_mask_processor (`InpaintProcessor`) vae (`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
mask_image (`Image`):
|
||||
Mask image for inpainting.
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
padding_mask_crop (`int`, *optional*):
|
||||
Padding for mask cropping in inpainting.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
processed_image (`Tensor`):
|
||||
The processed image
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask image
|
||||
mask_overlay_kwargs (`Dict`):
|
||||
The kwargs for the postprocess step to apply the mask overlay
|
||||
image_latents (`Tensor`):
|
||||
The latent representation of the input image.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [QwenImageInpaintProcessImagesInputStep(), QwenImageVaeEncoderStep()]
|
||||
block_names = ["preprocess", "encode"]
|
||||
@@ -78,7 +155,31 @@ class QwenImageInpaintVaeEncoderStep(SequentialPipelineBlocks):
|
||||
)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageImg2ImgVaeEncoderStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Vae encoder step that preprocess andencode the image inputs into their latent representations.
|
||||
|
||||
Components:
|
||||
image_processor (`VaeImageProcessor`) vae (`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
processed_image (`Tensor`):
|
||||
The processed image
|
||||
image_latents (`Tensor`):
|
||||
The latent representation of the input image.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
block_classes = [QwenImageProcessImagesInputStep(), QwenImageVaeEncoderStep()]
|
||||
@@ -89,7 +190,6 @@ class QwenImageImg2ImgVaeEncoderStep(SequentialPipelineBlocks):
|
||||
return "Vae encoder step that preprocess andencode the image inputs into their latent representations."
|
||||
|
||||
|
||||
# Auto VAE encoder
|
||||
class QwenImageAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
block_classes = [QwenImageInpaintVaeEncoderStep, QwenImageImg2ImgVaeEncoderStep]
|
||||
block_names = ["inpaint", "img2img"]
|
||||
@@ -107,7 +207,33 @@ class QwenImageAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
|
||||
|
||||
# optional controlnet vae encoder
|
||||
# auto_docstring
|
||||
class QwenImageOptionalControlNetVaeEncoderStep(AutoPipelineBlocks):
|
||||
"""
|
||||
Vae encoder step that encode the image inputs into their latent representations.
|
||||
This is an auto pipeline block.
|
||||
- `QwenImageControlNetVaeEncoderStep` (controlnet) is used when `control_image` is provided.
|
||||
- if `control_image` is not provided, step will be skipped.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) controlnet (`QwenImageControlNetModel`) control_image_processor
|
||||
(`VaeImageProcessor`)
|
||||
|
||||
Inputs:
|
||||
control_image (`Image`, *optional*):
|
||||
Control image for ControlNet conditioning.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
control_image_latents (`Tensor`):
|
||||
The latents representing the control image
|
||||
"""
|
||||
|
||||
block_classes = [QwenImageControlNetVaeEncoderStep]
|
||||
block_names = ["controlnet"]
|
||||
block_trigger_inputs = ["control_image"]
|
||||
@@ -123,14 +249,65 @@ class QwenImageOptionalControlNetVaeEncoderStep(AutoPipelineBlocks):
|
||||
|
||||
|
||||
# ====================
|
||||
# 2. DENOISE (input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise)
|
||||
# 3. DENOISE (input -> prepare_latents -> set_timesteps -> prepare_rope_inputs -> denoise -> after_denoise)
|
||||
# ====================
|
||||
|
||||
|
||||
# assemble input steps
|
||||
# auto_docstring
|
||||
class QwenImageImg2ImgInputStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Input step that prepares the inputs for the img2img denoising step. It:
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified and
|
||||
batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [QwenImageTextInputsStep(), QwenImageAdditionalInputsStep(image_latent_inputs=["image_latents"])]
|
||||
block_classes = [QwenImageTextInputsStep(), QwenImageAdditionalInputsStep()]
|
||||
block_names = ["text_inputs", "additional_inputs"]
|
||||
|
||||
@property
|
||||
@@ -140,12 +317,69 @@ class QwenImageImg2ImgInputStep(SequentialPipelineBlocks):
|
||||
" - update height/width based `image_latents`, patchify `image_latents`."
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageInpaintInputStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Input step that prepares the inputs for the inpainting denoising step. It:
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`, *optional*):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified and
|
||||
batch-expanded)
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask image (batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
QwenImageAdditionalInputsStep(
|
||||
image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"]
|
||||
additional_batch_inputs=[
|
||||
InputParam(name="processed_mask_image", type_hint=torch.Tensor, description="The processed mask image")
|
||||
]
|
||||
),
|
||||
]
|
||||
block_names = ["text_inputs", "additional_inputs"]
|
||||
@@ -158,7 +392,42 @@ class QwenImageInpaintInputStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# assemble prepare latents steps
|
||||
# auto_docstring
|
||||
class QwenImageInpaintPrepareLatentsStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
This step prepares the latents/image_latents and mask inputs for the inpainting denoising step. It:
|
||||
- Add noise to the image latents to create the latents input for the denoiser.
|
||||
- Create the pachified latents `mask` based on the processedmask image.
|
||||
|
||||
Components:
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`) pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The initial random noised, can be generated in prepare latent step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (Can be
|
||||
generated from vae encoder and updated in input step.)
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask to use for the inpainting process.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
dtype (`dtype`, *optional*, defaults to torch.float32):
|
||||
The dtype of the model inputs, can be generated in input step.
|
||||
|
||||
Outputs:
|
||||
initial_noise (`Tensor`):
|
||||
The initial random noised used for inpainting denoising.
|
||||
latents (`Tensor`):
|
||||
The scaled noisy latents to use for inpainting/image-to-image denoising.
|
||||
mask (`Tensor`):
|
||||
The mask to use for the inpainting process.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [QwenImagePrepareLatentsWithStrengthStep(), QwenImageCreateMaskLatentsStep()]
|
||||
block_names = ["add_noise_to_latents", "create_mask_latents"]
|
||||
@@ -176,7 +445,49 @@ class QwenImageInpaintPrepareLatentsStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Qwen Image (text2image)
|
||||
# auto_docstring
|
||||
class QwenImageCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
step that denoise noise into image for text2image task. It includes the denoise loop, as well as prepare the inputs
|
||||
(timesteps, latents, rope inputs etc.).
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
@@ -199,9 +510,63 @@ class QwenImageCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "step that denoise noise into image for text2image task. It includes the denoise loop, as well as prepare the inputs (timesteps, latents, rope inputs etc.)."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Qwen Image (inpainting)
|
||||
# auto_docstring
|
||||
class QwenImageInpaintCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint
|
||||
task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`, *optional*):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageInpaintInputStep(),
|
||||
@@ -226,9 +591,61 @@ class QwenImageInpaintCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint task."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Qwen Image (image2image)
|
||||
# auto_docstring
|
||||
class QwenImageImg2ImgCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img
|
||||
task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageImg2ImgInputStep(),
|
||||
@@ -253,9 +670,66 @@ class QwenImageImg2ImgCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img task."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Qwen Image (text2image) with controlnet
|
||||
# auto_docstring
|
||||
class QwenImageControlNetCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
step that denoise noise into image for text2image task. It includes the denoise loop, as well as prepare the inputs
|
||||
(timesteps, latents, rope inputs etc.).
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) controlnet
|
||||
(`QwenImageControlNetModel`) guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
control_image_latents (`Tensor`):
|
||||
The control image latents to use for the denoising process. Can be generated in controlnet vae encoder
|
||||
step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
||||
When to start applying ControlNet.
|
||||
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
||||
When to stop applying ControlNet.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
@@ -282,9 +756,72 @@ class QwenImageControlNetCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "step that denoise noise into image for text2image task. It includes the denoise loop, as well as prepare the inputs (timesteps, latents, rope inputs etc.)."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Qwen Image (inpainting) with controlnet
|
||||
# auto_docstring
|
||||
class QwenImageControlNetInpaintCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint
|
||||
task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) controlnet
|
||||
(`QwenImageControlNetModel`) guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`, *optional*):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
control_image_latents (`Tensor`):
|
||||
The control image latents to use for the denoising process. Can be generated in controlnet vae encoder
|
||||
step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
||||
When to start applying ControlNet.
|
||||
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
||||
When to stop applying ControlNet.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageInpaintInputStep(),
|
||||
@@ -313,9 +850,70 @@ class QwenImageControlNetInpaintCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for inpaint task."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Qwen Image (image2image) with controlnet
|
||||
# auto_docstring
|
||||
class QwenImageControlNetImg2ImgCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img
|
||||
task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) controlnet
|
||||
(`QwenImageControlNetModel`) guider (`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
control_image_latents (`Tensor`):
|
||||
The control image latents to use for the denoising process. Can be generated in controlnet vae encoder
|
||||
step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
||||
When to start applying ControlNet.
|
||||
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
||||
When to stop applying ControlNet.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [
|
||||
QwenImageImg2ImgInputStep(),
|
||||
@@ -344,6 +942,12 @@ class QwenImageControlNetImg2ImgCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "Before denoise step that prepare the inputs (timesteps, latents, rope inputs etc.) for the denoise step for img2img task."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Auto denoise step for QwenImage
|
||||
class QwenImageAutoCoreDenoiseStep(ConditionalPipelineBlocks):
|
||||
@@ -402,19 +1006,36 @@ class QwenImageAutoCoreDenoiseStep(ConditionalPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents", type_hint=torch.Tensor, description="The latents generated by the denoising step"
|
||||
),
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# ====================
|
||||
# 3. DECODE
|
||||
# 4. DECODE
|
||||
# ====================
|
||||
|
||||
|
||||
# standard decode step works for most tasks except for inpaint
|
||||
# auto_docstring
|
||||
class QwenImageDecodeStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Decode step that decodes the latents to images and postprocess the generated image.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) image_processor (`VaeImageProcessor`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images. (tensor output of the vae decoder.)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [QwenImageDecoderStep(), QwenImageProcessImagesOutputStep()]
|
||||
block_names = ["decode", "postprocess"]
|
||||
@@ -425,7 +1046,30 @@ class QwenImageDecodeStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Inpaint decode step
|
||||
# auto_docstring
|
||||
class QwenImageInpaintDecodeStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Decode step that decodes the latents to images and postprocess the generated image, optional apply the mask
|
||||
overally to the original image.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) image_mask_processor (`InpaintProcessor`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
mask_overlay_kwargs (`Dict`, *optional*):
|
||||
The kwargs for the postprocess step to apply the mask overlay. generated in
|
||||
InpaintProcessImagesInputStep.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images. (tensor output of the vae decoder.)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
block_classes = [QwenImageDecoderStep(), QwenImageInpaintProcessImagesOutputStep()]
|
||||
block_names = ["decode", "postprocess"]
|
||||
@@ -452,11 +1096,11 @@ class QwenImageAutoDecodeStep(AutoPipelineBlocks):
|
||||
|
||||
|
||||
# ====================
|
||||
# 4. AUTO BLOCKS & PRESETS
|
||||
# 5. AUTO BLOCKS & PRESETS
|
||||
# ====================
|
||||
AUTO_BLOCKS = InsertableDict(
|
||||
[
|
||||
("text_encoder", QwenImageTextEncoderStep()),
|
||||
("text_encoder", QwenImageAutoTextEncoderStep()),
|
||||
("vae_encoder", QwenImageAutoVaeEncoderStep()),
|
||||
("controlnet_vae_encoder", QwenImageOptionalControlNetVaeEncoderStep()),
|
||||
("denoise", QwenImageAutoCoreDenoiseStep()),
|
||||
@@ -465,24 +1109,119 @@ AUTO_BLOCKS = InsertableDict(
|
||||
)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageAutoBlocks(SequentialPipelineBlocks):
|
||||
"""
|
||||
Auto Modular pipeline for text-to-image, image-to-image, inpainting, and controlnet tasks using QwenImage.
|
||||
|
||||
Supported workflows:
|
||||
- `text2image`: requires `prompt`
|
||||
- `image2image`: requires `prompt`, `image`
|
||||
- `inpainting`: requires `prompt`, `mask_image`, `image`
|
||||
- `controlnet_text2image`: requires `prompt`, `control_image`
|
||||
- `controlnet_image2image`: requires `prompt`, `image`, `control_image`
|
||||
- `controlnet_inpainting`: requires `prompt`, `mask_image`, `image`, `control_image`
|
||||
|
||||
Components:
|
||||
text_encoder (`Qwen2_5_VLForConditionalGeneration`): The text encoder to use tokenizer (`Qwen2Tokenizer`):
|
||||
The tokenizer to use guider (`ClassifierFreeGuidance`) image_mask_processor (`InpaintProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`) image_processor (`VaeImageProcessor`) controlnet (`QwenImageControlNetModel`)
|
||||
control_image_processor (`VaeImageProcessor`) pachifier (`QwenImagePachifier`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
prompt (`str`, *optional*):
|
||||
The prompt or prompts to guide image generation.
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
max_sequence_length (`int`, *optional*, defaults to 1024):
|
||||
Maximum sequence length for prompt encoding.
|
||||
mask_image (`Image`, *optional*):
|
||||
Mask image for inpainting.
|
||||
image (`Union[Image, List]`, *optional*):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
padding_mask_crop (`int`, *optional*):
|
||||
Padding for mask cropping in inpainting.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
control_image (`Image`, *optional*):
|
||||
Control image for ControlNet conditioning.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
latents (`Tensor`):
|
||||
Pre-generated noisy latents for image generation.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
image_latents (`Tensor`, *optional*):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
control_image_latents (`Tensor`, *optional*):
|
||||
The control image latents to use for the denoising process. Can be generated in controlnet vae encoder
|
||||
step.
|
||||
control_guidance_start (`float`, *optional*, defaults to 0.0):
|
||||
When to start applying ControlNet.
|
||||
control_guidance_end (`float`, *optional*, defaults to 1.0):
|
||||
When to stop applying ControlNet.
|
||||
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale for ControlNet conditioning.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
mask_overlay_kwargs (`Dict`, *optional*):
|
||||
The kwargs for the postprocess step to apply the mask overlay. generated in
|
||||
InpaintProcessImagesInputStep.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage"
|
||||
|
||||
block_classes = AUTO_BLOCKS.values()
|
||||
block_names = AUTO_BLOCKS.keys()
|
||||
|
||||
# Workflow map defines the trigger conditions for each workflow.
|
||||
# How to define:
|
||||
# - Only include required inputs and trigger inputs (inputs that determine which blocks run)
|
||||
# - `True` means the workflow triggers when the input is not None (most common case)
|
||||
# - Use specific values (e.g., `{"strength": 0.5}`) if your `select_block` logic depends on the value
|
||||
|
||||
_workflow_map = {
|
||||
"text2image": {"prompt": True},
|
||||
"image2image": {"prompt": True, "image": True},
|
||||
"inpainting": {"prompt": True, "mask_image": True, "image": True},
|
||||
"controlnet_text2image": {"prompt": True, "control_image": True},
|
||||
"controlnet_image2image": {"prompt": True, "image": True, "control_image": True},
|
||||
"controlnet_inpainting": {"prompt": True, "mask_image": True, "image": True, "control_image": True},
|
||||
}
|
||||
|
||||
@property
|
||||
def description(self):
|
||||
return (
|
||||
"Auto Modular pipeline for text-to-image, image-to-image, inpainting, and controlnet tasks using QwenImage.\n"
|
||||
+ "- for image-to-image generation, you need to provide `image`\n"
|
||||
+ "- for inpainting, you need to provide `mask_image` and `image`, optionally you can provide `padding_mask_crop` \n"
|
||||
+ "- to run the controlnet workflow, you need to provide `control_image`\n"
|
||||
+ "- for text-to-image generation, all you need to provide is `prompt`"
|
||||
)
|
||||
return "Auto Modular pipeline for text-to-image, image-to-image, inpainting, and controlnet tasks using QwenImage."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(name="images", type_hint=List[List[PIL.Image.Image]]),
|
||||
OutputParam.template("images"),
|
||||
]
|
||||
|
||||
@@ -12,14 +12,13 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional
|
||||
from typing import Optional
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import AutoPipelineBlocks, ConditionalPipelineBlocks, SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
from ..modular_pipeline_utils import InputParam, InsertableDict, OutputParam
|
||||
from .before_denoise import (
|
||||
QwenImageCreateMaskLatentsStep,
|
||||
QwenImageEditRoPEInputsStep,
|
||||
@@ -59,8 +58,35 @@ logger = logging.get_logger(__name__)
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditVLEncoderStep(SequentialPipelineBlocks):
|
||||
"""VL encoder that takes both image and text prompts."""
|
||||
"""
|
||||
QwenImage-Edit VL encoder step that encode the image and text prompts together.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) text_encoder (`Qwen2_5_VLForConditionalGeneration`) processor
|
||||
(`Qwen2VLProcessor`) guider (`ClassifierFreeGuidance`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
prompt (`str`):
|
||||
The prompt or prompts to guide image generation.
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
The resized images
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask.
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings.
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
@@ -80,7 +106,30 @@ class QwenImageEditVLEncoderStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Edit VAE encoder
|
||||
# auto_docstring
|
||||
class QwenImageEditVaeEncoderStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Vae encoder step that encode the image inputs into their latent representations.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) image_processor (`VaeImageProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
The resized images
|
||||
processed_image (`Tensor`):
|
||||
The processed image
|
||||
image_latents (`Tensor`):
|
||||
The latent representation of the input image.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageEditResizeStep(),
|
||||
@@ -95,12 +144,46 @@ class QwenImageEditVaeEncoderStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Edit Inpaint VAE encoder
|
||||
# auto_docstring
|
||||
class QwenImageEditInpaintVaeEncoderStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
This step is used for processing image and mask inputs for QwenImage-Edit inpaint tasks. It:
|
||||
- resize the image for target area (1024 * 1024) while maintaining the aspect ratio.
|
||||
- process the resized image and mask image.
|
||||
- create image latents.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) image_mask_processor (`InpaintProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
mask_image (`Image`):
|
||||
Mask image for inpainting.
|
||||
padding_mask_crop (`int`, *optional*):
|
||||
Padding for mask cropping in inpainting.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
The resized images
|
||||
processed_image (`Tensor`):
|
||||
The processed image
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask image
|
||||
mask_overlay_kwargs (`Dict`):
|
||||
The kwargs for the postprocess step to apply the mask overlay
|
||||
image_latents (`Tensor`):
|
||||
The latent representation of the input image.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageEditResizeStep(),
|
||||
QwenImageEditInpaintProcessImagesInputStep(),
|
||||
QwenImageVaeEncoderStep(input_name="processed_image", output_name="image_latents"),
|
||||
QwenImageVaeEncoderStep(),
|
||||
]
|
||||
block_names = ["resize", "preprocess", "encode"]
|
||||
|
||||
@@ -137,11 +220,64 @@ class QwenImageEditAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
|
||||
|
||||
# assemble input steps
|
||||
# auto_docstring
|
||||
class QwenImageEditInputStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Input step that prepares the inputs for the edit denoising step. It:
|
||||
- make sure the text embeddings have consistent batch size as well as the additional inputs.
|
||||
- update height/width based `image_latents`, patchify `image_latents`.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified and
|
||||
batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
QwenImageAdditionalInputsStep(image_latent_inputs=["image_latents"]),
|
||||
QwenImageAdditionalInputsStep(),
|
||||
]
|
||||
block_names = ["text_inputs", "additional_inputs"]
|
||||
|
||||
@@ -154,12 +290,71 @@ class QwenImageEditInputStep(SequentialPipelineBlocks):
|
||||
)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditInpaintInputStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Input step that prepares the inputs for the edit inpaint denoising step. It:
|
||||
- make sure the text embeddings have consistent batch size as well as the additional inputs.
|
||||
- update height/width based `image_latents`, patchify `image_latents`.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified and
|
||||
batch-expanded)
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask image (batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
QwenImageAdditionalInputsStep(
|
||||
image_latent_inputs=["image_latents"], additional_batch_inputs=["processed_mask_image"]
|
||||
additional_batch_inputs=[
|
||||
InputParam(name="processed_mask_image", type_hint=torch.Tensor, description="The processed mask image")
|
||||
]
|
||||
),
|
||||
]
|
||||
block_names = ["text_inputs", "additional_inputs"]
|
||||
@@ -174,7 +369,42 @@ class QwenImageEditInpaintInputStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# assemble prepare latents steps
|
||||
# auto_docstring
|
||||
class QwenImageEditInpaintPrepareLatentsStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
This step prepares the latents/image_latents and mask inputs for the edit inpainting denoising step. It:
|
||||
- Add noise to the image latents to create the latents input for the denoiser.
|
||||
- Create the patchified latents `mask` based on the processed mask image.
|
||||
|
||||
Components:
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`) pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The initial random noised, can be generated in prepare latent step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (Can be
|
||||
generated from vae encoder and updated in input step.)
|
||||
timesteps (`Tensor`):
|
||||
The timesteps to use for the denoising process. Can be generated in set_timesteps step.
|
||||
processed_mask_image (`Tensor`):
|
||||
The processed mask to use for the inpainting process.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
dtype (`dtype`, *optional*, defaults to torch.float32):
|
||||
The dtype of the model inputs, can be generated in input step.
|
||||
|
||||
Outputs:
|
||||
initial_noise (`Tensor`):
|
||||
The initial random noised used for inpainting denoising.
|
||||
latents (`Tensor`):
|
||||
The scaled noisy latents to use for inpainting/image-to-image denoising.
|
||||
mask (`Tensor`):
|
||||
The mask to use for the inpainting process.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [QwenImagePrepareLatentsWithStrengthStep(), QwenImageCreateMaskLatentsStep()]
|
||||
block_names = ["add_noise_to_latents", "create_mask_latents"]
|
||||
@@ -189,7 +419,50 @@ class QwenImageEditInpaintPrepareLatentsStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Qwen Image Edit (image2image) core denoise step
|
||||
# auto_docstring
|
||||
class QwenImageEditCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Core denoising workflow for QwenImage-Edit edit (img2img) task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageEditInputStep(),
|
||||
@@ -212,9 +485,62 @@ class QwenImageEditCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "Core denoising workflow for QwenImage-Edit edit (img2img) task."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Qwen Image Edit (inpainting) core denoise step
|
||||
# auto_docstring
|
||||
class QwenImageEditInpaintCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Core denoising workflow for QwenImage-Edit edit inpaint task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [
|
||||
QwenImageEditInpaintInputStep(),
|
||||
@@ -239,6 +565,12 @@ class QwenImageEditInpaintCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
def description(self):
|
||||
return "Core denoising workflow for QwenImage-Edit edit inpaint task."
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# Auto core denoise step for QwenImage Edit
|
||||
class QwenImageEditAutoCoreDenoiseStep(ConditionalPipelineBlocks):
|
||||
@@ -267,6 +599,12 @@ class QwenImageEditAutoCoreDenoiseStep(ConditionalPipelineBlocks):
|
||||
"Supports edit (img2img) and edit inpainting tasks for QwenImage-Edit."
|
||||
)
|
||||
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
# ====================
|
||||
# 4. DECODE
|
||||
@@ -274,7 +612,26 @@ class QwenImageEditAutoCoreDenoiseStep(ConditionalPipelineBlocks):
|
||||
|
||||
|
||||
# Decode step (standard)
|
||||
# auto_docstring
|
||||
class QwenImageEditDecodeStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Decode step that decodes the latents to images and postprocess the generated image.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) image_processor (`VaeImageProcessor`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images. (tensor output of the vae decoder.)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [QwenImageDecoderStep(), QwenImageProcessImagesOutputStep()]
|
||||
block_names = ["decode", "postprocess"]
|
||||
@@ -285,7 +642,30 @@ class QwenImageEditDecodeStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Inpaint decode step
|
||||
# auto_docstring
|
||||
class QwenImageEditInpaintDecodeStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Decode step that decodes the latents to images and postprocess the generated image, optionally apply the mask
|
||||
overlay to the original image.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) image_mask_processor (`InpaintProcessor`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
mask_overlay_kwargs (`Dict`, *optional*):
|
||||
The kwargs for the postprocess step to apply the mask overlay. generated in
|
||||
InpaintProcessImagesInputStep.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images. (tensor output of the vae decoder.)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = [QwenImageDecoderStep(), QwenImageInpaintProcessImagesOutputStep()]
|
||||
block_names = ["decode", "postprocess"]
|
||||
@@ -313,9 +693,7 @@ class QwenImageEditAutoDecodeStep(AutoPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents", type_hint=torch.Tensor, description="The latents generated by the denoising step"
|
||||
),
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
@@ -333,7 +711,66 @@ EDIT_AUTO_BLOCKS = InsertableDict(
|
||||
)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditAutoBlocks(SequentialPipelineBlocks):
|
||||
"""
|
||||
Auto Modular pipeline for edit (img2img) and edit inpaint tasks using QwenImage-Edit.
|
||||
- for edit (img2img) generation, you need to provide `image`
|
||||
- for edit inpainting, you need to provide `mask_image` and `image`, optionally you can provide
|
||||
`padding_mask_crop`
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) text_encoder (`Qwen2_5_VLForConditionalGeneration`) processor
|
||||
(`Qwen2VLProcessor`) guider (`ClassifierFreeGuidance`) image_mask_processor (`InpaintProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`) image_processor (`VaeImageProcessor`) pachifier (`QwenImagePachifier`) scheduler
|
||||
(`FlowMatchEulerDiscreteScheduler`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
prompt (`str`):
|
||||
The prompt or prompts to guide image generation.
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
mask_image (`Image`, *optional*):
|
||||
Mask image for inpainting.
|
||||
padding_mask_crop (`int`, *optional*):
|
||||
Padding for mask cropping in inpainting.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
processed_mask_image (`Tensor`, *optional*):
|
||||
The processed mask image
|
||||
latents (`Tensor`):
|
||||
Pre-generated noisy latents for image generation.
|
||||
num_inference_steps (`int`):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
strength (`float`, *optional*, defaults to 0.9):
|
||||
Strength for img2img/inpainting.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
mask_overlay_kwargs (`Dict`, *optional*):
|
||||
The kwargs for the postprocess step to apply the mask overlay. generated in
|
||||
InpaintProcessImagesInputStep.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit"
|
||||
block_classes = EDIT_AUTO_BLOCKS.values()
|
||||
block_names = EDIT_AUTO_BLOCKS.keys()
|
||||
@@ -349,5 +786,5 @@ class QwenImageEditAutoBlocks(SequentialPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(name="images", type_hint=List[List[PIL.Image.Image]], description="The generated images"),
|
||||
OutputParam.template("images"),
|
||||
]
|
||||
|
||||
@@ -12,11 +12,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
@@ -53,12 +48,41 @@ logger = logging.get_logger(__name__)
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusVLEncoderStep(SequentialPipelineBlocks):
|
||||
"""VL encoder that takes both image and text prompts. Uses 384x384 target area."""
|
||||
"""
|
||||
QwenImage-Edit Plus VL encoder step that encodes the image and text prompts together.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) text_encoder (`Qwen2_5_VLForConditionalGeneration`) processor
|
||||
(`Qwen2VLProcessor`) guider (`ClassifierFreeGuidance`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
prompt (`str`):
|
||||
The prompt or prompts to guide image generation.
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
Images resized to 1024x1024 target area for VAE encoding
|
||||
resized_cond_image (`List`):
|
||||
Images resized to 384x384 target area for VL text encoding
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask.
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings.
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
block_classes = [
|
||||
QwenImageEditPlusResizeStep(target_area=384 * 384, output_name="resized_cond_image"),
|
||||
QwenImageEditPlusResizeStep(),
|
||||
QwenImageEditPlusTextEncoderStep(),
|
||||
]
|
||||
block_names = ["resize", "encode"]
|
||||
@@ -73,12 +97,36 @@ class QwenImageEditPlusVLEncoderStep(SequentialPipelineBlocks):
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusVaeEncoderStep(SequentialPipelineBlocks):
|
||||
"""VAE encoder that handles multiple images with different sizes. Uses 1024x1024 target area."""
|
||||
"""
|
||||
VAE encoder step that encodes image inputs into latent representations.
|
||||
Each image is resized independently based on its own aspect ratio to 1024x1024 target area.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) image_processor (`VaeImageProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
Images resized to 1024x1024 target area for VAE encoding
|
||||
resized_cond_image (`List`):
|
||||
Images resized to 384x384 target area for VL text encoding
|
||||
processed_image (`Tensor`):
|
||||
The processed image
|
||||
image_latents (`Tensor`):
|
||||
The latent representation of the input image.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
block_classes = [
|
||||
QwenImageEditPlusResizeStep(target_area=1024 * 1024, output_name="resized_image"),
|
||||
QwenImageEditPlusResizeStep(),
|
||||
QwenImageEditPlusProcessImagesInputStep(),
|
||||
QwenImageVaeEncoderStep(),
|
||||
]
|
||||
@@ -98,11 +146,66 @@ class QwenImageEditPlusVaeEncoderStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# assemble input steps
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusInputStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Input step that prepares the inputs for the Edit Plus denoising step. It:
|
||||
- Standardizes text embeddings batch size.
|
||||
- Processes list of image latents: patchifies, concatenates along dim=1, expands batch.
|
||||
- Outputs lists of image_height/image_width for RoPE calculation.
|
||||
- Defaults height/width from last image in the list.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
image_height (`List`):
|
||||
The image heights calculated from the image latents dimension
|
||||
image_width (`List`):
|
||||
The image widths calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified,
|
||||
concatenated, and batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
QwenImageEditPlusAdditionalInputsStep(image_latent_inputs=["image_latents"]),
|
||||
QwenImageEditPlusAdditionalInputsStep(),
|
||||
]
|
||||
block_names = ["text_inputs", "additional_inputs"]
|
||||
|
||||
@@ -118,7 +221,50 @@ class QwenImageEditPlusInputStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Qwen Image Edit Plus (image2image) core denoise step
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Core denoising workflow for QwenImage-Edit Plus edit (img2img) task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
block_classes = [
|
||||
QwenImageEditPlusInputStep(),
|
||||
@@ -144,9 +290,7 @@ class QwenImageEditPlusCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents", type_hint=torch.Tensor, description="The latents generated by the denoising step"
|
||||
),
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
@@ -155,7 +299,26 @@ class QwenImageEditPlusCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusDecodeStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Decode step that decodes the latents to images and postprocesses the generated image.
|
||||
|
||||
Components:
|
||||
vae (`AutoencoderKLQwenImage`) image_processor (`VaeImageProcessor`)
|
||||
|
||||
Inputs:
|
||||
latents (`Tensor`):
|
||||
The denoised latents to decode, can be generated in the denoise step and unpacked in the after denoise
|
||||
step.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images. (tensor output of the vae decoder.)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
block_classes = [QwenImageDecoderStep(), QwenImageProcessImagesOutputStep()]
|
||||
block_names = ["decode", "postprocess"]
|
||||
@@ -179,7 +342,53 @@ EDIT_PLUS_AUTO_BLOCKS = InsertableDict(
|
||||
)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageEditPlusAutoBlocks(SequentialPipelineBlocks):
|
||||
"""
|
||||
Auto Modular pipeline for edit (img2img) tasks using QwenImage-Edit Plus.
|
||||
- `image` is required input (can be single image or list of images).
|
||||
- Each image is resized independently based on its own aspect ratio.
|
||||
- VL encoder uses 384x384 target area, VAE encoder uses 1024x1024 target area.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) text_encoder (`Qwen2_5_VLForConditionalGeneration`) processor
|
||||
(`Qwen2VLProcessor`) guider (`ClassifierFreeGuidance`) image_processor (`VaeImageProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`) pachifier (`QwenImagePachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`)
|
||||
transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
prompt (`str`):
|
||||
The prompt or prompts to guide image generation.
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`, *optional*):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*):
|
||||
The width in pixels of the generated image.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-edit-plus"
|
||||
block_classes = EDIT_PLUS_AUTO_BLOCKS.values()
|
||||
block_names = EDIT_PLUS_AUTO_BLOCKS.keys()
|
||||
@@ -196,5 +405,5 @@ class QwenImageEditPlusAutoBlocks(SequentialPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(name="images", type_hint=List[List[PIL.Image.Image]], description="The generated images"),
|
||||
OutputParam.template("images"),
|
||||
]
|
||||
|
||||
@@ -12,12 +12,6 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import List
|
||||
|
||||
import PIL.Image
|
||||
import torch
|
||||
|
||||
from ...utils import logging
|
||||
from ..modular_pipeline import SequentialPipelineBlocks
|
||||
from ..modular_pipeline_utils import InsertableDict, OutputParam
|
||||
@@ -55,8 +49,44 @@ logger = logging.get_logger(__name__)
|
||||
# ====================
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredTextEncoderStep(SequentialPipelineBlocks):
|
||||
"""Text encoder that takes text prompt, will generate a prompt based on image if not provided."""
|
||||
"""
|
||||
QwenImage-Layered Text encoder step that encode the text prompt, will generate a prompt based on image if not
|
||||
provided.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) text_encoder (`Qwen2_5_VLForConditionalGeneration`) processor
|
||||
(`Qwen2VLProcessor`) tokenizer (`Qwen2Tokenizer`): The tokenizer to use guider (`ClassifierFreeGuidance`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
resolution (`int`, *optional*, defaults to 640):
|
||||
The target area to resize the image to, can be 1024 or 640
|
||||
prompt (`str`, *optional*):
|
||||
The prompt or prompts to guide image generation.
|
||||
use_en_prompt (`bool`, *optional*, defaults to False):
|
||||
Whether to use English prompt template
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
max_sequence_length (`int`, *optional*, defaults to 1024):
|
||||
Maximum sequence length for prompt encoding.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
The resized images
|
||||
prompt (`str`):
|
||||
The prompt or prompts to guide image generation. If not provided, updated using image caption
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask.
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings.
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
block_classes = [
|
||||
@@ -77,7 +107,32 @@ class QwenImageLayeredTextEncoderStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Edit VAE encoder
|
||||
# auto_docstring
|
||||
class QwenImageLayeredVaeEncoderStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Vae encoder step that encode the image inputs into their latent representations.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) image_processor (`VaeImageProcessor`) vae
|
||||
(`AutoencoderKLQwenImage`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
resolution (`int`, *optional*, defaults to 640):
|
||||
The target area to resize the image to, can be 1024 or 640
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
|
||||
Outputs:
|
||||
resized_image (`List`):
|
||||
The resized images
|
||||
processed_image (`Tensor`):
|
||||
The processed image
|
||||
image_latents (`Tensor`):
|
||||
The latent representation of the input image.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
block_classes = [
|
||||
QwenImageLayeredResizeStep(),
|
||||
@@ -98,11 +153,60 @@ class QwenImageLayeredVaeEncoderStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# assemble input steps
|
||||
# auto_docstring
|
||||
class QwenImageLayeredInputStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Input step that prepares the inputs for the layered denoising step. It:
|
||||
- make sure the text embeddings have consistent batch size as well as the additional inputs.
|
||||
- update height/width based `image_latents`, patchify `image_latents`.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImageLayeredPachifier`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
|
||||
Outputs:
|
||||
batch_size (`int`):
|
||||
The batch size of the prompt embeddings
|
||||
dtype (`dtype`):
|
||||
The data type of the prompt embeddings
|
||||
prompt_embeds (`Tensor`):
|
||||
The prompt embeddings. (batch-expanded)
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
The encoder attention mask. (batch-expanded)
|
||||
negative_prompt_embeds (`Tensor`):
|
||||
The negative prompt embeddings. (batch-expanded)
|
||||
negative_prompt_embeds_mask (`Tensor`):
|
||||
The negative prompt embeddings mask. (batch-expanded)
|
||||
image_height (`int`):
|
||||
The image height calculated from the image latents dimension
|
||||
image_width (`int`):
|
||||
The image width calculated from the image latents dimension
|
||||
height (`int`):
|
||||
if not provided, updated to image height
|
||||
width (`int`):
|
||||
if not provided, updated to image width
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step. (patchified
|
||||
with layered pachifier and batch-expanded)
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
block_classes = [
|
||||
QwenImageTextInputsStep(),
|
||||
QwenImageLayeredAdditionalInputsStep(image_latent_inputs=["image_latents"]),
|
||||
QwenImageLayeredAdditionalInputsStep(),
|
||||
]
|
||||
block_names = ["text_inputs", "additional_inputs"]
|
||||
|
||||
@@ -116,7 +220,48 @@ class QwenImageLayeredInputStep(SequentialPipelineBlocks):
|
||||
|
||||
|
||||
# Qwen Image Layered (image2image) core denoise step
|
||||
# auto_docstring
|
||||
class QwenImageLayeredCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
"""
|
||||
Core denoising workflow for QwenImage-Layered img2img task.
|
||||
|
||||
Components:
|
||||
pachifier (`QwenImageLayeredPachifier`) scheduler (`FlowMatchEulerDiscreteScheduler`) guider
|
||||
(`ClassifierFreeGuidance`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
prompt_embeds (`Tensor`):
|
||||
text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
prompt_embeds_mask (`Tensor`):
|
||||
mask for the text embeddings. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds (`Tensor`, *optional*):
|
||||
negative text embeddings used to guide the image generation. Can be generated from text_encoder step.
|
||||
negative_prompt_embeds_mask (`Tensor`, *optional*):
|
||||
mask for the negative text embeddings. Can be generated from text_encoder step.
|
||||
image_latents (`Tensor`):
|
||||
image latents used to guide the image generation. Can be generated from vae_encoder step.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
layers (`int`, *optional*, defaults to 4):
|
||||
Number of layers to extract from the image
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
|
||||
Outputs:
|
||||
latents (`Tensor`):
|
||||
Denoised latents.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
block_classes = [
|
||||
QwenImageLayeredInputStep(),
|
||||
@@ -142,9 +287,7 @@ class QwenImageLayeredCoreDenoiseStep(SequentialPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(
|
||||
name="latents", type_hint=torch.Tensor, description="The latents generated by the denoising step"
|
||||
),
|
||||
OutputParam.template("latents"),
|
||||
]
|
||||
|
||||
|
||||
@@ -162,7 +305,54 @@ LAYERED_AUTO_BLOCKS = InsertableDict(
|
||||
)
|
||||
|
||||
|
||||
# auto_docstring
|
||||
class QwenImageLayeredAutoBlocks(SequentialPipelineBlocks):
|
||||
"""
|
||||
Auto Modular pipeline for layered denoising tasks using QwenImage-Layered.
|
||||
|
||||
Components:
|
||||
image_resize_processor (`VaeImageProcessor`) text_encoder (`Qwen2_5_VLForConditionalGeneration`) processor
|
||||
(`Qwen2VLProcessor`) tokenizer (`Qwen2Tokenizer`): The tokenizer to use guider (`ClassifierFreeGuidance`)
|
||||
image_processor (`VaeImageProcessor`) vae (`AutoencoderKLQwenImage`) pachifier (`QwenImageLayeredPachifier`)
|
||||
scheduler (`FlowMatchEulerDiscreteScheduler`) transformer (`QwenImageTransformer2DModel`)
|
||||
|
||||
Inputs:
|
||||
image (`Union[Image, List]`):
|
||||
Reference image(s) for denoising. Can be a single image or list of images.
|
||||
resolution (`int`, *optional*, defaults to 640):
|
||||
The target area to resize the image to, can be 1024 or 640
|
||||
prompt (`str`, *optional*):
|
||||
The prompt or prompts to guide image generation.
|
||||
use_en_prompt (`bool`, *optional*, defaults to False):
|
||||
Whether to use English prompt template
|
||||
negative_prompt (`str`, *optional*):
|
||||
The prompt or prompts not to guide the image generation.
|
||||
max_sequence_length (`int`, *optional*, defaults to 1024):
|
||||
Maximum sequence length for prompt encoding.
|
||||
generator (`Generator`, *optional*):
|
||||
Torch generator for deterministic generation.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
latents (`Tensor`, *optional*):
|
||||
Pre-generated noisy latents for image generation.
|
||||
layers (`int`, *optional*, defaults to 4):
|
||||
Number of layers to extract from the image
|
||||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The number of denoising steps.
|
||||
sigmas (`List`, *optional*):
|
||||
Custom sigmas for the denoising process.
|
||||
attention_kwargs (`Dict`, *optional*):
|
||||
Additional kwargs for attention processors.
|
||||
**denoiser_input_fields (`None`, *optional*):
|
||||
conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.
|
||||
output_type (`str`, *optional*, defaults to pil):
|
||||
Output format: 'pil', 'np', 'pt'.
|
||||
|
||||
Outputs:
|
||||
images (`List`):
|
||||
Generated images.
|
||||
"""
|
||||
|
||||
model_name = "qwenimage-layered"
|
||||
block_classes = LAYERED_AUTO_BLOCKS.values()
|
||||
block_names = LAYERED_AUTO_BLOCKS.keys()
|
||||
@@ -174,5 +364,5 @@ class QwenImageLayeredAutoBlocks(SequentialPipelineBlocks):
|
||||
@property
|
||||
def outputs(self):
|
||||
return [
|
||||
OutputParam(name="images", type_hint=List[List[PIL.Image.Image]], description="The generated images"),
|
||||
OutputParam.template("images"),
|
||||
]
|
||||
|
||||
@@ -131,7 +131,7 @@ class ZImageLoopDenoiser(ModularPipelineBlocks):
|
||||
),
|
||||
InputParam(
|
||||
kwargs_type="denoiser_input_fields",
|
||||
description="conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
|
||||
description="The conditional model inputs for the denoiser: e.g. prompt_embeds, negative_prompt_embeds, etc.",
|
||||
),
|
||||
]
|
||||
guider_input_names = []
|
||||
|
||||
@@ -129,7 +129,7 @@ else:
|
||||
"AnimateDiffVideoToVideoControlNetPipeline",
|
||||
]
|
||||
_import_structure["bria"] = ["BriaPipeline"]
|
||||
_import_structure["bria_fibo"] = ["BriaFiboPipeline", "BriaFiboEditPipeline"]
|
||||
_import_structure["bria_fibo"] = ["BriaFiboPipeline"]
|
||||
_import_structure["flux2"] = ["Flux2Pipeline", "Flux2KleinPipeline"]
|
||||
_import_structure["flux"] = [
|
||||
"FluxControlPipeline",
|
||||
@@ -597,7 +597,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from .aura_flow import AuraFlowPipeline
|
||||
from .blip_diffusion import BlipDiffusionPipeline
|
||||
from .bria import BriaPipeline
|
||||
from .bria_fibo import BriaFiboEditPipeline, BriaFiboPipeline
|
||||
from .bria_fibo import BriaFiboPipeline
|
||||
from .chroma import ChromaImg2ImgPipeline, ChromaInpaintPipeline, ChromaPipeline
|
||||
from .chronoedit import ChronoEditPipeline
|
||||
from .cogvideo import (
|
||||
|
||||
@@ -23,8 +23,6 @@ except OptionalDependencyNotAvailable:
|
||||
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
||||
else:
|
||||
_import_structure["pipeline_bria_fibo"] = ["BriaFiboPipeline"]
|
||||
_import_structure["pipeline_bria_fibo_edit"] = ["BriaFiboEditPipeline"]
|
||||
|
||||
|
||||
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
try:
|
||||
@@ -35,7 +33,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
||||
from ...utils.dummy_torch_and_transformers_objects import *
|
||||
else:
|
||||
from .pipeline_bria_fibo import BriaFiboPipeline
|
||||
from .pipeline_bria_fibo_edit import BriaFiboEditPipeline
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -756,7 +756,6 @@ def load_sub_model(
|
||||
low_cpu_mem_usage: bool,
|
||||
cached_folder: Union[str, os.PathLike],
|
||||
use_safetensors: bool,
|
||||
use_flashpack: bool,
|
||||
dduf_entries: Optional[Dict[str, DDUFEntry]],
|
||||
provider_options: Any,
|
||||
disable_mmap: bool,
|
||||
@@ -839,9 +838,6 @@ def load_sub_model(
|
||||
loading_kwargs["variant"] = model_variants.pop(name, None)
|
||||
loading_kwargs["use_safetensors"] = use_safetensors
|
||||
|
||||
if is_diffusers_model:
|
||||
loading_kwargs["use_flashpack"] = use_flashpack
|
||||
|
||||
if from_flax:
|
||||
loading_kwargs["from_flax"] = True
|
||||
|
||||
|
||||
@@ -243,7 +243,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
variant: Optional[str] = None,
|
||||
max_shard_size: Optional[Union[int, str]] = None,
|
||||
push_to_hub: bool = False,
|
||||
use_flashpack: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
@@ -269,9 +268,7 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
||||
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
||||
namespace).
|
||||
use_flashpack (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to use `flashpack` to save the model weights. Requires the `flashpack` library: `pip
|
||||
install flashpack`.
|
||||
|
||||
kwargs (`Dict[str, Any]`, *optional*):
|
||||
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
||||
"""
|
||||
@@ -343,7 +340,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
|
||||
save_method_accept_variant = "variant" in save_method_signature.parameters
|
||||
save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
|
||||
save_method_accept_flashpack = "use_flashpack" in save_method_signature.parameters
|
||||
|
||||
save_kwargs = {}
|
||||
if save_method_accept_safe:
|
||||
@@ -353,8 +349,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
if save_method_accept_max_shard_size and max_shard_size is not None:
|
||||
# max_shard_size is expected to not be None in ModelMixin
|
||||
save_kwargs["max_shard_size"] = max_shard_size
|
||||
if save_method_accept_flashpack:
|
||||
save_kwargs["use_flashpack"] = use_flashpack
|
||||
|
||||
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
|
||||
|
||||
@@ -713,11 +707,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
If set to `None`, the safetensors weights are downloaded if they're available **and** if the
|
||||
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
|
||||
weights. If set to `False`, safetensors weights are not loaded.
|
||||
use_flashpack (`bool`, *optional*, defaults to `False`):
|
||||
If set to `True`, the model is first loaded from `flashpack` weights if a compatible `.flashpack` file
|
||||
is found. If flashpack is unavailable or the `.flashpack` file cannot be used, automatic fallback to
|
||||
the standard loading path (for example, `safetensors`). Requires the `flashpack` library: `pip install
|
||||
flashpack`.
|
||||
use_onnx (`bool`, *optional*, defaults to `None`):
|
||||
If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
|
||||
will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
|
||||
@@ -783,7 +772,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
variant = kwargs.pop("variant", None)
|
||||
dduf_file = kwargs.pop("dduf_file", None)
|
||||
use_safetensors = kwargs.pop("use_safetensors", None)
|
||||
use_flashpack = kwargs.pop("use_flashpack", False)
|
||||
use_onnx = kwargs.pop("use_onnx", None)
|
||||
load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
|
||||
quantization_config = kwargs.pop("quantization_config", None)
|
||||
@@ -1073,7 +1061,6 @@ class DiffusionPipeline(ConfigMixin, PushToHubMixin):
|
||||
low_cpu_mem_usage=low_cpu_mem_usage,
|
||||
cached_folder=cached_folder,
|
||||
use_safetensors=use_safetensors,
|
||||
use_flashpack=use_flashpack,
|
||||
dduf_entries=dduf_entries,
|
||||
provider_options=provider_options,
|
||||
disable_mmap=disable_mmap,
|
||||
|
||||
@@ -14,7 +14,7 @@ from .scheduling_utils import SchedulerMixin
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -28,8 +28,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -100,13 +100,14 @@ def betas_for_alpha_bar(
|
||||
return torch.tensor(betas, dtype=torch.float32)
|
||||
|
||||
|
||||
def rescale_zero_terminal_snr(alphas_cumprod: torch.Tensor) -> torch.Tensor:
|
||||
def rescale_zero_terminal_snr(alphas_cumprod):
|
||||
"""
|
||||
Rescales betas to have zero terminal SNR Based on (Algorithm 1)[https://huggingface.co/papers/2305.08891]
|
||||
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||||
|
||||
|
||||
Args:
|
||||
alphas_cumprod (`torch.Tensor`):
|
||||
The alphas cumulative products that the scheduler is being initialized with.
|
||||
betas (`torch.Tensor`):
|
||||
the betas that the scheduler is being initialized with.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`: rescaled betas with zero terminal SNR
|
||||
@@ -141,11 +142,11 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
beta_start (`float`, defaults to 0.00085):
|
||||
beta_start (`float`, defaults to 0.0001):
|
||||
The starting `beta` value of inference.
|
||||
beta_end (`float`, defaults to 0.0120):
|
||||
beta_end (`float`, defaults to 0.02):
|
||||
The final `beta` value.
|
||||
beta_schedule (`str`, defaults to `"scaled_linear"`):
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
@@ -178,8 +179,6 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||||
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||||
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||||
snr_shift_scale (`float`, defaults to 3.0):
|
||||
Shift scale for SNR.
|
||||
"""
|
||||
|
||||
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
@@ -191,15 +190,15 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.00085,
|
||||
beta_end: float = 0.0120,
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2"] = "scaled_linear",
|
||||
beta_schedule: str = "scaled_linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
clip_sample: bool = True,
|
||||
set_alpha_to_one: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
prediction_type: str = "epsilon",
|
||||
clip_sample_range: float = 1.0,
|
||||
sample_max_value: float = 1.0,
|
||||
timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
|
||||
timestep_spacing: str = "leading",
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
snr_shift_scale: float = 3.0,
|
||||
):
|
||||
@@ -209,15 +208,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float64,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -247,7 +238,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.num_inference_steps = None
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
||||
|
||||
def _get_variance(self, timestep: int, prev_timestep: int) -> torch.Tensor:
|
||||
def _get_variance(self, timestep, prev_timestep):
|
||||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
@@ -274,11 +265,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
return sample
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
) -> None:
|
||||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -330,7 +317,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
sample: torch.Tensor,
|
||||
eta: float = 0.0,
|
||||
use_clipped_model_output: bool = False,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
generator=None,
|
||||
variance_noise: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[DDIMSchedulerOutput, Tuple]:
|
||||
@@ -341,7 +328,7 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
@@ -500,5 +487,5 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||||
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
||||
return velocity
|
||||
|
||||
def __len__(self) -> int:
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
@@ -49,7 +49,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class DDIMParallelSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -48,7 +48,7 @@ class DDPMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -192,12 +192,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
variance_type: Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
|
||||
] = "fixed_small",
|
||||
clip_sample: bool = True,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
@@ -215,15 +210,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -350,14 +337,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
t: int,
|
||||
predicted_variance: Optional[torch.Tensor] = None,
|
||||
variance_type: Optional[
|
||||
Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
]
|
||||
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
|
||||
] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
@@ -492,10 +472,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
prev_t = self.previous_timestep(t)
|
||||
|
||||
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [
|
||||
"learned",
|
||||
"learned_range",
|
||||
]:
|
||||
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
||||
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
||||
else:
|
||||
predicted_variance = None
|
||||
@@ -544,10 +521,7 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
if t > 0:
|
||||
device = model_output.device
|
||||
variance_noise = randn_tensor(
|
||||
model_output.shape,
|
||||
generator=generator,
|
||||
device=device,
|
||||
dtype=model_output.dtype,
|
||||
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
||||
)
|
||||
if self.variance_type == "fixed_small_log":
|
||||
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
|
||||
|
||||
@@ -50,7 +50,7 @@ class DDPMParallelSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -64,8 +64,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -202,12 +202,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
variance_type: Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
"fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
|
||||
] = "fixed_small",
|
||||
clip_sample: bool = True,
|
||||
prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
|
||||
@@ -225,15 +220,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||||
elif beta_schedule == "scaled_linear":
|
||||
# this schedule is very specific to the latent diffusion model.
|
||||
self.betas = (
|
||||
torch.linspace(
|
||||
beta_start**0.5,
|
||||
beta_end**0.5,
|
||||
num_train_timesteps,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
** 2
|
||||
)
|
||||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
@@ -363,14 +350,7 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
||||
t: int,
|
||||
predicted_variance: Optional[torch.Tensor] = None,
|
||||
variance_type: Optional[
|
||||
Literal[
|
||||
"fixed_small",
|
||||
"fixed_small_log",
|
||||
"fixed_large",
|
||||
"fixed_large_log",
|
||||
"learned",
|
||||
"learned_range",
|
||||
]
|
||||
Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
|
||||
] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -52,7 +52,7 @@ class DDIMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -117,7 +117,7 @@ class BrownianTreeNoiseSampler:
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -131,8 +131,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -36,7 +36,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -50,8 +50,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -54,7 +54,7 @@ class EulerDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -68,8 +68,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class HeunDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -52,7 +52,7 @@ class KDPM2AncestralDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -51,7 +51,7 @@ class KDPM2DiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -65,8 +65,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -53,7 +53,7 @@ class LCMSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -67,8 +67,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -49,7 +49,7 @@ class LMSDiscreteSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -63,8 +63,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -28,7 +28,7 @@ from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, Schedul
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -42,8 +42,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -47,7 +47,7 @@ class RePaintSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -61,8 +61,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -35,7 +35,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -49,8 +49,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -52,7 +52,7 @@ class TCDSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -66,8 +66,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -48,7 +48,7 @@ class UnCLIPSchedulerOutput(BaseOutput):
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -62,8 +62,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
|
||||
@@ -34,7 +34,7 @@ if is_scipy_available():
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps: int,
|
||||
max_beta: float = 0.999,
|
||||
alpha_transform_type: Literal["cosine", "exp", "laplace"] = "cosine",
|
||||
alpha_transform_type: Literal["cosine", "exp"] = "cosine",
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||||
@@ -48,8 +48,8 @@ def betas_for_alpha_bar(
|
||||
The number of betas to produce.
|
||||
max_beta (`float`, defaults to `0.999`):
|
||||
The maximum beta to use; use values lower than 1 to avoid numerical instability.
|
||||
alpha_transform_type (`str`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine`, `exp`, or `laplace`.
|
||||
alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
|
||||
The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
@@ -226,7 +226,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
time_shift_type: Literal["exponential"] = "exponential",
|
||||
sigma_min: Optional[float] = None,
|
||||
sigma_max: Optional[float] = None,
|
||||
shift_terminal: Optional[float] = None,
|
||||
) -> None:
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
@@ -246,8 +245,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||||
if shift_terminal is not None and not use_flow_sigmas:
|
||||
raise ValueError("`shift_terminal` is only supported when `use_flow_sigmas=True`.")
|
||||
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
@@ -316,12 +313,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._begin_index = begin_index
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
mu: Optional[float] = None,
|
||||
):
|
||||
self, num_inference_steps: int, device: Optional[Union[str, torch.device]] = None, mu: Optional[float] = None
|
||||
) -> None:
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
@@ -330,24 +323,13 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom values for sigmas to be used for each diffusion step. If `None`, the sigmas are computed
|
||||
automatically.
|
||||
mu (`float`, *optional*):
|
||||
Optional mu parameter for dynamic shifting when using exponential time shift type.
|
||||
"""
|
||||
if self.config.use_dynamic_shifting and mu is None:
|
||||
raise ValueError("`mu` must be passed when `use_dynamic_shifting` is set to be `True`")
|
||||
|
||||
if sigmas is not None:
|
||||
if not self.config.use_flow_sigmas:
|
||||
raise ValueError(
|
||||
"Passing `sigmas` is only supported when `use_flow_sigmas=True`. "
|
||||
"Please set `use_flow_sigmas=True` during scheduler initialization."
|
||||
)
|
||||
num_inference_steps = len(sigmas)
|
||||
|
||||
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
||||
if mu is not None:
|
||||
assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
|
||||
self.config.flow_shift = np.exp(mu)
|
||||
if self.config.timestep_spacing == "linspace":
|
||||
timesteps = (
|
||||
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
|
||||
@@ -372,9 +354,8 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
|
||||
)
|
||||
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
if self.config.use_karras_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
log_sigmas = np.log(sigmas)
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
@@ -394,8 +375,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_exponential_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
log_sigmas = np.log(sigmas)
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
@@ -410,8 +389,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_beta_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
log_sigmas = np.log(sigmas)
|
||||
sigmas = np.flip(sigmas).copy()
|
||||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
@@ -426,18 +403,9 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
elif self.config.use_flow_sigmas:
|
||||
if sigmas is None:
|
||||
sigmas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)[:-1]
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas)
|
||||
else:
|
||||
sigmas = self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas)
|
||||
if self.config.shift_terminal:
|
||||
sigmas = self.stretch_shift_to_terminal(sigmas)
|
||||
eps = 1e-6
|
||||
if np.fabs(sigmas[0] - 1) < eps:
|
||||
# to avoid inf torch.log(alpha_si) in multistep_uni_p_bh_update during first/second update
|
||||
sigmas[0] -= eps
|
||||
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
||||
sigmas = 1.0 - alphas
|
||||
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
||||
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
sigma_last = sigmas[-1]
|
||||
@@ -449,8 +417,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
)
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
|
||||
else:
|
||||
if sigmas is None:
|
||||
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
||||
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
||||
@@ -480,43 +446,6 @@ class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.time_shift
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
if self.config.time_shift_type == "exponential":
|
||||
return self._time_shift_exponential(mu, sigma, t)
|
||||
elif self.config.time_shift_type == "linear":
|
||||
return self._time_shift_linear(mu, sigma, t)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.stretch_shift_to_terminal
|
||||
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
|
||||
r"""
|
||||
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
|
||||
value.
|
||||
|
||||
Reference:
|
||||
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
|
||||
|
||||
Args:
|
||||
t (`torch.Tensor`):
|
||||
A tensor of timesteps to be stretched and shifted.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
|
||||
"""
|
||||
one_minus_z = 1 - t
|
||||
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
|
||||
stretched_t = 1 - (one_minus_z / scale_factor)
|
||||
return stretched_t
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._time_shift_exponential
|
||||
def _time_shift_exponential(self, mu, sigma, t):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._time_shift_linear
|
||||
def _time_shift_linear(self, mu, sigma, t):
|
||||
return mu / (mu + (1 / t - 1) ** sigma)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
||||
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
|
||||
@@ -587,21 +587,6 @@ class AuraFlowPipeline(metaclass=DummyObject):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class BriaFiboEditPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
requires_backends(cls, ["torch", "transformers"])
|
||||
|
||||
|
||||
class BriaFiboPipeline(metaclass=DummyObject):
|
||||
_backends = ["torch", "transformers"]
|
||||
|
||||
|
||||
@@ -1,81 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from ..utils import _add_variant
|
||||
from .import_utils import is_flashpack_available
|
||||
from .logging import get_logger
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def save_flashpack(
|
||||
model,
|
||||
save_directory: str,
|
||||
variant: Optional[str] = None,
|
||||
is_main_process: bool = True,
|
||||
):
|
||||
"""
|
||||
Save model weights in FlashPack format along with a metadata config.
|
||||
|
||||
Args:
|
||||
model: Diffusers model instance
|
||||
save_directory (`str`): Directory to save weights
|
||||
variant (`str`, *optional*): Model variant
|
||||
"""
|
||||
if not is_flashpack_available():
|
||||
raise ImportError(
|
||||
"The `use_flashpack=True` argument requires the `flashpack` package. "
|
||||
"Install it with `pip install flashpack`."
|
||||
)
|
||||
|
||||
from flashpack import pack_to_file
|
||||
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
|
||||
weights_name = _add_variant("model.flashpack", variant)
|
||||
weights_path = os.path.join(save_directory, weights_name)
|
||||
config_path = os.path.join(save_directory, "flashpack_config.json")
|
||||
|
||||
try:
|
||||
target_dtype = getattr(model, "dtype", None)
|
||||
logger.warning(f"Dtype used for FlashPack save: {target_dtype}")
|
||||
|
||||
# 1. Save binary weights
|
||||
pack_to_file(model, weights_path, target_dtype=target_dtype)
|
||||
|
||||
# 2. Save config metadata (best-effort)
|
||||
if hasattr(model, "config"):
|
||||
try:
|
||||
if hasattr(model.config, "to_dict"):
|
||||
config_data = model.config.to_dict()
|
||||
else:
|
||||
config_data = dict(model.config)
|
||||
|
||||
with open(config_path, "w") as f:
|
||||
json.dump(config_data, f, indent=4)
|
||||
|
||||
except Exception as config_err:
|
||||
logger.warning(f"FlashPack weights saved, but config serialization failed: {config_err}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to save weights in FlashPack format: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def load_flashpack(model, flashpack_file: str):
|
||||
"""
|
||||
Assign FlashPack weights from a file into an initialized PyTorch model.
|
||||
"""
|
||||
if not is_flashpack_available():
|
||||
raise ImportError("FlashPack weights require the `flashpack` package. Install with `pip install flashpack`.")
|
||||
|
||||
from flashpack import assign_from_file
|
||||
|
||||
logger.warning(f"Loading FlashPack weights from {flashpack_file}")
|
||||
|
||||
try:
|
||||
assign_from_file(model, flashpack_file)
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to load FlashPack weights from {flashpack_file}") from e
|
||||
@@ -231,7 +231,6 @@ _aiter_available, _aiter_version = _is_package_available("aiter")
|
||||
_kornia_available, _kornia_version = _is_package_available("kornia")
|
||||
_nvidia_modelopt_available, _nvidia_modelopt_version = _is_package_available("modelopt", get_dist_name=True)
|
||||
_av_available, _av_version = _is_package_available("av")
|
||||
_flashpack_available, _flashpack_version = _is_package_available("flashpack")
|
||||
|
||||
|
||||
def is_torch_available():
|
||||
@@ -426,10 +425,6 @@ def is_av_available():
|
||||
return _av_available
|
||||
|
||||
|
||||
def is_flashpack_available():
|
||||
return _flashpack_available
|
||||
|
||||
|
||||
# docstyle-ignore
|
||||
FLAX_IMPORT_ERROR = """
|
||||
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
|
||||
@@ -947,16 +942,6 @@ def is_aiter_version(operation: str, version: str):
|
||||
return compare_versions(parse(_aiter_version), operation, version)
|
||||
|
||||
|
||||
@cache
|
||||
def is_flashpack_version(operation: str, version: str):
|
||||
"""
|
||||
Compares the current flashpack version to a given reference with an operation.
|
||||
"""
|
||||
if not _flashpack_available:
|
||||
return False
|
||||
return compare_versions(parse(_flashpack_version), operation, version)
|
||||
|
||||
|
||||
def get_objects_from_module(module):
|
||||
"""
|
||||
Returns a dict of object names and values in a module, while skipping private/internal objects
|
||||
|
||||
@@ -1,192 +0,0 @@
|
||||
# Copyright 2024 Bria AI and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoTokenizer
|
||||
from transformers.models.smollm3.modeling_smollm3 import SmolLM3Config, SmolLM3ForCausalLM
|
||||
|
||||
from diffusers import (
|
||||
AutoencoderKLWan,
|
||||
BriaFiboEditPipeline,
|
||||
FlowMatchEulerDiscreteScheduler,
|
||||
)
|
||||
from diffusers.models.transformers.transformer_bria_fibo import BriaFiboTransformer2DModel
|
||||
from tests.pipelines.test_pipelines_common import PipelineTesterMixin
|
||||
|
||||
from ...testing_utils import (
|
||||
enable_full_determinism,
|
||||
torch_device,
|
||||
)
|
||||
|
||||
|
||||
enable_full_determinism()
|
||||
|
||||
|
||||
class BriaFiboPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
||||
pipeline_class = BriaFiboEditPipeline
|
||||
params = frozenset(["prompt", "height", "width", "guidance_scale"])
|
||||
batch_params = frozenset(["prompt"])
|
||||
test_xformers_attention = False
|
||||
test_layerwise_casting = False
|
||||
test_group_offloading = False
|
||||
supports_dduf = False
|
||||
|
||||
def get_dummy_components(self):
|
||||
torch.manual_seed(0)
|
||||
transformer = BriaFiboTransformer2DModel(
|
||||
patch_size=1,
|
||||
in_channels=16,
|
||||
num_layers=1,
|
||||
num_single_layers=1,
|
||||
attention_head_dim=8,
|
||||
num_attention_heads=2,
|
||||
joint_attention_dim=64,
|
||||
text_encoder_dim=32,
|
||||
pooled_projection_dim=None,
|
||||
axes_dims_rope=[0, 4, 4],
|
||||
)
|
||||
|
||||
vae = AutoencoderKLWan(
|
||||
base_dim=80,
|
||||
decoder_base_dim=128,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
dropout=0.0,
|
||||
in_channels=12,
|
||||
latents_mean=[0.0] * 16,
|
||||
latents_std=[1.0] * 16,
|
||||
is_residual=True,
|
||||
num_res_blocks=2,
|
||||
out_channels=12,
|
||||
patch_size=2,
|
||||
scale_factor_spatial=16,
|
||||
scale_factor_temporal=4,
|
||||
temperal_downsample=[False, True, True],
|
||||
z_dim=16,
|
||||
)
|
||||
scheduler = FlowMatchEulerDiscreteScheduler()
|
||||
text_encoder = SmolLM3ForCausalLM(SmolLM3Config(hidden_size=32))
|
||||
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
||||
|
||||
components = {
|
||||
"scheduler": scheduler,
|
||||
"text_encoder": text_encoder,
|
||||
"tokenizer": tokenizer,
|
||||
"transformer": transformer,
|
||||
"vae": vae,
|
||||
}
|
||||
return components
|
||||
|
||||
def get_dummy_inputs(self, device, seed=0):
|
||||
if str(device).startswith("mps"):
|
||||
generator = torch.manual_seed(seed)
|
||||
else:
|
||||
generator = torch.Generator(device="cpu").manual_seed(seed)
|
||||
inputs = {
|
||||
"prompt": '{"text": "A painting of a squirrel eating a burger","edit_instruction": "A painting of a squirrel eating a burger"}',
|
||||
"negative_prompt": "bad, ugly",
|
||||
"generator": generator,
|
||||
"num_inference_steps": 2,
|
||||
"guidance_scale": 5.0,
|
||||
"height": 192,
|
||||
"width": 336,
|
||||
"output_type": "np",
|
||||
}
|
||||
image = Image.new("RGB", (336, 192), (255, 255, 255))
|
||||
inputs["image"] = image
|
||||
return inputs
|
||||
|
||||
@unittest.skip(reason="will not be supported due to dim-fusion")
|
||||
def test_encode_prompt_works_in_isolation(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Batching is not supported yet")
|
||||
def test_num_images_per_prompt(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Batching is not supported yet")
|
||||
def test_inference_batch_consistent(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Batching is not supported yet")
|
||||
def test_inference_batch_single_identical(self):
|
||||
pass
|
||||
|
||||
def test_bria_fibo_different_prompts(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components())
|
||||
pipe = pipe.to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
output_same_prompt = pipe(**inputs).images[0]
|
||||
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
inputs["prompt"] = {"edit_instruction": "a different prompt"}
|
||||
output_different_prompts = pipe(**inputs).images[0]
|
||||
|
||||
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
|
||||
assert max_diff > 1e-6
|
||||
|
||||
def test_image_output_shape(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components())
|
||||
pipe = pipe.to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
height_width_pairs = [(32, 32), (64, 64), (32, 64)]
|
||||
for height, width in height_width_pairs:
|
||||
expected_height = height
|
||||
expected_width = width
|
||||
|
||||
inputs.update({"height": height, "width": width})
|
||||
image = pipe(**inputs).images[0]
|
||||
output_height, output_width, _ = image.shape
|
||||
assert (output_height, output_width) == (expected_height, expected_width)
|
||||
|
||||
def test_bria_fibo_edit_mask(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components())
|
||||
pipe = pipe.to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
mask = Image.fromarray((np.ones((192, 336)) * 255).astype(np.uint8), mode="L")
|
||||
|
||||
inputs.update({"mask": mask})
|
||||
output = pipe(**inputs).images[0]
|
||||
|
||||
assert output.shape == (192, 336, 3)
|
||||
|
||||
def test_bria_fibo_edit_mask_image_size_mismatch(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components())
|
||||
pipe = pipe.to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
mask = Image.fromarray((np.ones((64, 64)) * 255).astype(np.uint8), mode="L")
|
||||
|
||||
inputs.update({"mask": mask})
|
||||
with self.assertRaisesRegex(ValueError, "Mask and image must have the same size"):
|
||||
pipe(**inputs)
|
||||
|
||||
def test_bria_fibo_edit_mask_no_image(self):
|
||||
pipe = self.pipeline_class(**self.get_dummy_components())
|
||||
pipe = pipe.to(torch_device)
|
||||
inputs = self.get_dummy_inputs(torch_device)
|
||||
|
||||
mask = Image.fromarray((np.ones((32, 32)) * 255).astype(np.uint8), mode="L")
|
||||
|
||||
# Remove image from inputs if it's there (it shouldn't be by default from get_dummy_inputs)
|
||||
inputs.pop("image", None)
|
||||
inputs.update({"mask": mask})
|
||||
|
||||
with self.assertRaisesRegex(ValueError, "If mask is provided, image must also be provided"):
|
||||
pipe(**inputs)
|
||||
300
utils/modular_auto_docstring.py
Normal file
300
utils/modular_auto_docstring.py
Normal file
@@ -0,0 +1,300 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2025 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Auto Docstring Generator for Modular Pipeline Blocks
|
||||
|
||||
This script scans Python files for classes that have `# auto_docstring` comment above them
|
||||
and inserts/updates the docstring from the class's `doc` property.
|
||||
|
||||
Run from the root of the repo:
|
||||
python utils/modular_auto_docstring.py [path] [--fix_and_overwrite]
|
||||
|
||||
Examples:
|
||||
# Check for auto_docstring markers (will error if found without proper docstring)
|
||||
python utils/modular_auto_docstring.py
|
||||
|
||||
# Check specific directory
|
||||
python utils/modular_auto_docstring.py src/diffusers/modular_pipelines/
|
||||
|
||||
# Fix and overwrite the docstrings
|
||||
python utils/modular_auto_docstring.py --fix_and_overwrite
|
||||
|
||||
Usage in code:
|
||||
# auto_docstring
|
||||
class QwenImageAutoVaeEncoderStep(AutoPipelineBlocks):
|
||||
# docstring will be automatically inserted here
|
||||
|
||||
@property
|
||||
def doc(self):
|
||||
return "Your docstring content..."
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import ast
|
||||
import glob
|
||||
import importlib
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
|
||||
|
||||
# All paths are set with the intent you should run this script from the root of the repo
|
||||
DIFFUSERS_PATH = "src/diffusers"
|
||||
REPO_PATH = "."
|
||||
|
||||
# Pattern to match the auto_docstring comment
|
||||
AUTO_DOCSTRING_PATTERN = re.compile(r"^\s*#\s*auto_docstring\s*$")
|
||||
|
||||
|
||||
def setup_diffusers_import():
|
||||
"""Setup import path to use the local diffusers module."""
|
||||
src_path = os.path.join(REPO_PATH, "src")
|
||||
if src_path not in sys.path:
|
||||
sys.path.insert(0, src_path)
|
||||
|
||||
|
||||
def get_module_from_filepath(filepath: str) -> str:
|
||||
"""Convert a filepath to a module name."""
|
||||
filepath = os.path.normpath(filepath)
|
||||
|
||||
if filepath.startswith("src" + os.sep):
|
||||
filepath = filepath[4:]
|
||||
|
||||
if filepath.endswith(".py"):
|
||||
filepath = filepath[:-3]
|
||||
|
||||
module_name = filepath.replace(os.sep, ".")
|
||||
return module_name
|
||||
|
||||
|
||||
def load_module(filepath: str):
|
||||
"""Load a module from filepath."""
|
||||
setup_diffusers_import()
|
||||
module_name = get_module_from_filepath(filepath)
|
||||
|
||||
try:
|
||||
module = importlib.import_module(module_name)
|
||||
return module
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not import module {module_name}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def get_doc_from_class(module, class_name: str) -> str:
|
||||
"""Get the doc property from an instantiated class."""
|
||||
if module is None:
|
||||
return None
|
||||
|
||||
cls = getattr(module, class_name, None)
|
||||
if cls is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
instance = cls()
|
||||
if hasattr(instance, "doc"):
|
||||
return instance.doc
|
||||
except Exception as e:
|
||||
print(f"Warning: Could not instantiate {class_name}: {e}")
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def find_auto_docstring_classes(filepath: str) -> list:
|
||||
"""
|
||||
Find all classes in a file that have # auto_docstring comment above them.
|
||||
|
||||
Returns list of (class_name, class_line_number, has_existing_docstring, docstring_end_line)
|
||||
"""
|
||||
with open(filepath, "r", encoding="utf-8", newline="\n") as f:
|
||||
lines = f.readlines()
|
||||
|
||||
# Parse AST to find class locations and their docstrings
|
||||
content = "".join(lines)
|
||||
try:
|
||||
tree = ast.parse(content)
|
||||
except SyntaxError as e:
|
||||
print(f"Syntax error in {filepath}: {e}")
|
||||
return []
|
||||
|
||||
# Build a map of class_name -> (class_line, has_docstring, docstring_end_line)
|
||||
class_info = {}
|
||||
for node in ast.walk(tree):
|
||||
if isinstance(node, ast.ClassDef):
|
||||
has_docstring = False
|
||||
docstring_end_line = node.lineno # default to class line
|
||||
|
||||
if node.body and isinstance(node.body[0], ast.Expr):
|
||||
first_stmt = node.body[0]
|
||||
if isinstance(first_stmt.value, ast.Constant) and isinstance(first_stmt.value.value, str):
|
||||
has_docstring = True
|
||||
docstring_end_line = first_stmt.end_lineno or first_stmt.lineno
|
||||
|
||||
class_info[node.name] = (node.lineno, has_docstring, docstring_end_line)
|
||||
|
||||
# Now scan for # auto_docstring comments
|
||||
classes_to_update = []
|
||||
|
||||
for i, line in enumerate(lines):
|
||||
if AUTO_DOCSTRING_PATTERN.match(line):
|
||||
# Found the marker, look for class definition on next non-empty, non-comment line
|
||||
j = i + 1
|
||||
while j < len(lines):
|
||||
next_line = lines[j].strip()
|
||||
if next_line and not next_line.startswith("#"):
|
||||
break
|
||||
j += 1
|
||||
|
||||
if j < len(lines) and lines[j].strip().startswith("class "):
|
||||
# Extract class name
|
||||
match = re.match(r"class\s+(\w+)", lines[j].strip())
|
||||
if match:
|
||||
class_name = match.group(1)
|
||||
if class_name in class_info:
|
||||
class_line, has_docstring, docstring_end_line = class_info[class_name]
|
||||
classes_to_update.append((class_name, class_line, has_docstring, docstring_end_line))
|
||||
|
||||
return classes_to_update
|
||||
|
||||
|
||||
def strip_class_name_line(doc: str, class_name: str) -> str:
|
||||
"""Remove the 'class ClassName' line from the doc if present."""
|
||||
lines = doc.strip().split("\n")
|
||||
if lines and lines[0].strip() == f"class {class_name}":
|
||||
# Remove the class line and any blank line following it
|
||||
lines = lines[1:]
|
||||
while lines and not lines[0].strip():
|
||||
lines = lines[1:]
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def format_docstring(doc: str, indent: str = " ") -> str:
|
||||
"""Format a doc string as a properly indented docstring."""
|
||||
lines = doc.strip().split("\n")
|
||||
|
||||
if len(lines) == 1:
|
||||
return f'{indent}"""{lines[0]}"""\n'
|
||||
else:
|
||||
result = [f'{indent}"""\n']
|
||||
for line in lines:
|
||||
if line.strip():
|
||||
result.append(f"{indent}{line}\n")
|
||||
else:
|
||||
result.append("\n")
|
||||
result.append(f'{indent}"""\n')
|
||||
return "".join(result)
|
||||
|
||||
|
||||
def process_file(filepath: str, overwrite: bool = False) -> list:
|
||||
"""
|
||||
Process a file and find/insert docstrings for # auto_docstring marked classes.
|
||||
|
||||
Returns list of classes that need updating.
|
||||
"""
|
||||
classes_to_update = find_auto_docstring_classes(filepath)
|
||||
|
||||
if not classes_to_update:
|
||||
return []
|
||||
|
||||
if not overwrite:
|
||||
# Just return the list of classes that need updating
|
||||
return [(filepath, cls_name, line) for cls_name, line, _, _ in classes_to_update]
|
||||
|
||||
# Load the module to get doc properties
|
||||
module = load_module(filepath)
|
||||
|
||||
with open(filepath, "r", encoding="utf-8", newline="\n") as f:
|
||||
lines = f.readlines()
|
||||
|
||||
# Process in reverse order to maintain line numbers
|
||||
updated = False
|
||||
for class_name, class_line, has_docstring, docstring_end_line in reversed(classes_to_update):
|
||||
doc = get_doc_from_class(module, class_name)
|
||||
|
||||
if doc is None:
|
||||
print(f"Warning: Could not get doc for {class_name} in {filepath}")
|
||||
continue
|
||||
|
||||
# Remove the "class ClassName" line since it's redundant in a docstring
|
||||
doc = strip_class_name_line(doc, class_name)
|
||||
|
||||
# Format the new docstring with 4-space indent
|
||||
new_docstring = format_docstring(doc, " ")
|
||||
|
||||
if has_docstring:
|
||||
# Replace existing docstring (line after class definition to docstring_end_line)
|
||||
# class_line is 1-indexed, we want to replace from class_line+1 to docstring_end_line
|
||||
lines = lines[:class_line] + [new_docstring] + lines[docstring_end_line:]
|
||||
else:
|
||||
# Insert new docstring right after class definition line
|
||||
# class_line is 1-indexed, so lines[class_line-1] is the class line
|
||||
# Insert at position class_line (which is right after the class line)
|
||||
lines = lines[:class_line] + [new_docstring] + lines[class_line:]
|
||||
|
||||
updated = True
|
||||
print(f"Updated docstring for {class_name} in {filepath}")
|
||||
|
||||
if updated:
|
||||
with open(filepath, "w", encoding="utf-8", newline="\n") as f:
|
||||
f.writelines(lines)
|
||||
|
||||
return [(filepath, cls_name, line) for cls_name, line, _, _ in classes_to_update]
|
||||
|
||||
|
||||
def check_auto_docstrings(path: str = None, overwrite: bool = False):
|
||||
"""
|
||||
Check all files for # auto_docstring markers and optionally fix them.
|
||||
"""
|
||||
if path is None:
|
||||
path = DIFFUSERS_PATH
|
||||
|
||||
if os.path.isfile(path):
|
||||
all_files = [path]
|
||||
else:
|
||||
all_files = glob.glob(os.path.join(path, "**/*.py"), recursive=True)
|
||||
|
||||
all_markers = []
|
||||
|
||||
for filepath in all_files:
|
||||
markers = process_file(filepath, overwrite)
|
||||
all_markers.extend(markers)
|
||||
|
||||
if not overwrite and len(all_markers) > 0:
|
||||
message = "\n".join([f"- {f}: {cls} at line {line}" for f, cls, line in all_markers])
|
||||
raise ValueError(
|
||||
f"Found the following # auto_docstring markers that need docstrings:\n{message}\n\n"
|
||||
f"Run `python utils/modular_auto_docstring.py --fix_and_overwrite` to fix them."
|
||||
)
|
||||
|
||||
if overwrite and len(all_markers) > 0:
|
||||
print(f"\nUpdated {len(all_markers)} docstring(s).")
|
||||
elif len(all_markers) == 0:
|
||||
print("No # auto_docstring markers found.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Check and fix # auto_docstring markers in modular pipeline blocks",
|
||||
)
|
||||
parser.add_argument("path", nargs="?", default=None, help="File or directory to process (default: src/diffusers)")
|
||||
parser.add_argument(
|
||||
"--fix_and_overwrite",
|
||||
action="store_true",
|
||||
help="Whether to fix the docstrings by inserting them from doc property.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
check_auto_docstrings(args.path, args.fix_and_overwrite)
|
||||
Reference in New Issue
Block a user