mirror of
https://github.com/huggingface/diffusers.git
synced 2025-12-22 12:24:39 +08:00
Compare commits
4 Commits
custom-cod
...
tests/fix-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
836bb0244f | ||
|
|
c8a019d317 | ||
|
|
a360039ac1 | ||
|
|
958224c13e |
@@ -20,6 +20,7 @@ from diffusers import (
|
|||||||
)
|
)
|
||||||
from diffusers.models.attention import FreeNoiseTransformerBlock
|
from diffusers.models.attention import FreeNoiseTransformerBlock
|
||||||
from diffusers.utils import logging
|
from diffusers.utils import logging
|
||||||
|
from diffusers.utils.import_utils import is_xformers_available
|
||||||
from diffusers.utils.testing_utils import torch_device
|
from diffusers.utils.testing_utils import torch_device
|
||||||
|
|
||||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||||
@@ -329,6 +330,13 @@ class AnimateDiffControlNetPipelineFastTests(
|
|||||||
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
|
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
|
||||||
pipe(**inputs)
|
pipe(**inputs)
|
||||||
|
|
||||||
|
@unittest.skipIf(
|
||||||
|
torch_device != "cuda" or not is_xformers_available(),
|
||||||
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
||||||
|
)
|
||||||
|
def test_xformers_attention_forwardGenerator_pass(self):
|
||||||
|
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
|
||||||
|
|
||||||
def test_free_init(self):
|
def test_free_init(self):
|
||||||
components = self.get_dummy_components()
|
components = self.get_dummy_components()
|
||||||
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
|
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
|
||||||
|
|||||||
@@ -19,6 +19,7 @@ from diffusers import (
|
|||||||
UNetMotionModel,
|
UNetMotionModel,
|
||||||
)
|
)
|
||||||
from diffusers.utils import logging
|
from diffusers.utils import logging
|
||||||
|
from diffusers.utils.import_utils import is_xformers_available
|
||||||
from diffusers.utils.testing_utils import torch_device
|
from diffusers.utils.testing_utils import torch_device
|
||||||
|
|
||||||
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
||||||
@@ -393,6 +394,13 @@ class AnimateDiffSparseControlNetPipelineFastTests(
|
|||||||
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
|
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
|
||||||
pipe(**inputs)
|
pipe(**inputs)
|
||||||
|
|
||||||
|
@unittest.skipIf(
|
||||||
|
torch_device != "cuda" or not is_xformers_available(),
|
||||||
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
||||||
|
)
|
||||||
|
def test_xformers_attention_forwardGenerator_pass(self):
|
||||||
|
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
|
||||||
|
|
||||||
def test_free_init(self):
|
def test_free_init(self):
|
||||||
components = self.get_dummy_components()
|
components = self.get_dummy_components()
|
||||||
pipe: AnimateDiffSparseControlNetPipeline = self.pipeline_class(**components)
|
pipe: AnimateDiffSparseControlNetPipeline = self.pipeline_class(**components)
|
||||||
|
|||||||
@@ -275,6 +275,10 @@ class CogVideoXPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|||||||
"VAE tiling should not affect the inference results",
|
"VAE tiling should not affect the inference results",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@unittest.skip("xformers attention processor does not exist for CogVideoX")
|
||||||
|
def test_xformers_attention_forwardGenerator_pass(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
@slow
|
@slow
|
||||||
@require_torch_gpu
|
@require_torch_gpu
|
||||||
|
|||||||
@@ -28,6 +28,7 @@ from diffusers import (
|
|||||||
LattePipeline,
|
LattePipeline,
|
||||||
LatteTransformer3DModel,
|
LatteTransformer3DModel,
|
||||||
)
|
)
|
||||||
|
from diffusers.utils.import_utils import is_xformers_available
|
||||||
from diffusers.utils.testing_utils import (
|
from diffusers.utils.testing_utils import (
|
||||||
enable_full_determinism,
|
enable_full_determinism,
|
||||||
numpy_cosine_similarity_distance,
|
numpy_cosine_similarity_distance,
|
||||||
@@ -256,6 +257,13 @@ class LattePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|||||||
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
||||||
self.assertLess(max_diff, 1.0)
|
self.assertLess(max_diff, 1.0)
|
||||||
|
|
||||||
|
@unittest.skipIf(
|
||||||
|
torch_device != "cuda" or not is_xformers_available(),
|
||||||
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
||||||
|
)
|
||||||
|
def test_xformers_attention_forwardGenerator_pass(self):
|
||||||
|
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
|
||||||
|
|
||||||
|
|
||||||
@slow
|
@slow
|
||||||
@require_torch_gpu
|
@require_torch_gpu
|
||||||
|
|||||||
Reference in New Issue
Block a user